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Abstract. We obtain an explicit error expansion for the solution of Backward Sto-
chastic Differential Equations (BSDEs) using the cubature on Wiener spaces method.
The result is proved under a mild strengthening of the assumptions needed for the ap-
plication of the cubature method. The explicit expansion can then be used to construct
implementable higher order approximations via Richardson-Romberg extrapolation. To
allow for an effective efficiency improvement of the interpolated algorithm, we introduce
an additional projection on finite grids through interpolation operators. We study the
resulting complexity reduction in the case of the linear interpolation.

1. Introduction

Let pΩ,P,F ,Fq with F “ pFtqtPR` be a filtered probability space satisfying the usual
conditions. For some T ą 0, we consider the solution of the Markovian Backward Sto-
chastic Differential Equation

Xt “x0 `

ż t

0
bps,Xsqds`

ż t

0
σps,XsqdWs,(1)

Yt “gpXT q `

ż T

t
fps,Xs, Ys, Zsqds`

ż T

t
ZsdWs,(2)

where W is an F-Brownian Motion taking values in Rr, X,Z are Rd processes adapted to
F, Y is an F-adapted process valued in R, and b : R`ˆRd Ñ Rd, σ : R`ˆRd ÑMpd, rq,
f : R` ˆRd ˆRˆRd Ñ R and g : Rd Ñ R are Lipschitz function. In the sequel, we shall
impose further regularity conditions for our theoretical analysis, see Assumptions 1.1 or
1.2 below.

An important property of the solution of a Markovian BSDE is that it can be represented
as Yt “ upt,Xtq and Zt “ vpt,Xtq for suitable functions u, v satisfying, at least in a
viscosity sense, the PDE

#

Btu` Lu` fp¨, u, vq “ 0 on r0, T q ˆ Rd

upT, ¨q “ gp¨q
,(3)

where L is the Dynkin operator associated to the diffusion X. Moreover, when sufficient
regularity is available, we have that vpt,Xtq :“ Bxupt,Xtqσpt,Xtq.

Approximating pY,Zq allows then to solve numerically and in a probabilistic way, the
corresponding PDE for u. This has motivated in the past fifteen years an important
literature on numerical methods for BSDEs. The main method to approximate (2) is a
backward programming algorithm based on an Euler scheme, that has been introduced
in [4] and [3, 33], see the references therein for early works. Since then, many extensions

∗Laboratoire de Probabilités, Statistique et Modélisation, Université Paris Diderot.
chassagneux@math.univ-paris-diderot.fr
†Department of Mathematics, University College London. camilo.garcia@ucl.ac.uk.
‡The author’s research was partially supported by OpenGamma Ltd.
§Acknowledgments: The authors would like to thank Christoph Reisinger and Yufei Zhang for pointing

out a mistake in a preliminary version of this paper.
1

ar
X

iv
:1

70
2.

00
99

9v
2 

 [
m

at
h.

PR
] 

 2
1 

Fe
b 

20
19



2 JEAN-FRANCOIS CHASSAGNEUX AND CAMILO A. GARCIA TRILLOS

have been considered: high order schemes e.g. [8, 10], schemes for reflected BSDEs [1, 9],
for fully coupled BSDEs [20, 2], for quadratic BSDEs [12] or McKean-Vlasov BSDEs
[13, 11]. It is also important to mention that, quite recently, very promising probabilistic
forward methods have been introduced to approximate (2) [5] or directly the non-linear
parabolic PDE (3) [24]. The backward algorithm approximating (2) requires, to be fully
implementable, a good approximation of (1) and its associated conditional expectation
operator. Various methods have been developed, see e.g. [19, 29, 22] and we will focus
here on the cubature on Wiener spaces introduced in [27]. Broadly speaking, the method
considers the space of continuous paths in Rd on the interval r0, T s (Cpr0, T s,Rdq) to define
a finite probability Q that approximates the Wiener law P. As we explain briefly in Section
2.2, see a full account in [27], this approximation is chosen to match the expectation of
iterated integrals.

The paper [16] pioneered the use of the cubature method to solve BSDEs. Essentially,
the algorithm estimates the value of the field u on the points on the support of the cubature
approximating law, thus giving an approximation scheme for the solution of the BSDE (2).
By its nature, this algorithm can be easily used to implement second order discretization
schemes as in [8, 17], and applied in the context of McKean-Vlasov BSDEs as in [13]. The
cubature algorithm has been studied under a set of assumptions that guarantee sufficient
regularity for the field (for example, smooth coefficients for the forward equation and the
generator of the backward equation, Lipschitz regularity on the boundary condition plus
a structural condition of the type UFG, see Section 1.1 below).

In this work, we want to study acceleration methods for the Euler approximation of
BSDEs, of the same kind as those proved in the linear case pf “ 0q [31] (see also [21] for
the study of the discrete-time error only in the non-linear case). We show that under a
very mild strengthening of the assumptions, there exists an explicit error expansion for the
weak approximation of the BSDE system given by equations (1) and (2) using the cubature
on Wiener spaces method. The explicit expansion exposes the dependence of the error
approximation with respect to the general features of the coefficients of the system and
the test function. Moreover, it opens the possibility to increase the rate of convergence by
using Richardson-Romberg extrapolation techniques. However, to effectively improve the
efficiency of the algorithm, we need to analyse and improve the complexity growth of the
approximation technique. In this work, we consider a technique based on projecting on a
finite grid.

We now present the setup of our work and the numerical schemes we study in the sequel,
and give an overview of the main results of the paper.

1.1. Main Assumptions. Let us rewrite the process X in (1) in its Stratonovich form,
that is, let

Xt “ x0 `

ż t

0
b̄ps,Xsqds`

ż t

0
σps,Xsq ˝ dWs

where b̄ : R` ˆ Rd Ñ Rd has i-th component defined by

(4) b̄ipt, xq “ bipt, xq ´
1

2

r
ÿ

j“1

d
ÿ

k“1

σk,jpt, xqBxkσi,jpt, xq.

We work under two sufficient assumptions to guarantee the regularity needed for the
cubature method to be effective.

Assumption 1.1. Let M ą 0.
‚ On the forward coefficients

i. b̄, σ.,j P CM`1
b pR` ˆ Rd,Rdq for all j “ 1, . . . , d;

‚ On the backward coefficients
i. g P CM`1

b pRd,Rq
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ii. f P CM`1
b pR` ˆ Rd ˆ Rˆ Rd,Rq.

Assumption 1.2. Let M ą 0. There exist α ą 0, such that
‚ On the forward coefficients:

i. b̄ P CM`α`1
b pR` ˆ Rd,Rdq and σ.,j P CM`α`2

b pR` ˆ Rd,Rdq for all j “
1, . . . , d;

ii. UFG condition of order α (see Definition 1.1. in [14])
‚ On the backward coefficients

i. g is Lipschitz continuous.
ii. f P CMb pR` ˆ Rd ˆ Rˆ Rd,Rq

The existence of a classical solution to the PDE (3) is assured under either of Assump-
tions 1.1 or 1.2.

1.2. Forward scheme. We define a stochastic process on C0
bvpr0, T s,Rdq – the space of

continuous functions with bounded variation – as follows. Let X̂ : Ω̂ Ñ C0
bvpr0, T s,Rdq be

given as the solution of

(5) X̂tpω̂q :“ x0 `

ż t

0
b̄ps, X̂spω̂qqds`

ż t

0
σps, X̂spω̂qqdω̂s.

The integrals in the previous definition are taken in the Riemann-Stieltjes sense, which is
possible since we have assumed that the paths ω̂ are of bounded variation. Let us also
define a conditioned form of this stochastic process, given by

(6) X̂s,x
t pω̂q :“ x`

ż t

s
b̄pr, X̂s,x

r pω̂qqdr `

ż t

s
σpr, X̂s,x

r pω̂qqdω̂r.

We take as weak approximation of the process X the process X̂ under a finite cubature
measure Q̂ (see the precise definition in Section 2.2 below). In other words, we consider
a random process in a finite space obtained by solving a finite number of ODEs. For
practical implementation, the resulting discrete measure is built as a tree. This allows an
easy computation of conditional expectations, a property that is of paramount importance
to solve the Backward component that we introduce below.

The precision of approximation provided by the cubature method is given in terms of
its order: it quantifies the degree of iterated integrals that can be perfectly computed
in expectation under the cubature measure. Roughly speaking, this is analogous to the
maximal degree of polynomials perfectly approximated by quadrature rules in finite di-
mensional spaces.

1.3. Backward scheme. As mentioned before, in the Markovian setting it is possible to
express the solution to the BSDE equation (2) in terms of the so-called decoupling field,
that is, applications u : R`,Rd Ñ R and v : R`,Rd Ñ Rd defined by

upt, xq “ Y t,x
t ; vpt, xq “ Zt,xt .

For γ ě 1, we consider a time grid of the form

(7) ti “ T

„

1´

ˆ

1´
i

n

˙γ

and we set hi :“ ti`1 ´ ti for i “ 0, . . . , n. We study a cubature based Bouchard-Touzi-
Zhang scheme defined by

(i) Terminal condition is pûn, v̂nq “ pg, 0q
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(ii) Transition from step i` 1 to step i given by

ûipxq “ EQ̂
”

ûi`1pX̂
ti,x
ti`1
q ` hifpx, ûipxq, v̂ipxqq

ı

,

v̂ipxq “ EQ̂
„

ûi`1pX̂
ti,x
ti`1
q
∆ω̂i
hi



,

where ∆ω̂i “ ω̂ti`1 ´ ω̂ti , and EQ̂ is the expectation with respect to the cubature measure.
We then define Ŷi “ ûipX̂tiq and Ẑi “ v̂ipX̂tiq.

1.4. Main results.

1.4.1. Error expansion. Our first result, Theorem 1.3 extends the results of [31] on the
Euler scheme for weak approximations of SDEs to the case where the underlying numerical
method is not the Monte Carlo method but the cubature on Wiener spaces.

Theorem 1.3 (Forward error expansion). Set m ě 3. Suppose that Assumption 1.1
(resp. 1.2) holds with M ě m ` 2, and take Q̂ to be a cubature measure from a cubature
formula of order m on a uniform (resp. decreasing) step grid with γ “ 1 (resp. γ ą m´1).

Then, there is a constant K such that, for all i ă n,

(8) |EQ̂
”

gpXti,x
T q

ı

´ E
”

gpXti,x
T q

ı

| ď Kn´
m´1

2 .

Moreover, if M ě m` 3 in Assumption 1.1 (resp. 1.2) and the cubature is symmetric,
then

(9) |EQ̂
”

gpXti,x
T q

ı

´ E
”

gpXti,x
T q

ı

´ n´
m´1

2 Ψlin
T pti, xq| ď K 1n´

pm`1q^γ
2 ,

where the coefficient Ψlin
T is given in Definition 2.9 below.

Our main result, see Theorem 1.4 below, carries out a similar analysis taking into
account the non-linearity associated to the generator function f in the formulation of
BSDEs. Let us stress that this analogous result is obtained on a completely implementable
scheme to solve BSDEs, that is, we include the analysis on the conditional expectation
approximation.

Theorem 1.4 (Backward error expansion). Suppose that Assumption 1.1 (resp. 1.2)
holds withM ě 9, and take Q̂ to be a cubature measure from a symmetric cubature formula
of order m ě 3 on a uniform (resp. decreasing) step grid with γ “ 1 (resp. γ ą m ´ 1).
Then, for all i ă n,

ˇ

ˇ

ˇ
ûtipxq ´ upti, xq ` n

´1Ψnl
T pti, xq

ˇ

ˇ

ˇ
ď Kn´2 ,(10)

where the coefficient Ψnl
T is given in Definition 3.10 below.

Remark 1.5. In both Theorems 1.3 and 1.4, the role of the parameter γ under Assumption
1.2) is to allow for the needed regularisation of the boundary condition to take place. If
γ is taken to be smaller than the given bounds, we expect from the analysis to observe a
suboptimal rate of convergence. In practice, for functions that are absolutely continuous
this is not observed.

Remark 1.6. It can be easily concluded from our development below that additional expan-
sion terms in Theorems 1.3 and 1.4 can be explicitly shown, under stronger requirements
on the parameters cubature parameter m, the regularity parameter M . Essentially, any
additional term demands an increase of two on these parameters.
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1.4.2. Complexity reduction. With the above error expansion at hand, one can implement
a Romberg-Richardson method to increase the precision of the approximation profiting
from the regularity of the value function u. This is done by using an order 1 method, here
a modified Euler scheme, which is often easier to implement than a high order scheme and
may exhibit better numerical stability properties (see [7] for a study of numerical stability
in the case of BSDEs approximation). With an increased precision, one can hope to lower
the numerical complexity of the method. However, this is not the case here if one simply
uses the cubature tree to compute the conditional expectation.

Indeed, the main drawback of the cubature method is its complexity growth with re-
spect to the number of time discretization steps on the approximation. In the case of
approximation of expectations, complexity can be controlled using reduction techniques
as high order recombination [26] and TBBA (Tree Based Branching Algorithm) [15].

To make the extrapolation method worth implementing in practice, we introduce an ex-
tra projection on a finite grid. In Section 4, we show, in an abstract setting of interpolation
operators, how the backward scheme should be modified. We also exhibit sufficient condi-
tions that the interpolation operators should satisfy to extend the convergence results to
the modified scheme. We illustrate this findings by considering the example of multi-linear
interpolation. Theorem 4.5 proves the gain in complexity by using this approach.

The rest of the paper is organised as follows. In Section 2, we study the approximation
of the BSDE in the linear case, associated to the cubature method. In Section 3, we obtain
an error expansion for the general case f ‰ 0. In Section 4, we focus on the complexity
reduction via the use of interpolation operators and extrapolation methods and give a
numerical illustration of our result. Finally, the Appendix collects some useful results on
integral approximation by Riemann sums and reviews the numerical implementation.

2. Convergence analysis for the forward process

We first provide an error extrapolation for the BSDEs when f “ 0. This result is new
in the context of cubature method and terminal condition with Lipschitz only regularity.

2.1. Notation. In this section, we highlight the notation we use in all the document and
that might not be considered completely standard.

2.1.1. Multi-indices. Multi-indices allow to easily manage differentiation and integration
in several dimensions. Let us consider the set of multi-indices

(11) M “ tHu Y
ď

lPN˚
t0, 1, . . . , dul,

where H refers to the zero-length multi-index. We define “˚” to be the natural concate-
nation operator, and we consider some norms in M. For β “ pβ1, . . . , βlq:

|β|p “
l
ÿ

i“1

|βi|
p, for p P N; |β|8 “ max

i
|βi|,

and
}β} :“ p#ti : βi “ 0uq ` |β|0.

Naturally |H|p “ }H} “ 0. For every β ‰ H, we set βą0 the multi-index obtained by
deleting the zero components of β, and

βi:j :“ pβi, . . . , βjq for 1 ď i ă j ď |β|0;(12)
´β :“ pβ2, . . . , βlq β´ :“ pβ1, . . . , βl´1q.

We refer to the set of multi-indices of degree at most l denoted by Al :“ tβ P M :
}β} ď lu, and to its frontier set BA :“ tβ P MzA : ´β P Au. It is readily seen that
BAl Ă Al`2zAl.
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2.1.2. Stratonovich differential operators. As we show in section 2.2 (see also [27]), the
cubature on Wiener spaces method uses the algebraic structure of the differential operators
associated to the Stratonovich integral. We introduce then a special notation for the
Stratonovich operators associated to the SDE (1) and their iterated actions.

Let ψ : R` ˆ Rd Ñ R, then we define

V Hψpt, xq “ψpt, xq

V p0qψpt, xq “
d
ÿ

i“1

b̄iBxiψpt, xq ` Btψpt, xq

V pjqψpt, xq “
d
ÿ

i“1

σi,jBxiψpt, xq; j “ 1, . . . , d

and for any multi-index β ‰ H with |β| ą 1,

V βpt, xq “ V pβ1qrV ´βψspt, xq

with ´β as in (12).

2.1.3. Space of differentiable functions. We denote by C̄mb the class of differentiable func-
tions ψ : Rd Ñ R with bounded derivatives V βψ for every β P Am, i.e. functions whose
semi-norm defined by

(13) ||ψ||m,8 :“ sup
βPAm

|V βψ|8.

is finite. In the definition, | ¨ |8 stands for the usual maximum norm.
For convenience, for a fixed discretization grid, and ψ : r0, T s ˆ Rd Ñ R, we write

(14) ||ψ||i;m,8 :“ sup
tPrti,ti`1s

}ψpt, .q}m,8.

2.1.4. Ito differential operators. Let ψ : R` ˆ Rd Ñ R, then we define

Lp0qψpt, xq “Btψpt, xq `
d
ÿ

i“1

biBxiψpt, xq `
1

2

d
ÿ

i“1

d
ÿ

j“1

d
ÿ

k“1

σikσjkBxixjψpt, xq.

Note that this operator can be written in terms of the Stratonovich differential operators
we introduced, as follows

Lp0q “ V p0q `
1

2

d
ÿ

j“1

V pj,jq.

2.1.5. Iterated integrals. Let ω and ζ be two functions in Cbvpr0, T s,Rdq, the space of
continuous functions with bounded variation defined from r0, T s to Rd . Let us define the
iterated integral of ζ with respect to ω by

Iβs,tpζ, ωq :“

ż

săt1ă...ăt|β|ďt
ζt1dωβ1pt1q ¨ ¨ ¨ dω

β|β|pt|β|q

where ωi is the i-th component of ω, and we fix by convention ω0ptq :“ t. In the following,
we write Iβs,tpωq “ Iβs,tp1, ωq.

We introduce a similar notation to represent iterated integrals with respect to the
Brownian motion. Indeed, let X be an adapted process. We set

Jβs,tpXq :“

ż

săt1ă...ăt|β|ăt

Xt1 ˝ dW β1
t1
¨ ¨ ¨ ˝ dW

β|β|
t|β|

where the notation ˝ denotes the Stratonovich integral, and we keep the convention W 0
t “

t. Moreover, set Jβs,t :“ Jβs,tp1q.
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2.1.6. Stochastic flow. In what follows, for any 0 ď s ď t ă T , we denote by Xs,x
t the

process Xt conditioned to be equal to x at time s ă t, i.e.

Xs,x
t “ x`

ż t

s
bpr,Xs,x

r qdr `

ż t

s
σpr,Xs,x

r qdWr.

2.1.7. Operators. We consider now a family of operators associated with the SDE (1) and
the process (5).

Definition 2.1 (Operators). We denote by P the operator over measurable functions
associated to the diffusion X defined, for any measurable function ψ : r0, T s ˆ Rd Ñ R ,
by

Ps,tψps, xq :“ Erψpt,Xs,x
t qs.

Similarly, we define by Q the analogous cubature operator given by

Qs,tψps, xq :“ EQ̂rψpt, X̂s,x
t qs.

By a slight abuse of notation, we use this notation also for one-parameter functions, that
is, if ψ : Rd Ñ R, Ps,tψ (respectively Qs,tψ) denotes the operator applied to the function
ψ̄ : r0, T s ˆ Rd Ñ R such that pt, xq Ñ ψ̄pt, xq :“ ψpxq.

Note that, by Definition 2.1 and (6), we have

Qs,tQt,uψps, xq “ EQ̂rQt,uψpt, X̂
s,x
t qs “ EQ̂rψpu, X̂

t,X̂s,x
t

u qs “ EQ̂rψpu, X̂s,x
u qs “ Qs,uψps, xq.

2.2. Cubature on Wiener spaces. The cubature measure on Wiener spaces was intro-
duced in [27], as a tool to construct weak approximations of functionals of the Brownian
motion. It generalises the quadrature method to an infinite dimensional space: It aims at
approximating the Wiener measure restricted to a time interval r0, T s with a finite proba-
bility defined on Cpr0, T s,Rdq. As in the quadrature method, this approximation consists
in preserving the exact value of the expectation of some basic functionals that will play a
similar role as the one played by polynomials in finite dimensions.

Definition 2.2 (Cubature formula [27]). Let m be a natural number. An m-cubature
formula on the Wiener space C0pr0, 1s,Rdq is a probability measure Q with finite support
on C0

bvpr0, 1s,Rdq (continuous functions and bounded variation starting in 0) such that the
expectation of the iterated Stratonovich integrals of degree m under the Wiener measure
and under the cubature measure Q are the same, i.e., for all multi-index β P Am

E
”

Jβ0,1

ı

“ EQ
”

Iβ0,1pωq
ı

:“
κ
ÿ

j“1

θj

”

Iβ0,1pωjq
ı

where tω1, . . . , ωκu and θ1, . . . , θκ are respectively the support and weights of the finite
measure Q.

Examples of cubature formulas of order 3 and 5 are known for arbitrary dimensions.
Higher order cubature methods (up to order 11) are also given for small dimensions, see
e.g. [27, 23].

Definition 2.2 may be extended to anm-cubature formula on theWiener space C0pr0, ts,Rdq,
for an arbitrary t ą 0. Indeed, the rescaling properties of the Brownian motion imply that
ω1, . . . , ωκ and θ1, . . . , θκ form an m-cubature formula on C0

bvpr0, 1s,Rdq if and only if
t1{2ω1, . . . , t1{2ωκ and θ1, . . . , θκ form an m-cubature formula on C0

bvpr0, ts,Rdq. This
justifies the choice of giving the definition on the interval r0, 1s.

Definition 2.3 (Symmetric cubature formula). We say that a cubature formula is sym-
metric if for any path ω˚ P supppQq then ´ω˚ P supppQq and Qrω “ ω˚s “ Qrω “ ´ω˚s.
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Remark 2.4. The properties of Brownian Motion imply that if ||β|| “ 2k ` 1 for some
integer k, then E

”

Jβ0,1

ı

“ 0. Cubature formulas with the symmetry properties will therefore
approximate exactly iterated integrals of any odd degree. Thus, without loss of generality,
we assume that any symmetric cubature measure is of odd order.

Lyons and Victoir [27] showed that the cubature method in the space C0pr0, ts,Rdq
provides a weak approximation to the Brownian motion with an error bounded by some
power of the time length of approximation t. The construction can then be iteratively
applied on small intervals to obtain an approximation with a good control for a time
interval r0, T s with arbitrary length. This motivates the following definition.

Definition 2.5 (Cubature measure). Let 0 “ t0 ă . . . ă tn “ T , and let hi “ ti`1 ´ ti.
Given a cubature formula Q̃ represented by a set of weights θ1, . . . , θκ associated to a set
of paths ω1, . . . , ωκ in C0

bvpr0, 1s,Rdq, we build the probability space pΩ̂, Q̂q, where Ω̂ “

C0
bvpr0, T s,Rdq and Q̂ is a finite measure with support on paths indexed by η P t1, . . . , κun

given by

ω̂ηptq “
n
ÿ

i“1

h
1{2
i ωηi

ˆ

pti`1 _ pt^ tiqq ´ ti
hi

˙

1ttąti´1u

with associated probability θ̂η “ θη1θη2 ¨ ¨ ¨ θηn.

Let us emphasize that the cubature measure constructed according to Definition 2.5
depends on the cubature formula Q̃ and on the grid T “ tt0, . . . , tnu.

2.3. Forward Error expansion. In this section we show an expansion for the approx-
imation error of conditional expectations when using the cubature method coupled with
an Euler scheme. The idea of the proof follows the well-known approach of combining a
one-step expansion with a global stability property. Importantly, the analysis relies on a
good regularity property of the function being approximated, as required by the cubature
operator.

In all our developmentK,K 1, . . . denote constants that might depend on the parameters
of the problem (i.e. T, f, g, b, σ, x0q or on cubature measure that we assume fixed, but not
on the parameters of the scheme. We use the convention that their value might change
from line to line.

We start by recalling regularity properties of conditional expectation under our standing
assumptions.

Proposition 2.6 (Regularity). Under Assumption 1.1, there exists a constant K such
that for all for all pt, xq P r0, T s ˆRd and 0 ă k ďM ,

(15)
›

›

›
E
”

gpXt,x
T q

ı›

›

›

k,8
ď K|gpxq|k,8.

Under Assumption 1.2, there exists a constant K such that for all for all pt, xq P r0, T sˆRd
and 0 ă k ďM ,

(16)
›

›

›
E
”

gpXt,x
T q

ı›

›

›

k,8
ď K|g|LippT ´ tq

´ k´1
2 .

If in addition g has bounded derivatives up to order p, then

(17)
›

›

›
E
”

gpXt,x
T q

ı
›

›

›

k,8
ď K|∇pg|8pT ´ tq

´
k´p
2 .

Equation (15) is a consequence of the iterated application of Ito’s formula, under As-
sumption 1.1. The claims under the UFG condition are proved in [18]: (16) is proved
in Corollary 78 and (17) is deduced from extending the arguments of Corollary 32 with
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Corollary 78. The reader may refer to the PhD thesis [28] for further results on gradient
bounds under alternative conditions.

2.3.1. One-step expansion. The following approximation result is a restatement of the
results in [27] (see also Section 3.4 in [18] ) .

Proposition 2.7. Under Assumption 1.1 (resp. 1.2), let ψ : r0, T sˆRd Ñ R be a bounded
function in C̄m`2

b uniformly in t. Then, for any i ď n´ 1 (resp. i ď n´ 2),

|Qti,ti`1ψpti, xq ´ Pti,ti`1ψpti, xq|(18)

ď Km`1h
m`1

2
i ||ψ||i;m`1,8 `Km`2h

m`2
2

i ||ψ||i;m`2,8,

where ||.||i,.,8 is defined in (14) and Kj “
ř

βPAjzAj´1
|Cβ|, with Cβ “ EQ̂Iβ0,1 ´ EJβ0,1.

