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A MONOTONE SINAI THEOREM1

BY ANTHONY QUAS AND TERRY SOO

University of Victoria and University of Kansas

Sinai proved that a nonatomic ergodic measure-preserving system has
any Bernoulli shift of no greater entropy as a factor. Given a Bernoulli shift,
we show that any other Bernoulli shift that is of strictly less entropy and is
stochastically dominated by the original measure can be obtained as a mono-
tone factor; that is, the factor map has the property that for each point in
the domain, its image under the factor map is coordinatewise smaller than or
equal to the original point.

1. Introduction. Let (X,μ) be a probability space. If T : X → X is a map
such that μ◦T −1 = μ, then (X,μ,T ) is a measure-preserving system, and if every
almost-surely T -invariant set has measure zero or one, then the system is ergodic.
Let S be a self-map of a measurable space Y . A measurable mapping φ : X → Y
such that μ ◦ φ−1 = ν and φ ◦ T = S ◦ φ on a subset of μ-full measure is a factor
map; when a factor map exists, we say that (Y, ν, S) is a factor of (X,μ,T ). It
is well known that in this case, h(ν) ≤ h(μ), where h is the (Kolmogorov–Sinai)
entropy. For a positive integer N , let [N ] := {0,1, . . . ,N − 1}. If Y = [N ]Z is
the space of all bi-infinite sequences of a finite number of symbols and ν = pZ

for some nontrivial probability measure p = (pi)
N−1
i=0 on [N ], and S is the left-

shift given by S(y)i = yi+1 for all i ∈ Z, then we say that B(p) := (Y, ν, S) is
a Bernoulli shift on N symbols and that ν is a Bernoulli measure. The entropy of
the Bernoulli shift B(p) is given by the positive number

H(p) := −
n−1∑
i=0

pi logpi.

Sinai [42, 43] proved that if (X,μ,T ) is a nonatomic invertible ergodic
measure-preserving system of entropy h > 0, then it has any Bernoulli shift of
any entropy h′ ≤ h as a factor.

Let (E,�) be a partially ordered Polish space such that the set M := {(x, x′) ∈
E2 :x � x′} is closed in the product topology. For two probability measures α

and β on E, we say that α stochastically dominates β if the integrals with re-
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spect to α and β satisfy α(f ) ≥ β(f ) for all nondecreasing bounded functions
f :E → R. By Strassen’s theorem [45], this is equivalent to the existence of
a monotone coupling of α and β; that is, a measure ρ on E × E whose projec-
tion on the first factor is α, on the second factor is β , and satisfies ρ(M) = 1.

In our context, the partial order is defined by x � x′ if xi ≥ x′
i for each i ∈ Z.

It is well known that pZ stochastically dominates qZ if and only if p stochasti-
cally dominates q (where the partial order on [N ] is the standard total order), and
p stochastically dominates q if and only if

∑k
i=0 pi ≤ ∑k

i=0 qi for all 0 ≤ k < N .
A factor map, mapping [N ]Z to itself, is said to be monotone if φ(x) 	 x for each
x ∈ [N ]Z. In our context, by the definition of a factor, this is equivalent to the
condition φ(x)0 ≤ x0 for all x ∈ [N ]Z. Notice that if φ is a monotone factor from
([N ]Z,μ) to ([N ]Z, ν), then μ stochastically dominates ν.

It follows from the above that two necessary conditions for B(q) to be a mono-
tone factor of B(p) are that p stochastically dominates q and H(p) ≥ H(q). Karen
Ball and Russell Lyons [3] asked about a partial converse:

If p and q are probability measures on [N ] such that p stochastically dominates q and
H(p) > H(q), does there exist a monotone factor map from B(p) to B(q)?

We answer this question affirmatively.

THEOREM 1. Let B(p) and B(q) be Bernoulli shifts with symbols in [N ]
(where one allows the possibility that p and q give zero mass to some symbols).
If the entropy of B(p) is strictly greater than that of B(q) and the measure p

stochastically dominates q , then B(q) is a monotone factor of B(p).

Ball [3] proved Theorem 1 in the special case where q only assigns positive
mass to the two symbols {0,1}, and also in the case where the entropy of B(p)

is greater than logarithm of the total number of symbols with positive q-mass; in
particular, this implies that if n > k and qi = 1/k for all 0 ≤ i < k and pi = 1/n

for all 0 ≤ i < n, then B(q) is a monotone factor of B(p). Ball’s proof worked by
adapting and extending the methods of the Keane and Smorodinsky [23, 24] proof
of the Sinai theorem for case of Bernoulli shift. We will make use of a monotone
coupling of two Bernoulli shifts that was defined by Ball (see Section 3.5), having
a useful product structure and independence properties.

Another idea that we make use of comes from del Junco’s proof [10, 11] of the
Sinai theorem. He replaces the combinatorial marriage theorem (see Section 3.3)
used by Keane and Smorodinsky and by Ball with a ingenious variation of the
quantile coupling (see Section 3.7) that we adapt to handle monotonicity. Our proof
will also make use of a version of the marriage theorem of Keane and Smorodinsky,
but in a more limited way. By combining the tools of Ball and del Junco, we are
able to use the Burton–Rothstein [7, 8] method to produce a monotone factor using
the Baire category theorem.
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Before we discuss in more detail the idea of the proof of Theorem 1 and other
related results in ergodic theory and probability in the next sections, we ask a few
questions and state an extension of Theorem 1, where stochastic domination is
replaced by a general relation.

QUESTION 1. Is Theorem 1 true if we allow for the possibility that the entropy
of B(p) is equal to the entropy of B(q)? For example, if p0 = 1

3 ,p1 = 2
3 , q0 = 2

3
and q1 = 1

3 , we do not know whether B(q) is a monotone factor of B(p). Is it
possible that there is a monotone factor that is also an isomorphism?

Motivated by Theorem 1 and the fact that Sinai’s theorem does not require the
original space to be a Bernoulli shift, we ask if the following monotone Sinai-type
theorems are true.

QUESTION 2. Let B(q) be a Bernoulli shift on [N ], and let μ be an ergodic
shift-invariant nonatomic measure on [N ]Z which stochastically dominates the
product measure qZ, and assume that entropy of the system with the measure μ is
no less than the entropy of B(q). Sinai’s theorem gives that B(q) can always be
obtained as a factor of the system with the measure μ, but can it be obtained as
a monotone factor?

QUESTION 3. Suppose μ and ν are ergodic shift-invariant nonatomic mea-
sures on [N ]Z, where μ stochastically dominates ν. Assume that the system with
the measure ν can be obtained as a factor of the system with measure μ; must
there exist a monotone factor? For example, the stationary bi-infinite Markov pro-
cess with transition probabilities given by q00 = 1

2 = q01, q10 = 2
3 and q11 = 1

3 can
be obtained as a factor of the Bernoulli shift B(p), where p0 = p1 = 1

2 [1], and it is
also easy to see that associated Markovian measure ν is stochastically dominated
by the product measure μ = pZ.

