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Abstract. In this paper we investigate the applicability of standard
model checking approaches to verifying properties in probabilistic pro-
gramming. As the operational model for a standard probabilistic program
is a potentially infinite parametric Markov decision process, no direct
adaption of existing techniques is possible. Therefore, we propose an on—
the—fly approach where the operational model is successively created and
verified via a step—wise execution of the program. This approach enables
to take key features of many probabilistic programs into account: nonde-
terminism and conditioning. We discuss the restrictions and demonstrate
the scalability on several benchmarks.

1 Introduction

Probabilistic programs are imperative programs, written in languages like C,
Scala, Prolog, or ML, with two added constructs: (1) the ability to draw val-
ues at random from probability distributions, and (2) the ability to condition
values of variables in a program through observations. In the past years, such
programming languages became very popular due to their wide applicability for
several different research areas [I]: Probabilistic programming is at the heart
of machine learning for describing distribution functions; Bayesian inference
is pivotal in their analysis. They are central in security for describing crypto-
graphic constructions (such as randomized encryption) and security experiments.
In addition, probabilistic programs are an active research topic in quantitative
information flow. Moreover, quantum programs are inherently probabilistic due
to the random outcomes of quantum measurements. All in all, the simple and
intuitive syntax of probabilistic programs makes these different research areas
accessible to a broad audience.

However, although these programs typically consist of a few lines of code, they
are often hard to understand and analyze; bugs, for instance non—termination of
a program, can easily occur. It seems of utmost importance to be able to auto-
matically prove properties like “Is the probability for termination of the program
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at least 90%” or “Is the expected value of a certain program wvariable at least
5 after successful termination?”. Approaches based on the simulation of a pro-
gram to show properties or infer probabilities have been made in the past [2I3].
However, to the best of our knowledge there is no work which exploits well-
established model checking algorithms for probabilistic systems such as Markov
decision processes (MDP) or Markov chains (MCs), as already argued to be an
interesting avenue for the future in [I].

As the operational semantics for a probabilistic program can be expressed as a
(possible infinite) MDP [4], it seems worthwhile to investigate the opportunities
there. However, probabilistic model checkers like PRISM [5], iscasMc [6], or
MRMC [7] offer efficient methods only for finite models.

We make use of the simple fact that for a finite unrolling of a program
the corresponding operational MDP is also finite. Starting from a profound un-
derstanding of the (intricate) probabilistic program semantics—including fea-
tures such as observations, unbounded (and hence possibly diverging) loops, and
nondeterminism—we show that with each unrolling of the program both con-
ditional reachability probabilities and conditional expected values of program
variables increase monotonically. This gives rise to a bounded model-checking
approach for verifying probabilistic programs. This enables for a user to write a
program and automatically verify it against a desired property without further
knowledge of the programs semantics.

We extend this methodology to the even more complicated case of para-
metric probabilistic programs, where probabilities are given by functions over
parameters. At each iteration of the bounded model checking procedure, param-
eter valuations violating certain properties are guaranteed to induce violation at
each further iteration.

We demonstrate the applicability of our approach using five well-known
benchmarks from the literature. Using efficient model building and verification
methods, our prototype is able to prove properties where either the state space
of the operational model is infinite or consists of millions of states.

Related Work. Besides the tools employing probabilistic model checking as listed
above, one should mention the approach in [§], where finite abstractions of the
operational semantics of a program were verified. However, this was defined for
programs without parametric probabilities or observe statements. In [9], verifi-
cation on partial operational semantics is theoretically discussed for termination
probabilities.

The paper is organized as follows: In Section[2] we introduce the probabilistic
models we use, the probabilistic programming language, and the structured op-
erational semantics (SOS) rules to construct an operational (parametric) MDP.
Section [3] first introduces formal concepts needed for the finite unrollings of the
program, then shows how expectations and probabilities grow monotonically,
and finally explains how this is utilized for bounded model checking. In Sec-
tion 4] an extensive description of used benchmarks, properties and experiments
is given before the paper concludes with Section



2 Preliminaries

2.1 Distributions and Polynomials

A probability distribution over a finite or countably infinite set X is a function
p: X — [0, 1] € R with >y u(x) = 1. The set of all distributions on X is
denoted by Distr(X). Let V be a finite set of parameters over R. A wvaluation
for V is a function u: V' — R. Let Q[V] denote the set of multivariate polyno-
mials with rational coefficients and Qy the set of rational functions (fractions
of polynomials) over V. For g € Q[V] or g € Qy, let g[u] denote the evaluation
of g at u. We write g = 0 if g can be reduced to 0, and g # 0 otherwise.

2.2 Probabilistic Models

First, we introduce parametric probabilistic models which can be seen as tran-
sition systems where the transitions are labelled with polynomials in Q[V].

Definition 1 (pMDP and pMC). A parametric Markov decision process
(pMDP) is a tuple M = (S, sy, Act, P) with a countable set S of states,
an initial state s; € S, a finite set Act of actions, and a transition function
P: S x Act x S — Q[V] satisfying for all s € S: Act(s) # (), where V is a finite
set of parameters over R and Act(s) = {a € Act | s’ € S.P(s, a, s') # 0}. If
for all s € S it holds that |Act(s)| = 1, M is called a parametric discrete-time
Markov chain (pMC), denoted by D.

At each state, an action is chosen nondeterministically, then the successor states
are determined probabilistically as defined by the transition function. Act(s) is
the set of enabled actions at state s. As Act(s) is non-empty for all s € S, there
are no deadlock states. For pMCs there is only one single action per state and
we write the transition probability function as P: S x S — Q[V], omitting that
action. Rewards are defined using a reward function rew: S — R which assigns
rewards to states of the model. Intuitively, the reward rew(s) is earned upon
leaving the state s.

Schedulers. The nondeterministic choices of actions in pMDPs can be resolved
using schedulersﬂ In our setting it suffices to consider memoryless deterministic
schedulers [10]. For more general definitions we refer to [11].

Definition 2. (Scheduler) A scheduler for pMDP M = (S, s1, Act, P) is a
function &: S — Act with &(s) € Act(s) for all s € S.

Let Sched™ denote the set of all schedulers for M. Applying a scheduler to
a pMDP yields an induced parametric Markov chain, as all nondeterminism is
resolved, i.e., the transition probabilities are obtained w.r.t. the choice of actions.

Definition 3. (Induced pMC) Given a pMDP M = (S, s;, Act, P), the
pMC induced by & € Sched™ is given by M® = (S, sy, Act, P®), where

PC(s, s') =P(s, &(s), s'), foralls,s €S.

3 Also referred to as adversaries, strategies, or policies.



Valuations. Applying a valuation u to a pMDP M, denoted M |u], replaces each
polynomial g in M by g[u]. We call M|[u] the instantiation of M at u. A valuation
u is well-defined for M if the replacement yields probability distributions at all
states; the resulting model M[u] is a Markov decision process (MDP) or, in
absence of nondeterminism, a Markov chain (MC).

Properties. For our purpose we consider conditional reachability properties and
conditional expected reward properties in MCs. For more detailed definitions we
refer to [II, Ch. 10]. Given an MC D with state space S and initial state sy,
let PrP”(=0U) denote the probability not to reach a set of undesired states U
from the initial state s; within D. Furthermore, let Pr?(QT | ~QU) denote the
conditional probability to reach a set of target states 77 C S from the initial
state s; within D, given that no state in the set U is reached. We use the
standard probability measure on infinite paths through an MC. For threshold
A € [0, 1] C R, the reachability property, asserting that a target state is to be
reached with conditional probability at most A, is denoted ¢ = P< (0T | =0U).
The property is satisfied by D, written D = ¢, iff Pr?(OT | =OU) < A. This is
analogous for comparisons like <, >, and >.

The reward of a path through an MC D until T is the sum of the rewards
of the states visited along on the path before reaching T'. The expected reward
of a finite path is given by its probability times its reward. Given PrD(QT) =1,
the conditional expected reward of reaching T' C S, given that no state in set
U C S is reached, denoted ERP (OT | =QU), is the expected reward of all paths
accumulated until hitting T while not visiting a state in U in between divided
by the probability of not reaching a state in U (i.e., divided by Pr?(-0U)).
An expected reward property is given by ¢ = E<,. (0T | =0U) with threshold
k € R>¢. The property is satisfied by D, written D |= ¢, iff ERP(OT | =OU) < k.
Again, this is analogous for comparisons like <, >, and >. For details about
conditional probabilities and expected rewards see [12].

Reachability probabilities and expected rewards for MDPs are defined on
induced MCs for specific schedulers. We take here the conservative view that a
property for an MDP has to hold for all possible schedulers.

Parameter Synthesis. For pMCs, one is interested in synthesizing well-defined
valuations that induce satisfaction or violation of the given specifications [I3].
In detail, for a pMC D, a rational function g € Qy is computed which—
when instantiated by a well-defined valuation u for D—evaluates to the actual
reachability probability or expected reward for D, i.e., g[u] = PrP™(OT) or
glu] = ERP(OT). For pMDPs, schedulers inducing mazimal or minimal prob-
ability or expected reward have to be considered [14].

2.3 Conditional Probabilistic Guarded Command Language

We first present a programming language which is an extension of Dijkstra’s
guarded command language [I5] with a binary probabilistic choice operator,
yielding the probabilistic guarded command language (pGCL) [16]. In [I7], pGCL



was endowed with observe statements, giving rise to conditioning. The syntax of
this conditional probabilistic guarded command language (cpGCL) is given by

P := skip|abort |z :=FE |P;P|if G then P else P
| {P} lg] {P} [ {P}D{P} | while (G) {P} | observe (G)

Here, = belongs to the set of program variables V; E is an arithmetical expression
over V; G is a Boolean expression over arithmetical expressions over V. The
probability is given by a polynomial g € Q[V]. Most of the cpGCL instructions
are self-explanatory; we elaborate only on the following: For cpGCL-programs P
and @, {P} [g] {Q} is a probabilistic choice where P is executed with probability
g and @ with probability 1—g; analogously, {P}O{Q} is a nondeterministic
choice between P and @); abort is syntactic sugar for the diverging program
while (true) {skip}. The statement observe (G) for the Boolean expression G
blocks all program executions violating G and induces a rescaling of probability
of the remaining execution traces so that they sum up to one. For a cpGCL-
program P; the set of program states is given by S = {o | 0: V — Q}, i.e., the
set of all variable valuations. We assume all variables to be assigned zero prior
to execution or at the start of the program. This initial variable valuation oy € S
with Vo € V.or(x) = 0 is called the initial state of the program.

Ezample 1. Consider the following cpGCL-program with variables x and c:

1 while (¢ = 0) {

2 {x:=x+13% [0.5] {c:=113}

s}

1+ observe "x is odd"
While ¢ is 0, the loop body is iterated: With probability 1/2 either z is in-
cremented by one or c is set to one. After leaving the loop, the event that the
valuation of z is odd is observed, which means that all program executions where
x is even are blocked. Properties of interest for this program would, e.g., concern
the termination probability, or the expected value of x after termination. A

2.4 Operational Semantics for Probabilistic Programs

We now introduce an operational semantics for cpGCL-programs which is given
by an MDP as in Definition [T The structure of such an operational MDP is
schematically depicted below.
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Squiggly arrows indicate reaching certain states via possibly multiple paths and
states; the clouds indicate that there might be several states of the particular
kind. (P, o) marks the initial state of the program P. In general the states of
the operational MDP are of the form (P’, ¢’) where P’ is the program that is
left to be executed and ¢’ is the current variable valuation.

All runs of the program (paths through the MDP) are either terminating
and eventually end up in the (sink) state, or are diverging (thus they never
reach (sink)). Diverging runs occur due to non—terminating computations. A
terminating run has either terminated successfully, i.e., it passes a |—state, or it
has terminated due to a wviolation of an observation, i.e., it passes the (4 )-state.
Sets of runs that eventually reach (4), or (sink), or diverge are pairwise disjoint.
The |-labelled states are the only ones with positive reward, which is due to
the fact that we want to capture probabilities of events (respectively expected
values of random variables) occurring at successful termination of the program.

The random variables of interest are E = {f | f: S — Rx>¢}. Such random
variables are referred to as post—expectations [16]. Formally, we have:

Definition 4 (Operational Semantics of Programs). The operational se-
mantics of a cpGCL program P with respect to a post—expectation f € E is the
MDP M'[P] = (S, (P, o), Act, P) together with a reward function rew, where

- S ={(Q, 0),(l,0) | QisacpGCL program, o € S} U {(4), (sink)} is the
countable set of states,

— (P, or) € S is the initial state,

— Act = {left, right, none} is the set of actions, and

— P is the smallest relation defined by the SOS rules given in Figure [1

The reward function is rew(s) = f(o) if s = (], o), and rew(s) = 0, otherwise.

A state of the form (], o) indicates successful termination, i.e., no commands are
left to be executed. These terminal states and the (4 )—state go to the (sink) state.
skip without context terminates successfully. abort self-loops, i.e., diverges.
x = F alters the variable valuation according to the assignment then terminates
successfully. For the concatenation, (|;@, o) indicates successful termination
of the first program, so the execution continues with (Q, o). If for P; @ the
execution of P leads to (4), P; Q does so, too. Otherwise, for (P,c)—u, p is
lifted such that @ is concatenated to the support of u. For more details on the
operational semantics we refer to [4].

If for the conditional choice o |= G holds, P is executed, otherwise ). The
case for while is similar. For the probabilistic choice, a distribution v is created
according to probability p. For {P}O{Q}, we call P the left choice and Q
the right choice for actions left, right € Act. For the observe statement, if
o = G then observe acts like skip. Otherwise, the execution leads directly to
(4) indicating a violation of the observe statement.

FExample 2. Reconsider Example where we set for readability P, = {z =
x + 1} [0.5] {¢ = 1}, P, = observe(“c is odd”), P; = {x = z + 1}, and
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Fig.1. SOS rules for constructing the operational MDP of a cpGCL program. We
use s —> t to indicate P(s, none, t) = 1, s — p for p € Distr(S) to indicate
Vt € S: P(s, none, t) = u(t), s L9 ¢ to indicate P(s, left,t) =1, and s 9t to
indicate P(s, right, t) = 1.

Py = {c = 1}. A part of the operational MDP M/[P] for an arbitrary ini-
tial variable valuation o; and post—expectation x is depicted in Figure Note
that this MDP is an MC, as P contains no nondeterministic choices. The MDP
has been unrolled until the second loop iteration, i.e., at state (P, or[z/2]), the
unrolling could be continued. The only terminating state is (},, oy[z/1,¢/1]). As
our post-expectation is the value of variable x, we assign this value to terminating
states, i.e., reward | 1| at state (], or[z/1, ¢/1]), where z has been assigned 1. At
state (P, or[c/1]), the loop condition is violated as is the subsequent observation
because of x being assigned an even number. A

3 Bounded Model Checking for Probabilistic Programs

In this section we describe our approach to model checking probabilistic pro-
grams. The key idea is that satisfaction or violation of certain properties for a
program can be shown by means of a finite unrolling of the program. Therefore,
we introduce the notion of a partial operational semantics of a program, which
we exploit to apply standard model checking to prove or disprove properties.

First, we state the correspondence between the satisfaction of a property for a
cpGCL-program P and for its operational semantics, the MDP M/[P]. Intu-

4 We have tacitly overloaded the variable name z to an expectation here for readability.
More formally, by the “expectation x” we actually mean the expectation Ao. o(z).
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Fig. 2. Partially unrolled operational semantics for program P

itively, a program satisfies a property if and only if the property is satisfied on
the operational semantics of the program.

Definition 5 (Satisfaction of Properties). Given a cpGCL program P and
a (conditional) reachability or expected reward property ¢. We define

Py if MIPlEgy.

This correspondence on the level of a denotational semantics for cpGCL has been
discussed extensively in [I7]. Note that there only schedulers which minimize ex-
pected rewards were considered. Here, we also need maximal schedulers as we
are considering both upper and lower bounds on expected rewards and proba-
bilities. Note that satisfaction of properties is solely based on the operational
semantics and induced maximal or minimal probabilities or expected rewards.

We now introduce the notion of a partial operational MDP for a cpGCL—
program P, which is a finite approximation of the full operational MDP of P.
Intuitively, this amounts to the successive application of SOS rules given in
Figure [1} while not all possible rules have been applied yet.

Definition 6 (Partial Operational Semantics). A partial operational se-
mantics for a cpGCL-program P is a sub-MDP MY[P]' = (S',(P, o1), Act, P')
of the operational semantics for P (denoted MY[P]' C MS[P]) with S’ C S. Let
Sesp =95\ {(Q,a> e s ’ Q#]), s S\ S Ja e Act: P((Q, o), a, s) > 0}

be the set of expandable states. Then the transition probability function P’ is



for s, s’ € 8" and a € Act given by

1, if s=¢" fors,s € Seup,

P(s,a,s"), otherwise .

P'(s,a,8) = {

Intuitively, the set of non—terminating expandable states describes the states
where there are still SOS rules applicable. Using this definition, the only tran-
sitions leaving expandable states are self-loops, enabling to have a well-defined
probability measure on partial operational semantics. We will use this for our
method, which is based on the fact that both (conditional) reachability prob-
abilities and expected rewards for certain properties will always monotonically
increase for further unrollings of a program and the respective partial operational
semantics. This is discussed in what follows.

3.1 Growing Expectations

As mentioned before, we are interested in the probability of termination or the
expected values of expectations (i.e. random variables ranging over program
states) after successful termination of the program. This is measured on the
operational MDP by the set of paths reaching (sink) from the initial state con-
ditioned on not reaching (4) [I7]. In detail, we have to compute the conditional
expected value of post—expectation f after successful termination of program
P, given that no observation was violated along the computation. For nonde-
terministic programs, we have to compute this value either under a minimizing
or maximizing scheduler (depending on the given property). We focus our pre-
sentation on expected rewards and minimizing schedulers, but all concepts are
analogous for the other cases. For M/[P] we have

inf  ERMIPIY (O sink) | ~0(4)) .

GGSchede 7l

Recall that M/[P]® is the induced MC under scheduler & € Sched™ IF) as
in Definition [3| Recall also that for ={(4) all paths not eventually reaching (4)
either diverge (collecting reward 0) or pass by a |-state and reach (sink). More
importantly, all paths that do eventually reach (4) also collect reward 0. Thus:

inf  ERMIPIS (O (sink) | =0(4))

SeSched™M! 1P
f &
_ e ERMIPT(0fsing) N —0(4)
GeSched M 171 PrMIPI® (504)
- (ICTS)
sescheaM 171 PrMIPIT (104

Finally, observe that the probability of not reaching (4) is one minus the prob-
ability of reaching (4), which gives us:

_ g BRI (OGik)

SeScheaM!1P1 1 — ppMIIPI® (04) .

()



Regarding the quotient minimization we assume “% < 0” as we see %—being
undefined—to be less favorable than 0. For programs without nondeterminism
this view agrees with a weakest—precondition—style semantics for probabilistic

programs with conditioning [17].

It s sh . . Mf[[P]]G .
was shown in [I8] that all strict lower bounds for ER (O{sink)) are
in principle computably enumerable in a monotonically non—decreasing fashion.
One way to do so, is to allow for the program to be executed for an increasing
number of k steps, and collect the expected rewards of all execution traces that
have lead to termination within k£ computation steps. This corresponds natu-
rally to constructing a partial operational semantics M/[P]" € M/[P] as in
Definition [6| and computing minimal expected rewards on M/ [P]’.
Analogously, it is of course also possible to monotonically enumerate all

S
strict lower bounds of Prt’ 7] (04), since—again—we need to just collect the
probability mass of all traces that have led to (4) within k computation steps.
Since probabilities are quantities bounded between 0 and 1, a lower bound for

prM 171 (04) is an upper bound for 1 — Pr/\/l\f[[P]]G (04).
Put together, a lower bound for ERM'IP1° (O(sink)) and a lower bound for
(G}
prM17] (04) yields a lower bound for (). We are thus able to enumerate all

lower bounds of ERM’ [P1° (O(sink) | =O(4)) by inspection of a finite sub-MDP
of M/[P]. Formally, we have:

Theorem 1. For a cpGCL program P, post—expectation f, and a partial opera-
tional MDP M/[P]' C MY[P] it holds that

inf  ERMIPTS (O(sink) | —0(4))
SeSched™! 1PV

< inf ERMf[[P]]G(<><sinK> | =0(4)) -
SeSched™! 1P

3.2 Model Checking

Using Theorem we transfer satisfaction or violation of certain properties
from a partial operational semantics M/[P]" € M/[P] to the full semantics
of the program. For an upper bounded conditional expected reward property
o =E<, (0T | =0U) where T,U € S we exploit that

MIPI'Ee = Plo. (1)

That means, if we can prove the violation of ¢ on the MDP induced by a finite
unrolling of the program, it will hold for all further unrollings, too. This is
because all rewards and probabilities are positive and thus further unrolling can
only increase the accumulated reward and/or probability mass.

Dually, for a lower bounded conditional expected reward property @ =
E>A(OT | OU) we use the following property:

MIPI k¢ — Pre. (2)



The preconditions of Implication and Implication can be checked by
probabilistic model checkers like PRISM [5]; this is analogous for conditional
reachability properties. Let us illustrate this by means of an example.

Ezxample 3. As mentioned in Example |1} we are interested in the probability of
termination. As outlined in Section this probability can be measured by

Pr(O(sink) A =0(4))
Pr((¢)) '
We want this probability to be at least 1/2, i.e., ¢ = Pxo5(0(sink) | =0(4))-

Since for further unrollings of our partially unrolled MDP this probability never
decreases, the property can already be verified on the partial MDP M7 [P]’ by

Pr(O(sink) | =0(4)) =

’ 1/4 1
PrMIPY (O (sing) [ ~0(4)) = L =
T (OGank) [ 004) = 2 =
where M/[P]’ is the sub-MDP from Figure [2} This finite sub-MDP M7 [P]’ is
therefore a witness of M7/ [P] = ¢. A

Algorithmically, this technique relies on suitable heuristics regarding the size
of the considered partial MDPs. Basically, in each step k states are expanded
and the corresponding MDP is model checked, until either the property can be
shown to be satisfied or violated, or no more states are expandable. In addition,
heuristics based on shortest path searching algorithms can be employed to favor
expandable states that so far induce high probabilities.

Note that this method is a semi-algorithm when the model checking problems
stated in Implications and are considering strict bounds, i.e. < x and > k.
It is then guaranteed that the given bounds are finally exceed.

Consider now the case where we want to show satisfaction of ¢ = E<, (0T |
-0U), i.e., MI[P]' |E ¢ = P = . As the conditional expected reward will
monotonically increase as long as the partial MDP is expandable, the implica-
tion is only true if there are no more expandable states, i.e., the model is fully
expanded. This is analogous for the violation of upper bounded properties. Note
that many practical examples actually induce finite operational MDPs which
enables to build the full model and perform model checking.

It remains to discuss how this approach can be utilized for parameter syn-
thesis as explained in Section For a partial operational pMDP M7 [P]’ and
a property ¢ = E<, (0T | =OU) we use tools like PROPhESY [I3] to deter-
mine for which parameter valuations ¢ is violated. For each valuation u with
MI[P]'[u] ¢ it holds that M/[P][u] [~ ¢; each parameter valuation violat-
ing a property on a partial pMDP also violates it on the fully expanded MDP.

4 Evaluation

Ezxperimental Setup. We implemented and evaluated the bounded model check-
ing method in C++. For the model checking functionality, we use the stochastic



model checker Storm, developed at RWTH Aachen University, and PROPh-
ESY [19] for parameter synthesis.

We consider five different, well-known benchmark programs, three of which
are based on models from the PRISM benchmark suite [5] and others taken from
other literature (see Appendix ?? for some examples). We give the running times
of our prototype on several instances of these models. Since there is — to the best
of our knowledge — no other tool that can analyze cpGCL programs in a purely
automated fashion, we cannot meaningfully compare these figures to other tools.
As our technique is restricted to establishing that lower bounds on reachability
probabilities and the expectations of program variables, respectively, exceed a
threshold A, we need to fix A for each experiment. For all our experiments, we
chose A to be 90% of the actual value for the corresponding query and choose
to expand 10 states of the partial operational semantics of a program between
each model checking run.

We ran the experiments on an HP BL685C G7 machine with 48 cores clocked
with 2.0GHz each and 192GB of RAM while each experiment only runs in a single
thread with a time—out of one hour. We ran the following benchmarksﬂ

Crowds Protocol [20]. This protocol aims at anonymizing the sender of R mes-
sages by routing them probabilistically through a crowd of N hosts. Some of
these hosts, however, are corrupt and try to determine the real sender by ob-
serving the host that most recently forwarded a message. For this model, we are
interested in (a) the probability that the real sender is observed more than R/10
times, and (b) the expected number of times that the real sender is observed.
We also consider a variant (crowds-obs) of the model in which an observe
statement ensures that after all messages have been delivered, hosts different
from the real sender have been observed at least R/4 times. Unlike the model
from the PRISM website, our model abstracts from the concrete identity of hosts
different from the sender, since they are irrelevant for properties of interest.

Herman Protocol. In this protocol [2I], N hosts form a token-passing ring and
try to steer the system into a stable state. We consider the probability that the
system eventually reaches such a state in two variants of this model where the
initial state is either chosen probabilistically or nondeterministically.

Robot. The robot case-study is loosely based on a similar model from the PRISM
benchmark suite. It models a robot that navigates through a bounded area of an
unbounded grid. Doing so, the robot can be blocked by a janitor that is moving
probabilistically across the whole grid. The property of interest is the probability
that the robot will eventually reach its final destination.

Predator. This model is due to Lotka and Volterra [22] p. 127]. A predator
and a prey population evolve with mutual dependency on each other’s numbers.

5 All input programs and log files of the experiments can be downloaded at
moves.rwth-aachen.de/wp-content/uploads/conference_material /pgcl_atval6.tar.gz
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program instance  #states F#trans. full? A result actual time

(100,60) 877370 1104290 yes 0.29 0.33  0.33 109

crowds (100,80) 10° 1258755 mno 0.30 0.33  0.33 131
(100,100)  2-10° 2518395 no 0.30 0.33 0.33 354

(100,60) 878405 1105325 yes 0.23 0.26 0.26 126

crowds-obs (100,80) 10° 1258718 no 023  0.25 0.24 170
(100,100)  3-10° 3778192 mno 023 0.26 0.26 890

herman (17 10° 1136612 no 0.9 0.99 1 o1
(21) 10° 1222530 no 0.9 0.99 1 142

herman-nd (13) 1005945 1112188  yes 0.9 1 1 551
(17) - ~ no 09 0 1 TO

robot - 181595 234320  yes 0.9 1 1 24
predator - 10° 1234854 no 0.9 0.98 1 116
(5) 10° 1589528 no 0.75 0.83 0.83 11

coupon (7 2-10° 3635966 no  0.67 0.72  0.74 440
(10) - — no 057 0 063 TO

(5) 10° 1750932 no 085 099 0.99 11

coupon-obs (7) 10° 1901206 no 0.88 0.91  0.98 15
(10) - ~ no 085 0 095 TO

(5) 10° 1356463 no 3.4e3 3.8¢3 3.8¢3 9

coupon-classic (7 105 1428286 no 5.5e-4 6.le-4 6.le-4 9
(10) - —  no 3.3e5 0 3.6e5 TO

Table 1. Benchmark results for probability queries.

Following some basic biology principles, both populations undergo periodic fluc-
tuations. We are interested in (a) the probability of one of the species going
extinct, and (b) the expected size of the prey population after one species has
gone extinct.

Coupon Collector. This is a famous exampleﬁ from textbooks on randomized
algorithms [23]. A collector’s goal is to collect all of N distinct coupons. In every
round, the collector draws three new coupons chosen uniformly at random out
of the N coupons. We consider (a) the probability that the collector possesses
all coupons after N rounds, and (b) the expected number of rounds the collector
needs until he has all the coupons as properties of interest. Furthermore, we
consider two slight variants: in the first one (coupon-obs), an observe statement
ensures that the three drawn coupons are all different and in the second one
(coupon-classic), the collector may only draw one coupon in each round.
Table[[]shows the results for the probability queries. For each model instance,
we give the number of explored states and transitions and whether or not the
model was fully expanded. Note that the state number is a multiple of 10¢ in
case the model was not fully explored, because our prototype always expands
108 states before it does the next model checking call. The next three columns

5 |https://en.wikipedia.org/wiki/Coupon_collector%27s_problem
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program instance #states #trans. full? result actual time
(100,60) 877370 1104290 yes  5.61 561 125
crowds (100,80) 10% 1258605 no 7.27 7.47 176
(100,100) 2 106 2518270 no 9.22 9.34 383
(100,60) 878405 1105325 yes 5.18 5.18 134

crowds-obs (100,80) 10° 1258569 no 6.42  6.98 206
(100,100)  2-10° 2518220 no 839  8.79 462

predator - 3.10° 3716578 no 99.14 ? 369
(5) 10° 1589528 no 4.13 4.13 15

coupon (7) 3-10° 5379492 no 5.86 6.38 46
(10) — — no 0 10.1 TO

(5) 10° 1750932 no 2.57  2.57 13

coupon-obs (7) 2.10° 3752912 no 422 423 30
(10) — —  no 0 696 TO

(5) 10° 1356463 no 11.41 1142 15

coupon-classic (7) 10° 1393360 no 18.15 18.15 21
(10) — —  no 0 2929 TO

Table 2. Benchmark results for expectation queries.

show the probability bound (1)), the result that the tool could achieve as well as
the actual answer to the query on the full (potentially infinite) model. Due to
space constraints, we rounded these figures to two significant digits. We report
on the time in seconds that the prototype took to establish the result (TO =
3600 sec.).

We observe that for most examples it suffices to perform few unfolding steps
to achieve more than 90% of the actual probability. For example, for the largest
crowds-obs program, 3 - 10° states are expanded, meaning that three unfolding
steps were performed. Answering queries on programs including an observe state-
ment can be costlier (crowds vs. crowds-obs), but does not need to be (coupon vs.
coupon-obs). In the latter case, the observe statement prunes some paths early
that were not promising to begin with, whereas in the former case, the observe
statement only happens at the very end, which intuitively makes it harder for
the search to find target states. We are able to obtain non-trivial lower bounds
for all but two case studies. For herman-nd, not all of the (nondeterministically
chosen) initial states were explored, because our exploration order currently does
not favour states that influence the obtained result the most. Similarly, for the
largest coupon collector examples, the time limit did not allow for finding one
target state. Again, an exploration heuristic that is more directed towards these
could potentially improve performance drastically.

Table [2] shows the results for computing the expected value of program vari-
ables at terminating states. For technical reasons, our prototype currently cannot
perform more than one unfolding step for this type of query. To achieve mean-
ingful results, we therefore vary the number of explored states until 90% of the
actual result is achieved. Note that for the predator program, the actual value
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Fig. 3. The obtained values approach the actual value from below.
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Fig. 4. Analyzing parametric models yields violating parameter instances.

for the query is not known to us, so we report on the value at which the result
only grows very slowly. The results are similar to the probability case in that
most often a low number of states suffices to show meaningful lower bounds.
Unfortunately — as before — we can only prove a trivial lower bound for the
largest coupon collector examples.

Figure (3| illustrates how the obtained lower bounds approach the actual ex-
pected value with increasing number of explored states for two case studies.
For example, in the left picture one can observe that exploring 60000 states is
enough to obtain a very precise lower bound on the expected number of rounds
the collector needs to gather all five coupons, as indicated by the dashed line.

Finally, we analyze a parametric version of the crowds model that uses the
parameters f and b to leave the probabilities (i) for a crowd member to be corrupt
(b) and (ii) of forwarding (instead of delivering) a message (f) unspecified. In
each iteration of our algorithm, we obtain a rational function describing a lower
bound on the actual probability of observing the real sender of the message
more than once for each parameter valuation. Figure [] shows the regions of
the parameter space in which the protocol was determined to be unsafe (after



iterations 9 and 13, respectively) in the sense that the probability to identify
the real sender exceeds % Since the results obtained over different iterations are
monotonically increasing, we can conclude that all parameter valuations that
were proved to be unsafe in some iteration are in fact unsafe in the full model.
This in turn means that the blue area in Figure [4 grows in each iteration.

5 Conclusion and Future Work

We presented a direct verification method for probabilistic programs employing
probabilistic model checking. We conjecture that the basic idea would smoothly
translate to reasoning about recursive probabilistic programs [24]. In the future
we are interested in how loop invariants [25] can be utilized to devise com-
plete model checking procedures preventing possibly infinite loop unrollings.
This is especially interesting for reasoning about covariances [20], where a mix-
ture of invariant-reasoning and successively constructing the operational MC
would yield sound over- and underapproximations of covariances. To extend the
gain for the user, we will combine this approach with methods for counterex-
amples [27], which can be given in terms of the programming language [28/19].
Moreover, it seem promising to investigate how approaches to automatically
repair a probabilistic model towards satisfaction of properties [29I30] can be
transferred to programs.
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