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Abstract8

This review on the role of glial fibrillary acidic protein (GFAP) as a biomarker

for astroglial pathology in neurological diseases provides background to pro-

tein synthesis, assembly, function and degeneration. Qualitative and quanti-

tative analytical techniques for the investigation of human tissue and biologi-

cal fluid samples are discussed including partial lack of parallelism and mul-

tiplexing capabilities. Pathological implications are discussed in view of im-

munocytochemical, cell-culture and genetic findings. Particular emphasis is

given to neurodegeneration related to autoimmune astrocytopathies and to

genetic gain of function mutations. The current literature on body fluid lev-

els of GFAP in human disease is summarised and illustrated by disease specific

meta–analyses. In addition to the role of GFAP as a diagnostic biomarker for

chronic neurodegenerative conditions, there are important data on the prog-

nostic value for acute neurodegeneration. The published evidence permits to

classify the dominant GFAP signatures in biological fluids. This classification

may serve as a template for supporting diagnostic criteria of autoimmune as-

trocytopathies, monitoring disease progression in toxic gain of function muta-

tions, clinical treatment trials (secondary outcome and toxicity biomarker) and

provide prognostic information in neurocritical care if used within well defined

time–frames.
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1. Introduction50

The discovery of glial fibrillary acidic protein (GFAP) by Lawrence F. Eng in51

1969 published in this Journal, represented the first step to unravel the chem-52

ical properties of those fibres giving rise to the distinctive intra-cytoplasmic53

features of astrocytes1,2. The GFAP protein equips astrocytes with a nematic54

liquid crystal hydrogel, able of rapid fibre reorganisation. Like other cellular fi-55

bres, GFAP is classified by fibre diameter (8-12 nm) as intermediate between56

the smaller microfilaments (7 nm) and the larger microtubules (≈ 25 nm)3. Ex-57

pression of GFAP in the human brain occurs pre–dominantly in astrocytes and58

is about 10 times higher compared to rodent astrocytes4. It is the highly cell–59

type specificity and stability which qualifies this class III intermediate filament60

(IF) as a biomarker for human disease.61

This review on GFAP as a protein biomarker (1) discusses protein synthesis62

and assembly; (2) introduces quantitative and qualitative analytical methods;63

(3) explains the clinico–pathological relationships underlying the biomarker hy-64

pothesis; and (4) reviews the evidence to use GFAP biomarker signatures as65

supportive diagnostic criteria, monitoring disease progression and improving66

prognostic accuracy.67

2. GFAP structure and function68

GFAP is a relatively non–soluble acidic cytoskeletal protein. It is the prin-69

cipal IF of the human astrocyte. First, viewed with the electron microscope,70

GFAP appear as bundled fibres of 8-12 nm diameter in the astrocyte. With71

the availability of specific antibodies, GFAP can be visualised using routine im-72

munohistochemistry. The specificity of GFAP for astrocytes is such that GFAP73

has become one of the most useful proteins for identifying astrocytes in the74

brain5. There is heterogeneity in astrocytes. Expression of GFAP is higher75

in white matter compared to grey matter astrocytes4. In the retina GFAP is76

specific for Müller cells and astrocytes6.77
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2.1. Genetics78

The human GFAP gene was cloned in 1989 and is mapped to chromosome79

17q21.1-q25 (about 10 kb DNA)7,8. The gene consists of 8 introns and 980

exons, with 4 alternative exons and 2 alternative introns (3 kb, mRNA). Al-81

ternative splicing leads to 6 GFAP isoforms9 (Figure 1). Of these α–GFAP is82

most abundant in the human CNS9. The calculated protein length in aminoacids83

is 432 for α–GFAP, ≥ 321 for β–GFAP, 431 for γ/ϵ–GFAP, 438 for κ–GFAP,84

374 for∆135–GFAP, ≤ 366 for∆164–GFAP and ≤ 347 for∆exon6–GFAP.85

The complex regulatory mechanisms governing alternative splicing of the GFAP86

gene have not yet been fully unravelled10. It is not yet clear if all of these get87

translated into protein, but there is good evidence for α–GFAP, β–GFAP and88

∆–GFAP.89

Over 80 mutations of GFAP have been described 1, notably for patients90

with Alexander disease of which 95% harbour gain of function mutations11.91

This is interesting because pathology seems to be almost entirely associated92

with gain of function. Loss of function or even complete GFAP knock out does93

not appear to be related to immediate substantial pathology. Notably and with94

one single exception, demonstrating hydrocephalus, the majority of GFAP null95

mice did not show any signs of spontaneous pathology at all12. In contrast,96

long–term potentiation was demonstrated. In addition, the GFAP knock out97

mice do however, show an altered response to induced pathology such as98

larger infarcts after ischaemic stroke13,14. For Alexander disease there is a99

need for longitudinal data on body fluid GFAP levels in these mutations in100

order to better understand the relationship of individual mutations with the101

variable pattern of disease progression.102

2.2. Structure103

The structure of GFAP has not yet been determined. Like with other IF104

such as neurofilament proteins were the structure remains unknown15, this105

1For an updated database with references of the ever extending list of mutations see

www.waisman.wisc.edu/alexander-disease/ or http://www.interfil.org/
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may in part be related to the presence of intrinsically unstructured domains16.106

These domains permit a number of properties, related to Ca2+ binding poly-107

anion tails17. Despite this limitation, molecular modelling of GFAP has been108

undertaken (Figure 2) and guided the development of specific ligands18.109

2.3. Synthesis and assembly110

Expression of GFAP mRNA is rapidly induced following acute brain injury111

and modified by neurological disease19. In addition, transcription of GFAP112

mRNA increases with age20. Translation of α-GFAP mRNA results in polypep-113

tides which are capable to self–assemble into homomeric filaments with aid114

of their amino–terminal head domains21,22. More often, however filaments115

appear to be heteromeric with for example vimentin and nestin, for example116

during early in development. The complex expression of GFAP during devel-117

opment is beyond de scope of this review.118

Generally, expression of GFAP peaks in early development which is fol-119

lowed by a slow decline23,24. A secondary rise of GFAP expression is related120

to development of pathology, such as Alzheimer disease or non–specific glio-121

sis23,25. Not all studies consistently demonstrated this bi–phasic expression122

of GFAP, partly due to methodological issues and different experimental mod-123

els26–28.124

Cytoskeletal GFAP is tightly packed into polymers. GFAP assembly is or-125

ganised hierarchically, starting with monomers (single polypeptides of about126

49.8 kDa), dimers and staggered tetramers to form a complex, cross–linked127

cytoskeletal network21,29,30. At each of these steps, GFAP assembly can128

be influenced by mutations, post–translational modifications, competing GFAP129

isoforms and other proteins such as S100, annexin, vimentin and α-crystallin30–34.130

A much simplified sketch of this dynamic and reversible hierarchical process is131

summarised in Figure 3. For a more in detail review of GFAP synthesis and132

assembly the reader is referred to the pioneering Danish and Dutch groups an133

references therein9,35,36.134
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2.4. Non astrocytic expression and function of GFAP135

As with most proteins dominant expression within one body compartment136

does not preclude systemic expression. There is mainly immunocytochemi-137

cal evidence for GFAP in the lens, non–myelinating Schwann cells, testicular138

Leydig cells, stellate cells of the liver and pancreas, enteric glia, podocytes,139

mesangial cells and chondrocytes37,38. The quantitative contribution of such140

non–CNS derived protein was found to be negligible for neurological biomarker141

studies39.142

Interestingly, the same anti–GFAP antibodies used in ELISA40–43 also stained143

fibroblasts and keratinocytes of the rodent and human epidermis44. Neverthe-144

less, the pattern of non astrocytic GFAP expression at the air–tissue interface145

may provide functional insight44. The authors speculate on a possible protec-146

tive role as part of an immune-barrier38,44,45. These results will need confir-147

mation using a GFAP-KO model as control.148

2.5. Post–translational modifications149

The dominant 3 post-translational modifications are citrullination, glycosy-150

lation and phosphorylation. Phosphorylation is targeted to 6 serine and thre-151

onine residues, the first 5 of which are located in the carboxy–terminal tail:152

Thr-7, Ser-8, Ser-13, Ser-17, Ser-34, Ser-38946–52 (Figure 3). Snider and153

Omary suggest that disease–causing alterations in GFAP may lead to aberrant154

protein phosphorylation53.155

2.6. Degradation156

It has long been known that degradation of the GFAP polymer causes the157

release of more soluble fragments of GFAP ranging from 39-50 kDa, with158

predominance of a ≈ 41 kDa fragment54,55. Responsible is calpain–mediated159

digestion, a broadly expressed calcium–dependent protease56,57. There is also160

evidence for caspase-3 and caspase-9 GFAP cleavage products58–61. In addi-161

tion, the cystein protease caspase 6 cleaves GFAP at Asp225 resulting in two162

proteolytic fragments of 24 kDa and 26 kDa62.163
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2.7. Function164

The GFAP head domain is relevant for IF assembly29. The C–terminal tail165

domain influences IF spacing and the IF network29,62,63. These processes are166

influenced by post-translational modifications such as phosphorylation of the167

N–terminal head region at Thr-7, Ser-8, Ser-13, Ser-17 and the C–terminal168

tail domain at Ser-34 (Figure 3).169

A remarkable feature of the GFAP network is the speed with which it is170

modified in response to stimuli and injury19. This is required to support the171

variable morphological changes seen in acute and reactive astrocytosis as well172

as astrogliosis.173

3. GFAP tests174

3.1. Qualitative techniques175

Qualitative and semi–quantitative techniques are frequently required for176

proof–of–principle studies, but do not qualify for reproducible, quantitative177

analysis of GFAP from biological fluids.178

3.1.1. Western & immunoblotting179

Most authors use western and immunoblotting techniques as a highly spe-180

cific, semi-quantitative approach1,2,21,22,29–34,46–52,54,55,62,63. Epitope–specific181

antibodies permit to distinguish post translational modifications and prote-182

olytic break–down products of GFAP. A limitation of the method is that gel183

entrance is not possible or challenging for insoluble GFAP fragments, GFAP184

aggregates, cross–linked GFAP or larger GFAP polymers.185

3.1.2. Immunohistochemistry186

Immunocytochemical detection and semi–quantification of GFAP allows for187

indirect assessment of astrocytosis and astrogliosis from the tissue, but repro-188

ducibility of the published methods remains poor64. Like for all immunological189

methods the quality of the anti–GFAP antibodies chosen for immunohistochem-190

istry is important.191
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3.2. Quantitative techniques192

A summary of the quantitative technologies suitable for detection of GFAP193

in biological fluids is given in Table 1. A limitation of current immunoassay is194

that there is a lack of testing for the potential effect of post–translational195

modifications, aggregate formation, cleavage products and presence of auto–196

antibodies from body fluid levels.197

3.3. Single analyte technologies198

3.3.1. ELISA199

There are a number of sensitive, robust, quantitative and high through-200

put are ELISA techniques40–43,65–67. Commercially available ELISA have been201

made available by BioVendo, Millipore, Biotech AG, AbcamCellBiolabs and202

GenScript. The sensitivity of ELISA is superior to immunoblotting and soluble203

oligo-/polymers may also be detected. Insoluble GFAP fragments/aggregates204

remain problematic. In addition, presence of anti–GFAP autoantibodies may205

be an overlooked analytical limitation as epitopes relevant for the immunoas-206

say may be masked. In analogy to other intermediate filament biomarkers it is207

therefore recommended to carefully check for presence of parallelism68,69.208

An important limitation of the ELISA methods is that multiplexing is not pos-209

sible. This remains a challenge if one attempts to measure protein and auto–210

antibodies in parallel, focus on GFAP isoforms or investigate post–translational211

modifications. It was shown that phosphorylation improves the detection of212

GFAP from the CSF in ELISA70.213

3.3.2. RIA214

Radio–immunoassays (RIA) pre-date the ELISA technology by about a decade.215

Because of logistic reasons and health–and–safety regulations the use of RIAs216

is limited to specialised laboratories. An advantage of the technology over217

ELISA is the low detection limit. But in view of more recent technologies with218

even lower detection limits, also capable of multiplexing, RIA technology is219

unlikely to play a role for the quantification of GFAP from biological fluids.220
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3.4. Multiple analyte technologies221

3.4.1. Mass–spectrometry222

Mass–spectrometry has been used to detect small amounts of GFAP and223

better characterise the post–translational modifications of GFAP49,71–76. An224

important finding from these studies was that compared to other proteins225

GFAP is an extremely stable and robust candidate biomarker for mass–spectrometry76.226

A new approach relies on antibody labelling–free technology based on227

reversed–phase HPLC followed by mass–spectrometry, called selected reac-228

tion monitoring (SRM)77. This method permits multiplexing and the diagnostic229

value of SRM has been shown for GFAP78.230

3.4.2. Fluorescence based multiplexing231

Fully automated analyses of femtolitre sample volumes is possible with232

single molecule arrays (Simoa)79,80. This method relies on enzyme–induced233

fluorescence and also permits for multiplexing.234

Another multiplexing method using fluorescence is the xMAP technology235

(Luminex). Again multiplexing is possible81.236

At time of writing there are to the best of my knowledge no validated237

multiplexing tests available for quantification of GFAP. The technology is po-238

tentially suited to simultaneously test for post–translational modifications of239

GFAP, GFAP isoforms and presence of anti–GFAP autoantibodies.240

3.4.3. Electrochemiluminescence based multiplexing241

A large analytical range and excellent detection limit for protein biomark-242

ers can be achieved using solid phase electrochemiluminescence (ECL)82,83.243

An established platform in the field comes form Meso Scale Discovery (MSD).244

This technique is particularly well suited for interesting analytical develop-245

ments making use of nano–crystals, nano–tube arrays, synthetic receptors us-246

ing polymers and microfluid analysis for point–of–care diagnostics84. Another247

advantage of the MSD platform over other multiplexing technologies is that it248

only takes about 70 seconds to read a 96–well plate.249
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For ECL, as for fluorescence based multiplexing there are to the best of250

my knowledge no validated multiplexing tests available for quantification of251

GFAP. Again, the technology is potentially suited to simultaneously test for252

post–translational modifications of GFAP, GFAP isoforms and presence of253

anti–GFAP autoantibodies.254

Table 1: Summary of quantitative technologies suitable for analysis of GFAP from biologi-
cal fluids.

Method Multiplexing Detection Volume Reference

ELISA no Colour–reaction microlitres 43

MSD yes ECL microlitres 82

Sensors yes ECL femtolitres 84

xMAP yes Fluorescence microlitres 81

Simoa yes Fluorescence femtolitre 80

SRM yes label-free microlitres 77

3.5. GFAP Auto–antibodies255

The presence of anti-GFAP auto–antibodies has been observed75,85–91. The256

reproducible quantification of auto–antibody titres is challenging. Presence257

of heterophile antibodies need to be excluded. Heterophile antibodies are of258

weak avidity and multi-specific activity which may interfere with immunological259

assays and cause false positive test results92. There is a clear need of SRM260

generated data on anti–GFAP antibodies78. Particularly, because development261

of anti-GFAP IgG auto–antibodies was suggested to be significant within only262

four days following traumatic brain injury91. There is a need to adopt the same263

rigorous methodological approach as for other auto–antibodies93,94.264

Post–translational modifications of GFAP epitopes may be relevant. The265

diagnostic relevance of these auto–antibodies remains elusive. It will be impor-266

tant to investigate if binding of auto–antibodies to GFAP influenced the physio-267

logical half–life of GFAP and potential clearance through the reticuloendothe-268

lial system (RES). There have been no studies to date to investigate for pres-269

ence of GFAP in the RES. Specifically, there have been no post–mortem studies270
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of the spleen from patients with pathologies were GFAP auto–antibodies have271

been observed75,85–91. Careful examination of the immunoblot of patient sera272

against human tissue homogenate (Figure 1D in reference91) suggests pres-273

ence of a single band in the molecular range of GFAP, not commented on by274

the authors.275

3.6. GFAP hook effect276

Albrechtsen et al. were first to make the observation of a GFAP hook ef-277

fect for serial dilutions of CSF and blood samples from patients95. Parallelism278

could be established in most cases after 4 dilution steps, but some samples279

require up to 10 dilution steps. A good example for the latter was shown in280

their Figure 2 for a serum sample from a patient with dementia. The authors281

speculated the cause to be inhibitory factors95. In view of recent data on a282

neurofilament hook effect caused by protein aggregate formation in neurode-283

generative disease68,69, it will be important to test whether GFAP aggregate284

formation also occurs in neurodegeneration. Both homomeric aggregates and285

heteromeric aggregates related to anti–GFAP autoantibodies may co–exist.286

4. GFAP body fluid levels287

Biological fluid levels of GFAP will be reviewed as relevant for acute and288

chronic neurodegenerative diseases. Negative data will be included as well to289

enable a critical analysis of sensitivity and specificity of GFAP as a biomarker290

in the presented disease specific meta–analyses. In the literature data were291

reported as median, mean or frequencies (normal/abnormal). There were good292

reasons for this presentation because data were non–Gaussian, but it com-293

plicated a easily accessible visual overview comparison between studies for294

the purpose of this review. Therefore authors of all papers were contacted295

by email and available data were presented as mean and standard deviation in296

disease specific meta–analyses. The standard deviation was calculated from297

the standard error of a mean by multiplying with the square root of the sample298

size.299
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Taken together, the data permit to classify the GFAP biological fluid levels300

in main patterns which will be summarised at the end of the section.301

4.1. Neuromyelitis Optica302

Immunocytochemical there is combined loss of staining for AQP4 and GFAP96.303

AQP4 is expressed at the astrocytic foot processes and of particular supramolec-304

ular aggregate density within the optic nerve and spinal cord97. Both, comple-305

ment mediated auto–immune antibody and cellular mediated glial toxicity are306

hold responsible for astrocytic apoptosis98–102.307

The group from Sendai was first to report the serendipitous finding of a308

several magnitude increase of CSF GFAP levels in acute NMO103. This finding309

has since been reproduced by different groups104–107. An elevation of CSF310

GFAP levels can be observed with a large number of pathologies as reviewed311

here. Also CSF GFAP levels were high in NMO they did not permit to generally312

separate patients with NMO from a highly heterogeneous (p<0.0001) group313

of control patients (p=0.07, Figure 4 A). Importantly, CSF GFAP did however314

permit to separate NMO from a homogeneous (p=0.29) group of patients with315

MS (p=0.003, Figure 4 B). This meta–analysis provides class I evidence that316

CSF GFAP levels are of diagnostic value for separating NMO from MS.317

Of note, CSF GFAP levels were only high during an acute exacerbation in318

NMO103–105. There was a highly significant inverse correlation between the319

time lag from relapse to sampling (R=-0.62, p=0.009)105.320

For this reason, depending on timing of sampling the diagnostic sensitivity321

ranges from 85%–100% and the diagnostic specificity from 77%-100%104–106,108.322

The critical time–frame for sample collection is likely within 10 days follow-323

ing an event as discussed further down for cerebrovascular pathology. Be-324

cause high CSF GFAP levels were so closely related to the acute phase, larger,325

multi–center study on longitudinal CSF levels will be required in order to in-326

form whether or not revised diagnostic criteria for the NMO spectrum disor-327

der might consider incorporating CSF GFAP levels as a supportive diagnostic328

test109. Consequently, it has been suggested to classify NMO as an autoim-329
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mune astrocytopathy110.330

In contrast to the CSF, studies on blood GFAP levels in NMO have been331

negative111–113. The diagnostic specificity for blood GFAP levels was about332

33% only.333

None of these studies investigated GFAP isoforms, post–translational mod-334

ifications or proteolytic breakdown products in body fluids of patients with335

NMO.336

4.2. Multiple sclerosis337

Immunohistochemistry demonstrates white-spread astrocytic activation and338

astrogliosis in MS46,114–116. In fact, GFAP was discovered in the MS brain1.339

The majority of studies on GFAP levels in multiple sclerosis (MS) were340

from cross–sectional CSF samples. CSF GFAP levels were slightly higher in341

MS compared to controls106,114,117–124. The data for clinical subgroups are342

summarised in a meta–analysis (Figure 5).343

A correlation between CSF GFAP levels and clinical scales for disability344

was found by the majority114,120–122,125,126, but not all studies127. Likewise345

CSF GFAP levels tended to be higher in MS patients with a progressive dis-346

ease course in some125,128, but not all studies114 and one group found lower347

CSF GFAP levels during the progressive disease course compared to relapsing348

remitting disease120. The point may be made that CSF GFAP levels might have349

been increased following an acute relapse in the latter study120, but no such350

relationship was found in another study specifically investigating this ques-351

tion122.352

In MS longitudinal CSF GFAP levels were found to be stable over time353

and even after receiving disease modifying therapies127,128. The jury on these354

data is still out, because the same group, using the same methods, also de-355

scribed an 2-3 fold increase of CSF GFAP with accumulating disability126 and356

a mean annual increase of CSF GFAP of 18.9 ng/mL in secondary progressive357

MS (SPMS) compared to only 6.5 ng/mL in control patients125.358

SerumGFAP levels were not found to be of much diagnostic value in MS111,112.359
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One semi–quantitative analysis suggested higher serum compared to CSF GFAP360

levels118. It is not known if possible presence of anti-GFAP auto-antibodies75,85–90361

in this chronic disease might have influenced these data.362

One study demonstrated altered post-translational modifications of GFAP363

in the brain tissue from patients with secondary progressive MS46. An increase364

of citrullinated GFAP was found in MS brain tissue affected by lesions, but365

interestingly also in areas which apparent normal appearing white matter. No366

data are yet available on other post–translational modifications, aggregation367

or breakdown products of GFAP in the body fluid of patients with MS.368

4.3. Alexander disease369

Alexander disease is caused by mutations in the GFAP gene11. This re-370

sults in altered GFAP assembly, GFAP aggregate formation, astrogliosis and371

pathological intracellular GFAP deposits know as Rosenthal fibres11. There372

is solid experimental data demonstrating the link between cellular over ex-373

pression of GFAP mRNA and protein, intracellular GFAP aggregate deposition374

and increased CSF GFAP levels24,71. CSF GFAP levels were elevated in chil-375

dren with Alexander disease129. Targeted treatment strategies to interrupt376

this process and improve protesomal clearance of mutant GFAP are already in377

the experimental pipeline130–132.378

CSF and blood GFAP levels will need to be tested as a potential secondary379

outcome measure for emerging human treatment trials for this devastating con-380

dition. In analogy to what is known for another IF, the neurofilament proteins,381

any such studies are advised to take the possibilities for presence of anti–382

GFAP auto–antibodies or an aggregation related “GFAP hook effect” into ac-383

count68,69.384

4.4. Cerebrovascular pathology385

Data on GFAP levels in ischaemic stroke78,133–136, subarachnoid haem-386

orrhage (SAH)78,137–140, cerebral vasculitis141 and intracranial haemorrhage387

(ICH)78,133–136. Data from the ICH studies suggest that blood GFAP levels388

may be of diagnostic value if taken within 1–6 hours after onset of ICH133–135,142,143.389
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Likewise, longitudinal data from SAH indicates a wash–out time of 7–10390

days for CSF GFAP levels137. Therefore studies making use of GFAP should391

consider this time frame in their sample collection protocol.392

None of these studies investigated GFAP isoforms, post–translational mod-393

ifications or proteolytic breakdown products in body fluids of patients with394

cerebrovascular pathology.395

4.5. Traumatic brain injury396

Elevated serum GFAP levels following severe head trauma were first re-397

ported by Missler et al. using a highly sensitive ELISA144. The prognos-398

tic value of early serum GFAP levels were found to be better compared to399

S100B145–147. A pre–analytical problem with S100B is that expression oc-400

curs in a wide range of tissues which are easily damaged during trauma148.401

This does not appear to be a problem with GFAP.402

Following traumatic brain injury (TBI), serum GFAP levels were predictive403

for poor outcome91,149–153. In addition, serum GFAP levels were found to404

be higher with focal compared to more diffuse pathology as assessed with405

the Marshall classification154,155. In support of this concept are essentially406

normal GFAP levels in human blast traumatic injury (bTBI) know to cause dif-407

fuse damage156. Repeated, experimental bTBI does however compromise cell408

membrane integrity followed by an increase of GFAP levels157. Finally, a rise409

of GFAP levels may indicate secondary brain damage due to an increase of410

intracranial pressure (ICP)146,154.411

Consequently, serum GFAP was included as the main body fluid biomarker412

in a large multi-centre trial, TRACK-TBI (NCT01565551)158.413

As mentioned before, there is a lack of studies on GFAP clevage products414

and post–translational modifications in body fluids following TBI.415

4.6. Traumatic spinal cord injury416

Following traumatic spinal cord injury (SCI), serum GFAP levels were sig-417

nificantly elevated within 24 hours compared to controls159. This observation418

is consistent with post419
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Serum GFAP levels remained significantly elevated for 72 hours. Impor-420

tantly, serum GFAP levels were also significantly related a clinical measure,421

the American Spinal Injury Association (ASIA) Impairment Scale. Already 24422

hours after injury, patients with a severity score of A or B had significantly423

higher serum GFAP levels compared to those with a milder injury severity424

score159. These longitudinal serumGFAP data extend on earlier cross–sectional425

CSF GFAP data in SCI and lumbar disc herniation160–162. Again, higher CSF426

GFAP levels were related to more severe SCI161,162. This is a relevant finding427

because at present there is no method for rapid assessment of injury severity.428

4.7. Alzheimer’s disease429

There is evidence for gliosis demonstrated by increased immunocytochemi-430

cal staining for GFAP and mass–spectrometry in Alzheimer’s disease (AD)48,50,54,163.431

In patients with manifest AD there is evidence for increased citrullination and432

oxidation of GFAP47,73,164. Likewise, anti-GFAP auto–antibodies were found433

to be elevated in the serum of patients with AD85.434

Importantly there was correlation of CSF GFAP levels with higher age65,66,165–168.435

This needs to be taken into account for the interpretation of CSF GFAP data436

in dementia studies in an ageing population. An important limitation of these437

studies is that we do not know about the relationship between parenchymal438

and body fluid GFAP levels.439

At present there is no clear role for CSF GFAP levels in the diagnostic440

work-up of patients with suspected AD, despite encouraging data from a num-441

ber of studies and groups over the past two decades124,168–172.442

Again, there are no data on modifications of GFAP from body fluids in pa-443

tients with dementia. Because post–translational modifications such as phos-444

phorylation occur in neurodegenerative dementias, it will be interesting to learn445

if such information on GFAP phosphorylation will be of diagnostic or prognos-446

tic value. For another biomarker in dementia, tau, such efforts have been made447

successfully173.448
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4.8. Hydrocephalus449

Substantially elevated CSF but not serum GFAP levels were reported in450

severe hydrocephalus174. Interpretation of this data will need to consider if451

the CSF was of ventricular or lumbar origin, as there is evidence of a rostro-452

caudal gradient with higher CSF GFAP levels in ventricular CSF175. Likewise,453

presence of blood in the CSF was related to higher CSF GFAP levels in hydro-454

cephalus176. This may partly explain the considerable elevation of ventricular455

CSF GFAP levels following SAH which required extra ventricular drainage for456

management of secondary hydrocephalus137.457

4.9. Miscellaneous conditions458

Elevated amniotic fluid levels of GFAP were found in experimental mod-459

els of menignomyelocele (MMC) and human neuronal tube defects177,178. The460

data on the value of CSF GFAP levels for the differential diagnosis of Parkinso-461

nian syndromes remains controversial in view of negative data179,180. Patients462

with schizophrenia had normal GFAP levels181. Elevated CSF GFAP levels463

were found in patients suffering from narcolepsy182.464
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5. Classification of GFAP body fluid biomarker patterns465

Taken together, three dominant patterns of the GFAP biomarker signature466

in body fluids emerge, type I to type III (Table 2). In addition to these three467

main patterns there is a range of diseases with moderately elevated GFAP468

levels which, given the large overlap of data, may be regarded as rather non–469

specific.470

Table 2: Dominant patterns of GFAP body fluid levels and related diseases. NMO =
neuromyelitis optica, ICH = intra-cerebral haemorrhage, MS = multiple sclerosis, SAH =
subarachnoid haemorrhage, AD = Alzheimer disease, MMC = menignomyelocele, TBI =
traumatic brain injury, SCI = spinal cord injury, DP = disc prolapse.

Type I Type II Type III Non–specific

NMO Alexander disease ICH MS

Vasculitis Hydrocephalus SAH AD

Autoimmune- MMC TBI PD

astrocytopathies SCI Schizophrenia

Narcolepsy

DP

Ischaemic stroke

The first GFAP signature (type I) is of diagnostic value in the newly recog-471

nised group of autoimmune astrocytopathies to which NMO belongs (Figure472

6A). The spectrum of autoimmune astrocytopathies is likely to expand as new473

auto–antibodies are discovered and close the gap of a so called “sero–negative474

spectrum disorder”183.475

The second GFAP signature (type II) is of value for monitoring disease pro-476

gression in the many toxic gain of function mutations in the GFAP gene (Figure477

6B). Any future clinical trail designed to halting disease progression may con-478

sider body fluid GFAP levels as a secondary outcome measure.479

The third GFAP signature (type III) exemplifies the prognostic value of480

GFAP body fluid levels in acute neurocritical care conditions during the acute481
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phase (Figure 6C, light green curve) and due to complications in the disease482

course (Figure 6C, dark green curve). Potentially, the last curve may also serve483

as a template for testing if there are astroglial toxic side–effects of treatment484

interventions we may not be aware of. To do so, one will need to test if the485

intervention (grey shaded box) is followed by an increase of GFAP levels (light486

green curve in Figure 6C). The here idealised style of the curves must not de-487

flect from the importance that each laboratory will need to to establish their488

own reference values and preferably also participate in external quality control489

schemes to optimise performance and safeguard against pitfalls in determining490

body fluid GFAP levels. Taken together the three dominant GFAP body fluid491

signatures have the potential to be of future diagnostic and prognostic value492

for diseases of the present review (Table 2)493
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6. Figures1061

42



Figure 1: The GFAP isoforms. A schematic drawing of the protein structures of the GFAP iso-
forms shows the overlap and difference between the GFAP isoforms. All isoforms are composed
of a head (amino–terminal), a rod (with coils 1A, 1B, 2A and 2B) and a tail (carboxy–terminal)
domain. Different patterns and different colours indicate differences between the individual iso-
forms. Although it is known that the tail of GFAPD164 and GFAPDexon6 are identical (pink), the
exact composition of the head domain is not known, due to the unknown initiation site, hence the
question mark. (reproduced with permission from reference9).
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Figure 2: Modelled structure of GFAP. Reprinted with permission from18.
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Figure 3: Intracellular organisation of GFAP. The dynamic and reversible steps between the GFAP
monomer and the assembled, functional and cross–linked cytoskeletal network are shown in this
simplified sketch. Phos = phosphorylation, Cit = citrullination, Glyc = glycosylation.
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(A)

(B)

Figure 4: Meta–analysis of CSF GFAP levels in patients with an acute exacerbation of NMO com-
pared to (A) other neurological disorders (controls) and (B) MS.
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Figure 5: Meta–analyses of CSF GFAP levels in (A) MS patients (pooled) compared to controls.
Clinical subgroup analyses are also presented for (B) RRMS, (C) SPMS, (C) PPMS compared to
controls.
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Figure 6: The three dominant GFAP body fluid biomarker signatures. Isolated clinical events
in a patient are indicated by grey shaded boxes. Severity and speed of irreversible disease pro-
gression is indicated by a grey shaded area with darker shades of grey signalling more severe
disease. The relative quantity of GFAP body fluid levels in ng/mL is indicated on the y-axis and
time on the x–axis (both axes not drawn to scale). The green shaded curves indicate the idealised
pattern of GFAP levels over time as derived from the literature review. (A) The emerging enti-
ties of autoimmune astrocytopathies such as an acute episode of neuromyelitis optica (NMO) are
characterised by relapsing clinical episodes during which disability accumulates. Each episode is
associated with a significant titre of auto–antibodies directed at astrocytes (blue curve) such as
anti-AQP4. Destruction of astrocytes leads to high GFAP levels in the acute phase. In between
relapses GFAP levels are normal. (B) Toxic gain of function due to mutations in the GFAP gene
such as Alexander disease cause severe and rapid disease progression. A cumulative increase of
GFAP levels is hypothesised which may be masked by a “hook effect”. (C) In acute neurocritical
care conditions such as an intracranial haemorrhage (ICH), a brief clinical episode such as a stroke
is followed by a hyper acute release of GFAP levels. Typically these normalise within the physi-
ological wash–out time of 7–10 days. In some cases complications of the disease course such as
hydrocephalus, vasospasm or infections may cause a secondary rise of GFAP levels (dark green
shaded curve).
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