Let R ⊂ [N ] × [N ] be a relation on [N ]. Let p and q be probability measures
on [N ]. Motivated by Strassen’s theorem and a question raised by Gurel-Gurevich
and Peled [17], Section 1.3, we say that p R-dominates q if there exists a proba-
bility measure ρ on [N ] × [N ] which gives unit mass to set R, and has projections
equal to p and q on the first and second copies of [N ], respectively. We call the
measure ρ an R-coupling.

It is an interesting question of Gurel-Gurevich and Peled [17], Section 1.3, who
ask, in the general setting of Borel spaces (B1, ρ1) and (B1, ρ2), for what rela-
tions R ⊂ B1 × B2, does the existence of a R-coupling imply the existence of
a deterministic R-coupling; that is, a coupling ρ for which there exists a function
f :B1 → B2 such that ρ{(x, f (x)) :B1} = 1. We prove the following related result
in the more restricted context of Bernoulli factors.
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THEOREM 2. Let B(p) and B(q) be Bernoulli shifts with symbols in [N ]
(where one allows the possibility that p and q give zero mass to some symbols).
Let R be any relation on [N ]. If the entropy of B(p) is strictly greater than that of
B(q), and the measure p R-dominates the measure q , then there exists a factor φ

from B(p) to B(q) such that (x0, φ(x0)) ∈ R for all x ∈ [N ]Z.

We will see that the proof of Theorem 2 does not require any additional work;
we will point out the necessary modifications to the proof of Theorem 1, and con-
centrate on the case of stochastic domination.

2. Background.

2.1. The isomorphism problem for Bernoulli shifts. Let (X,μ,T ) and (Y,

ν, S) be measure-preserving systems. A factor φ : X → Y is an isomorphism if
φ−1 : Y → X is also a factor. A fundamental question in ergodic theory is to ask
when are two systems isomorphic [19, 47]. It was an open question whether the
two Bernoulli shifts given by p = (1

2 , 1
2) and q = (1

3 , 1
3 , 1

3) were isomorphic, until
Kolmogorov gave a negative answer by introducing the idea of entropy from statis-
tical physics into ergodic theory and proving that (Kolmogorov–Sinai) entropy is
an isomorphism invariant [22]. Sinai’s theorem and isomorphisms constructed for
certain specific cases by Mešalkin [26], [9], page 181, and Blum and Hansen [5]
suggested that entropy could be a complete isomorphism-invariant for Bernoulli
shifts. Ornstein [29, 30] proved that this was true; any two Bernoulli shifts of equal
entropy are isomorphic.

2.2. Joinings and Baire category. It is an easy application of the Baire cate-
gory theorem to prove the existence of a continuous and nowhere differentiable
function. Burton and Rothstein [7, 8] had the nice idea to use the Baire category
theorem to give a unified treatment of three major results in ergodic theory: Sinai’s
factor theorem [42], Ornstein’s isomorphism theorem [29], and Krieger’s generator
theorem [25], which states any given any nonatomic invertible ergodic measure-
preserving system with finite entropy less than logN , the space [N ]Z can be en-
dowed with a shift-invariant measure that makes it isomorphic to the given system.

Let (X,μ,T ) and (Y, ν, S) be measure-preserving systems. A coupling of μ

and ν is a measure (i.e., not necessarily the product measure) on the product space
X × Y that has as its projections the measures μ and ν; a coupling that is also
invariant under T ×S is a joining [13]. The set of joinings is always nonempty be-
cause of the product measure, and the set of joinings that are supported on a subset
of X × Y that is a graph, is exactly the set of factors! Burton and Rothstein’s al-
ternative to explicitly constructing factors is to prove they form a residual (large)
subset in the set of joinings. Our proof of Theorem 1 will take place in this set-
ting.
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A joining ζ of μ and ν is monotone if

ζ
{
(x,y) ∈ [N ]Z × [N ]Z : x0 ≥ y0

} = 1.

If μ stochastically dominates ν, then the space of all ergodic monotone joinings
of μ and ν is nonempty. Our proof of Theorem 1 will proceed as follows. We will
give more precise definitions later; here we only try to give an idea of the proof.
Given a monotone joining of μ and ν, via a construction of Ball, we will perturb it
to another monotone joining with large amounts of independence between blocks,
then via the coupling of del Junco, we will perturb the resulting joining to obtain
a monotone joining that is an ε-almost factor, one that is a factor except on a set of
measure less than ε. This will be the key ingredient that will allow us to conclude in
the weak-star topology (see Section 3.4) that the set of ε-almost factors is an open
dense set for every ε; intersecting over all ε and using the Baire category theorem
implies that the resulting set is nonempty, and thus there exists a monotone factor.
Recently, we also used the Burton–Rothstein method to prove a Krieger generator
theorem for (nonhyperbolic) toral automorphisms [36].

2.3. Finitary constructions. Keane and Smorodinsky [23, 24] strengthened
the results of Sinai and Ornstein by constructing factors that are finitary; that is,
on a set of full measure the factors constructed by Keane and Smorodinsky are
continuous with respect to the product topology on the space [N ]Z and thus have
the property that for almost every x ∈ [N ]Z, there is a k such that if xi = x′

i for
all |i| ≤ k, then φ(x′)0 = φ(x)0. See also [12, 20, 37, 39–41] for background and
recent developments with regards to finitary factors. Let us also note that Ball’s
monotone factor is also finitary [3], but the factor we construct will not be. It will
be interesting to see if the construction in [20] can be adapted to give monotone
factors, since their construction in the case where there is a strict entropy gap,
H(p) > H(q), has a coding radius with exponential tails, so that the probability
that k of the coordinates of x are insufficient to determine the zeroth coordinate of
the image decays to zero exponentially fast as k → ∞.

QUESTION 4. Is Theorem 1 true with the additional requirement that the fac-
tor be finitary?

2.4. Unilateral constructions. Sinai’s original theorem also applies in the case
where the original nonatomic ergodic measure-preserving system (X,μ,T ) is not
invertible, in which case, any one-sided Bernoulli shift on [N ]N of no greater
entropy can be obtained as a factor of (X,μ,T ). In particular, for the case of
Bernoulli shifts, Sinai defined factor maps that are unilateral so that zeroth coor-
dinate of the image of almost every point x ∈ [N ]Z depends only the future coor-
dinates of x, given by (xi )

∞
i=0. Within the powerful framework of Ornstein theory

[31], Ornstein and Weiss [32] also extended the one-sided version of the Sinai the-
orem to mixing Markov chains with positive transitions, but their construction is
not finitary; see also the proof and extension to all mixing Markov chains given
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by Propp [35]. In the case where both Bernoulli shifts give nonzero mass to at
least three symbols, del Junco [10, 11] further strengthened the results of Keane
and Smorodinsky by constructing unilateral finitary factors and isomorphisms. Be-
cause del Junco was interested in constructing unilateral factors, he defined what
he called the star-joining to replace the more combinatorial marriage theorem that
is used in the Keane and Smorodinsky proofs, but was not suitable for the unilateral
case. Let us also note that the factor we construct will not be unilateral.

QUESTION 5. Is Theorem 1 true with the additional requirement that the fac-
tor be unilateral?

2.5. Point processes and monotone thinning. Ornstein theory also extends to
much more general spaces. In particular, Ornstein and Weiss [33] proved that any
two (homogeneous) Poisson processes on R

d are isomorphic. Note that a Poisson
process on R

d is stochastically dominated by a Poisson process on R
d of higher

intensity, and given a Poisson process on R
d selecting each point independently

with some probability fixed probability gives a Poisson process of lower intensity;
sometimes this is referred to as independent (randomized) thinning. In the case
d = 1, Ball [4] proved that any Poisson process can be obtained as a monotone
factor of a Poisson process of higher intensity; that is, as a translation-equivariant
(nonrandomized) function of the higher intensity process, a set of points is re-
moved so that the remaining set forms a Poisson process of lower intensity. Hol-
royd, Lyons, and Soo [21] extended this result to all dimensions d . For Poisson
processes on a finite volume, Angel, Holroyd and Soo [2] proved a necessary and
sufficient condition on the two intensities for the existence of a nonrandomized
thinning. See also [17] for the related question of nonrandomized thickening, [16,
28] for cases where nonrandomized equivariant thinning is impossible and [27] for
a case where even a monotone invariant coupling is impossible.

3. Some tools used in the proof.

3.1. Markers. Let ζ be a joining of the two Bernoulli measures μ = pZ and
ν = qZ on [N ]Z. Suppose that pa,pb > 0, where 0 ≤ a < b < N . Let kmark be
a large positive integer that we will fix later. Given x ∈ [N ]Z, for n ∈ Z we say
that [n,n + 2kmark] ⊂ Z is a marker if xn+i = a for all 0 ≤ i ≤ 2kmark − 1 and
xn+2kmark = b; we call n the left endpoint and n + 2kmark the right endpoint. Note
that markers have been defined so that no two markers will intersect.

3.2. The quantile coupling. The law of a random variable X is the measure
given by P(X ∈ ·), and if X is real-valued, its distribution function is given by
F(x) = FX(x) := P(X ≤ x) for all x ∈ R. The generalized inverse of a distribu-
tion function is given by F−1(y) := sup{x :F(x) < y}. If two random variables

X and Y have the same law, then we write X
d= Y .
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In probabilistic terms, a coupling of two random variables X and Y is a pair
of random variables X′ and Y ′ defined on the same probability space such that

X′ d= X and Y ′ d= Y . If X and Y take values in finite sets A and B , then an element
x ∈ A is split by the coupling if there exist distinct y, z ∈ B such that P(X′ =
x,Y ′ = y) > 0 and P(X′ = x,Y ′ = z) > 0; given a subset B ′ ⊂ B , we say that
x ∈ A is split in B ′ if there exist distinct y, z ∈ B ′ such that P(X′ = x,Y ′ = y) > 0
and P(X′ = x,Y ′ = z) > 0. For a probability measure α on A × B , we define
splitting in a similar way.

The quantile coupling is defined in the following way. Let X and Y be two real-
valued random variables with distribution functions F and G. Let U be uniformly

distributed on the unit interval [0,1]. It is easy to verify that X′ := F−1(U)
d= X

and Y ′ := G−1(U)
d= Y and that if the law of X stochastically dominates the law

of Y , then X′ ≥ Y ′; see [46], Chapter 1, Section 3, for details.

REMARK 3. A very useful property of the quantile coupling is that if X and Y

take values in finite sets A and B , then under the quantile coupling at most #B − 1
elements of A are split.

More generally, if X is a random variable taking values in a totally ordered
complete space, then the distribution function F(x) = P(X ≤ x) and its general-
ized inverse are well defined, so the quantile coupling applies.

3.3. Marriage and coupling. Let A and B be finite sets. If α and α′ are proba-
bility measures on A×B such that for all x ∈ A and all y ∈ B we have α(x, y) = 0
implies α′(x, y) = 0, then α′ is absolutely continuous with respect to α, and we
say that α′ is subordinate to α.

We will make use of the variation of Keane and Smorodinsky’s marriage theo-
rem [23], Theorem 11, stated in the language of measures.

PROPOSITION 4 (Keane and Smorodinsky). Let A and B be finite sets. If α is
a probability measure on A × B , then for all B ′ ⊂ B there exists a probability
measure α′ such that:

(i) α′ is subordinate to α,
(ii) α′(A, ·) = α(A, ·) and α′(·,B) = α(·,B) and
(iii) α′ splits at most #B ′ − 1 elements in B ′.

The proposition follows immediately from Ball’s variation ([3], Lemma 6.1) of
[23], Theorem 11, and [3], Lemma 3.2. For more information, see [1], Section 4
and [34], Section 6.5, in Karl Petersen’s textbook; in particular, see [34], Chapter 6,
Lemma 5.13 for a discussion of the relation between [23], Theorem 11 and the
usual Hall marriage theorem [18].
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REMARK 5. Note that in Proposition 4 that if α := P(X ∈ ·, Y ∈ ·) is the joint
distribution of random variables X and Y taking values in A and B , respectively,
then by (ii) the probability measure α′ given by the proposition is a coupling of X

and Y . Moreover, by (i), if A and B are subsets of a poset and α is a monotone
coupling of X and Y , then so is α′.

3.4. Weak-star metric. Let N > 0. For i ≥ 0, let Ci be the set of measurable
C ⊂ [N ]Z × [N ]Z that only depend on the coordinates j ∈ [−i, i], so that z ∈ C

implies that z′ ∈ C if zj = z′
j for all j ∈ [−i, i]. We define the weak-star metric d∗

on the space of measures on [N ]Z × [N ]Z by setting

d∗(ζ, ξ) :=
∞∑
i=0

2−(i+1) sup
C∈Ci

∣∣ζ(C) − ξ(C)
∣∣.

The metric d∗ generates the usual weak-star topology, and convergence in this
topology is equivalent to what is sometimes referred to as weak convergence in
probability theory [38], (7.4), [15], Chapter 11.

3.5. Ball’s joining. For A ⊂ Z and x ∈ [N ]Z, we let x|A ∈ [N ]A denote x
restricted to the elements of A. Also let (x,y)|A = (x|A,y|A). For the measure ζ on
[N ]Z ×[N ]Z and any A ⊂ Z, we let ζ |A denote the measure ζ restricted to [N ]A ×
[N ]A, so that for all measurable F ⊂ [N ]A × [N ]A, we have ζ |A(F ) = ζ(F ′),
where F ′ := {(x,y) : (x|A,y|A) ∈ F }. Sometimes we will refer to ζ |A simply as ζ

restricted to A.
Ball [3], pages 214–215, defines a joining of two Bernoulli shifts that has cer-

tain useful independence properties. Let p and q be probability measures on [N ],
where p stochastically dominates q . Let 
 be the quantile (monotone) coupling of
p and q . Let ζ be an arbitrary ergodic monotone joining of pZ and qZ. Then let
γ be the monotone coupling of the finite product measures pkmark and qkmark given
by γ = γζ := ζ |[1,kmark]. Here let kmark, a, and b be as in Section 3.1. We define
a monotone coupling of pN and qN by alternating between γ and 
 in the follow-
ing way. If Z = (X,Y ) has law γ and X = (a, . . . , a) = akmark , or if Z = (X,Y )

has law 
 and X = a, then we say that a switch occurs. Let ζ̇ be given by sam-
pling from γ independently until a switch occurs, afterwards, sample from 
 until
a switch occurs; by switching back and forth between γ and 
 we obtain a mono-
tone coupling ζ̇ of pN and qN.

To see that ζ̇ is, in fact, a coupling of pN and qN, let k,n ≥ 1 and α be a coupling
of pk and qk , and β be a coupling of pn and qn. Observe that if W := (Wi)i∈N is
an i.i.d. sequence of random variables with law α and (Ri)i∈N is an i.i.d. sequence
of random variables with law β , then for any finite deterministic � the random
variable given by Z� := (W1, . . . ,W�,R1,R2, . . .) is a coupling of pN and qN.
Furthermore, if L is a stopping time for W , so that for all positive integers � the
event {L ≤ �} belongs to the sigma-algebra generated by (Wi)

�
i=1, then it is also

true that ZL is a coupling of pN and qN. Since the switches also are stopping times,
the result follows from repeated applications of this simple observation.
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For ζ̇ , since a marker consists of 2kmark a’s followed by a b, we see that no
matter where the marker starts relative to the switches, where the b occurs the 


coupling is used and a switch occurs, so that ζ̇ restricted to the following interval of
size kmark will always be obtained from the γ coupling. Recall that we defined S to
be the left-shift. By first stationarizing ζ̇ , by setting ζ̈ := limn→∞ 1

n

∑n
i=1 ζ̇ ◦ Si ,

where the limit is taken in the weak-star topology, and then taking the natural
extension (for details see, e.g., [14], Section 4.3) of ζ̈ to [N ]Z × [N ]Z, we obtain
a monotone ergodic joining of pZ and qZ, which we denote by ζalt and refer to as
the alternating joining. By the above observation, once we see a marker, then we
can determine (using the x variable alone) which of 
 and γ is being used for all
coordinates to the right. Since with probability one, there are markers to the left of
any point, we see that almost surely we can, by looking at the x variable, decide
which of 
 and γ is being used at each coordinate. In Ball’s paper, the coupling γ

is defined to satisfy additional properties that she needs for her argument, but are
not needed here.

The joining ζalt has the following property. For a given x ∈ [N ]Z we define a
bi-infinite sequence of alternating intervals K(x) = (Ii)i∈Z that partition Z into
intervals of length kmark and 1 in the following way. Locate all the markers of x.
Any n ∈ Z that belongs to the right endpoint of a marker is an interval of length 1,
following a marker will always be an interval of length kmark, and if x restricted to
the interval of length kmark is not a string of kmark consecutive a’s, then the follow-
ing interval will also be one of length kmark, otherwise, the following intervals will
all be of length 1, until a symbol that is not a occurs; the following interval will be
one of length kmark.

Let  = ζ be the measure ζ |[1,kmark] conditioned so that a switch does not
occur. A random variable with law  takes values in [N ]kmark × [N ]kmark . For an
interval I ⊂ Z of size k, we will often make the identification [N ]I ≡ [N ]k .

PROPOSITION 6 (Ball). Let ζ be an ergodic monotone joining of two Bernoulli
measures μ and ν. The alternating joining ζalt is another ergodic monotone joining
of μ and ν. If Z = (X,Y) has law ζalt, then conditional on the alternating intervals
K(X) = (Ii)i∈Z, the random variable Z has the following properties:

• The random variables (Z|Ii
)i∈Z are independent.

• On each alternating interval I of size 1 not immediately to the left of an interval
of size kmark, the law of Z|I = (a,Y|I ) is 
 conditioned on the event a switch
does not occur, otherwise the law of Z|I is 
 conditioned on the event that a
switch occurs.

• On each alternating interval I of size kmark that is not immediately left of an
interval of size 1, the law of Z|I is  (a switch does not occur); otherwise it is γ

conditioned so that a switch does occur.

PROOF. The result follows from the definition of ζalt. �
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Let ζ be a monotone joining of Bernoulli measures. Let kmark > 0, and ζalt be
the associated alternating joining. Let (x,y) be in the support of ζalt. For each
n ∈ Z, we say n is frozen if n belongs an alternating interval in K(x) of size 1
or an alternating interval of size kmark where a switch occurs. Similarly, we say
that any alternating interval of size 1 is frozen and any alternating interval where
a switch occurs is frozen. We say that any coordinate or alternating interval that is
not frozen is free.

LEMMA 7. Let ζ be a monotone joining of two Bernoulli measures μ = pZ

and ν = qZ. Given kmark, let ζalt be the associated alternating joining. For kmark

sufficiently large the probability that an integer n ∈ Z belongs to a frozen interval
can be made arbitrary small.

PROOF. Note that if the origin is in an alternating interval of size kmark, then
the probability that this interval is a switch is exactly p

kmark
a , which goes to zero as

kmark → ∞. A simple calculation will show that the probability that origin is in an
alternating interval of size one can be made arbitrarily small. Let Fi be the event
that i ∈ Z is an alternating interval of size 1. Note that P(F0) = P(F1). We have
that

P(F1) = P(F1|F0)P(F0) + P
(
F1|Fc

0
)
P

(
Fc

0
)

= P(F1|F0)P(F1) + P
(
F1|Fc

0
)
P

(
Fc

0
)

≤ (1 − pa)P(F1) + pkmark
a P

(
Fc

0
);

thus P(F1) ≤ p
kmark−1
a . �

LEMMA 8. Let ζ be a monotone joining of two Bernoulli measures μ =
pZ and ν = qZ. For any ε > 0, there exists kmark sufficiently large so that
d∗(ζ, ζalt) < ε.

PROOF. It suffices to show that for any integer n > 0 and ε > 0, there exists
a kmark sufficiently large such that |ζ(C) − ζalt(C)| < ε for all C ∈ Cn.

Let Z and Z′ be random variables with laws ζ and ζalt, respectively. Take kmark >

2n + 1. Let G be the event (measurable with respect to Z′) such that the interval
[−n,n] is contained in an alternating interval of size kmark, and Gc denote the
complement. We have

P
(
Z′ ∈ C

) = P
(
Z′ ∈ C|G)

P(G) + P
(
Z′ ∈ C|Gc)

P
(
Gc),

for all C ∈ Cn. By Proposition 6, P(Z′ ∈ C|G) = P(Z ∈ C). By Lemma 7, we can
also choose kmark so that P(Z′ ∈ G) > 1 − ε/2. �
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3.6. The Shannon–McMillan–Breiman theorem. The Shannon–McMillan–
Breiman theorem [6] states that for an ergodic invariant measure μ on [N ]Z with
entropy h(μ), for μ-almost every x ∈ [N ]Z, we have

− lim
n→∞

1

n
logμ

(
Cn(x)

) = h(μ),

where Cn(x) := {x′ ∈ [N ]Z : x|[0,n) = x′|[0,n)}.
Let ζ be an ergodic monotone joining of Bernoulli measures. Recall that  was

ζ |[1,kmark] conditioned so that a switch does not occur. Consider the identification
[N ]kmark ≡ [Nkmark], and the measure ζfill on [Nkmark]Z × [Nkmark]Z given by Z

ζ .
Let μfill and νfill be the respective projections of ζfill. Note that μfill and νfill are
Bernoulli measures.

LEMMA 9. Let ζ be a monotone joining of two Bernoulli measures μ = pZ

and ν = qZ. Suppose that H(p) > H(q). For kmark sufficiently large, we have
h(μfill) > h(νfill).

The proof of Lemma 9 follows from the following lemma, the proof of
which will involve some entropy calculations. If X is a discrete random vari-
able taking values in a countable set E = (ei)

∞
i=1, with probability distribu-

tion r , we set H(X) = H(r). Similarly, if R = (Ri)
∞
i=1 is a partition of a prob-

ability space, where ri = P(Ri), then we also set H(R) = H(r). We also let
Xpart = ({X = ei})∞i=1, so that H(Xpart) = H(X). For t ∈ [0,1], let �(t) =
−t log t − (1 − t) log(1 − t), the entropy of a two-element partition with elements
of size t and 1 − t .

LEMMA 10. Let Z = (X,Y ) be a jointly distributed pair of random vari-
ables, each taking values in a finite set E. Let e∗ ∈ E. Let X̃ be the variable X

conditioned on {X = e∗} and Ỹ be the variable Y conditioned on {X = e∗}. Let
u := P(X = e∗). Then:

• H(X̃) ≥ H(X) − �(u).
• H(Ỹ ) ≤ H(Y) + �(u) + u log(#E).

PROOF. We may assume by relabeling that E = {1,2, . . . ,M} and that
e∗ = M . Let ri = P(X = i). Then for the first inequality, we have

H(X̃) = −
M−1∑
i=1

ri

1 − rM
log

(
ri

1 − rM

)

= − 1

1 − rM

M−1∑
i=1

ri log ri + log(1 − rM)

= 1

1 − rM

(
H(X) + rM log rM + (1 − rM) log(1 − rM)

)

≥ H(X) − �(u).
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For the second inequality, let Ỹ ′ be an independent copy of Ỹ , and define

W =
{

Y, if X = e∗,
Ỹ ′, otherwise.

Clearly W has the same distribution as Ỹ . Let Q be the partition of the probability
space into the two sets {X = e∗} and {X = e∗}.

We then have

H(Ỹ ) = H(W) ≤ H(Wpart ∨ Ypart ∨Q)

= H(Wpart|Ypart ∨Q) + H(Ypart ∨Q)

≤ H(Wpart|Ypart ∨Q) + H(Y) + H(Q).

By definition, H(Q) = �(u).
If X = e∗ (an event with probability 1 − u), then knowing in which element

of Ypart ∨ Q a point lies, determines W and hence in which element of Wpart it
lies. Otherwise, on a set of measure u, we simply know that W takes values in E.
Hence H(Wpart|Ypart ∨Q), which is the expected amount of additional information
gained by knowing Wpart when Ypart ∨ Q is already known is at most u log(#E).

�

PROOF OF LEMMA 9. Let ζ be a joining of two Bernoulli measures μ and ν

on [N ]Z, and let (X,Y ) have law ζ |[1,kmark] = γ . Note that H(X) = kmarkH(p) and
H(Y) = kmarkH(q). Let (X̃, Ỹ ) have law ; that is, γ conditioned on the event that
X is not a string of kmark consecutive a’s; note that P(X = akmark) = p

kmark
a . Thus

with Lemma 10 we have

h(μfill) − h(νfill) = H(X̃) − H(Ỹ )

≥ (
H(X) − H(Y)

) − (
2�

(
pkmark

a

) − pkmark
a logNkmark

)
(1)

= kmark
(
H(p) − H(q)

) − (
2�

(
pkmark

a

) − kmarkp
kmark
a logN

)
.

Since we assume that H(p) > H(q), the first term on the right-hand side of (1)
grows linearly as a function of kmark, whereas the second term decreases to zero
exponentially as a function kmark. �

Note that in our proof of Lemma 9, we made use of the strictness of the inequal-
ity H(p) > H(q).

3.7. The star-coupling. Let (X1, Y1) and (X2, Y2) be finite valued random
variables taking values in (E1,F1) and (E2,F2), where E1 and F2 are totally or-
dered via <1 and <2. Following del Junco [10, 11], we define the star-coupling of
(X1, Y1) and (X2, Y2) in the following way. Set sf1(e1) := P(X1 ≤1 e1|Y1 = f1)
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and te2(f2) := P(Y2 ≤2 f2|X2 = e2). Let V2, V1 and U be independent random
variables uniformly distributed in [0,1]. Set

X′
2 := F−1

X2
(V2) and Y ′

1 := F−1
Y1

(V1),

so that X′
2 and Y ′

1 are independently sampled copies of X2 and Y1. For all e2 ∈ E2
and f1 ∈ F1, if X′

2 = e2 and Y ′
1 = f1, then we define Y ′

2 and X′
1 via the following

conditional quantile coupling:

Y ′
2 := t−1

e2
(U) and X′

1 := s−1
f1

(U).

Clearly (X′
1, Y

′
1)

d= (X1, Y1) and (X′
2, Y

′
2)

d= (X2, Y2).

REMARK 11. In the star-coupling of (X1, Y1) and (X2, Y2), X′
2 is independent

of (X′
1, Y

′
1) and Y ′

1 is independent of (X′
2, Y

′
2).

REMARK 12. It follows from Remark 3 that the star-coupling of the random
variables (X1, Y1) and (X2, Y2) taking values on (E1,F1) and (E2,F2), respec-
tively, has the property that for a fixed e2 ∈ E2 and f1 ∈ F1, the number of e1 ∈ E1
such that there are distinct f2, h2 ∈ F2 with both (e1, f1, e2, f2) and (e1, f1, e2, h2)

receiving positive mass under the star-coupling (X′
1, Y

′
1,X

′
2, Y

′
2) is at most #F2 −1.

Remark 12, Proposition 4, and the Shannon–McMillan–Breiman theorem [6]
lead to the following useful modification of a proposition of del Junco [11], Propo-
sition 4.8.

Let Zi := (Xi, Yi) be finite valued random variables where each of the Xi’s and
Yi ’s take values on ordered spaces Ei and Fi . We define the iterative star-coupling
of Z1, . . . ,Zn to be a random variable Wn taking values on (E1 ×· · ·×En)×(F1 ×
· · · × Fn) in the following way for the case n = 3; the definition for general n will
follow inductively. Let Z′

1 := (X′
1, Y

′
1) and Z′

2 := (X′
2, Y

′
2) be the star-coupling

of Z1 and Z2. Set W2 := ((X′
1,X

′
2), (Y

′
1, Y

′
2)). Note that (X′

1,X
′
2) takes values

in the space E1 × E2, which we endow with the lexicographic ordering. Now
let the star-coupling of W2 and Z3 be given by W ′

2 := ((X′′
1 ,X′′

2), (Y ′′
1 , Y ′′

2 )) and
Z′

3 := (X′
3, Y

′
3). Set W3 := ((X′′

1 ,X′′
2 ,X′

3), (Y
′′
1 , Y ′′

2 , Y ′
3)).

REMARK 13. Note that in general, even if the star-coupling of (X1,X2) and
(Y1, Y2) is defined, the star-coupling of (X2, Y2) and (X1, Y1) may not be defined,
since the required spaces may not be ordered, and even if they are, there is a lack
of commutativity. Note the iterative star-coupling is defined in a certain order, so
that the iterative star-coupling of Z1,Z2,Z3 is given by the star-coupling of the
star-coupling of (Z1,Z2) and Z3. It is possible to define the star-coupling so that
it is associative [11], Lemma 4.3; this observation is important for del Junco’s
construction of isomorphisms, but will not be important for us.
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PROPOSITION 14 (del Junco). Let μ = pZ and ν = qZ be Bernoulli measures
on [N ]Z, where H(p) > H(q) and p � q . Let ζ be an ergodic monotone joining
of μ and ν. Given a sufficiently large integer kmark ∈ Z

+ so that the conclusion of
Lemma 9 holds, and η > 0, there exists a ninitial ∈ Z

+, and random variable Z̄0
taking values on [N ]ninitialkmark × [N ]ninitialkmark with law βsub that is subordinate
to the measure ninitial and has the same marginals, such that for all n > 0, the
following holds.

Define (Zi)
n
i=1 to be independent random variables with law . Define the fol-

lowing product space:

Ij := [N ]ninitialkmark ×
j∏

i=1

[N ]kmark ≡ [
Nk

mark
]ninitial+j

.

Let Wn = (Xn,Yn) be a random variable given by the iterative star-coupling of
Z̄0,Z1, . . . ,Zn. There exists a deterministic function � : In → In such that P(Yn =
�(Xn)) > 1 − η.

The key feature of this proposition is that n can be taken arbitrarily large, inde-
pendently of kmark and η. When appealing to Proposition 14, we will refer to the
set [N ]ninitialkmark × [N ]ninitialkmark as the initial block.

PROOF OF PROPOSITION 14. The proof is an adaptation of [11], Proposi-
tion 4.7. We will place conditions on ninitial later. Set

Lj := ninitial + j for 0 ≤ j ≤ n.

Recall that we assumed that kmark was chosen to ensure that hgap := h(μfill) −
h(νfill) > 0. Let ε ∈ (0, hgap/2) and

δ := hgap − 2ε > 0.(2)

Let x ∈ Ij be given by x = (x0, . . . , xj ). We say that x is μfill-good if

μfill|[1,Lj ](x) < e−(h(μfill)−ε)Lj ,(3)

and is μfill-completely good if for all 0 ≤ i ≤ j , we have (x0, . . . , xi) ∈ Ii is good.
Similarly, for y = (y0, . . . , yj ) ∈ Ij , we say that y is νfill-good if

νfill|[1,Lj ](y) > e−(h(νfill)+ε)Lj ,(4)

and is νfill-completely good if for all 0 ≤ i ≤ j , we have (y0, . . . , yi) ∈ Ii is good.
Let I0(νfill)

good denote the set of νfill-good elements of I0. Note that

#I0(νfill)
good ≤ e(h(νfill)+ε)L0 .

By Proposition 4, there exists a random variable Z̄0 taking values on [N ]ninitialkmark×
[N ]ninitialkmark with law βsub, that is:
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• subordinate to ninitial ,
• has the same marginals as ninitial and
• where at most e(h(νfill)+ε)L0 − 1 elements of I0 are split in I0(νfill)

good.

Let

Jj := I0(νfill)
good ×

j∏
i=1

[N ]kmark .

For j ≥ 0, let Wj = (Xj ,Yj ) be a random variable given by the iterative star-
coupling of Z̄0,Z1, . . . ,Zj , where we set W0 := Z̄0; thus Xj and Yj take values
in Ij . We say that x ∈ Ij is desirable if the following properties are satisfied:

(a) The element x is μfill-completely good.
(b) The element x is not split in Jj by Wj = (Xj ,Yj ).
(c) Furthermore, there exists a unique νfill-completely good y ∈ Jj for which

(x,y) receives positive mass under Wj .

For desirable x ∈ Ij , set �j(x) = y, where y is determined by condition (c); other-
wise if x is not desirable simply set �j(x) = y′ for the fixed y′ ∈ Ij that is just a
block of 0’s. Note that

P
(
Yj = �j(Xj )

) ≥ P(Xj is desirable).

Using Remark 12, we will use the inductive argument in the proof of [11],
Lemma 4.6, to show that for all j ≥ 0,

P(Xj is not desirable)
(5)

≤ P(Xj is not c.g.) + P(Yj is not c.g.) + e−δL0 + Nkmark

j−1∑
i=0

e−δLi ,

where “c.g.” is short for completely good.
The case j = 0 is easy, since being good implies being completely good, and

under Z̄0 at most e(h(νfill)+ε)L0 − 1 elements of I0 are split in J0; thus by (3),
the μfill-measure of all the μfill-good elements that are split by J0 is at most
e−(h(μfill)−ε)L0 × e(h(νfill)+ε)L0 ≤ e−δL0 , by (2).

Assume (5) for the case j − 1 ≥ 0. We show that (5) holds for the case j . Let E

be the event that Xj−1 is desirable but Xj is not desirable. Clearly,

P(Xj is not desirable) ≤ P(Xj−1 is not desirable) + P(E).(6)

Note that on the event E, the random variables Xj−1 and Yj−1 are completely
good. Observe that the event E is contained in the following three events:

(I) E1 := The random variable Xj is not good, but Xj−1 is completely good.
(II) E2 := The random variable Xj is completely good, but is split in Jj under

the iterative star-coupling Wj , even though Xj−1 is desirable.
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(III) E3 := The random variable Yj is not good, but Yj−1 is completely good.

Clearly,

P(E1) + P(Xj−1 is not c.g.) = P(Xj is not c.g.).(7)

Similarly,

P(E3) + P(Yj−1 is not c.g.) = P(Yj is not c.g.).(8)

Let us focus on the event E2. Let Xj = (Xj−1,X), so that X takes values in
[N ]kmark . We show that for any x ∈ [N ]kmark and any completely good y ∈ Jj−1 that

P(E2|X = x,Yj−1 = y) ≤ Nkmarke−δLj−1,(9)

so that P(E2) ≤ Nkmarke−δLj−1 and it follows that (5) holds by (6), (7), (8) and the
inductive hypothesis.

Note that if x and y are good, then

P(Xj−1 = x|X = x,Yj−1 = y) = P(Xj−1 = x,Yj−1 = y,X = x)

P(Yj−1 = y,X = x)

= P(Xj−1 = x,Yj−1 = y)

P(Yj−1 = y)
(10)

≤ P(Xj−1 = x)

P(Yj−1 = y)

≤ e−δLj−1,(11)

where (10) follows from Remark 11 (with X = X′
2 and Yj−1 = Y ′

1) and (11)
follows from (3), (4) and (2). Also note that if x is desirable, then (x, x) is
split under Wj if and only if for the unique y for which (x,y) receives positive
mass under Wj−1 there exist distinct y, y′ ∈ [N ]kmark for which for which both
((x, x), (y, y)) and ((x, x), (y, y′)) receive positive mass under Wj . By Remark 12,
for a fixed x ∈ [N ]kmark and y ∈ Jj−1, the set of all x such that there exists distinct
y, y′ ∈ [N ]kmark for which both ((x, x), (y, y)) and ((x, x), (y, y′)) receive positive
mass under Wj has at most Nkmark − 1 elements; thus summing over all such x
yields (9).

The Shannon–McMillan–Breiman theorem implies that ninitial can be chosen
so that all four terms in (5) can be made smaller than η/4. This is done in the
following way.

Set

Sμ(k,K) := {
x ∈ [

Nkmark
]K :μfill|[1,�](x) < e−(h(μfill)−ε)� for all k ≤ � ≤ K

}
and

Sν(k,K) := {
y ∈ [

Nkmark
]K :νfill|[1,�](y) > e−(h(νfill)+ε)� for all k ≤ � ≤ K

}
.
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By the Shannon–McMillan–Breiman theorem choose ninitial so that for all K >

ninitial, we have

μfill|[1,K]
(
Sμ(ninitial,K)

)
> 1 − η/4 and(12)

νfill|[1,K]
(
Sν(ninitial,K)

)
> 1 − η/4;(13)

we can also require that

Nkmark

∞∑
i=ninitial

e−δi < η/4.(14)

Conditions (12) and (13) give that P(Xj is not c.g.) < η/4 and P(Yj is not

c.g.) < η/4, and (14) ensures that e−δL0 ≤ η/4, and Nkmark
∑j−1

i=0 e−δLj < η/4;
thus all four terms on the right-hand side of inequality (5) are less than η/4. �

REMARK 15. In proof of Proposition 14, recall that we appealed to Remark 12
which is the reason for the term Nkmark in (5). Since our proof of Theorem 14
relies on Proposition 14, we do not know if the analogue of Theorem 1 is true
if q gives positive mass to a countable number of symbols. Note the Sinai and
Ornstein theorems include the case where the entropy is possibly infinite and there
are a countable number of symbols. See, for example, [14], Section 4.5, for a recent
treatment.

4. Proof of Theorem 1.

4.1. The alternating star-joining. Let ζ be a monotone joining of the two
Bernoulli measures μ and ν, and let kmark > 0, and ζalt be its associated alter-
nating joining. Assume that we have already applied Proposition 14 to obtain an
ninitial and a probability measure βsub on [N ]ninitialkmark × [N ]ninitialkmark that is sub-
ordinate to ninitial and has the same marginals. By re-sampling on (most of the)
free intervals of ζalt by using the star-coupling, we will produce another monotone
joining ζalt∗ of μ and ν. We define ζalt∗ in the following way.

Let rmark be a large integer to be chosen later. A super marker is the maximal
union of at least rmark consecutive markers, and we call the set of integers between
and not including two super markers a large block.

Let Z = (X,Y) have law ζalt. Call any large block with at least ninitial free
intervals an action block; we re-sample only on the action blocks. We define a
new random variable Z′ = (X′,Y′) taking values on [N ]Z × [N ]Z by first declar-
ing that on every frozen interval or free interval I not belonging to an action
block that Z′|I = Z|I . Next, for a fixed action block, let Z0 (taking values in
[N ]kmarkninitial × [N ]kmarkninitial ) be Z restricted to the first ninitial free intervals. Let
(Ii)

n
i=1 be the remaining free intervals, and let Zi = (Xi, Yi) (taking values in

[N ]kmark × [N ]kmark) be Z restricted to Ii . By Proposition 3.5, conditional on the
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alternating intervals K(X), we have that (Zi)
n
i=1 is an i.i.d. sequence of random

variables with law ζ , and the law of Z0 = (X0, Y0) is given by the law of 
ninitial
ζ ,

and is also independent of (Zi)
n
i=1. Let Z̄0 = (X̄0, Ȳ0) have law given by the mea-

sure βsub. Take the iterative star-coupling of the random variables Z̄0,Z1, . . . ,Zn

to obtain a random variable

W = (
(X̄′

0,X
′
1, . . . ,X

′
n), (Ȳ

′
0, Y

′
1, . . . , Y

′
n)

)
,

taking values on [N ]kmarkninitial[N ]kmarkn × [N ]kmarkninitial[N ]kmarkn, which we call the
star-filler for an action block.

By Remark 11, independence of the (Zi)
n
i=0 and the fact that βsub is a coupling

of X0 and Y0, we have

(X0,X1, . . . ,Xn)
d= (

X̄′
0,X

′
1, . . . ,X

′
n

)
and

(15)
(Y0, Y1, . . . , Yn)

d= (
Ȳ ′

0, Y
′
1, . . . , Y

′
n

)
.

For each k > 0, let �k be the partial order on [N ]k defined by x �k x′ if and
only if xi ≥ x′

i for all 1 ≤ i ≤ k. Since ζ is a monotone joining, ζalt is a mono-
tone joining, and we have that Xi �kmark Yi for all 1 ≤ i ≤ n, and we also have
that X̄0 �kmarkninitial Ȳ0 since βsub is subordinate to 

ninitial
ζ . By the definition of the

iterative star-coupling we also have that

(X̄0, Ȳ0)
d= (

X̄′
0, Ȳ

′
0

)
and

(16)
(Xi, Yi)

d= (
X′

i , Y
′
i

)
for all 1 ≤ i ≤ n;

in particular, this implies that

X̄′
0 �kmarkninitial Ȳ ′

0 and X′
i �kmark Y ′

i .(17)

On each action block, by using the star-filler, we re-sample all of its free inter-
vals, using independent randomization on each action block. Call ζalt∗ the law of
the resulting random variable Z′, the alternating star-joining.

LEMMA 16. Let ζ be an ergodic monotone joining of two Bernoulli measures
μ and ν. The alternating star-joining ζalt∗ is also an ergodic monotone joining of
μ and ν. In addition, for any integer nrel ≥ ninitial, let R be the set of all elements
of [N ]Z × [N ]Z for which the origin is contained in an action block that contains
less than nrel number of alternating intervals of size kmark. Then for any ε > 0 for
all sufficiently large kmark we have

d∗(ζ, ζalt∗) < ε + 2ζalt∗(R) + ninitial/nrel,(18)

where the inequality holds independently of the choice of ninitial and the probability
measure βsub that is subordinate to ninitial and has the same marginals.
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PROOF. It follows from Proposition 6, the definition of a star-filler, (15),
and (17) that ζalt∗ is an ergodic monotone joining of μ and ν.

The proof of inequality (18) is similar to that of Lemma 8, except for the follow-
ing modification. Note that ζalt∗(R) = ζalt(R) and by (16) that restricted to every
alternating interval of size kmark that is not part of an initial block, ζalt∗ and ζalt are
equal; the probability that an alternating interval of size kmark is part of an initial
block is bounded by ninitial/nrel, when there are more than nrel alternating intervals
of size kmark. �

We will show using Proposition 14 that with a proper choice of parameters that
ζalt∗ will be a suitable almost factor and weak-star close to ζ .

4.2. Baire category and the choice of parameters.

LEMMA 17 (The Baire space). Let μ = pZ and ν = qZ be two Bernoulli mea-
sures on [N ]Z, where p � q . The space M = M(μ, ν) of all monotone ergodic
joinings of μ and ν is a Baire space.

PROOF. It is well known that space of all joinings of μ and ν is nonempty
(since it contains the product measure), compact and convex; furthermore its ex-
treme points are the ergodic joinings which form a (relatively) Gδ subset in the
space of all joinings of μ and ν [14], page 122, [13], Proposition 1.5.

Note that the subset of monotone joinings of μ and ν is closed and nonempty;
the ergodic monotone joining 
Z is a witness to the latter fact, where 
 is the
(monotone) quantile coupling of p and q . Hence M is a nonempty Gδ subset.

A Gδ subset of a complete metric space is a Polish space by a theorem of
Alexandrov [44], Theorem 2.2.1; and the Baire category theorem tells us that every
Polish space is a Baire space [44], Theorem 2.5.5. �

Let F denote the product sigma-algebra for [N ]Z. Let

P := {Pi : 0 ≤ i ≤ N − 1}
denote the partition of [N ]Z according the zeroth coordinate so that Pi := {x ∈
[N ]Z :x0 = i}. Let ζ be a joining of the Bernoulli measures μ and ν, and let ε > 0.
If for every set P ∈ σ(P) there exists a P ′ ∈ F such that

ζ
((

P ′ × [N ]Z)�([N ]Z × P
))

< ε,

then we say that ζ is an ε-almost factor.

LEMMA 18. Let ζ be a joining of two Bernoulli measures μ and ν. If ζ is an
ε-almost factor for all ε > 0, then there exists a factor φ such that

ζ(F × G) = μ
(
F ∩ φ−1(G)

)
for all (F,G) ∈F ×F .
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PROOF. See [13], Theorem 2.8. �

Thus if ζ is an ε-almost factor for all ε > 0, then we say that ζ is a factor.

PROPOSITION 19. Let μ = pZ and ν = qZ be two Bernoulli measures on
[N ]Z, where H(p) > H(q) and p � q . For each n > 0, let En be the set of elements
ξ of M that are 1/n-almost factors. For each n > 0, the following hold:

(A) The set En is a relatively open subset of M.
(B) The set En is a dense subset of M.

Proposition 19(A) is a standard argument [14], pages 123–124, that we give for
completeness. The proof of Proposition 19(B) will require the use of the alternating
star-joining.

PROOF OF THEOREM 1. By Proposition 19, the set defined by

E := ⋂
n≥1

En

is an intersection of relatively open dense subsets of M. By Lemma 17, E is
a nonempty subset of M, and by Lemma 18, its elements are factors. �

PROOF OF PROPOSITION 19(A). Let ζ ∈ En. Recall that S is the left-shift.
Since the sigma-field F is generated by

∨
i∈Z S−iP , and there are only a finite

number of elements in P , there exists m ∈ N so that for all P ∈ P , there is a cor-
responding P ′ ∈ ∨

|i|<m S−iP for which

ζ
((

P ′ × [N ]Z)�([N ]Z × P
))

< 1/n.(19)

Note that (19) persists for all sufficiently small perturbations of ζ since each P and
corresponding P ′ are clopen sets. �

PROOF OF PROPOSITION 19(B). Let ζ ∈ M, and ε > 0 and n > 0. We show
that with a proper choice of parameters that for the alternating star-joining, we
have ζalt∗ ∈ En and d∗(ζ, ζalt∗) < ε. Note that by Lemma 16, ζalt∗ is a monotone
joining of μ and ν. The following is a list of the parameters, chosen in order:

(i) By reducing ε if necessary, we may assume ε < 1/n.
(ii) Set ε′ = ε/10.

(iii) Using Lemmas 7, 9 and 16, choose kmark large enough so that the proba-
bility that the origin is in a frozen interval is less than ε′, h(μfill) > h(νfill), and so
for any choice of ninitial and probability measure βsub that is subordinate to ninitial

and has the same marginals, we have

d∗(ζ, ζalt∗) < ε′ + 2ζalt∗(R) + ninitial/nrel,

where nrel ≥ ninitial and the set R was defined in Lemma 16.
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(iv) Appealing to Proposition 14, with kmark as chosen above, and η = ε′, we
get an ninitial and a βsub which realizes the conclusion of the proposition and in
particular is subordinate to 

ninitial
ζ and has the same marginals.

(v) Choose an integer nrel > ninitial so that ninitial/nrel < ε′.
(vi) Choose rmark so that ζalt∗(R) < ε′ and so that the probability that origin is

not in an action block is less ε′.

By (i) it remains to argue that ζalt∗ is an ε-factor. It suffices to define a deter-
ministic function ψ : [N ]Z → [N ] so that

ζalt∗
(
(x,y) : (x,y0) = (

x,ψ(x)
))

> 1 − ε.

By the definition of ζalt∗ and Proposition 14 and (iv), it follows that ψ can be
easily defined from the deterministic function � of the proposition, provided that
the origin is in a free interval on an action block. On the other hand, by (iii) with
probability less than ε′ the origin belongs to a frozen interval, and by (vi) with
probability greater than 1 − ε′ the origin belongs to an action block where the
star-filling is applied to the free intervals. �

Finally, we discuss the proof of Theorem 2. Let p and q be probability measures
on [N ], and let R be a relation on [N ]. Call a joining ζ of μ = pZ and ν = qZ an
R-joining if

ζ
{
(x,y) ∈ [N ]Z × [N ]Z : (x0,y0) ∈ R

} = 1.

The proof of Theorem 2 is the same as the proof of Theorem 1, except we work
with R-couplings and R-joinings instead of their monotone counterparts.

PROOF OF THEOREM 2. We check the crucial details. By assumption there
exists a probability measure ρ that is an R-coupling of p and q . Thus the set of
R-joinings is nonempty. Given an R-joining of μ and ν, the alternating joining
is defined as before, except instead of using the quantile coupling on individual
coordinates, we use the one given to us by assumption, ρ; clearly the resulting
alternating joining is still an R-joining. The alternating star-joining is defined as
before. To check that it is a R-joining, we use the same facts that were used to
check monotonicity. The main point is that the measure given Proposition 4 is
subordinate to the original one, and del Junco’s star-coupling is a coupling. It fol-
lows from (16) and the observation that if α is an R-coupling, then any measure
subordinate to α must also be an R-coupling. �
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