If in addition ψ P C̄m`3
b ,

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Qti,ti`1ψpti, xq ´ Pti,ti`1ψpti, xq ´ h
m`1

2
i

ÿ

βPAm`1zAm

CβV
βψpti, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(19)

ď Km`2h
m`2

2
i ||ψ||i;m`2,8 `Km`3h

m`3
2

i ||ψ||i;m`3,8.

Moreover, if m is odd, the cubature measure Q is symmetric and ψ P C̄m`4
b , then

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Qti,ti`1ψpti, xq ´ Pti,ti`1ψpti, xq ´ h
m`1

2
i

ÿ

βPAm`1zAm

CβV
βψpti, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

(20)

ď Km`3h
m`3

2
i ||ψ||i;m`3,8 `Km`4h

m`4
2

i ||ψ||i;m`4,8.

Let us remark that the constants Cβ (and thus also the constants Km`1,Km`2) depend
only on the chosen cubature method and are explicit. For instance, the canonical cubature
of order 3 in dimension 1 (see Section 4.3 below ) gives K4 “ 2,K5 “ 0.

Proof. From the Taylor-Stratonovich expansion (see Theorem 5.6.1 in [25]) applied to ψ,
one gets, for any x P Rd,

Pti,ti`1ψpti, xq “ E
”

ψpti`1, X
ti,x
ti`1
q

ı

“
ÿ

βPAm

V βψpti, xqEJβti,ti`1
`

ÿ

βPBAm

EJβti,ti`1
pV βψp., Xti,x

. qq.

Similarly, a Taylor expansion and the definition of X̂ in (5) shows

Qti,ti`1ψpti, xq “ EQ̂
”

ψpti`1, X̂
ti,x
ti`1
q

ı

“
ÿ

βPAm

V βψpti, xqEQ̂Iβti,ti`1
`

ÿ

βPBAm

EQ̂Iβti,ti`1
pV βψp., X̂ti,x

. qq.

The construction of the cubature measure in Definition 2.5 and the definition of the
cubature formula, imply that EQ̂Iβti,ti`1

“ EJβti,ti`1
for all β P Am. Hence, by using

the regularity assumptions on ψ, the scaling properties of the cubature and the Markov
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property, one gets

rQti,ti`1 ´ Pti,ti`1sψpti, xq(21)

“
ÿ

βPBAm

EQ̂Iβti,ti`1
pV βψp., X̂.qq ´ EJβti,ti`1

pV βψp., Xti,x
. qq

ď
ÿ

βPBAm

h
||β||
2

i sup
tPrti,ti`1q

|V βψpt, .q|8

´

EQ̂Iβ0,1 ´ EJβ0,1
¯

ďKm`1h
m`1

2
i ||ψ||i;m`1,8 `Km`2h

m`2
2

i ||ψ||i;m`2,8

where for j “ m` 1,m` 2,

Kj “
ÿ

βPAjzAj´1

ˇ

ˇ

ˇ
EQ̂Iβ0,1 ´ EJβ0,1

ˇ

ˇ

ˇ
.

Having shown (18), let us now assume ψ P C̄m`3
b . Then we can expand the terms in

Am`1 in the equality in (21), and apply the scaling properties of the cubature to get
ˇ

ˇ

ˇ

ˇ

rQti,ti`1 ´ Pti,ti`1sψpti, xq ´
ÿ

βPAm`1zAm

h
||β||
2

i V βψpti, xq
!

EQ̂Iβ1 ´ EJβ1
)

ˇ

ˇ

ˇ

ˇ

“
ÿ

βPBAm`1

EQ̂Iβti,ti`1
pV βψp., X̂.qq ´ EJβti,ti`1

pV βψp., Xti,x
. qq

ďKm`2h
m`2

2
i ||ψ||i,m`2,8 `Km`3h

m`3
2

i ||ψ||i,m`3,8.

Finally, if ψ is m ` 4 times differentiable, then we can expand once more and use the
symmetry of the cubature formula and Remark 2.4 to obtain the result.

l

2.3.2. Global expansion: Proof of Theorem 1.3. Using the previous one-step results, we
can study an explicit error expansion for the error in the cubature approximation of X
for several steps, thus extending [31] to the cubature approximation. We analyze this
property under both Assumptions 1.1 and 1.2. We start with the following control result.

Lemma 2.8. Suppose that either Assumption 1.1 or Assumption 1.2 hold withM ě m`2.
Assume that pt0, . . . , tnq are defined as in (7), with γ “ 1 if Assumption 1.1 holds and
γ ěM ´ 2 otherwise. Then, there is a constant K such that, for all 0 ă k ďM ,

n´2
ÿ

i“0

h
k
2
i ||P.,tng||i;k,8 ď Kn´

k
2
`1.

Proof. When Assumption 1.1 holds, we have that hi “ Tn´1 and from Proposition 2.6,
n´2
ÿ

i“0

h
k
2
i ||P.,tng||i;k,8 ď

n´2
ÿ

i“0

Kn´
k
2 ||gp.q||k,8 ď K 1n´

k
2
`1.

On the other hand, if Assumption 1.2 holds, we have from Proposition 2.6 that ||P.,tng||i;k,8 ď
K|g|LippT ´ tq

´β for β “ k´1
2 . Then, we get from Corollary A.3,
n´2
ÿ

i“0

h
k
2
i ||P.,tng||i;k,8 ď K 1n´

k
2
`1.

since in this case γpk2 ´ βq “
γ
2 ě

M´2
2 ě k

2 ´ 1. l

Before proving the main expansion result for this part i.e. Theorem 1.3, let us make
precise the shape of the leading coefficient Ψlin in the expansion.
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Definition 2.9.
i. Under Assumption 1.1,

(22) Ψlin
T ps, xq :“ T

m´1
2 E

»

–

ÿ

βPAm`1zAm

ż T

s
CβV

βrPt,T gpX
0,x
t qsdt

fi

fl .

ii. Under Assumption 1.2

Ψlin
T ps, xq :“ pT

1
γ γq

m´1
2 E

»

–

ÿ

βPAm`1zAm

ż T

s
CβV

βrPt,T gpX
0,x
t qs pT ´ tq

p1´ 1
γ
qm´1

2 dt

fi

fl .

We are ready to prove the global error expansion result for the conditional expectation
using the cubature method.

Proof of Theorem 1.3
Let u be given as the solution of the linear equation Btupt, xq `Lupt, xq “ 0 defined on

r0, T q with boundary condition upT, xq “ gpxq and L the Dynkin operator of X. Clearly,
for any i “ 0, . . . , n´ 1, we have Pti,ti`1upti, xq “ upti, xq. In particular,

up0, xq “ P0,Tup0, xq “ ErupT,X0,x
T qs “ ErgpX0,x

T qs “ P0,T gpxq

Note that given that M ě m ` 2, Assumptions 1.1 (resp. 1.2) and Proposition 2.6
imply that upti, .q has bounded derivatives of all order up to m` 2, for i ă n.

Using the definition of the function u and the properties of the family of operators Q
and P , we can then reformulate the error term as a telescopic sum,

EQ̂rgpX̂0,x
T qs´ErgpX0,x

T qs “ Q0,Tup0, xq ´ P0,Tup0, xq

“

n´1
ÿ

i“0

Q0,titrQti,ti`1 ´ Pti,ti`1sPti`1,Tuup0, xq

“

n´2
ÿ

i“0

Q0,titrQti,ti`1 ´ Pti,ti`1suup0, xq `Q0,tn´1trQtn´1,tn ´ Ptn´1,tnsgupxq.(23)

At this point, we divide proof of the theorem in two parts.

Proof of the bound (8)

We consider a bound for each of the two terms in 23. To treat the first term, we use
(18) and Lemma 2.8 to deduce

n´2
ÿ

i“0

Q0,titrQti,ti`1 ´ Pti,ti`1suup0, xq ďKm`1

n´1
ÿ

i“0

h
m`1

2
i ||u||i;m`1,8 `Km`2

n´1
ÿ

i“0

h
m`2

2
i ||u||i;m`2,8s

(24)

ďK 1n´
m´1

2 .

Now, the last term in 23 is simply an average of a one step cubature approximation. Under
Assumption (1.1), g is regular enough to use the one-step cubature approximation result
in Proposition (2.7), hence

(25) |rQtn´1,tn ´ Ptn´1,tnsgpxq|8 ď Kh
m`1

2
n´1 ||g||m`2,8 “ Kn´

m`1
2 ||g||m`2,8.

The same result cannot be applied under Assumption (1.2) though, as g is not supposed
to be regular. However using the Lipschitz regularity of g, the bounded variation of the
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cubature formula and its rescaling, we get

|rQtn´1,tn ´ Ptn´1,tnsgpxq|8 ď|Qtn´1,tnrgspxq ´ gpxq|8 ` |Ptn´1,tnrgspxq ´ gpxq|8

ďK|g|Liph
1
2
n´1 “ K|g|Lipn

´
γ
2

(26)

The first claim is thus proven.

Explicit first expansion term (9)

In view of (25) (or (26) under Assumption 1.2), we just need to obtain an explicit
approximation of the first term in (23). We proceed in three steps: first, we identify it
as the sum of the residuals of one step approximations in (27). This term includes the
approximation operator Q, which would depend on the scheme. Then, in a second step,
we show that we can replace this operator by the operator P to the cost of a higher order
term in (28). Finally, we show that we can replace the sum by an integral also to the cost
of a higher order term in (31).

i. We start with the identification of the first order in the expansion. We use the extra
regularity assumptions to apply successively, Jensen’s inequality, properties of expec-
tation operators, the claim on symmetric cubatures of Proposition 2.7 and Lemma
2.8, to write

ˇ

ˇ

ˇ

ˇ

n´2
ÿ

i“0

Q0,titrQti,ti`1 ´ Pti,ti`1suup0, xq ´
n´2
ÿ

i“0

ÿ

βPAm`1zAm

Cβh
m`1

2
i Q0,tirV

βusp0, xq

ˇ

ˇ

ˇ

ˇ

(27)

ď

n´2
ÿ

i“0

Q0,ti

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tQti,ti`1 ´ Pti,ti`1uu´
ÿ

βPAm`1zAm

Cβh
m`1

2
i rV βus

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p0, xq

ď

n´2
ÿ

i“0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tQti,ti`1 ´ Pti,ti`1uu´
ÿ

βPAm`1zAm

Cβh
m`1

2
i rV βusp0, xq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď Km`3

n´2
ÿ

i“0

h
m`3

2
i ||u||i;m`3,8 `Km`4

n´2
ÿ

i“0

h
m`4

2
i ||u||i;m`4,8

ď Kn´
m`1

2 .

ii. Now, we analyse changing Q by P by showing the bound

(28)
ˇ

ˇ

ˇ

ˇ

n´2
ÿ

i“0

ÿ

βPAm`1zAm

Cβh
m`1

2
i

”

Q0,tirV
βusp0, xq ´ P0,tirV

βusp0, xq
ı

ˇ

ˇ

ˇ

ˇ

ď Kn´pm´1q.

To prove this, note that from the regularity of V βu, the definition of the seminorm
and the bounds in Proposition 2.6 we have

||V βupt, .q||m`1,8 “ ||V
βPt,T gp.q||m`1,8 ď K||Pt,T gp.q||m`1`||β||,8 “ K||upt, .q||m`1`||β||,8.
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Hence, using equation (24) and reordering, we have

ˇ

ˇ

ˇ

ˇ

n´2
ÿ

i“0

ÿ

βPAm`1zAm

Cβh
m`1

2
i

”

Q0,tirV
βusp0, xq ´ P0,tirV

βusp0, xq
ı

ˇ

ˇ

ˇ

ˇ

(29)

ď K
n´2
ÿ

i“0

h
m`1

2
i

ÿ

βPAm`1zAm

«

i´1
ÿ

j“0

h
m`1

2
j ||V βu||j;m`1,8 `

i´1
ÿ

j“0

h
m`2

2
j ||V βu||j;m`2,8

ff

ď K
n´2
ÿ

i“0

h
m`1

2
i

«

i´1
ÿ

j“0

h
m`1

2
j ||u||j;2m`2,8 `

i´1
ÿ

j“0

h
m`2

2
j ||u||j;2m`3,8

ff

ď K
n´2
ÿ

j“0

˜

n´2
ÿ

i“j`1

h
m`1

2
i

¸

h
m`1

2
j ||u||j,2m`2,8 `

n´2
ÿ

j“0

˜

n´2
ÿ

i“j`1

h
m`1

2
i

¸

h
m`2

2
j ||u||j,2m`3,8.

If Assumption 1.1 holds, we deduce (28) directly using the boundedness in Proposition
2.6. Under Assumption 1.2, we deduce from (70) in Lemma A.4

n´2
ÿ

j“0

˜

n´1
ÿ

i“j`1

h
m`1

2
i

¸

h
m`1

2
j ||uptj , .q||2m`2,8

(30)

ď K

ˆ

Tγ

n

˙
m´1

2
n´2
ÿ

j“0

˜

ż T

tj`1

ˆ

1´
t

T

˙
m´1

2
p1´ 1

γ
q

dt`Rpjq

¸

h
m`1

2
j pT ´ tjq

´ 2m`1
2

ď K

˜

T 1{γγ

n

¸
m´1

2 n´2
ÿ

j“0

˜

ż T

tj`1

pT ´ tq
m´1

2
p1´ 1

γ
q
dt

¸

h
m`1

2
j pT ´ tjq

´ 2m`1
2

`

n´1
ÿ

i“j`1

1

n
m´1

2

ˆ

K 1 1

nγp`´1q`1
`K2 1

n`
pT ´ tj`1q

γp`´1q´`

˙

h
m`1

2
j pT ´ tjq

´ 2m`1
2

ď K

˜

T 1{γγ

n

¸
m´1

2 n´2
ÿ

j“0

pT ´ tj`1q
´m´1

2
p1´ 1

γ
q`1

h
m`1

2
j pT ´ tjq

´ 2m`1
2 `Opn

mp``1q
2

´1q

ď Kn´pm´1q,

where the last two inequalities follow from (the proof of) Corollary A.3. A similar
development can be applied to the second term in the last line of (29), to deduce (28)
in this case.

iii. Finally, it remains to show that
ˇ

ˇ

ˇ

ˇ

n´
m´1

2 Ψlin
T p0, xq ´

n´2
ÿ

i“0

ÿ

βPAm`1zAm

Cβh
m`1

2
i P0,tirV

βusp0, xq

ˇ

ˇ

ˇ

ˇ

ď Kn´
m`1

2 .(31)

This last inequality is obtained from Lemma A.4 with ψptq “ CβV
βrPt,T gpX

0,x
t qs: the

control on |ψ| readily follows from Proposition 2.6. Moreover, since for each β P AM´2,
we have

BtErV
βupt,Xtqs “ ErL0V βupt,Xtqs “ E

«

V 0‹βupt,Xtq `

d
ÿ

i“1

V pi,iq‹βupt,Xtq

ff

,

it follows that ψ has well defined locally bounded first order derivatives in r0, T q, and
hence it is of bounded variation in r0, T ´ εs for all ε ą 0 as required.
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l

3. Study of the Backward Approximation

Our goal in this section is to study the error terms in the approximation of the backward
function, given by

∆ûipxq :“ ûipxq ´ upti, xq.

An inspection of the proof of Theorem 1.3 shows that we used the linearity properties
of the operators P and Q to decompose the global error in a sum of one-step errors.

We follow a similar idea to expand the error in the case of backward equations. However,
the non-linearity will change the type of decomposition in terms of one-step errors that
can be achieved, and will require some additional approximations. For this purpose, let
us define

ṽipxq “ EQ̂
„

upti`1, X̂
ti,x
ti`1
q
∆ω̂i
hi



,

and set
∆ṽipxq :“ v̂ipxq ´ ṽipxq “

1

hi
EQ̂

”

∆ûi`1pX̂
ti,x
ti`1
q∆ω̂i

ı

.

Then, we can re-write the decoupling function evaluated at the grid times as the solution
of a perturbed scheme, namely

upti, xq “ EQ̂
”

upti`1, X̂
ti,x
ti`1
q ` hifpx, upti, xq, ṽipxqq

ı

` ζipxq

with

ζipxq :“

ζei pxq
hkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkj

E
”

upti`1, X
ti,x
ti`1
q

ı

´ EQ̂
”

upti`1, X̂
ti,x
ti`1
q

ı

`hi

ζfi pxq
hkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkj

tfpx, upti, xq, v̆ipxqq ´ fpx, upti, xq, ṽipxqqu

` E
„
ż ti`1

ti

tfpXti,x
s , ups,Xti,x

s q, vps,Xti,x
s qq ´ fpx, upti, xq, v̆ipxqquds



looooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooon

ζτi pxq

and v̆ipxq “ E
”

∆Wi
hi

upti`1, X
ti,x
ti`1
q

ı

. That is, the perturbation is explained by contributions
due to the cubature approximation (term ζei ), due to the approximation of the v-term in
f (term ζfi ), and due to discretisation (term ζτi ).

3.1. One step analysis. In this section, we use the above decomposition to show that

(32) ζipxq “ ϕpti, xqh
2
i ` ξpti, xqh

3
i ,

where ϕ is given explicitly and ξ is a bounded measurable function. More precisely, we
show that

ϕpt, xq “ ϕept, xq ` ϕf pt, xq ` ϕτ pt, xq ,(33)

ξpt, xq “ ξept, xq ` ξf pt, xq ` ξτ pt, xq ,(34)

where each component plays a similar role for the corresponding perturbation term. Let
us recall the following regularity result valid under our set of assumptions.

Proposition 3.1 (Space regularity of u). Suppose either Assumption 1.1 or 1.2 hold. For
all 0 ă k ďM , and β P Ak, the function V βu is well-defined. Moreover,

‚ Under Assumption 1.1, there exists a constant C such that for all t ă T

||upt, .q||k,8 ď C||g||k,8.
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‚ Under Assumption 1.2, there exists a constant C such that for all t ă T

||upt, .q||k,8 ď C|g|LippT ´ tq
´ k´1

2 .

The proposition under Assumption 1.1 is proved by repeated application of the results
in [30] (in particular Theorem 3.2. and the BSDE representation for the derivative of u).
The proposition under Assumption 1.2 is proved in Theorem 1.4 [14].

We are now ready to show (32) and identify the terms in (33), (33).

Lemma 3.2. Let Q̂ be a cubature measure constructed from a symmetric cubature formula
of order m ě 3. Let i ď n´ 2. Under Assumptions 1.1 or 1.2 with M ě 7 we have that

i. E
”

upti`1, X
ti,x
ti`1
q

ı

´ EQ̂
”

upti`1, X̂
ti,x
ti`1
q

ı

“ ϕepti, xqh
2
i ` ξ

epti, xqh
3
i ,

ii. fpti, x, upti, xq, v̆ipxqq ´ fpti, x, upti, xq, ṽipxqq “ ϕf pti, xqhi ` ξ
f pti, xqh

2
i ,

iii. E
”

şti`1

ti
tfps,Xti,x

s , ups,Xti,x
s q, vps,Xti,x

s qq ´ fpti, x, upti, xq, v̆ipxqquds
ı

“ ϕτ pti, xqh
2
i `

ξτ pti, xqh
3
i ,

where ξe, ξf , ξτ are bounded measurable functions,

ϕepti, xq “ ´
ÿ

βPA4zA3

CβV
βupti, xq

ϕf pti, xq “
d
ÿ

j“1

Bzjf pti, x, upti, xq, v̆ipxqq

$

&

%

ÿ

βPA3zA2

¨

˝Cj‹β `

|β|
ÿ

k“1

Cβ1:k‹j‹βk`1:|β|0

˛

‚V βupti, xq

,

.

-

ϕτ pti, xq “
ÿ

βPA2zA1

˜

V β‹p0q `
1

2

d
ÿ

j“1

V β‹pj,jq

¸

upti, xq

`

d
ÿ

j“1

ÿ

βPA3zA2

Bzjfpti, x, upti, xq, vpti, xqq

¨

˝V j‹β `

|β|
ÿ

k“1

V β1:k‹j‹βk`1:|β|0

˛

‚upt, xq

vpt, xq :“
d
ÿ

k“1

V pkqupt, xq;

the constants tCβuβPAm are defined as in Proposition 2.7. Moreover, there exist constants
K,K 1,K6,K7 such that

|ξe|8 ď K6||u||i;6,8 `K7h
1{2
i ||u||i;7,8 ,

|ξf |8 ď K||u||i;5,8 ,

|ξτ |8 ď K 1p||u||i;5,8 ` ||u||i;6,8q.

Remark 3.3. Under Assumption 1.1, the claim also holds for i “ n ´ 1. Under As-
sumption 1.2, ii. and iii. still hold, while using Lipschitz continuity of g, we can replace i.
by

i’.
ˇ

ˇ

ˇ
E
”

upti`1, X
ti,x
ti`1
q

ı

´ EQ̂
”

upti`1, X̂
ti,x
ti`1
q

ıˇ

ˇ

ˇ
ď Kn´

γ
2 |g|Lip.

Remark 3.4. Note that, if M is large enough

(35) ||ϕpti, ¨q||l,8 ď K||u||i;l`4,8,

and

(36) ||ξpti, ¨q||l,8 ď K||u||i;l`6,8.

Proof of Lemma 3.2.
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i. The claim is a consequence of the cubature control in Proposition 2.7, and the regu-
larity of u stated in Proposition 3.1.

ii. The integration by parts properties of the Stratonovich integral imply that

∆W j
i J

β
ti,ti`1

“ J jti,ti`1
Jβti,ti`1

“ J j‹βti,ti`1
`

|β|
ÿ

k“1

J
β1:k‹j‹βk`1:|β|0
ti,ti`1

.

Hence, by definition of the symmetric cubature measure and using a Stratonovich
Taylor expansion as in the proof of Proposition 2.7, we have that

v̆ji pxq ´ ṽ
j
i pxq “E

«

∆W j
i

hi
upti`1, X

ti,x
ti`1
q

ff

´ EQ̂

«

∆ω̂ji
hi

upti`1, X̂
ti,x
ti`1
q

ff

(37)

“hi
ÿ

βPA3zA2

V βupti, xq

¨

˝Cj‹β `

|β|
ÿ

k“1

Cβ1:k‹j‹βk`1:|β|0

˛

‚`R

where

R “
ÿ

βPBAm

Er∆W j
i J

β
ti,ti`1

pV βup., Xti,x
. qqs ´ EQr∆ŵji I

β
ti,ti`1

pV βup., X̂ti,x
. qqs

and we can easily verify that |R| ď K6h
2
i ||u||i;5,8. Denoting

ᾰj,ki pxq “

ż 1

0
p1´ λqBzj ,zkfpti, x, upti, xq, v̆ipxq ` λpṽipxq ´ v̆ipxqqqdλ ,

we have

fpti, x,upti, xq, ṽipxqq ´ fpti, x, upti, xq, v̆ipxqq

“

d
ÿ

j“1

Bzjfpti, x, upti, xq, v̆ipxqqpṽ
j
i pxq ´ v̆

j
i pxqq `

d
ÿ

j“1

d
ÿ

k“1

ᾰj,ki pxqpṽ
k
i pxq ´ v̆

k
i pxqqpṽ

j
i pxq ´ v̆

j
i pxqq

and replacing (37) this leads to

fpx, upti, xq, ṽipxqq ´ fpx, upti, xq, v̆ipxqq

“ hi

d
ÿ

j“1

Bzjfpx, upti, xq, v̆ipxqq

$

&

%

ÿ

βPA3zA2

V βupti, xq

¨

˝Cj‹β `

|β|
ÿ

k“1

Cβ1:k‹j‹βk`1:|β|0

˛

‚

,

.

-

` ξf pti, xqh
2
i

where

|ξf |8 ď K6||u||i;5,8.

iii. To prove this claim, we rewrite fpt, x, upt, xq, vpt, xqq´ fpt, x, upt, xq, vipxq ” vpti, xqq,
and fpti, x, upti, xq, v̆ipxqq´fpt, x, upt, xq, vipxqq in terms of differential operators over
u and then effect the difference.

To do this, note that the regularity of u, implies that it solves classically the equation

fpt, x, upt, xq, vpt, xqq “ Lp0qupt, xq “

˜

V p0q `
1

2

d
ÿ

j“1

V pj,jq

¸

upt, xq.
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Hence, Fubini’s theorem implies

E
„
ż ti`1

ti

rf
`

s,Xti,x
s , ups,Xti,x

s q, vps,Xti,x
s

˘

´ f pti, x, upti, xq, vipxqqsds



“

ż ti`1

ti

E

«˜

V p0q `
1

2

d
ÿ

j“1

V pj,jq

¸

ups,Xti,x
s q ´

˜

V p0q `
1

2

d
ÿ

j“1

V pj,jq

¸

upti, xq

ff

ds

“ h2
i

ÿ

βPA2zA1

V β

˜

V p0q `
1

2

d
ÿ

j“1

V pj,jq

¸

upti, xq `Ripxqh
3
i .

where |Ri|8 ă K||u||6,8. Moreover,

vjpti, xq ´ v̆
j
i pxq “

#

V jupti, xq ´ E

«

∆W j
i

hi
upti, X

ti,x
ti`1q

ff+

“´ hi
ÿ

βPA3zA2

¨

˝V j‹β `

|β|
ÿ

k“1

V β1:k‹j‹βk`1:|β|0

˛

‚upt, xq `Rvi pxqh
2
i(38)

with
|Rvi |8 ď # pBA3 XA5q ¨ ||u||i;5,8.

with BA3 defined as in section 2.1.1.
Turning now to fpti, x, upti, xq, v̆ipxqq, we conclude by a similar argument as before

that

fpti, x, upti, xq, v̆ipxqq “fpti, x, upti, xq, vpti, xqq

` hi

d
ÿ

j“1

ÿ

βPA3zA2

Bzjfpti, xq

¨

˝V j‹β `

|β|
ÿ

k“1

V β1:k‹j‹βk`1:|β|0

˛

‚upt, xq

`R1ipxqh
2
i .

where we wrote Bzjfpti, xq to mean the quantity Bzjfpti, x, upti, xq, vpti, xqq, and with
|R1i|8 ă ||Bzjf ||8|R

v
i |8||u||i;5,8. The claim then follows. l

3.2. Error expansion. We now proceed to show the full error expansion under our set
of assumptions. Let us recall the following result on the rate of convergence of the scheme
(see [16] or [13]).

Lemma 3.5. Let Q̂ be a cubature measure constructed from a symmetric cubature formula
of order m ě 3. Under Assumptions 1.1 or 1.2 with M ě 6, (and γ ě 2 in the case of
Assumption 1.2), we have

|∆ûi|8 ď K

˜

|∆ûn´1|8 `

n´2
ÿ

j“i

||uptj , .q||4,8h
2
j ` ||uptj , .q||6,8h

3
j

¸

ď K 1n´1.

Moreover,

|∆ûi|
2
8`

n´1
ÿ

j“i

hj |∆ṽj |
2
8 ď K

˜

|∆ûn´1|
2
8 `

n´1
ÿ

j“i

||uptj , .q||4,8h
2
j ` ||uptj , .q||6,8h

3
j

¸2

ď K 1n´2.
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3.2.1. One-step expansion. We first prove the following key one-step expansion.

Lemma 3.6. Under the assumptions of Lemma 3.2, we have that

∆ûipxq “EQ̂
”

Λ̂xi,i`1∆ûi`1pX̂
ti,x
ti`1
q

ı

´ ehiη
ypti,xqϕpti, xqh

2
i ´ e

hiη
ypti,xqξpti, xqh

3
i(39)

´ ehiη
ypti,xqRexp

i pxq∆ûipxq ` hie
hiη

ypti,xqRu,ṽi pxq ,

where

ηypti, xq :“ Byfpti, x, upti, xq, ṽipxqq , ηzpti, xq :“ Bzfpti, x, upti, xq, ṽipxqq ,

Λ̂xi,j :“

j´1
ź

k“i

„

e
hkη

yptk,X̂
ti,x
tk

q
p1` ηzptk, X̂

ti,x
tk
q∆ω̂kq



, for j ą i ,(40)

and Λ̂xi,i :“ 1. Moreover, for some constants Cz, Cexp, Cu, C ṽ

|Rzi |8 ď Cz|∆ûi`1|8h
2
i , |Rexp

i |8 ď Cexph2
i ,

and |Ru,ṽi |8 ď Cu|∆ûi|
2
8 ` C

ṽ|∆ṽi|
2
8.

Proof. Since the exact solution satisfies a perturbed version of the scheme, we have

∆ûipxq “EQ̂
”

ûipX̂
ti,x
ti`1
q ´ upti`1, X̂

ti,x
ti`1
q

ı

´ ϕpti, xqh
2
i ´ ξpti, xqh

3
i

` hi rfpti, x, ûipxq, v̂ipxqq ´ fpti, x, upti, xq, ṽipxqqs .

We compute, using the mean value theorem,

fpti, x, ûipxq,v̂ipxqq ´ fpti, x, upti, xq, ṽipxqq “ ηypti, xq∆ûpti, xq ` η
zpti, xq∆ṽipxq `R

u,ṽ
i pxq

where

Ru,ṽi pxq “αyzi ∆uipxq∆ṽipxq `
1

2
αyyi |∆ûipxq|

2 `
1

2
αzzi |∆ṽipxq|

2

ďCu|∆ûipxq|
2 ` C ṽ|∆ṽipxq|

2

for some αyzi , α
xy
i , α

zz
i with norm bounded by sup

|β|1ď2
|Dβf |.

This leads to

∆ûipxq p1´ hiη
ypti, xqq “ EQ̂

”

∆ûipX̂
ti,x
ti`1
q p1`∆ω̂iη

zpti, xqq
ı

´ ϕpti, xqh
2
i(41)

´ ξpti, xqh
3
i ` hiR

u,ṽ
i pxq .

On the other hand, notice that for hi small enough,

1

1´ hiηypti, xq
“ ehiη

ypti,xq `Rexp
i pxq(42)

where

|Rexp
i |8 ď Kh2

i |Byf |8 ď Cexph2
i .

The claim follows by inserting (42) and the definition of Λ̂xi,i`1 in (41). l
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3.2.2. Global Expansion.

Lemma 3.7.

ˇ

ˇ

ˇ

ˇ

ˇ

∆ûipxq ´∆ûn´1pxq `
n´2
ÿ

j“i

h2
jQti,tj

”

Λ̂xi,je
hjη

yptj ,.qϕptj , .q
ı

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Kn´2 ,

where Λ̂x is defined in (40).

Proof. Let us start by finding some controls on the elements of the sum in the statement.
By independence of increments, assuming i` 2 ď j ď n´ 2 we compute

E

«

j´1
ź

k“i

´

1` ηzptk, X̂
ti,x
tk
q∆ω̂k

¯2
ff

ď E

«

j´2
ź

k“i

´

1` ηzptk, X̂
ti,x
tk
q∆ω̂k

¯2
ff

p1` |ηzptj´1, ¨q|
2
8hj´1q,

so that a straightforward induction implies, for i ď j ď n´ 2

E

«

j´1
ź

k“i

´

1` ηzptk, X̂
ti,x
tk
q∆ω̂k

¯2
ff

ď expp

j´1
ÿ

k“i

|ηzptk, ¨q|
2
8hkq .

Hence, by the Cauchy-Schwarz theorem

EQ̂
”

|Λ̂xi,j |
ı

ď exp

ˆ

|ηy|8T `
1

2
|ηz|28T

˙

ă 8.

Now, the flow property of the cubature approximation, i.e.

EQ

«

ψ

˜

X̂
tj ,X̂

ti,x
tj

tk

¸ff

“ EQ
”

ψpX̂ti,x
tk
q

ı

for any measurable function ψ, implies that we get, by iterating over i the result in Lemma
3.6, that

∆ûipxq ´∆ûn´1pxq “ ´EQ

«

n´2
ÿ

j“i

Λ̂xi,j

ˆ

e
hjη

yptj ,X̂
ti,x
tj

q
ϕptj , X̂

ti,x
tj
qh2
j

˙

ff

` EQ

«

n´2
ÿ

j“i

Λ̂xi,je
hjη

yptj ,X̂
ti,x
tj

q
´

Rzj pX̂
ti,x
tj
q ´ ξptj , X̂

ti,x
tj
qh3
j

¯

ff

` EQ

«

n´2
ÿ

j“i

Λ̂xi,je
hjη

yptj ,X̂
ti,x
tj

q
´

hjR
u,ṽ
j pX̂ti,x

tj
q ´Rexp

j pX̂ti,x
tj
q∆ûi

¯

ff

.
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Hence,
ˇ

ˇ

ˇ

ˇ

ˇ

∆ûipxq ´∆ûn´1pxq `
n´2
ÿ

j“i

h2
jQti,tj

”

Λ̂xi,je
hjη

yptj ,.qϕptj , .q
ı

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď EQ

«

n´2
ÿ

j“i

Λ̂xi,je
hjη

yptj ,X̂
ti,x
tj

q `

||u||j;6,8h
3
j ` C

exph2
j |∆ûj |

˘

ff

` EQ

«

n´2
ÿ

j“i

Λ̂xi,je
hjη

yptj ,X̂
ti,x
tj

q `

hjpC
u|∆ûj |

2
8 ` C

ṽ|∆ṽj |
2
8q

˘

ff

ď

n´2
ÿ

j“i

C 1||u||j;6,8h
3
j `

n´2
ÿ

j“i

Cexp
2 h2

jn
´1

`

n´2
ÿ

j“i

h2
jC

u
2n
´2 `

n´2
ÿ

j“i

hjC
ṽ
2 |∆ṽj |

2
8q

ď Kn´2

where we have used, the controls in Lemma 3.6 and the rate of convergence results in

Lemma 3.5 for the first inequality, controls on the expectation of Λ̂xi,je
hjη

yptj ,X̂
ti,x
tj

q on the
second inequality and Lemma 3.5 and Corollary A.3 for the last inequality.

l

Although in Lemma 3.7 we have identified (up to the last step) an explicit coefficient
for the main error term, it still depends on the actual approximation algorithm. In order
to have a more tractable expression, let us re-express the result of Lemma 3.7 in terms of
a family of linear operators forming a semigroup. Let us introduce

(43) Θ̂ti,tjψpxq :“ Qti,tj

”

Λ̂xi,jψp.q
ı

pxq; ti ď tj .

where Λ̂xi,j is defined in (40).
Indeed, for any i, j, k P t0, . . . , nu with i ď j ď k we can verify the associativity property

Θ̂ti,tj

”

Θ̂tj ,tkψp.q
ı

pxq “ Qti,tj

”

Λ̂xi,jQtj ,tk

”

Λ̂xj,kψp.q
ıı

pxq “ Qti,tk

”

Λ̂xi,kψp.q
ı

pxq “ Θ̂ti,tkψpxq

and its linearity.
We show in the following that this operator can be seen as an approximation of

(44) Θti,tjψpxq :“ Pti,tj

”

Λxti,tjψp.q
ı

pxq,

where, for r ď t,

Λxr,t “ exp

„
ż t

r
ηzps,Xr,x

s qdWs `

ż t

r
ηyps,Xr,x

s q ´
1

2
|ηzps,Xr,x

s q|2ds



,

(45)

“ exp

«

ż t

r
ηzps,Xr,x

s q ˝ dWs ´
1

2

ż t

r

˜

2ηyps,Xr,x
s q ` |ηzps,Xr,x

s q|2 `

n
ÿ

a“1

V paqηzaps,X
r,x
s q

¸

ds

ff

,

where ηy and ηz are defined in (40). Clearly, the family pψ ÞÑ Λxr,tψqr,t also forms a linear
semigroup of operators.

Lemma 3.8. Assume thatm ě 3, that the cubature measure is symmetric and that ψ P C̄5
b .

Then,
|Θtk,tk`1

ψpxq ´ Θ̂tk,tk`1
ψpxq| ď h2

k||ψ||4,8 ` h
5{2
k ||ψ||5,8.
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Proof.
We look for an Itô-Taylor expansion for the two terms. From the definition of Θ in 44

and Θ̂ in (43), we see that we need to consider the joint dynamics of X, Λ and Λ̂. Consider
the system

d

»

–

Xtk,x
t

%tk,xt

χtk,xt

fi

fl “

»

—

—

–

b̄pt,Xtk,x
t q

´1
2%
tk,x
t

´

|ηzpt,Xtk,x
t q|2 `

řd
a“1 V

paqηzapt,X
tk,x
t q

¯

χtk,xt

´

ηypt,Xtk,x
t q ´ ηyptk, xq

¯

fi

ffi

ffi

fl

dt`

»

–

σpt,Xtk,x
t q

%tk,xt ηzpt,Xtk,x
t q

0

fi

fl˝dWt

with initial condition pXtk,x
tk

, %tk,xtk
, χtk,xtk

qJ “ px, 1, ehkη
yptk,xqqJ. Note in particular that

Λxtk,t “ %tk,xt χtk,xt , while Λ̂xtk,t “ χtk,xt p1` ηzptk, X̂
ti,x
tk
q∆ω̂kq.

Let us denote by Ṽ β the iterated differential operators associated to this system, so
that we have for any sufficiently regular φ : r0, T s ˆ Rd ˆ Rˆ RÑ R,

Ṽ paqφpt, y, ρ, χq “V paqφpt, y, ρ, χq ` ρηzapt, yqBρφpt, y, ρ, χq, for a P t1, . . . , du ;

Ṽ p0qφpt, y, ρ, χq “V p0qφpt, y, ρ, χq ´
1

2
ρ

˜

|ηzpt, yq|2 `
n
ÿ

a“1

V paqηzapt, yq

¸

Bρφpt, y, ρ, χq

` χ pηypt, yq ´ ηyptk, xqq Bχφpt, y, ρ, χq;

Ṽ pa1,a2qφpt, y, ρ, χq “V pa1,a2qφpt, y, ρ, χq ` ρV pa1qrηza2spt, yqBρφpt, y, ρ, χq

` ρηza2pt, yqV
pa1qrBρφspt, y, ρ, χq ` ρη

z
a1pt, yqV

pa2qrBρφspt, y, ρ, χq

` ρηza1pt, yqη
z
a2pt, yqBρφpt, y, ρ, χq ` ρ

2ηza1pt, yqη
z
a2pt, yqB

2
ρ2φpt, y, ρ, χq,

for a1, a2 P t1, . . . , du. Thus, from a Taylor-Stratonovich expansion of order 3 on the
function φpt, y, ρ, χq “ ρχψpyq, and after some calculations we obtain

Θtk,tk`1
ψpxq “ Er%tk,xtk`1

χtk,xtk`1
ψptk`1, X

tk,x
tk`1

qs

“
ÿ

βPA3

pEJβtk,tk`1
qṼ βφptk, x, e

ηyptk,xq, 1q `
ÿ

βPBA3

EJβtk,tk`1
pṼ βφp., Xtk,x

. , %tk,x. , χtk,x. qq

“eη
yptk,xqhkψptk, xq ` hke

ηyptk,xqhk rpV p0q `
1

2

d
ÿ

a“1

V pa,aq ` ηzaV
paq qψs ptk, xq

`
1

2
hk

d
ÿ

a“1

eη
yptk,xqhkpψV arηzasqptk, xq `

ÿ

βPBÃ3

E
´

Jβtk,tk`1

”

Ṽ βφ
ı¯

.

Similarly, we can define φ̂1pt, y, ρ, χq “ χψpt, xq, φ̂a2pt, y, ρ, χq “ χηzapt, xqψpt, xq for |i “
1, . . . , d and repeat the development on φ̂ :“ φ̂1pt, y, ρ, χq `

řd
a“1 φ

a
2pt, y, ρ, χq∆ŵa. We
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get

Θ̂tk,tk`1
ψpxq “ EQ̂rp1` ηzpt, xq∆ω̂kqe

ηyptk,xqhkψptk, X̂
tk,x
tk`1

qs

“eη
yptk,xqhkψptk, xq ` hke

ηyptk,xqhk rpV p0q `
1

2

d
ÿ

a“1

V pa,aq ` ηzaV
paq qψs ptk, xq

`
1

2
hk

d
ÿ

a“1

eη
yptk,xqhkpψV arηzasqptk, xq `

ÿ

βPBÃ3

EQ̂
´

Iβtk,tk`1

”

Ṽ βφ̂1

ı¯

d
ÿ

a“1

ÿ

βPBÃ3

EQ̂

¨

˝Ia‹βtk,tk`1

”

Ṽ a‹βφ̂2

ı

`

|β|0
ÿ

ι“1

I
β1:ι‹a‹βι`1:|β|0
tk,tk`1

”

Ṽ βφ̂2

ı

˛

‚.

Note that all terms match except for the residuals, which we can control as Proposition
(??). l

Proposition 3.9. Suppose that M ě 9. For every i ă j P t1, . . . , nu, assume that
γ ě m ě 3 and that the cubature measure is symmetric. Then, for ϕ defined in (33),

ˇ

ˇ

ˇ

ˇ

ˇ

n´2
ÿ

j“i

h2
j

!

Θti,tj rϕptj , .qs pxq ´ Θ̂ti,tj rϕptj , .qs pxq
)

ˇ

ˇ

ˇ

ˇ

ˇ

ď Kn´2.

Proof.
Let us write for convenience

νptk, x; tjq “ Θtk,tj rϕptj , .qs pxq.

We first show that,

(46) |V βνptk, x; tjq| ď K||ϕptk, .q||β,8 ď K 1||uptk, .q||β`4,8.

Recall that ϕptk, .q is, essentially, a sum of derivatives of uptk, .q multiplying bounded func-
tions. Hence, broadly speaking, the first inequality tells us that the operator regularizes
as if we could “extract derivatives from the operator”. The second inequality is a direct
consequence of the explicit expressions for ϕ in Lemma 3.2 and the regularity properties
of f, b, σ.

It is then sufficient to prove the first inequality in (46). Since

νptk, x; tjq “ E
„

e
ştj
tk
ηzps,X

tk,x
s qdWs`

ştj
tk
tηyps,X

tk,x
s q´ 1

2
|ηzps,X

tk,x
s q|2uds

ϕptj , X
tk,x
tj
q



“ EP˚
„

e
ştj
tk
ηyps,X

tk,x
s qds

ϕptj , X
tk,x
tj
q ,



for an appropriately defined P˚. Given our assumptions, Girsanov’s theorem implies that
the diffusion Xtk,x solves the SDE

Xtk,x
t “ x`

ż t

tk

!

bps,Xtk,x
s q ` σps,Xtk,x

s qηzps,Xtk,x
t qJ

)

ds`

ż t

tk

σps,Xtk,x
s qdW ˚

s ,

for a P˚ Brownian motionW ˚, which also satisfies the structural conditions in Assumption
1.1 (resp. 1.2).

Now, note that because ηy P CN´2
b , we can show that e

ştj
tk
ηyps,X

tk,x
s qds is a Kusuoka-

Stroock function as defined in Definition 22 in [18]. This means that the Malliavin in-
tegration by parts results hold up to multiplying by another Kusuoka-Stroock functions
(Section 2.6 in [18]). We can then adapt the arguments in Corollary 32 in [18] to deduce
the first inequality in (46).
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Using a telescopic sum, Lemma 3.8 and using (46), we conclude
ˇ

ˇ

ˇ

ˇ

ˇ

n´2
ÿ

j“i

h2
j

!

Θti,tj rϕptj , .qs pxq ´ Θ̂ti,tj rϕptj , .qs pxq
)

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n´2
ÿ

j“i

h2
j

j´1
ÿ

k“i

Θ̂ti,tk

!

rΘ̂tk,tk`1
´Θtk,tk`1

sνptk`1, .; tjq
)

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

n´2
ÿ

j“i

h2
j

j´1
ÿ

k“i

ˇ

ˇ

ˇ
rΘ̂tk,tk`1

´Θtk,tk`1
sνptk`1, .; tjq

ˇ

ˇ

ˇ

L8

ď K
n´2
ÿ

j“i

h2
j

˜

j´1
ÿ

k“i

h2
k||νptk`1, .; tjq||4,8 ` h

5{2
k ||νptk`1, .; tjq||5,8

¸

ď K
n´2
ÿ

j“i

h2
j

˜

j´1
ÿ

k“i

h2
k||uptk`1, .q||8,8 ` h

5{2
k ||uptk`1, .q||9,8

¸

ď K
γ

n

n´2
ÿ

j“i

h2
j

´

pT ´ tjq
´3{2p1´1{γq

¯

ď Kn´2,

where we used Lemma A.2 to get the last inequality. l

Before proceeding with the proof of the main expansion result, let us give the shape of
the leading coefficient appearing in the statement of the theorem.

Definition 3.10. i. If Assumptions 1.1 holds and a uniform discretization is used,

Ψnl
T p0, xq “ T

ż T

0
E
“

Λx0,tϕpt,Xtq
‰

dt ;

ii. If Assumptions 1.1 holds and a decreasing step discretization with γ ą m` 1 is used,

Ψnl
T p0, xq “ T 1{γγ

ż T

0
E
”

Λx0,tϕpt,Xtq pT ´ tq
γ´1
γ

ı

dt ;

where Λx0,t is defined in (45).

Proof of Theorem 1.4.
From Lemma 3.7, Proposition 3.9 and equation (44) we get

ˇ

ˇ

ˇ

ˇ

ˇ

∆ûipxq `
n´2
ÿ

j“i

h2
jPti,tj

”

Λxti,tjϕptj , .q
ı

pxq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Kn´2 ` |∆ûn´1|8 ď K 1n´2 , ,

where we have used the control on the last step highlighted in Remark 3.3.
To conclude our claim, we invoke Lemma A.4 with ψptq “ E

“

Λx0,tϕpt,Xtq
‰

. Indeed, the
control on |ψ| readily follows from (35) and the expression for Λ0,t. Similarly, using the
chain rule and the equality

BtErV βupt,Xtqs “ E

«

V 0‹βupt,Xtq `

d
ÿ

i“1

V pi,iq‹βupt,Xtq

ff

,

we conclude that ψ has well defined locally bounded first order derivatives in r0, T q, and
hence it is of bounded variation in r0, T ´ εs for all ε ą 0. l
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4. Complexity reduction

In this section, we aim to control the complexity growth on both the number of steps
n and the dimension of the problem.

4.1. Interpolation operators and numerical schemes. Let A “
śd
`“1ra

`, b`s be a
hypercube in Rd. Let E “ C0pAq be the set of real valued continuous functions on A. We
let XpAq be a set of interpolation points in A. In this section, we consider interpolation
operators PA : E Ñ E that will be combined with the cubature scheme. To be useful in
practice, these operators must satisfy some stability and approximation properties that
we explicit now. To this end, we introduce two vector subspaces of E, namely Ra (used
to state the approximation property) with norm ~.~ and Rs (used to state the stability
property). We say that pPA,Ra,Rsq is compatible if the following conditions are satisfied:

(1) Ra Ă Rs and PApRsq Ă Rs (we can thus restrict PA to Rs).
(2) There exists two bounded functions pηA, εAq : N` Ñ R` ˆ R` such that

|PAψ|8 ď eηAp7XpAqq|ψ|8 for ψ P Rs(47)

|pI ´PAqψ|8 ď εAp7XpAqq~ψ~ for ψ P Ra(48)

We now describe the backward scheme that will be used in practice. To simplify the
presentation, we will assume that one is interested only in approximating the value function
at time 0 at a given point x0 P Rd and we thus set A0 :“ tx0u. As the terminal condition
is known, no approximation is needed at the last step n, we can thus set An “ Rd and
Pn “ I, where I is the identity operator on C0pRdq. For step i P t1, . . . , n´1u, we consider
a sequence of hypercubes pAiq and denote the associated projection operator Pi :“ PAi .
The sequence of hypercubes satisfies, for 1 ď i ď n,

ď

xPXpAiq
supppX̂ti,x

ti`1
q Ă Ai`1, 0 ď i ď n´ 1 .

Remark 4.1. (1) Observe that to compute the interpolation operator PAi , we only
need to know values on XpAiq, thus the sequence pAiq will generally be given as

Ai`1 :“

¨

˝

ď

xPXpAiq
supppX̂ti,x

ti`1
q

˛

‚

�

, 0 ď i ď n´ 1,(49)

where pHq� is the minimal hypercube that contains H, i.e.

pHq� :“
č

#

A : H Ă A,A “
d
ź

i“1

rai, bis for a, b P Rd
+

.

With these notations, we can finally introduce the projected-cubature backward approxi-
mation. For all x P Ai, define

ūipxq “ Pirǔispxq with ǔipxq “ EQ̂
”

ūi`1

´

X̂ti,x
ti`1

¯ı

` hifpx, ǔipxq, v̌ipxqq ,(50)

v̌ipxq “ EQ̂
„

ūi`1

´

X̂ti,x
ti`1

¯ ∆ŵi
hi



,(51)

The terminal condition is set to pūn, v̄nq “ pg, 0q.

Thanks to the interpolation operator, to obtain the value of the approximation at time
0, namely ǔ0px0q, we only need in practice to compute the above scheme for x P XpAiq,
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1 ď i ď n´ 1: This is the main source of complexity for our algorithm. Let

D :“
ď

1ďiďn´1

ttiu ˆ XpAiq(52)

we shall thus measure below the complexity of our methods in terms of 7D the cardinal of
D. However, let us insist on the fact that, our approximation is then defined and available,
without loss of precision, on the bigger space

Ťn´1
i“0 ttiu ˆAi.

The complexity is obtained through a careful analysis of the scheme convergence and
will be computed below for an example of linear interpolation operators. We conclude
this section with a key proposition stated in this abstract setting and which compares the
projected-cubature backward approximation with the cubature scheme .

Proposition 4.2. Assume that the pPiq satisfy (47)-(48) with functions pηi, εiq, denote
Ni “ XpAiq, then the following holds

max
0ďiďn

|ûi ´ ūi|8 ď Ce
řn´1
i“0 ηipNiq

n´1
ÿ

i“0

εipNiq~ûi~ ,(53)

where, by a slight abuse of notation, | ¨ |8 denotes the sup-norm on C0pAiq, which reduces
simply, for i “ 0, to |û0px0q ´ ū0px0q|.

Proof. 1. We compare pû, v̂q with pū, v̄q, which combines studying the stability of scheme
of type (50)-(51) and some truncation error given by

εi :“ pI´Piqûi .

recall the definition of pûi, v̂iq0ďiďn in Section 1.3. Observe that

|ûi ´ ūi|8 ď |pI´Piqûi|8 ` |Piûi ´ ūi|8

Now recalling that ūi “ Piǔi and using (47)-(48), we obtain

|ûi ´ ūi|8 ď εipNiq~ûi~ ` e
ηpNiq|ûi ´ ǔi|8 .(54)

The second term in the right hand side of the previous inequality is upper bounded as
follows,

|ûi ´ ǔi|8 ď eChi |ûi`1 ´ ūi`1|8 .(55)

This control is well known and has been obtained several times in slightly different con-
texts. For sake of completeness, we shall give a short proof below. Now, inserting back
the previous inequality in (54) and iterating on i, we obtain (53).
2. We now prove (55). Let us denote ∆ūi “ ûi ´ ūi, ∆ǔi “ ûi ´ ǔi , ∆v̌i “ v̂i ´ v̌i and
δfipxq “ fpx, ûipxq, v̂ipxqq ´ fpx, ǔipxq, v̌ipxqq. We then have

∆ǔipxq “ ∆ūi`1

´

X̂ti,x
ti`1

¯

` hiδfipxq ´∆v̌ipxq∆ωi ´∆Mipxq

where ∆Mipxq satisfies

EQ̂r∆Mipxqs “ EQ̂r∆Mipxq∆ωis “ 0 .

Using the equality |a|2 “ |b|2`2bpa´bq`|a´b|2 with b “ ∆ǔipxq and a “ ∆ūi`1

´

X̂ti,x
ti`1

¯

,
we obtain,

|∆ǔipxq|
2 “ EQ̂

”

|∆ūi`1

´

X̂ti,x
ti`1

¯

|2 ` 2hi∆ǔipxqδfipxq ´ |∆ūi`1

´

X̂ti,x
ti`1

¯

´∆ǔipxq|
2
ı

(56)

Since

∆v̌ipxq “ EQ̂
„

!

∆ūi`1

´

X̂ti,x
ti`1

¯

´∆ǔipxq
) ∆ŵi

hi
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we obtain using Cauchy-Schwarz inequality,

´EQ̂
”

|∆ūi`1

´

X̂ti,x
ti`1

¯

´∆ǔipxq|
2
ı

ď ´hi|∆v̌ipxq|
2 .

Letting L be the Lipschitz constant of f and using Young’s inequality, we also get

2|∆ǔipxqδfipxq| ď pα` 2Lq|∆ǔipxq|
2 `

L2

α
|∆v̌ipxq|

2 .

for some α ą 0 that will be set later on. Combining the two previous inequalities with
(56), we compute

|∆ǔipxq|
2t1´ p1` α` 2Lqhiu ď EQ̂

”

|∆ūi`1

´

X̂ti,x
ti`1

¯

|2
ı

` hip
L2

α
´ 1q|∆v̌ipxq|

2.

Setting α large enough, we obtain, for h small enough,

|∆ǔipxq|
2 ď eChi

´

EQ̂
”

|∆ūi`1

´

X̂ti,x
ti`1

¯

|2
ı¯

for some C ą 0 that does not depend on h. Taking the supremum on first the right hand
side and then on the left hand side, concludes the proof of (55). l

4.2. Example of multi-linear interpolation. In this Section, we give an explicit speci-
fication of the projection operator and we study the complexity of two fully implementable
methods: namely the basic Euler scheme and a second order method obtained through a
Richardson-Romberg extrapolation. In order to simplify the presentation of the results,
we use a uniform grid and we strengthen the assumption on the diffusion parameters. We
work then assuming that there exists Λ ą 0 such that

1

Λ
|x|2 ď x:σσ:x ď Λ|x|2; for all x P Rd.(57)

The sequence multilinear interpolation operator for pPiq is defined as follows. Recall
that A “

śd
`“1ra`, b`s is a hypercube in Rd. We denote |A| :“ max` |b` ´ a`|. Given a

multi-index l P pN˚qd we define a vector of grid sizes

δlpAq :“ pδl1 , . . . , δldq; where δl` “
b` ´ a`
l`

for ` “ 1, . . . d.

This set of distances defines a grid XpAq with nodes denoted by

x̌l,jpAq :“ pa1 ` j1δl1 , . . . , ad ` jdδldq, for 0 ď j ď l.

We denote x̌`l`,j` :“ a` ` j`δl` , 1 ď ` ď d, and observe that x̌l,jpAq “ px̌`l`,j`q1ď`ďd. By
setting

φpxq :“

#

1´ |x| if x P r´1, 1s

0 otherwise
,

we can define an associated set of nodal basis functions given by

(58) φl,jpx;Aq :“
d
ź

`“1

φ

˜

x` ´ x̌
`
l`,j`

δl`

¸

.

In practice, we use a grid with the same number of points in each direction.

Ni :“ 7XpAiq “ ldi .(59)

and the interpolation operator is given by

Piϕp¨q “
ÿ

0ďjďl

ϕpx̌li,jpAiqqφli,jp¨, Aiq , for all ϕ P C0pAiq .(60)

It remains to precise how the Ai are chosen: The hypercube pAiq are defined in a “minimal”
way according to Remark 4.1.
For this sequence of linear interpolation operator, pPi,Ra,Rsq is compatible in the sense
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(47)-(48) with Ra “ C2pAiq and Rs “ C0pAiq. The functions pε, ηq are also well known,
see e.g. [6] and we recall them in the following Lemma.

Lemma 4.3. For Pi, the multi-linear operator defined above, the following holds
i) For all i, ηi ” 0.
ii) Set Ni :“ 7XpAiq, for all ϕ P C2pAiq

|pI´Piqϕ|8 ď εipNiq}ϕ}2,8 with εipNq :“ c
|Ai|

2

N
2
d

,

for some c ą 0 which does not depend on |Ai| nor ϕ.

Lemma 4.4. Assume that Assumption 1.1 is in force with M ě 3, then the following
property holds for the backward scheme of Section 1.3:

sup
i
}ûi}2,8 ď C .

Proof. The claim follows directly from differentiation under the conditional expectation
and the boundedness of f, g and their derivatives. �

For the sake of clarity, we will from now on indicate in superscript the number of time
steps of the scheme under consideration. This will prove useful as we will introduce an
extrapolation method.

The following results demonstrate the usefulness of the expansion result of Theorem
1.4 when combined with the multi-linear interpolation procedure to reduce the complexity
of the cubature method. Moreover, to profit from the error expansion, we introduce a
Richardson-Romberg extrapolation and define:

u
n
0 px0q :“ 2u2n

0 px0q ´ u
n
0 px0q , n ě 1.(61)

We then have the following results

Theorem 4.5. Let ε ą 0 be a given precision. Then, the following holds

(1) Order one method: setting n „ 1
ε and Ni „ n

d
2 id, for i ď n´ 1, we have that the

complexity C :“ 7D satisfies

Cpεq “ Opε´
3d`1

2 q for |up0, x0q ´ ū
n
0 px0q| “ Opεq .(62)

(2) Order two method: setting n „ 1?
ε
and Ni „ ndid, for i ď n´ 1, we have that the

complexity C :“ 7D satisfies

Cpεq “ Opε´
2d`1

2 q for |up0, x0q ´ u
n
0 px0q| “ Opεq .(63)

Proof. 1. Order 1 method: We first identify the convergence property thanks to the
previous sections

|up0, x0q ´ ū
n
0 px0q| ď |up0, x0q ´ û

n
0 px0q| `max

i
|ûni ´ ū

n
i |8 .(64)

Combining Proposition 4.2 with Lemma 4.3 and Lemma 4.4, we get

max
i
|ûni ´ ǔ

n
i |8 ď C

n´1
ÿ

i“1

¨

˝

|Ai|

N
1
d
i

˛

‚

2

The uniform-ellipticity assumption on the diffusion coefficients (57), and matrix norm
equivalence implies that there exist two constants, λ´, λ` such that

λ´

i
ÿ

k“0

h
1{2
k ď |Ai| ď λ`

i
ÿ

k“0

h
1{2
k .
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For the regular time grid we thus get

max
i
|ûni ´ ǔ

n
i |8 ď

C

n

n´1
ÿ

i“1

˜

i

pNn
i q

1
d

¸2

Combining (64) with Theorem 1.4 and the previous inequality yields

|up0, x0q ´ ū
n
0 px0q| ď

C

n

¨

˝1`
n´1
ÿ

i“1

˜

i

pNn
i q

1
d

¸2
˛

‚

Setting Ni “ n
d
2 id, we compute |up0, x0q´ ū

n
0 px0q| ď

C
n and the overall complexity is given

D “
n´1
ÿ

i“1

Nn
i “ Opn

3d`1
2 q.

To reach a precision ε, we thus obtain C pεq “ Opε´
3d`1

2 q.
2. Order 2 method: We first observe that

|up0, x0q ´ u
n
0 px0q| ď|up0, x0q ´

`

2û2n
0 px0q ´ û

n
0 px0q

˘

|(65)

` 2|û2n
0 px0q ´ ū

2n
0 px0q| ` |û

n
0 px0q ´ ū

n
0 px0q|(66)

Let N2n
i “ 7A2n

i (resp. Nn
i “ 7A

n
i ) for i ď 2n´1 (resp. i ď n´1 ) be the number of points

in each grid at each time-step ti for the method with 2n time-steps (resp. n time-steps).
Following the computation of the previous step, we obtain

2|û2n
0 px0q ´ ū

2n
0 px0q| ` |û

n
0 px0q ´ ū

n
0 px0q| ď C

¨

˝

2n´1
ÿ

i“1

˜

i

pN2n
i q

1
d

¸2

`

n´1
ÿ

i“1

˜

i

pNn
i q

1
d

¸2
˛

‚ .

Now, setting Nn
i „ N2n

i „ pniqd, we compute

2|û2n
0 px0q ´ ū

2n
0 px0q| ` |û

n
0 px0q ´ ū

n
0 px0q| ď

C

n2
.

Combining the previous inequality with (65) and the order two expansion of Theorem 1.4,
we get

|up0, x0q ´ u
n
0 px0q| ď

C

n2
.(67)

We now observe that the overall complexity is given

D “
n´1
ÿ

i“1

Nn
i `

2n´1
ÿ

i“1

N2n
i “ Opn2d`1q.

Of course, the gain comes from the precision that is obtained and setting ε „ 1
n2 , we finally

compute that

Cpεq “ Opε´d´
1
2 q

l
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4.3. Numerical illustration. We test numerically the efficiency of our approximation
scheme and, in particular, the gain in complexity coming from the Romberg-Richardson
method. We consider the following system:

‚ Forward equation: X “W , a d-dimensional Brownian Motion.
‚ Backward equation:

Yt “ gpW1q `

ż 1

t
fpYs, Zsqds´

ż 1

t
ZsdWs

with f : Rˆ Rd Ñ R given by

fpy, zq “

ˆ

y ´
2` d

2d

˙ d
ÿ

`“1

z`

and

gpxq “
kp1, xq

1` kp1, xq
, with kpt, xq “ exp

˜

t`
d
ÿ

`“1

x`

¸

.

We use a cubature formula in dimension d of order m “ 3. It is defined, for j “ 1, . . . , 2d
by pj “ p2dq´1 and ωj “ p´1qjerj{2s, where ei is the ith canonical basis element (see [23]).
The previous system can be solved analytically. In particular, we get

Y0 “
kp0,0q

1` kp0,0q
“

1

2
.

Although the function f is not globally Lipschitz, it can be treated as such, given that
it is locally Lipschitz and the processes Y, Z are bounded in the application. Hence, the
main results apply in this setting.
We look at the results of the algorithm and its extrapolated version.

We use a sparse implementation of the linear interpolation operator introduced above.
We refer the reader to the Appendix for a quick presentation of the sparse grid setting
and refer to the seminal paper [6] for more insight on this topic. Note that, the use of
sparse grid has already been suggested in the context of BSDEs approximation in [32],
but the forward approximation method used in this paper is different. The sparse grid
implementation allows to obtain numerical results with almost same precision as the linear
interpolation but in a smaller running time. The rate of convergence of the full method
is shown in Figure 1 (Left). The original Euler algorithm shows the expected rate of
convergence. The extrapolated one converges even faster, showing there is possibly an
extra cancellation for the next order term. In Figure 1 (Right), an illustration of the
rate of convergence and complexity of the scheme in terms of the time complexity of the
algorithm is shown. We can see that there is an effective reduction on the overall time to
solve the problem with a given error.

Unfortunately, the use of the sparse grid approximation is out of the scope of the
theoretical results stated in Section 4.1. We were not able to obtain the stability property
(47) for the sparse interpolator. Nevertheless, for our numerical example, the stability
seems to hold true in practice. It seems to be a challenging question to understand the
conditions under which this property could be true.
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Figure 1. Left: Log of the error of the scheme in terms of the log of the
number of steps (n). The expected rate of convergence is observed for the
original algorithm and a better than expected for the extrapolated one.
(Example in dimension 2). Right: Log-complexity time (in seconds) as a
function of log error (Example in dimension 3). Data as in the text.

Appendix A. Auxiliary results on the decreasing step discretization

Proposition A.1. Let a ą 1, n ą 0. There exists C ą 0 such that

1

na

n
ÿ

k“1

ˆ

k

n

˙b

ď

$

’

&

’

%

Cn1´a if b ą ´1

Cn1´a logpnq if b “ ´1

Cn´pa`bq if b ă ´1

.

Proof.
‚ If b ě 0, the function xb is non-decreasing in r0, 1s and

1

n

n
ÿ

k“1

ˆ

k

n

˙b

ď

ż 1

1{n
xbdx “

1

b` 1
p1´ n´pb`1qq ď pb` 1q´1.

‚ If ´1 ď b ă 0, the function xb is decreasing in r0, 1s and

1

n

n
ÿ

k“1

ˆ

k

n

˙b

“ n´pb`1q `
1

n

n
ÿ

k“2

ˆ

k

n

˙b

ď 1`

ż 1

1{n
xbdx,

where the last integral is bounded by pb` 1q´1 if b ą ´1 and by logpnq if b “ ´1.
‚ If b ă ´1, the series

řn
k“1 k

b is convergent and increasing. The claim follows with
C the limit of the series.

Lemma A.2. Let γ ě 1, ` ě 1. Let ψ be such that in r0, T q,

|ψptq| ď C|T ´ t|´β

Then, there exists a C 1 ą 0 such that

(68)
n´1
ÿ

k“0

|ψptkq|h
`
k ď

$

’

&

’

%

C 1n´p`´1q if γp`´ βq ą `´ 1

C 1n´p`´1q logpnq if γp`´ βq “ `´ 1

C 1n´γp`´βq if γp`´ βq ă `´ 1

.

Proof. Remark that

hk “ Tγ

ż k`1
n

k
n

p1´ xqγ´1dx
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and for γ ě 1, p1´ xqγ´1 is decreasing in r0, 1s. This implies

(69)
Tγ

n

ˆ

1´
k ` 1

n

˙γ´1

ď hk ď
Tγ

n

ˆ

1´
k

n

˙γ´1

.

Thus, we obtain
n´1
ÿ

k“0

|ψptkq|h
`
k ď

ˆ

Tγ

n

˙` n´1
ÿ

k“0

C|T ´ tk|
´β

ˆ

1´
k

n

˙`pγ´1q

“CT β
ˆ

Tγ

n

˙` n´1
ÿ

k“0

ˆ

1´
k

n

˙`pγ´1q´βγ

“CT β
ˆ

Tγ

n

˙` n
ÿ

k“1

ˆ

k

n

˙`pγ´1q´βγ

.

We conclude from Proposition A.1. l

Corollary A.3. With the assumptions of Lemma A.2,

n´2
ÿ

k“0

sup
tPrtk,tk`1s

|ψptq|h`k ď

$

’

&

’

%

C 1n´p`´1q if γp`´ βq ą `´ 1

C 1n´p`´1q logpnq if γp`´ βq “ `´ 1

C 1n´γp`´βq if γp`´ βq ă `´ 1

.

Proof. Remark that

sup
tPrtk,tk`1s

|ψptq| ď sup
tPrtk,tk`1s

C|T ´ t|´β.

If β ď 0, the extreme on the right hand side above is attained at tk, and we proceed
exactly as in Lemma A.2. Otherwise, the extreme is attained at tk`1 and

n´2
ÿ

k“0

sup
tPrtk,tk`1s

|ψptq|h`k ď CT β
n´2
ÿ

k“0

p1´
k ` 1

n
q´γβh`k

ď CT β
ˆ

Tγ

n

˙` n´2
ÿ

k“0

p1´
k ` 1

n
q´γβ

ˆ

1´
k

n

˙`pγ´1q

ď CT β
ˆ

Tγ

n

˙`

2`pγ´1q
n´1
ÿ

k“1

ˆ

k

n

˙´γβ``pγ´1q

and we conclude from Lemma A.2. l

Lemma A.4. Under the same assumptions of Lemma A.2, suppose that γp`´βq ą ` and
that ψ is of bounded variation in r0, T ´ εs for all ε ą 0. Then, for all i ă n´ 1

(70)
n´1
ÿ

k“i

ψptkqh
`
k “

ˆ

Tγ

n

˙`´1 ż T

ti

ψptq

ˆ

1´
t

T

˙β˚

dt`Rpiq.

where

(71) β˚ :“ p`´ 1qp1´ γ´1q.

and for some K ą 0,

|Rpiq| ď K

˜

1

nγp`´βq`1
`

1

n`

ˆ

1´
i´ 1

n

˙γp`´βq´`
¸
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Proof. First, we observe that
ż T

ti

ψptq

ˆ

1´
t

T

˙β˚

dt “ Tγ

ż 1

i{n
ψpT t1´ p1´ xqγuqp1´ xqγpβ

˚`1q´1dx “:

ż 1

i{n
θpxqdx ,

and since γp`´ βq ą `

|θpxq| ď Cp1´ xqγpβ
˚´β`1q´1 “ Cp1´ xqγp`´βq´` .(72)

We compute that
n´1
ÿ

k“i

ψptkqh
`
k “

pTγq`

n`´1

ż 1

i{n
θpxqdx`R2

n `R
1
n ,

with

R1
npiq :“

ˆ

Tγ

n

˙` n´1
ÿ

k“i

ψptkq

˜

ˆ

n

Tγ

˙`

h`k ´

ˆ

1´
k

n

˙`pγ´1q
¸

,

R2
npiq :“

pTγq`

n`´1

˜

n´1
ÿ

k“i

ψptkq

n

ˆ

1´
k

n

˙`pγ´1q

´

ż 1

i{n
θpxqdx

¸

.

We now study each remainder term separately.

i. We observe that, from (69), we have
ˇ

ˇ

ˇ

ˇ

ˆ

1´
k

n

˙`pγ´1q

´

ˆ

n

Tγ

˙`

h`k

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˆ

1´
k

n

˙`pγ´1q

´

ˆ

1´
k ` 1

n

˙`pγ´1q ˇ
ˇ

ˇ

ˇ

ď
`pγ ´ 1q

n

ˆ

1´
k

n

˙`pγ´1q´1

,(73)

since `pγ ´ 1q ě 1.

Using (72) and (73)

|R1
n| ď

ˆ

Tγ

n

˙` ` pγ ´ 1q

n

n´1
ÿ

k“i

ˇ

ˇ

ˇ

ˇ

θ

ˆ

k

n

˙ˇ

ˇ

ˇ

ˇ

ˆ

1´
k

n

˙´1

ď

ˆ

Tγ

n

˙` `pγ ´ 1q

n

n´i
ÿ

k“1

ˆ

k

n

˙γp`´βq´`´1

ď
K

n`

ˆ

1´
i´ 1

n

˙γp`´βq´`

,

where we used, for the last inequality Proposition A.1, and the fact that γp`´βq ą `.

ii. For R2
n, we assume that θ is increasing. For θ decreasing, similar computations as the

one below can be made and the result holds true for θ as it has bounded variation on
r0, tn´1s. We thus observe that, for k ě 1,

θ

ˆ

k ´ 1

n

˙

ď n

ż k
n

k´1
n

θpxqdx ď θ

ˆ

k

n

˙

.

Summing the previous inequalities and rearranging terms, we obtain
ˇ

ˇ

ˇ

ˇ

ż 1

i{n
θpxqdx´

1

n

n´1
ÿ

k“i

θ

ˆ

k

n

˙
ˇ

ˇ

ˇ

ˇ

ď

ż 1

1´ 1
n

|θpxq|dx`
|θpi{nq|

n
`

1

n

ˇ

ˇ

ˇ

ˇ

θ

ˆ

1´
1

n

˙
ˇ

ˇ

ˇ

ˇ

.
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We then compute

1

n

ˇ

ˇ

ˇ

ˇ

θ

ˆ

1´
1

n

˙ˇ

ˇ

ˇ

ˇ

ď K
1

nγpβ˚´β`1q`1
,

and
ż 1

1´ 1
n

|θpxq|dx ď C

ż 1

1´ 1
n

p1´ xqγpβ
˚´β`1q´1dx ď K

1

nγpβ˚´β`1q`1
,

Finally, (72) controls the remaining term. This concludes the proof.

l

Appendix B. Sparse grid implementation

We introduce here the numerical method that has been used in practice. This is a sparse
version of the linear interpolation operator presented in the theoretical analysis of Section
4. The idea is to use less nodal functions than in the case of a full linear interpolation
with a minimal degradation of the error but a great improvement in complexity (number
of points needed for the interpolation). This sparse grid concept is thoroughly reviewed
in the seminal paper [6].

Let us thus consider the sparse grid nodal space of order p defined by

VppAq :“ span tφl,j ; pl, jq P IppAqu ,

where

IppAq :“
 

pl, jq : 0 ď
d
ÿ

i“1

li ď p; 0 ď j ď 2l;

pli ą 0 and ji is oddq or pli “ 0q, for i “ 1, . . . , d
(

.(74)

For a function ψ : A Ñ R with support in A, we define its associated Vp-interpolator
by

πAVprψspxq :“
ÿ

pl,jqPIppAq
θl,jpψ;Aqφl,jpx;Aq(75)

where the operator θl,j can be defined recursively in terms of r, the dimension of l, by:

(76) θl,jpψ;Aq “

$

’

’

’

&

’

’

’

%

ψpx̌l,jq; r “ 0

θl´,j´pψp¨, x̌
r
lr,jr

q;A´q; lr “ 0

θl´,j´pψp¨, x̌
r
lr,jr

q;A´q ´ 1
2θl´,j´pψp¨, x̌

r
lr,jr´1q;A´q

´1
2θl´,j´pψp¨, x̌

r
lr,jr`1q;A´q; lr ą 0

where, for a hypercube A “
śd
i“1rai, bis, A´ :“

śd´1
i“1 rai, bis and for a multi-index k with

dimension r ě 1, k´ “ pk1, . . . , kr´1q. The above definition has to be compared with the
full linear interpolation operator given in (60).

With the sparse representation at hand, we modify the backward scheme and introduce
first the set of points where the function needs to be approximated. Let

Di “

$

&

%

tx0u if i=0
´

Ť

xPDi´1
supp

”

X̂
ti´1,x
ti

ı¯V

pi
if i=1,. . . ,n-1

,(77)

so that Di is a set of points in a sparse grid of order pi. This sparse grid is constructed
on the minimal hypercube that contains the diffusion started at Di´1 at time ti´1. We
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denote by D the union of all the points in the grids Di, namely

D :“
n´1
ď

i“0

ttiu ˆDi(78)

which forms a finite grid of r0, T q ˆ Rd.
Having this set, for a sequence of values pp1, . . . , pn´1q with pi ą d ´ 1, we define the

sparse-cubature backward approximation by

ǔipxq “ πDiVpi´d`1

”´

EQ̂
”

ǔi`1

´

X̂ti,.
ti`1

¯ı¯

` hifp¨, ǔip¨q, v̌ip¨qq
ı

pxq(79)

v̌ipxq “

ˆ

EQ̂
„

ǔi`1

´

X̂ti,x
ti`1

¯ ∆ŵi
hi

˙

(80)

for x P D�
i . The terminal condition is set to pǔn, v̌nq “ pg, 0q.

In practice, the computational effort to obtain pǔi, v̌iqi is proportional to the number of
points in the grid D. But, let us insist on the fact that, our approximation is then defined
and available, without loss of precision, on the bigger space Yn´1

i“0 ttiu ˆD
�
i .
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[9] Jean-Fraņcois Chassagneux and Adrien Richou. Rate of convergence for the discrete-time approxi-

mation of reflected BSDEs arising in switching problems. arXiv preprint arXiv:1602.00015, 2016.
[10] Jean-François Chassagneux and Dan Crisan. Runge–Kutta schemes for backward stochastic differen-

tial equations. The Annals of Applied Probability, 24(2):679–720, April 2014.
[11] Jean-François Chassagneux, François Delarue, and Dan Crisan. Numerical Method for McKean-

Vlasov FBSDEs. preprint, 2017.
[12] Jean-François Chassagneux and Adrien Richou. Numerical simulation of quadratic BSDEs. The An-

nals of Applied Probability, 26(1):262–304, February 2016.
[13] Paul-Eric Chaudru de Raynal and Camilo A. Garcia Trillos. A cubature based algorithm to solve

decoupled McKean-Vlasov forward-backward stochastic differential equations. Stochastic Processes
and their Applications, 125(6):2206–2255, 2015.

[14] Dan Crisan and François Delarue. Sharp derivative bounds for solutions of degenerate semi-linear
partial differential equations. Journal of Functional Analysis, 263(10):3024–3101, November 2012.

[15] Dan Crisan and Terry Lyons. Minimal entropy approximations and optimal algorithms. Monte Carlo
Methods and Applications, 8(4):343–355, 2002.

[16] Dan Crisan and Konstantinos Manolarakis. Solving Backward Stochastic Differential Equations Using
the Cubature Method: Application to Nonlinear Pricing. SIAM Journal on Financial Mathematics,
3(1):534–571, January 2012.

[17] Dan Crisan and Konstantinos Manolarakis. Second order discretization of backward SDEs and sim-
ulation with the cubature method. The Annals of Applied Probability, 24(2):652–678, April 2014.



CUBATURE METHOD TO SOLVE BSDES: ERROR EXPANSION AND COMPLEXITY CONTROL 35

[18] Dan Crisan, Konstantinos Manolarakis, and Colm Nee. Cubature methods and applications. In Paris-
Princeton Lectures on Mathematical Finance 2013, pages 203–316. Springer, 2013.

[19] Dan Crisan, Konstantinos Manolarakis, and Nizar Touzi. On the Monte Carlo simulation of BSDEs:
An improvement on the Malliavin weights. