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OPTIMAL ISOPERIMETRIC INEQUALITIES FOR SURFACES
IN ANY CODIMENSION IN CARTAN-HADAMARD

MANIFOLDS

Felix Schulze

Abstract. Let (Mn, g) be simply connected, complete, with non-positive sectional
curvatures, and Σ a 2-dimensional closed integral current (or flat chain mod 2) with
compact support in M . Let S be an area minimising integral 3-current (resp. flat
chain mod 2) such that ∂S = Σ. We use a weak mean curvature flow, obtained
via elliptic regularisation, starting from Σ, to show that S satisfies the optimal Eu-
clidean isoperimetric inequality: 6

√
πM[S] ≤ (M[Σ])3/2. We also obtain an optimal

estimate in case the sectional curvatures of M are bounded from above by −κ < 0
and characterise the case of equality. The proof follows from an almost monotonicity
of a suitable isoperimetric difference along the approximating flows in one dimension
higher and an optimal estimate for the Willmore energy of a 2-dimensional integral
varifold with first variation summable in L2.

1 Introduction

The classic Euclidean isoperimetric inequality states that for any bounded open set
Ω ⊂ R

n+1 with sufficiently regular boundary it holds that

|Ω| ≤ γ(n + 1)|∂Ω|n+1
n (1.1)

where |Ω| is the Lebesgue measure of Ω, |∂Ω| is a suitable notion of measure of the
boundary and γ(n + 1) = (n + 1)−(n+1)/nω

−1/n
n+1 , where ωn+1 is the measure of the

Euclidean unit (n + 1)-ball. Furthermore, equality is attained if and only if Ω is a
ball.

It is a natural question if there is a corresponding statement in higher codimen-
sion. This was answered by Almgren in [Alm86], which can be loosely stated as
follows.

Theorem 1.1 (Almgren). Corresponding to each m-dimensional closed surface
T in R

n+1 there is an (m + 1)-dimensional surface Q having T as boundary such
that

|Q| ≤ γ(m + 1)|T |m+1
m (1.2)

with equality if and only if T is a standard round m sphere (of some radius) and Q
is the corresponding flat m + 1 disk.
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Here |Q| and |T | denote the areas in dimension m + 1 and m respectively. To be
more precise, the notion ‘surface’ can be taken to be real rectifiable currents, real
polyhedral chains, integral currents or flat chains mod ν.

A further natural question to extend (1.1) is to ask on which Riemannian mani-
folds (Mn, g) does the Euclidean isoperimetric inequality hold. A natural candidate
are Cartan-Hadamard manifolds (Mn, g); that is complete, simply connected Rie-
mannian manifolds with non-positive sectional curvature. We will denote the space
of such manifolds with sectional curvatures bounded from above by −κ for −κ ≤ 0 by
CH(n, −κ). The following conjecture appeared in Aubin [Aub76], Burago–Zalgaller
[BZ88] and Gromov [Gro81].

Conjecture. Let (Mn, g) ∈ CH(n, 0). Then the Euclidean isoperimetric inequality
(1.1) holds on (M, g).

The conjecture can be strengthened by asking that if (M, g) ∈ CH(n, −κ) for
−κ < 0, then the isoperimetric inequality of the model space with sectional curva-
tures equal to −κ holds. This has been proven for n = 2 and κ = 0 by Weil [Wei26],
for n = 2 and κ �= 0 by Bol [Bol41] , for n = 3 and −κ ≤ 0 by Kleiner [Kle92] and
for n = 4 and κ = 0 by Croke [Cro84]. For a more detailed overview of the history of
the conjecture and a partial extension for n = 4 and κ �= 0 see Kloeckner–Kuperberg
[KK13]. The remaining cases are open. Using a variant of mean curvature flow we
gave an alternative proof of Kleiner’s result in [Sch08].

The question if an isoperimetric estimate as in (1.2) holds for any dimension
m ≤ n − 1 with a non-optimal constant, depending only on m, was first resolved for
Euclidean space by Federer–Fleming [FF60] and by Gromov [Gro83] for a certain
class of complete Riemannian manifolds, including Cartan-Hadamard manifolds. For
further extensions to metric spaces see also [AK00, Gro83, Wen05].

The main result in this article is an extension of Almgren’s result to 2-dimensional
surfaces in Cartan-Hadamard manifolds with arbitrary codimension.

Theorem 1.2. Let (Mn, g) ∈ CH(n, −κ), −κ ≤ 0, n ≥ 3 and Σ ⊂ M an integral
2-current (flat chain mod 2) with compact support such that ∂Σ = 0. Let S be an
area minimising integral 3-current (flat chain mod 2) such that ∂S = Σ. Then

M[Σ] ≥ H2(∂Br), (1.3)

where Br is a geodesic ball in the 3-dimensional model space with sectional curva-
tures equal to −κ and radius r such that H3(Br) = M[S].

Here M[ · ] denotes the mass of a current and Hk the k-dimensional Hausdorff
measure in the model space. The corresponding isoperimetric inequality in a Cartan-
Hadamard manifold for closed (smooth) curves bounding a smooth minimal surface
in any codimension follows from general results of Reshetnyak [Res68, Res61].

We can also characterise the equality case.
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Theorem 1.3. If equality in (1.3) is attained, then Σ is a smooth embedded
2-sphere, has unit density, its mean curvature vector has constant length and Σ is
totally umbilic. Furthermore, it bounds a totally geodesic embedded 3-ball S, with
the mean curvature vector of Σ proportional to the unit conormal of S at every
point in Σ. S is isometric to a geodesic ball in the 3-dimensional model space such
that the mean curvature of the boundary coincides with the one of Σ.

A central ingredient in the proof is an optimal lower bound for the Willmore
energy of an integral 2-varifold with compact support.

Theorem 1.4. Let (Mn, g) ∈ CH(n, −κ), −κ ≤ 0, n ≥ 3 and Σ2 be an integral
2-varifold in M with compact support and that the first variation of Σ is summable
in L2(μ). Then ∫

Σ
|H|2 dμ ≥ 16π + 4κ|Σ|, (1.4)

where H is the weak mean curvature of Σ. If equality is attained, then Σ is a smooth
embedded 2-sphere, has density one, the mean curvature vector has constant length
and Σ is totally umbilic. Furthermore, it bounds a totally geodesic embedded 3-ball
S, with the mean curvature vector of Σ proportional to the unit conormal of S at
every point in Σ. S is isometric to a geodesic ball in the 3-dimensional model space
such that the mean curvature of the boundary coincides with the one of Σ.

This estimate for n = 3 and κ = 0 appeared already in [Sch08, Lemma 6.7]. In
Euclidean space the estimate can be found in work of Simon [Sim93], and follows
rather directly from the usual calculations leading to the monotonicity formula. The
characterisation of the equality case in an Euclidean ambient is given by Lamm–
Schätzle [LS14] together with a stability result. For smooth surfaces in an Euclidean
ambient space this is the well known Li–Yau estimate, [LY82]. For sufficiently regular
surfaces in codimension one which are outward minimising, an analogous estimate
following from the Gauss–Bonnet formula is central in the argument of Kleiner
[Kle92] (see also the alternative proof of Ritoré [Rit05], which does not require the
condition of outward minimising).

Remark 1.5. For (M, g) ∈ CH(n, 0) and Σ an integral m-varifold in M , one can use
the variant of the Michael–Simon Sobolev inequality [MS73] for Riemannian man-
ifolds by Hoffman–Spruck [HS, HS74] (which carries over to the setting of integral
varifolds) to get an estimate

|Σ|m−2
m ≤ C(m)

∫
Σ

|H|2 dμ

where C(m) depends only on m. This constant is not optimal, but the proof of
Theorem 1.2 carries over to any dimension and codimension, yielding a non-optimal
inequality for integral currents or flat chains mod 2 as in (1.2) with a constant only
depending on m. Alternatively, restricting to an open, precompact set K ⊂ M , a
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direct comparison with Euclidean space gives a non-optimal isoperimetric inequality,
where the constant depends on (M, g) and K, see Lemma A.2.

We give a first outline of the idea of the proof of Theorem 1.2 for κ = 0. Assume
n ≥ 3, (Mn, g) ∈ CH(n, 0) and that Σ is an orientable, closed, smooth, 2-dimensional
submanifold of M . Let (Σt)0≤t<T be its smooth evolution by mean curvature flow
with Σ0 = Σ. Assume further that there exists a smooth family

(St)0≤t<T (1.5)

of minimal 3-dimensional (immersed) submanifolds in M such that ∂St = Σt, and
let Xt be the variation vectorfield along (St)0≤t<T . The first variation formula then
implies that

d

dt
|St| =

∫
St

divSt
(X) dH3 =

∫
Σt

〈X,n〉 dH2 =
∫

Σt

〈H,n〉 dH2,

where n is the unit conormal of St along ∂St = Σt and H is the mean curvature
vector of Σt. Similar to [Sch08], we consider the isoperimetric difference

It = |Σt|3/2 − 6
√

π|St|

and compute, using (1.4) in the second line,

− d

dt
|St| = −

∫
Σt

〈H,n〉 dH2 ≤
∫

Σt

|H| dH2

≤
(∫

Σt

|H|2 dH2

)1/2

|Σt|1/2 · 1
4
√

π

(∫
Σt

|H|2 dH2

)1/2

≤ 1
4
√

π
|Σt|1/2

∫
Σt

|H|2 dH2 = − 1
6
√

π

d

dt
|Σt|3/2

and thus d
dtIt ≤ 0. If the flow (Σt)0≤t<T and the family (St)0≤t<T exists long enough

such that limt→T |St| = 0, this shows that

|S0| ≤ 1
6
√

π
|Σ0|3/2.

But in general it can’t be expected that the flow does not develop singularities before
the spanning volume goes zero. It is also not clear why a sufficiently regular family
(Σt)0≤t<T should exist. To be able to evolve through singularities we would like to
work with a weak solution of mean curvature flow, in our case the most suitable one
seems to be a Brakke flow. But there are only very little regularity results for higher
codimension, even sudden vanishing is possible. Furthermore, it is not clear to us
how to construct a sufficiently regular family of spanning minimal surfaces such that
the above monotonicity calculation can be performed.



GAFA OPTIMAL ISOPERIMETRIC INEQUALITIES IN CARTAN-HADAMARD MANIFOLDS 259

To circumvent this problem we work with Ilmanen’s elliptic regularisation scheme
[Ilm94]. In this work Ilmanen combines the elliptic regularisation approach of Evans–
Spruck [ES91] in codimension one with the moving varifold solutions of Brakke
[Bra78] to construct Brakke flow solutions with special properties. Treating all sur-
faces as if they were smooth and avoiding some of the technical details, we give an
overview of the argument to prove Theorem 1.2 for κ = 0.

Let Σ0 ⊂ M be an integral 2-current with compact support such that ∂Σ0 = 0.
We consider Σ0 ⊂ M ×{0} ⊂ M ×R and denote by z the coordinate in the additional
R-direction and τ the corresponding unit vector. Ilmanen’s elliptic regularisation
scheme yields a sequence εi > 0, εi → 0, a sequence of integral 3-currents P i such
that ∂P i = Σ0, which yield translating solutions to mean curvature flow in M × R

via

P i(t) = P i − t

εi
τ.

Let {μi
t}t∈R be the corresponding family of Radon measures. This sequence of flows

converges as i → ∞ to a limiting Brakke flow {μ̄t}t≥0 which is invariant in z-
direction, starting at Σ0×R. The Brakke flow {μt}t≥0 starting at Σ0 is then obtained
via slicing {μ̄i

t}t≥0 at height z = const. Additionally, the sequence

T i = κεi
(P i),

where κεi
(x, z) = (x, εiz), converges to a current T ⊂ M × R

+ such that ∂T = Σ0.
Furthermore,

μt ≥ μTt

where μTt
is the mass measure associated to the slice Tt of T at height z = t. The

current T is called the undercurrent of the flow {μi
t}t≥0. Treating the z-direction as

time, it can be helpful to think of T as the space-time track of the flow {μt}t≥0,
after taking into account possible cancellations. Furthermore for all t > 0

P i(t) → π(Tt) × R (1.6)

as i → ∞, where π : M × R → M is the projection on the first factor.
We choose S0, a mass-minimising integral 3-current with ∂S0 = Σ and Si mass-

minimising integral 4-currents in M × R such that

∂Si = P i − S0

and denote

Si(t) = Si − t

εi
τ.

This family will serve as a family of minimal surfaces approximating the family
(1.5) considered in the smooth monotonicity calculation. Note that the variation
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vectorfield of this family is just given by X = −ε−1
i τ , which makes the monotonicity

calculation for (1.8) feasible.
Let l > 1. We choose ϕl ∈ C2

c (R) such that 0 ≤ ϕl ≤ 1/l with ϕl = 1/l on
[2, l +2], ϕl = 0 on (0, ∞)\[1, l +3]. We define the approximate area and volume by

Ai
t =

∫
ϕl dμi

t and V i
t :=

∫
ϕl dμS,i

t .

The averaging function ϕl takes into account that in the limit i → ∞, P i(t) becomes
vertical, and thus Ai

t approximates μt(M). For t fixed and i → ∞ we expect that
Si(t) has a similar behaviour and thus V i

t approximates the measure of a family as
in (1.5).

In Euclidean space shrinking spheres with radius R(t) =
√

R2 − 2mt act as bar-
riers for integral m-Brakke flows from the inside and from the outside. Using the
properties of the Hessian of the distance function to a point p in a Cartan-Hadamard
manifold Mn one can show that this remains true as barriers from the outside, and
thus the flow {μi

t}t≥0 has a finite maximal existence time Tmax ≤ R2/4, provided
Σ0 ⊂ BR(p).

To see that

V i
t < ε for t close to Tmax, l ≥ l0 and i sufficiently large, (1.7)

one can use the future space-time track of the flow as a competitor: motivated by the
fact that an estimate for the volume traced out by a mean curvature flow is given
by the L1-norm in time of the mean curvature vector, and the natural estimate

∫ Tmax

0
|H|2 dμt dt ≤ M[Σ0],

where M[Σ0] is the measure of Σ0, Ilmanen shows that

M[π(T ∩ {z ≥ t})] ≤ (Tmax − t)1/2M[Σ0].

Noting that ∂(π(T ∩ {z ≥ t})) = π(Tt) and recalling (1.6) we can use π(T ∩ {z ≥
t}) × R, up to a small error, as a competitor to Si(t) to achieve (1.7).

For the monotonicity calculation we consider the approximate isoperimetric dif-
ference

Ii
t = |Ai

t|3/2 − 6
√

π|V i
t |, (1.8)

and show that this quantity is monotone in the limit as l → ∞ and i → ∞ between
t0 = 0 and 0 < t1 < Tmax. To see this we show that the error terms in the time
derivative of (1.8) are controllable and combine the property that P i(t) becomes
vertical with the estimate (1.4) and the lower semicontinuity of the L2-norm of the
mean curvature. Together with (1.7) this yield that

(M[Σ0])3/2 ≥ 6
√

πM[S0] .
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Structure of the paper. In section 2 we recall Ilmanen’s elliptic regularisation
scheme [Ilm94] and show the improved approximation (1.6). The barrier argument
and a comparison principle due to B. White yield the estimate on the maximal
existence time. We also prove a positive lower estimate on the maximal existence
time for the limiting Brakke flow.

An essential ingredient in controlling the error terms when showing the almost
monotonicity of the approximate isoperimetric difference is to know that

Si → S0 × [0, ∞) (1.9)

as i → ∞. To achieve this we first assume that S0 is the unique mass-minimising
current spanning Σ0. Using this assumption, we show in section 3 that (1.9) holds.
We later show that by perturbing Σ0 slightly we can assume that Σ0 bounds only
one mass-minimising current. We also give uniform local area bounds for Si.

In section 4 we prove (1.7).
In section 5 we compute the time derivative of the approximate isoperimetric

difference and show that the error terms are controllable in the limit i → ∞. We use
a lower semi-continuity argument together with (1.4) to prove Theorem 1.2. We also
show that we can treat the case of equality, Theorem 1.3, using the characterisation
of equality in Theorem 1.4.

In section 6 we prove Theorem 1.4.
In the “Appendix” we collect several results needed in the prequel. We show

that the mass minimising currents Si are strongly stationary and that there is a
non-optimal isoperimetric inequality in any dimension and codimension in a Cartan-
Hadamard manifold. Furthermore, we recall White’s avoidance principle for Brakke
flows and show how unique continuation for minimal surfaces in any codimension
follows from work of Kazdan.

2 Elliptic Regularisation

We employ Ilmanen’s elliptic regularisation scheme [Ilm94] to construct a Brakke
flow starting at Σ. We recall the construction of Ilmanen, adapted to our setting,
and its properties needed in the sequel.

Theorem 2.1 ([Ilm94], §8.1). Let T0 be local integral m-current in (Mm+k, g)
with ∂T0 = 0 and finite mass M[T0] < ∞. Then there exists a local integral (m+1)-
current T in M × [0, ∞) and a family {μt}t≥0 of Radon measures on M such that

(i) (a) ∂T = T0

(b) M[TB], where TB = T L (M × B), B ⊂ R, is absolutely continuous with
respect to L1(B).

(ii) (a) μ0 = μT0 ,M[μt] ≤ M[μ0] for t > 0.
(b) {μt}t≥0 is an integral n-Brakke flow.

(iii) μt ≥ μTt
for each t ≥ 0, where Tt is the slice ∂(T L (Mm+k × [t, ∞)).
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We outline the main steps of the proof. Ilmanen constructs local integral (m+1)-
currents Pε in Mm+k × R that minimize the elliptic translator functional

Iε[Q] =
1
ε

∫
e−z/ε dμQ(x, z) ,

where z is the coordinate in the additional R-direction, subject to the boundary
condition

∂Q = T0,

and Mm+k is identified with the height zero slice in Mm+k × R. Note that Iε is
the area functional for the metric ḡ = e−2z/((m+1)ε)(g ⊕ dz2), where g ⊕ dz2 is the
product metric on Mm+k × R.

The associated Euler–Lagrange equation implies that the family of Radon mea-
sures με

t = μP ε
t

corresponding to

P ε(t) = (σ−t/ε)#(P ε)

for 0 ≤ t < ∞, where σ−t/ε(x, z) = (x, z − t/ε), is a downward translating integral
(m+1)-Brakke flow on the relatively open subset W ε := {(x, z, t) : z > −t/ε, t ≥ 0}
of space-time (Mm+k × R) × [0, ∞).

Ilmanen’s compactness theorem for Brakke flows implies that there is a sequence
εi → 0 such that {μεi

t }t≥0 converges to a Brakke flow {μ̄t}t≥0 on space-time. Fur-
thermore, Ilmanen shows that μ̄0 = μT0×R and μ̄t is invariant in the z-direction,
which yields the desired solution {μt}t≥0 via slicing.

The integral current T is constructed via considering a subsequential limit of
T εi := (κεi

)#(P εi) where κεi
(x, z) = (x, εiz), which can be seen as an approximation

to the space-time track of {μt}t≥0 where now the z-direction is considered as the
time direction. Point (iii) above verifies this interpretation.

Recall that for s ≥ 0 we define the following slices by the height function z:

P εi
s = ∂(P εi L (M × [s,∞))

and similarly

Ts = ∂(T L (M × [s,∞)).

We note the following estimates from [Ilm94].

Proposition 2.2. (Ilmanen). The following estimates hold: for any measurable
subset A ⊂ R

M[P ε
A] ≤ (|A| + ε)M[T0] (2.1)

where PA = P L (M × A) and |A| is the measure of A. Let π : M × R → M be the
projection onto M . Then for any measurable subset B ⊂ R

M(π#(T ε
B)) ≤ (|B| + ε2)1/2M[T0]. (2.2)
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In particular in the flat metric distance

dist(π#(T ε
t ), π#(T ε

t+δ)) ≤ (δ + ε2)1/2M[T0]. (2.3)

Furthermore,

M[(T ε
B)] ≤ (|B| + ε2 + (|B| + ε2)1/2

)
M[T0]. (2.4)

In particular in the flat metric distance

dist(T ε
t , T ε

t+δ) ≤ (
δ + ε2 + (δ + ε2)1/2

)
M[T0]. (2.5)

For details see sections 5.1–5.3 in [Ilm94].
One can use the C1/2-continuity of (T ε

t ) to show the following improved approx-
imation property.

Lemma 2.3. We have

P εi = P εi(0) → T0 × [0, +∞),

and for t > 0

P εi(t) → π#(Tt) × R

in the sense of currents.

Proof. Fix t ≥ 0. By (2.1) we can assume, up to a subsequence, that P εi(t) → P ′.
Recall that T εi → T and thus T εi L (M × [t, ∞)) → T L (M × [t, ∞)) for any t ≥ 0.
Taking boundaries this yields

T εi

t → Tt.

Note that T εi

t = (κεi
)#P εi

t/εi
. This implies that

(κεi
)#(P εi

t/εi+s) = T εi

t+εis.

Using (2.3) this yields that for t = 0 and s ≥ 0 or t > 0 and any s ∈ R

π#(P εi

t/εi+s) → π#(Tt).

This yields that for any any s ∈ [0, ∞)

π#(P εi
s ) → π#(T0)

and thus

π#(P ′
s) = π#(T0).

Furthermore, by (2.2) we have for any 0 ≤ s1 < s2 that

M[π#(P εi

[s1,s2]
)] = M[π#(T εi

[εis1,εis2]
)] ≤ (εi(s2 − s1) + ε2

i )
1/2M[T0]
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and thus

M[π#(P ′
[s1,s2]

)] = 0.

This yields that ∂
∂z is Hm+1 − a.e. tangential to P ′. By the coarea-formula this

implies that

P ′ = π#(T0) × [0, ∞).

For t > 0, we obtain that for any any s ∈ R

π#((P εi(t))s) = π#(((σ−t/εi
)#(P εi))s) = π#(P εi

t/εi+s) → π#(Tt)

and by the same argument as earlier that

P εi(t) → P ′ = π#(Tt) × R. ��
We will in the following always assume that (M, g) ∈ CH(n, 0). We consider the

local integral 3-currents P ε ⊂ M × [0, ∞) constructed in the previous section, such
that ∂P ε = Σ0. We choose a sequence εi → 0 such that as in the proof of Theorem
2.1, we have {μεi

t }t≥0 converging to a Brakke flow {μ̄t}t≥0 which is invariant in the
z-direction (which we can w.l.o.g. assume is true for all t) and T εi → T . Let {μt}t≥0

be the Brakke flow starting at Σ0 obtained from {μ̄t}t≥0 via slicing in z-direction.
We denote the maximal existence time of the constructed Brakke flow {μt}t≥0, by

Tmax = inf
t>0

{t | μt = 0}.

Note that by the monotonicity of the total measure we have μt(M) > 0 for all
t < Tmax and μt(M) = 0 for all t > Tmax. Under the present restrictions on the
geometry of M we obtain an upper bound for the maximal existence time.

Lemma 2.4. Assume (M, g) ∈ CH(n, 0). Let p0 ∈ M and spt Σ0 ⊂ BR(p0). Then
spt μt ⊂ Br(t)(p0) where r(t) =

√
R2 − 4t. The maximal existence time Tmax of the

constructed brakke flow {μt}t≥0 is bounded from above by R2/4. Furthermore,

spt P ε ⊂ {
(p, z) | 0 ≤ z ≤ ε−1

(
R2 + o(1) − d(p, p0)2

)
/4

}
.

Proof. Let r(p) := d(p, p0). Since M is complete and has non-positive sectional
curvature we have

∇2r ≥ r−1(id − ∇r ⊗ ∇r).

Consider 0 < α < n and the function

u(p, t) = r2 + 2αt.

Then with the notation as in Theorem A.3 we see that

∂u

∂t
− tr2∇2u = 2α − 2tr2(r∇2r + ∇r ⊗ ∇r) ≤ 2α − 2tr2id < 0,
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and thus by Theorem A.3

u(x, t) ≤ R2

on spt μt. Letting α → n this implies the first two statements. To obtain the height
bound observe that by Huisken’s monotonicity formula (with a suitable local mod-
ification due to the non-flat background) the support of the Brakke flow (με

t )t≥0

converges in Hausdorff distance to the support of (μ̄t)t≥0. ��
Let S0 be an area-minimising 3-current in M such that

∂S0 = T0.

Note that geodesic spheres in M are convex, thus by the convex hull property we
have that the support of S0 is compact. We then also obtain a lower bound on the
maximal existence time.

Lemma 2.5. Assume that M[S0] > 0. Then there exists δ = δ(M[Σ0],M[S0]) > 0
and η = η(M[Σ0],M[S0]) > 0 such that

μt(M) ≥ η

for all 0 ≤ t < δ.

Proof. Let T be the undercurrent of the flow {μt}t≥0. Note that by (2.4) we have
the estimate

M[π#(T[t,s])] ≤ (|s − t| + |s − t|1/2)M[Σ0]

and thus for any mass-minimising integral 3-current St spanning Tt we can estimate

M[St] ≥ M[S0] − M[π#(T[0,s])] ≥ M[S0] − 2 t1/2M[Σ0] ≥ M[S0]
2

,

for t ≤ δ. By Lemma A.2 have

M[Tt] ≥ η > 0

for all 0 ≤ t < δ and all k sufficiently large. The claim then follows from Theorem 2.1
(iii). ��

3 Attainment of Initial Spanning Surface

We can w.l.o.g. assume that M[S0] > 0. We will for the moment work with the
following

Assumption. We assume S0 ⊂ M is the unique area-minimising 3-current spanning
Σ0.

We will later verify that in general one can perturb Σ0 slightly such that the
uniqueness assumption is satisfied.
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Let Sε be area-minimising 4-currents in M × [0, ∞) such that

∂Sεi = P εi − S0.

In the remaining part of this section we aim to show that

Sεi → S0 × [0, ∞) (3.1)

as εi → 0.

Lemma 3.1. Let (M, g) ∈ CH(n, 0). For all p ∈ M × [0, ∞) and r ≥ 1 it holds

M[Sε LBr(p)] ≤ ω4

(
r2 +

ε

3
r
)
M[Σ] +

ω4

4
M[S0]. (3.2)

Proof. The proof of the classical monotonicity formula in R
n relies on the fact that

the position vectorfield X(x, x0) = x − x0 satisfies divT (X) = k, where T is an
k-dimensional subspace of TxR

n. As in the proof of Theorem 1.4 we replace the
position vectorfield X(x, x0) by

Xp(x) := r∇̄r

where r = d(x, p). As in the proof there, one can check that this vectorfield satisfies

divT (Xp) ≥ k, (3.3)

where T is an k-dimensional subspace of Tx(M × R). Using that Sε is strongly
stationary, see Lemma A.1, one obtains as in the proof of the monotonicity formula,
compare [Sim83], that

d

dρ

(
M[Sε LBρ(p)]

ω4ρ4

)
≥ d

dρ

∫
Bρ(p)

|∇̄⊥
r|2

rn
dμSε + ρ−5

∫
Bρ(p)

〈Xp(x),H〉 dμSε

− ρ−5

∫
Bρ(p)

〈Xp(x),nS〉 dμ∂Sε .

Together with estimate (2.1) this yields for ρ ≥ 1 and 0 < ε < 1

d

dρ

(
M[Sε LBρ(p)]

ω4ρ4

)
≥ −ρ−5

∫
Bρ(p)

〈Xp(x),nS〉 dμP ε − ρ−5

∫
Bρ(p)

〈Xp(x),nS〉 dμS0

≥ −ρ−4(M[P ε LBρ(p)] + M[S0])

≥ −(2ρ−3 + ερ−4)M[Σ] − ρ−4M[S0].

Integrating this for 1 ≤ r < R from r to R yields

M[Sε LBr(p)]
ω4r4

≤ Θ(Sε, p, R) + (r−2 − R−2)M[Σ] + ε
1
3
(r−3 − R−3)M[Σ]

+
1
4
(r−4 − R−4)M[S0].

Letting R → ∞ yields the desired estimate. ��
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By the uniform local area bound we can thus, up to a subsequence, assume that

Sεi → S′

where S′ is locally mass-minimising and satisfies

∂S′ = Σ0 × [0, ∞) − S0.

We will define for a general integral current Q its slice at height t by

Qt = ∂(Q L (M × (t, ∞)) − (∂Q) L (t, ∞)

which is compatible with the convention used by Ilmanen in [Ilm94].

Lemma 3.2. We have S′ = S0 × [0, ∞).

Proof. We consider for t > 0 the slice S′
t of S′ at height t as above.

Claim 1. There exists a sequence tj → ∞ and C > 0 such that

M[S′
tj

] ≤ C.

This follows since by the coarea formula, and the locally uniform area estimates
∫ t+1

t
M[S′

τ ] dτ ≤ M[S′ L {t ≤ z ≤ t + 1}] ≤ C < ∞

independent of t > 0.

Claim 2. There exists a sequence t′l → ∞ such that

M[S′
t′
l
] → M[S0].

Note that ∂S′
tj

= ∂((σtj
)#(S0)) = (σtj

)#(Σ0). By Claim 1 and Lemma A.2 there
exists Tj such that ∂Tj = (σtj

)#(S0) − S′
tj

and C ′ > 0 such that

M(Tj) ≤ C ′

independent of j. Assume that there exists a δ > 0 such that

M[S′
t] ≥ M[S0] + δ

for all t > t0 for t0 sufficiently large. Since both S′ and S0 × [0, ∞) are locally mass
minimising we obtain

M[S′ L {0 ≤ z ≤ tj}] ≤ tj M[S0] + C ′.

But then by the coarea formula

(tj − t0)(M(S0) + δ) + t0M(S0)

≤
∫ tj

0
M[S′

τ ] dτ ≤ M[S′ L {0 ≤ z ≤ tj}] ≤ tj M[S0] + C ′,

which yields a contradiction for j sufficiently large.
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Since by assumption S0 is the unique mass-minimising current spanning Σ0 we
obtain that

(σ−t′
l
)#(St′

l
) → S0

in flat norm and in mass. Thus there exists a sequence δl → 0 such that

M[S′ L {0 ≤ z ≤ tj}] ≤ tj M[S0] + δl.

But again this yields
∫ t′

l

0
M[S′

τ ] dτ ≤ M[S′ L {0 ≤ z ≤ tj}] ≤ t′l M[S0] + δl,

which implies
∫ t′

j

0
M[S′

τ ] − M[S0] dτ ≤ δl

and thus in the limit l → ∞ that

M[S′
t] = M[S0]

and S′
t = (σt)#(S0) for all t > 0. ��

4 Vanishing of the Spanning Area at the Final Time

For convenience of notation we will in the following replace a sub- or superscript εi

by i.
Let l > 1. We choose ϕl ∈ C2

c (R) such that 0 ≤ ϕl ≤ 1/l with ϕl = 1/l on
[2, l + 2], ϕl = 0 on (0, ∞)\[1, l + 3] and |Dϕl|, |D2ϕl| ≤ 2/l.

Recall that μi
t is the associated Radon measure of P εi(t). We denote with μS,i

t

the associated Radon measure of

Si(t) = (σ−t/εi
)#(Sεi).

We define the approximate volume by

V i
t :=

∫
ϕl dμS,i

t .

We show that the approximate volume goes to zero as t → Tmax.

Lemma 4.1. There exists a constant C > 0 such that the following holds. Let 0 <
t < Tmax and l > 1. Then for i sufficiently large

M[Si(t) L (M × [2, 2 + l])] ≤ (1 + l)|Tmax − t|1/2M[Σ0] + C.
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Proof. We use T to construct a competitor to Si(t). Recall that

∂Si(t) = P i(t) + (σ−t/εi
)#(S0)

and by Lemma 2.3 that
P i(t) → π#(Tt) × R. (4.1)

Let T̄ = π#(T[t,∞)). Note further that

∂T̄ = ∂(π#(T[t,∞))) = π#(Tt)

and since spt T ⊂ M × [0, Tmax] by (2.2)

M[π#(T[t,∞))] ≤ (Tmax − t)1/2M[Σ0].

By the co-area formula (as in the proof of claim 1 in the proof of Lemma 3.2), there
exists a C > 0 and ηi ∈ [0, 1] such that for all i

M[Si
1+ηi

] + M[Si
2+l+ηi

] ≤ C. (4.2)

Note further that

π#(P i(t) L [1 + ηi, ∞)) = π#(T i
[t+(1+ηi)εi,∞)) → T̄

as well as

π#(P i(t) L [2 + l + ηi, ∞)) = π#(T i
[t+(2+l+ηi)εi,∞)) → T̄ .

Consider

Ri
− = (σ1+ηi

)#(π#(P i(t) L (M × [1 + ηi, ∞))) → (T̄ × R)1+ηi

and

Ri
+ = (σ2+l+ηi

)#(π#(P i(t) L (M × [2 + l + ηi, ∞))) → (T̄ × R)2+l+ηi

and note that

∂((Si(t))1+ηi
) = ∂Ri

− and ∂((Si(t))2+l+ηi
) = ∂Ri

+.

By the uniform mass bounds on Si
1+ηi

, Si
2+l+ηi

, Ri−, Ri
+ given by (4.2), (3.2) together

with Lemmas 2.4 and A.2 there exits Di−, Di
+ such that

∂Di
− = Ri

− − Si
2 and ∂Di

+ = Ri
+ − Si

2+l,

and a constant C such that

M[Di
±] ≤ C.

We can now assume that ηi → η ∈ [0, 1], and thus note

P i(t) L (M×[1+ηi, l + 2 + ηi]) + Ri
− − Ri

+ → ∂((T̄ × R) L (M × [1 + η, l + 2 + η])),
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and thus by equivalence to convergence in the flat norm, there exits Qi such that

∂Qi = (P i(t) L (M × [1 + η,l + 2 + ηi]) + Ri
− − Ri

+)
−∂((T̄ × R) L (M × [1 + η, l + 2 + η]))

and M[Qi] → 0. Since Si is locally mass minimising we can use

((T̄ × R) L (M × [1 + η, l + 2 + η])) + Qi − Di
− + Di

+

as a competitor to get the desired estimate. ��
Corollary 4.2. For every ε > 0 there exists l0 > 0, δ > 0 such that if l ≥ l0,
Tmax − δ < t < Tmax, then

V i
t ≤ ε

for i sufficiently large.

Proof. We can estimate, using Lemma 4.1, that for i sufficiently large

V i
t =

∫
ϕl dμS,i

t ≤ 1/lM[Si(t) L (M × [2, 2 + l])] + 1/lM[Si(t) L (M × [1, 2])]

+ 1/lM[Si(t) L (M × [l + 2, l + 3])]

≤ 2δ1/2M[Σ0] + C/l < ε. ��

5 The Monotonicity Calculation

Recall the approximate volume

V i
t :=

∫
ϕl dμS,i

t ,

where |∇ϕl|, |∇2ϕl| ≤ 2/l. Note that we can further assume that

|∇ϕl|2
ϕl

≤ C/l. (5.1)

We define the approximate area as

Ai
t :=

∫
ϕl dμi

t.

We compute
d

dt
V i

t =
d

dt

∫
ϕldμS,i

t =
∫

〈∇ϕl, −ε−1τ〉 + ϕl div(−ε−1τ) dμS,i
t

= −
∫

〈∇ϕl, ε
−1τ⊥〉 + div(ϕlε

−1τ) dμS,i
t

= −
∫

〈∇ϕl, ε
−1τ⊥〉 dμS,i

t −
∫

ϕl 〈ε−1τ,n〉 dμi
t

= −
∫

〈∇ϕl, ε
−1τ⊥〉 dμS,i

t +
∫

ϕl 〈H,n〉 dμi
t
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where we used Lemma A.1 in the step from the second to the third line. Following
an idea of Huisken–Ilmanen [HI01, Lemma 5.3], we can rewrite the first term as a
derivative: ∫

〈∇ϕl, ε
−1τ⊥〉 dμS,i

t =
∫

ε−1ϕ′
l(z)〈τ, τ⊥〉 dμS,i

t

=
∫

ε−1ϕ′
l(z − ε−1t)〈τ, τ⊥〉 dμS,i

0

= − d

dt

∫
ϕl(z − ε−1t)〈τ, τ⊥〉 dμS,i

0

= − d

dt

∫
ϕl(z)〈τ, τ⊥〉 dμS,i

t .

Thus we get for 0 ≤ t1 < t2 that

V i
t2 − V i

t1 =
∫ t2

t1

∫
ϕl 〈H,n〉 dμi

t dt

+
∫

ϕl 〈τ, τ⊥〉 dμS,i
t2 −

∫
ϕl 〈τ, τ⊥〉 dμS,i

t1 .

(5.2)

For the approximate area we get, using (5.1),

d

dt
Ai

t =
∫

〈∇ϕl,H〉 − ϕl|H|2 dμi
t ≤

∫
{∇ϕl �=0}

|∇ϕl|2
ϕl

dμi
t − 1

2

∫
ϕl|H|2 dμi

t

≤ C

l
− 1

2

∫
ϕl|H|2 dμi

t

where we used the uniform local area bounds to estimate the first integral on the
right hand side. This implies the estimate

Ai
t2 +

1
2

∫ t2

t1

∫
ϕl|H|2 dμi

t dt ≤ Ai
t1 +

C

l
(t2 − t1). (5.3)

Note that by (2.1) this implies that

Ai
t ≤ 2M[Σ0] +

C

l
t. (5.4)

We define the function fκ : R+ → R
+ by

fκ(A) :=
∫ A

0

a
1
2

(16π + 4κa)
1
2

da.

Note that f0 = 1
6
√

π
a3/2.

Let (Mt)0≤t<T be a smooth mean curvature flow of closed, embedded hypersur-
faces in a Cartan-Hadamard manifold (M3, g) with sectional curvatures bounded
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above by −κ. Let V (t) be the enclosed volume and A(t) the area. We then can
apply Theorem 1.4 to estimate

− d

dt
V =

∫
Mt

H dH2 ≤
(∫

Mt

H2 dH2

) 1
2

A
1
2

· (16π + 4κA)− 1
2

( ∫
Mt

H2 dH2

) 1
2

= (16π + 4κA)− 1
2 A

1
2

∫
Mt

H2 dH2 = − d

dt
fκ(A).

Thus fκ(A) − V is monotonically decreasing under the flow. Consider the case that
M3

κ is the model space of constant curvature −κ and let Mt be the mean curvature
flow of geodesic spheres contracting to a point. Then the estimate of Theorem 1.4
holds with equality for all Mt and also the above calculation is an equality. Using
that in the model space geodesic balls optimize the isoperimetric ratio, we have

H3(U) ≤ fκ(H2(∂U)),

for all open and bounded U ⊂ M3
κ , with equality on geodesic balls.

We consider the approximate isoperimetric difference
Ii
t = fκ(Ai

t) − V i
t ,

and compute

fκ(Ai
t2) − fκ(Ai

t1) = −
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
ϕl|H|2 dμi

t dt

+
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
〈∇ϕl,H〉 dμi

t dt

where we can estimate, assuming t2 ≤ Tmax and using (5.3), (5.4)∣∣∣∣∣
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
〈∇ϕl,H〉 dμi

t dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
|∇ϕl||H| dμi

t dt

∣∣∣∣∣

≤ C

(∫ t2

t1

∫
{∇ϕl �=0}

|Dϕ|2
ϕ

dμi
t dt

)1/2

(∫ t2

t1

∫
ϕl|H|2 dμi

t dt

)1/2

≤ C

l1/2
(t2 − t1).

This yields the estimate

fκ(Ai
t2) − fκ(Ai

t1) ≤ −
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
ϕl|H|2 dμi

t dt

+
C

l1/2
(t2 − t1)

(5.5)
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for 0 ≤ t1 < t2 ≤ Tmax.
From (5.2), (5.5) we get the estimate

Ii
t2 − Ii

t1 ≤ −
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
ϕl|H|2 dμi

t dt +
∫ t2

t1

∫
ϕl|H| dμi

t dt

+
∫

ϕl 〈τ, τ⊥〉 dμS,i
t1 −

∫
ϕl 〈τ, τ⊥〉 dμS,i

t2 +
C

l1/2
(t2 − t1)

≤ −
∫ t2

t1

(Ai
t)

1/2

(16π + 4κAi
t)

1
2

∫
ϕl|H|2 dμi

t dt

+
∫ t2

t1

(∫
ϕl|H|2 dμi

t

)1/2

(Ai
t)

1/2 dt

+
∫

ϕl 〈τ, τ⊥〉 dμS,i
t1 −

∫
ϕl 〈τ, τ⊥〉 dμS,i

t2 +
C

l1/2
(t2 − t1)

(5.6)

for 0 ≤ t1 < t2 ≤ Tmax.
Recall that the limiting Brakke flow (μ̄t)(0≤t≤Tmax) is invariant in the z-direction,

and for a.e. t the measure μ̄t is 3-rectifiable and carries a weak mean curvature in
L2. Using Theorem 1.4 we thus see that∫

ϕl|H|2 dμ̄t ≥ 16π + 4κ μ̄t(ϕl) (5.7)

for a.e. t ∈ [0, Tmax].

Lemma 5.1. For any t1, t2 ∈ [0, Tmax), t1 < t2,

lim sup
i→∞

∫ t2

t1

Li
t dt ≤

∫ t2

t1

Lt dt ≤ 0,

where

Li
t :=

(
Ai

t

) 1
2

((∫
ϕl|H|2 dμi

t

) 1
2

− (16π + 4κAi
t)

− 1
2

∫
ϕl|H|2 dμi

t

)

and

Lt :=
(
μ̄t(ϕl)

) 1
2

((∫
ϕl|H|2 dμ̄t

) 1
2

− (16π + 4κμ̄t(ϕl))− 1
2

∫
ϕl|H|2 dμ̄t

)
.

Proof. From Ilmanen’s compactness theorem for Brakke flows, we know that for all
t ∈ [t1, t2] we have

Ai
t → μ̄t(ϕl),

and by the lower semicontinuity of the L2 norm of H and (5.7) that

lim inf
i→∞

∫
ϕl|H|2 dμi

t ≥
∫

ϕl|H|2 dμ̄t ≥ 16π + 4κ μ̄t(ϕl). (5.8)
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We write Li
t in the form Li

t = ai · bi, where

ai(t) :=
(
Ai

t

) 1
2

and

bi(t) :=
(∫

ϕl|H|2 dμi
t

) 1
2

− (16π + 4κAi
t)

− 1
2

∫
ϕl|H|2 dμi

t.

Since the function x1/2 − (16π + 4κa)− 1
2 x is decreasing for x ≥ 4π + κa we obtain,

using (5.8), that

lim sup
i→∞

bi(t) ≤
(∫

ϕl|H|2 dμ̄t

) 1
2

− (16π + 4κμ̄t(ϕl))− 1
2

∫
ϕl|H|2 dμ̄t ≤ 0

for all t ∈ [t1, t2]. Together with ai(t) → (
μ̄t(ϕl)

)1/2 this implies that

lim sup Li
t ≤ Lt ≤ 0 for all t ∈ [t1, t2].

Note that by (5.4) there is C ≥ 0 such that

Li
t ≤ C

for all t ∈ [t1, t2] and all i ≥ i0. Then the claim follows from Fatou’s lemma. ��
We will now explain how to perturb Σ slightly such that we can assume that

the mass minimising 3-current spanning Σ is unique. Let S be any mass minimising
3-current spanning Σ. Note that by Almgren [Alm00], see also De Lellis–Spadaro
[LS11, LS15, LS14, LS16, LS16], the interior singular set of S has codimension 2.
Note further that the interior regular set Rint can have at most countably connected
components, since S has finite mass. We denote these components by Rj for j ∈
1, . . . , N where N ∈ N∪{∞}. We can pick points pj ∈ Rj and radii rj > 0 such that

– Brj
(pj) ∩ spt Σ = ∅,

– the balls Brj
(pj) are pairwise disjoint,

– S LBrj
(pj) is smooth and consists of one single, smooth, connected component,

–
∑N

i=1 M[S LBrj
(pj)] ≤ 1.

For k ∈ N let Sk = S\⋃N
j=1 Brj/k(pj) and

Σk := ∂Sk.

The above estimates yield that
Σk → Σ (5.9)

in flat norm and in mass.

Lemma 5.2. Sk is the unique mass minimizing current spanning Σk.
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Proof. Assume there is another mass minimizing current S′ spanning Σk. But then

S′′ := S′ +
N⋃

j=1

S LBrj/k(pj)

is mass minimising and bounds Σ. The interior singular set of S′′ has again codimen-
sion 2. Thus by unique continuation, see section A.4, S′′ has to coincide with S on
each connected component Rj of Rint. Note that S′′ can have no further connected
components of its interior regular set, since it has the same mass as S. Thus S′′ = S
and S′ = Sk. ��
Proof of Theorem 1.2. We will present the proof in the case Σ is an integral 2-
current. The necessary modifications if Σ is a 2-dimensional flat chain mod 2 will be
discussed at the end of the proof.

We first replace Σ by Σk such that by Lemma 5.2 Sk is the unique area minimising
current spanned by Σk.

As outlined above we use Ilmanen’s elliptic regularisation scheme to construct
Brakke flows (μk

t )(0≤t≤T k
max)

, starting at Σk,0 := Σk, which vanish at a finite time
T k

max. These flows arise as the slice of the translation invariant flows (μ̄k
t )(0≤t≤T k

max)

on M × R, obtained as a limit of approximating flows (μk,i
t )t≥0.

We will for the moment omit the index k. We use the set-up as before. Note that
by Lemma 3.2 we have that

Si(0) = Si → S × [0, ∞). (5.10)

Given ε > 0, we choose t1 = 0 and Tmax − δ < t2 < Tmax, l > l0, where δ > 0 and l0
are given by Corollary 4.2. By (5.6) and Lemma 5.1 we can estimate

lim sup
i→∞

(Ii
t2 − Ii

0) ≤ lim sup
i→∞

∣∣∣∣
∫

ϕl 〈τ, τ⊥〉 dμS,i
0

∣∣∣∣
+ lim sup

i→∞

∣∣∣∣
∫

ϕl 〈τ, τ⊥〉 dμS,i
t2

∣∣∣∣ +
C

l1/2
Tmax.

(5.11)

Note that by (5.10) we have that

lim
i→∞

∫
ϕl 〈τ, τ⊥〉 dμS,i

0 = 0

and by Corollary 4.2

lim sup
i→∞

∣∣∣∣
∫

ϕl 〈τ, τ⊥〉 dμS,i
t2

∣∣∣∣ ≤ ε.

Furthermore

lim
i→∞

Ii
0 = fκ

(∫
Σk×R

ϕl dH3

)
−

∫
Sk×R

ϕl dH4.
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Again by Corollary 4.2 we have

lim sup
i→∞

Ii
t2 ≥ −ε.

Putting this together we obtain

fκ

(∫
Σk×R

ϕl dH3

)
−

∫
Sk×R

ϕl dH4 ≥ −Cε − C

l1/2
.

Letting first l → ∞ and then ε → 0 yields the isoperimetric inequality for Σk. We
can now let k → ∞ to obtain the isoperimetric inequality for Σ.

The equality case: In case of equality in (1.3) we have

fκ (M[Σk]) − M[Sk] → 0

and the monoticity calculation, using Lemma 5.1, yields
∫ Tmax,k

0

(
μk,t(M)

) 1
2

((∫
|H|2 dμk

t

) 1
2

− (16π + 4κμk
t (M))− 1

2

∫
|H|2 dμk

t

)
dt → 0

where (μk
t )t≥0 is the constructed Brakke flow starting at Σk. We aim to let k → ∞

and construct a non-vanishing Brakke flow starting at Σ.
By Lemma 2.5, there exists δ > 0 and η > 0 such that

μk
t (M) ≥ η (5.12)

for all 0 ≤ t < δ and all k sufficiently large.
We can thus consider a subsequential limit as k → ∞ and obtain a limiting

Brakke flow {μt}t≥0 which satisfies (5.12) as well. Similarly as in the proof of Lemma
5.1 we obtain

∫ δ

0

(
μt(M)

) 1
2

((∫
|H|2 dμt

) 1
2

− (16π + 4κμt(M))− 1
2

∫
|H|2 dμt

)
dt = 0.

Thus for a.e. t ∈ (0, δ), using (5.12), we have∫
|H|2 dμt = 16π + 4κμt(M). (5.13)

Thus by Theorem 1.4 for a.e. t ∈ (0, δ), μt is the Radon measure associated to
a smooth embedded 2-sphere Σt with density one, where the mean curvature vec-
tor has constant length and Σt is totally umbilic. Furthermore, it bounds a totally
geodesic embedded 3-ball St, with the mean curvature vector of Σt proportional to
the unit conormal of St at every point in Σt. St is isometric to a geodesic ball in the
3-dimensional model space such that the mean curvature of the boundary coincides
with the one of Σt. Since all the flows {μk

t }t≥0 are unit regular, see [SW16, § 4],
White’s local regularity theorem [Whi05], implies that the convergence is smooth
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for 0 < t < δ and the limiting flow {μt}0<t<δ is smooth [and thus the above charac-
terisation of μt holds for all t ∈ (0, δ)].

The smooth convergence implies that μk
t = μT k

t
for any 0 < t < δ and k suffi-

ciently large. Recall that in the flat norm

dist(Σk, T
k
t ) ≤ (t + t1/2)M[Σk]

and Σk → Σ in flat norm. This yields that

Σt → Σ

in flat norm. Since Σt converges smoothly to a limit as t ↘ 0 this yields the claimed
statement about Σ.

In the case that Σ is a 2-dimensional flat chain mod 2, we work with flat chains
mod 2 instead of integral currents. Note that Ilmanen’s elliptic regularisation scheme
works analogously in this setting. All the other parts of the argument also directly
carry over. The only point to note is that the interior regularity of Almgren [Alm00]
has to be replaced by the corresponding result for flat chains mod 2 due to Federer
[Fed70]. ��

6 An Optimal Lower Bound on the Willmore Energy

In this section we give the proof of the optimal lower bound on the Willmore energy.

Proof of Theorem 1.4. We consider the vectorfield X given by

X := ϕ(r)∇̄r,

where r(p) := distM (p, p0) for a fixed p0 ∈ N and ϕ ∈ C0,1
loc [0, ∞), ϕ ≥ 0. Here ∇̄

denotes the gradient operator on M . The distance function to a point on such a
manifold is smooth away from p0 and satisfies, see for example [Pet98]:

∇̄r �= 0,

Hess(r) = ∇̄2
r ≥ Ψ(r)

(
id − ∇̄r ⊗ ∇̄r

)
,

for p �= p0, where Ψ(r) = 1/r for κ = 0 and Ψ(r) =
√

κ cosh(
√

κr)/ sinh(
√

κr) for
κ > 0 and the second inequality holds w.r.t. an orthonormal basis of TpM . For a
point p ∈ Σ, such that the tangent space of Σ exists at p we compute

divΣ(X) = divΣ(ϕ∇̄r) = ϕ divΣ(∇̄r) + ϕ′ḡ(∇Σr, ∇̄r)

= ϕ trTpΣ

(
Hess(r)

)
+ ϕ′(1 − |(∇̄r)⊥|2)

≥ ϕ Ψ trTpΣ

(
id − ∇̄r ⊗ ∇̄r

)
+ ϕ′(1 − |(∇̄r)⊥|2)

= ϕ Ψ
(
1 + |(∇̄r)⊥|2) + ϕ′(1 − |(∇̄r)⊥|2)

= ϕ Ψ + ϕ′ +
(
ϕ Ψ − ϕ′)|(∇̄r)⊥|2.

(6.1)
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Pick any p0 ∈ Σ such that the density Θ(p0) exists and Θ(p0) ≥ 1.

The case κ = 0: Given σ > 0 we choose

ϕ(r) =
r

r2
σ

where rσ = max(r, σ). This gives∫
divΣ(X) dμ ≥ 2σ−2μ(Bσ(p0)) +

∫
M\Bσ(p0)

2|X⊥|2 dμ. (6.2)

On the other hand, applying the divergence theorem yields∫
divΣ(X) dμ = −σ−2

∫
Bσ(p0)

r ḡ(∇̄r,H) dμ −
∫

M\Bσ(p0)
ḡ(X,H) dμ. (6.3)

Combining both equations yields

2σ−2μ(Bσ(p0)) + 2
∫

M\Bσ(p0)

∣∣∣∣14H + X⊥
∣∣∣∣
2

dμ ≤ 1
8

∫
M\Bσ(p0)

|H|2 dμ

− σ−2

∫
Bσ(p0)

rḡ(∇̄r,H) dμ.

Since
lim
σ→0

σ−2μ(Bσ)(p0) ≥ π, (6.4)

we can take the limit σ → 0 to obtain

2π + 2
∫ ∣∣∣∣14H(x) +

(∇̄rp0(x)
)⊥

rp0(x)

∣∣∣∣
2

dμ(x) ≤ 1
8

∫
|H|2 dμ (6.5)

for any p0 such that (6.4) holds.

The case κ > 0: we can assume w.l.o.g. via rescaling that κ = 1. We choose

ϕσ(r) =
sinh(r)

(2 cosh(r) − 2)σ2

where (2 cosh(r)− 2)σ2 = max(2 cosh(r)− 2, σ2). The choice of ϕσ will become clear
in the discussion of the equality case. We further denote σ′ = σ′(σ) to be the solution
of

2 cosh(σ′) − 2 = σ2.

Note that,

lim
σ→0

σ′

σ
= 1. (6.6)

Using ψ(r) = cosh(r)/ sinh(r), for r < σ we have, suppressing the index σ,

ϕ ψ + ϕ′ = 2σ−2 cosh(r) ≥ 2σ−2 and ϕ ψ − ϕ′ = 0,
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and for r ≥ σ, noting that

ϕ′(r) = − 1
2 cosh(r) − 2

we obtain

ϕ ψ + ϕ′ =
1
2

and ϕ ψ − ϕ′ = 2ϕ2.

Inserting this into (6.1) gives
∫

divΣ(X) dμ ≥ 2σ−2μ(Bσ′(p0)) +
∫

M\Bσ′ (p0)

1
2

+ 2|X⊥|2 dμ.

Arguing as before, using (6.6), we arrive at

2π + 2
∫ ∣∣∣∣14H(x) + ϕ0(rp0(x))

(∇̄rp0(x)
)⊥

∣∣∣∣
2

dμ(x) +
∫

κ

2
dμ ≤ 1

8

∫
|H|2 dμ (6.7)

for any p0 such that (6.4) holds.

The equality case for κ = 0: To see that Σ is a smoothly embedded 2-sphere with
unit density, we can nearly verbatim follow the argument in [LS14, Proposition 2.1].
We include it for completeness. We first note that by equality in (6.5), since p0 ∈ spt μ
is arbitrary, we have that Σ has unit multiplicity:

θ2(μ) = 1 on sptμ. (6.8)

Furthermore (6.5) gives that

H(y) + 4

(∇̄rx(y)
)⊥y

rx(y)
for μ-almost all y ∈ spt μ,

where ⊥y denotes the orthogonal projection onto T⊥
y μ. In particular

H(y) ⊥ Tyμ for μ-almost all y ∈ spt μ. (6.9)

By Fubini’s Theorem, for μ-almost all y it holds that

H(y) + 4

(∇̄rx(y)
)⊥y

rx(y)
for μ-almost all x ∈ spt μ.

We choose any y ∈ spt μ such that Tyμ exists. If H(y) = 0, then sptμ ⊂ expy(Tyμ).
As in [LS14, Proposition 2.1] this contradicts the compactness of spt μ. Hence
H(y) �= 0 and we may assume that H(y) ⊥ Tyμ by (6.9). By scaling and choosing ex-
ponential coordinates x = expy, we may assume that T0μ = span{e1, e2}, T ⊥0 μ =
span{e3, . . . , en},H(0) = 2e3 and we write ⊥ for the projection to span{e3, . . . , en}
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in these coordinates. Denoting with 〈·, ·〉 the metric on TyM , we firstly get from the
above for j = 4, . . . , n, that

0 = 〈H(0), ej〉 = −4
〈−x⊥

|x|2 , ej

〉

= 4
〈

x⊥

|x|2 , ej

〉
= 4

xj

|x|2 for μ-almost all x �= 0 ∈ exp−1
y (spt μ).

Thus exp−1
y (spt μ) ⊂ span{e1, e2, e3}. For j = 3 we obtain

2 = 〈H(0), e3〉 = −4
〈−x⊥

|x|2 , e3

〉
= 4

x3

|x|2 for μ-almost all x �= 0 ∈ exp−1
y (spt μ).

Thus 2x3 = |x|2 and again as in [LS14, Proposition 2.1] one sees that

μ = H2 LΣ

where

Σ = expy

(
∂B1(e3) ∩ span{e1, e2, e3}

)
.

To construct the spanning flat 3-ball we argue as follows. Note first that we can
repeat the same argument for every point y ∈ Σ. Pick y0 ∈ Σ such that

|H(y0)| = max
Σ

|H| (6.10)

and denote r0 = 2/|H(y0)|. Applying the above argument at y0, but without scaling,
we obtain

Σ = expy

(
∂Br0(r0e3) ∩ span{e1, e2, e3}

)
.

We define

S = expy

(
Br0(r0e3) ∩ span{e1, e2, e3}

)
.

Claim. S with its induced metric g̃ is isometric via the exponential map at y0 to
Br0(r0e3) ⊂ R

3.

Following the proof of (6.5) we see that we have equality in (6.1) with ϕ = 1/r for
every point x �= y0 ∈ Σ. Since all geodesics connecting y0 with other points in x ∈ Σ
intersect Σ at x non-tangentially, we have that the ambient sectional curvatures

secg(∇̄ry0 ∧ V ) = 0,

where V is any unit vector tangent to Sr := ∂Br(y0) ∩ S for 0 < r < 2r0. The same
argument gives that the principal curvatures along S of ∂Br(y0) are equal 1/r for
0 < r < 2r0 and that intrinsically Sr is isometric via the exponential map at y0 to
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∂Br(0)∩Br0(r0e3) ⊂ R
3, written in polar coordinates around 0 ∈ R

3. But the Gauss
equations then also show that

secg̃(V ∧ W ) = 0

for any two unit vectors V, W tangent to Sr for 0 < r < 2r0. This proves the claim.
Note that this implies that the mean curvature vector HS(x) of Σ ⊂ S, seen as a
submanifold of S has length 2/r0 for all y ∈ Σ. Since

HS(x) = πTxS

(
H(x)

)
the choice of y0 in (6.10) implies that

HS(x) = H(x) ∀x ∈ Σ.

It remains to show S is totally geodesic. Pick any point x0 ∈ Σ. By the argument
before we have that

S = expx0

(
Br0(r0e3) ∩ span{e1, e2, e3}

)
,

where we have chosen e1, e2, e3 as before. But this implies that any extrinsic geodesic
connecting x0 with x �= x0 ∈ Σ has the same length as the intrinsic geodesic in S
connecting both points, and thus they both have to coincide. This shows that S is
totally geodesic, which also implies that Σ is totally umbilic in M .

The equality case for κ > 0: We can again by scaling assume that κ = 1. The
argument is completely analogous to the case κ = 0, the only thing to note is that
the equation

2 = 4
sinh(|x|)

2 cosh(|x|) − 2
x3

|x|
describes the boundary of a geodesic sphere with mean curvature 2 in normal coor-
dinates around the south pole in the 3-dimensional model space. ��
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Appendix A.

A.1. Strong stationarity. Let (Mn, g) be a general smooth, complete Rieman-
nian manifold and S ⊂ M a locally mass minimising rectifiable m-current (resp. m-
dimensional rectifiable flat chain mod 2). The next lemma recalls that S is strongly
stationary in the sense of White, compare [EWW02].

Lemma A.1. Let S ⊂ M a locally mass minimising rectifiable m-current (resp. m-
dimensional flat chain mod 2). There exists an Hm−1-measurable normal vectorfield
n on ∂S with sup |n| ≤ 1 such that for any vector field V ∈ C1

c (M × R) it holds∫
divSεi (V ) dμS =

∫
〈V,n〉 dμ∂S . (A.1)

Proof. Consider ϕ : R× (M ×R) → M ×R such that ϕ(0, x) = x and ∂
∂tϕ = −V ◦ϕ.

Since Sεi is locally mass minimising we have

M[Sεi ] ≤ M[(ϕ(t, ·))#(Sεi)] + M[ϕ#([0, t] × ∂Sεi)].

This implies that

d

dt

∣∣∣∣
t=0

(
M[(ϕ(t, ·))#(Sεi)] + M[ϕ#([0, t] × ∂Sεi)]

)
≥ 0.

Using first variation formula and the homotopy formula, see [Sim83], this yields∫
divSεi (V ) dμSεi ≤

∫
|V ⊥| dμ∂Sεi .

The statement follows then from the Riesz representation theorem. ��
A.2. Non-optimal isoperimetric inequality. We note that one can use the
Euclidean isoperimetric inequality for integral currents (resp. flat chains mod ν) to
obtain on a Cartan-Hadamard manifold a non-optimal isoperimetric inequality in
any dimension and codimension.

Lemma A.2. Assume M ∈ CH(m + k, 0) for k ∈ N and K ⊂ M compact. Let T be
an integral m-current (flat chain mod ν) with spt T ⊂ K and ∂T = 0. Then there
exists a constant CK,m = C(M, K, m) and an integral m+1-current (flat chain mod
ν) Q such that ∂Q = T and

M[Q] ≤ CK,m M[T ]
m+1

m .

The same holds true on the manifold M × R with the standard product metric,
provided spt T ⊂ K × R.

Proof. By picking any basepoint p ∈ M we can write the metric g of M in exponential
coordinates on TpM . Thus on any compact set K ⊂ M the metric g is uniformly
equivalent to the Euclidean metric on TpM . The estimate then follows from the
deformation theorem on R

m+k for currents, see for example [Sim83, Theorem 30.1]
or respectively for flat chains mod ν, see [Whi99]. ��
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A.3. Avoidance principle in higher codimension. We recall White’s barrier
theorem for mean curvature flow, see [Whi15, Theorem 14.1]. We include the proof
for completeness.

Theorem A.3. (White). Suppose M is the space-time support of an m-dimensio-
nal integral Brakke flow (μt)t∈I in Ω ⊂ M . Let u : Ω → R be a smooth function, so
that at (x0, t0),

∂u

∂t
< trm∇2u,

where ∇2u is the spacial ambient Hessian, and trm is the sum of the smallest m
eigenvalues. Then

u
∣∣
M∩{t≤t0}

cannot have a local maximum at (x0, t0).

Proof. Assume otherwise. We may assume that M = M∩{t ≤ t0} and that u|M has
a strict local maximum at (x0, t0). (Otherwise we could replace u by u−(d(x, x0))4−
|t0 − t|2).
Let P (r) = Br(x0) × (t0 − r2, t0]. Choose r > 0 small enough so that −r2 is past
the initial time of the flow, r is smaller than the injectivity radius at x0, u|M∩P (r)

has a maximum at (x0, t0) and nowhere else and ∂u
∂t < trm∇2u on ¯P (r). By adding

a constant we can furthermore assume that uM∩(P̄\P ) < 0 < u(x0, t0). We let
u+ := max{u, 0} and plug (u+)4 into the definition of Brakke flow. Thus

0 ≤
∫

Br

(u+)4 dμt0 =
∫

Br

(u+)4 dμt0 −
∫

Br

(u+)4 dμt0−r2

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 + 〈H, ∇(u+)4〉 − |H|2(u+)4

)
dμtdt

≤
∫ t0

t0−r2

∫ (
∂

∂t
(u+)4 − divM

(∇(u+)4
))

dμtdt

=
∫ t0

t0−r2

∫
4
(

(u+)3
∂

∂t
u+ − 3(u+)2|∇Mu+|2 − (u+)3divM

(∇(u+)
))

dμtdt

≤
∫ t0

t0−r2

∫
4(u+)3

(
∂

∂t
u+ − trm∇2u+

)
dμtdt < 0,

which is a contradiction. ��
A.4. Unique continuation. For smooth minimal hypersurfaces in a Riemannian
manifold, unique continuation follows from the work of Garofalo–Lin [GL86, GL87].
The case of higher codimension is not treated in there, but follows from work of
Kazdan [Kaz88], as we now will explain. Assume Σ1, Σ2 are smooth, m-dimensional
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immersed minimal surfaces in a smooth Riemannian manifold (Mm+k, g) which co-
incide on a ball Bε(p) for some p ∈ M and some ε > 0 sufficiently small. We can
assume w.l.o.g. that both Σ1, Σ2 are embedded in a neighborhood of B̄ε(p), other-
wise we consider each sheet separately.

Proposition A.4. There exists δ > 0 such that Σ1, Σ2 agree also on Bε+δ(p).

Proof. Let Bl
1(0) be the unit ball centered at the origin in R

l. W.l.o.g. we can work
on the set Ω := Bm

1 (0)×Bk
1 (0) with a metric hij and the minimal surface Σ is given

as the graph of a smooth function u : Bm
1 (0) → Bk

1 (0). We denote with g the induced
metric on Σ and recall the formula

Δgv = trTΣ(Hessh(v)) + d(H)

for any ambient function v : Ω → R where H is the mean curvature vector of Σ. If
Σ is minimal we obtain the equations

Δgxl = trTΣ(Hessh(xl)) (A.2)

where xl for l = 1, . . . , m + k are the standard Euclidean coordinates on Ω. Note
that to characterise the minimality of Σ it is sufficient to have the above equations
fulfilled for l = m + 1, . . . , m + k. In the coordinates given by u = (u1, . . . , uk) the
right hand side can be written as

fl(x, u, Du) := −
m∑

i,j=1

gij

⎛
⎝Γ̄l

ij + 2
k∑

r=1

Γ̄l
m+r j

∂ur

∂xi
+

k∑
r,s=1

Γ̄l
m+r m+s

∂ur

∂xi

∂ur

∂xj

⎞
⎠

where Γ̄k
ij are the Cristoffel symbols of h, evaluated at the point (x, u(x)). Thus the

above equations read
∂

∂xi

(√
det(g)gij ∂u

∂xj

)
= f̃

where f̃ = (
√

det(g)fm+1, . . . ,
√

det(g)fm+k) and

∂

∂xi

(√
det(g)gij

)
= f̄ j

for j = 1, . . . , m and f̄ j =
√

det(g)fj . Defining the metric Gij =
√

det(g)gij we can
rewrite these equations in the form

∂

∂xi

(
Gij ∂u

∂xj

)
= f̃ , (A.3)

∂

∂xi

(
Gij

)
= f̄ j for j = 1, . . . , m. (A.4)
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We writing Gij(x, u, Du) = Gij [u] and similarly f̃(x, u, Du) = f̃ [u], f̄ j(x, u, Du) =
f̄ j [u]. Following [SW16, § 8], we can write the difference of (A.3) for two solutions
u1, u2 of (A.2) as

f̃ [u1] − f̃ [u2] =
∂

∂xi

(
Gij [u1]

∂u1

∂xj
− Gij [u2]

∂u2

∂xj

)

=
∂

∂xi

((
Gij [u1] + Gij [u2]

) ∂

∂xj

u1 − u2

2
+

(
Gij [u1] − Gij [u2]

) ∂

∂xj

u1 + u2

2

)

=
∂

∂xi

(
Ḡ

ij ∂v

∂xj
+

(
Gij [u1] − Gij [u2]

) ∂ū

∂xj

)

=
∂

∂xi

(
Ḡ

ij ∂v

∂xj

)
+

(
f̃ j [u

1] − f̃ j [u
2]

) ∂ū

∂xj
+

(
Gij [u1] − Gij [u2]

) ∂2ū

∂xixj
,

where we introduced v = u1 − u2, ū = (u1 − u2)/2 and Ḡ
ij =

(
Gij [u1] + Ḡ

ij [u2]
)

/2

and applied (A.4). Assuming that u1, u2 are bounded in C1,1 and using standard
interpolation between u1 and u2, this implies that

∣∣∣∣ ∂

∂xi

(
Ḡ

ij ∂v

∂xj

)∣∣∣∣ ≤ C(|v| + |Dv|) (A.5)

for some C ≥ 0. We claim that we can now apply the result of Kazdan, [Kaz88,
Theorem 1.8] to get the desired result: note that [Kaz88, (1.9)] implies that the
operator on the left hand side of (A.5) is of a form such that [Kaz88, Theorem 1.8]
is applicable. The estimate (A.5) implies that [Kaz88, (1.4)] holds with f(r) = r for
m ≥ 3 and f(r) = r log(2R0/r) for m = 2. ��
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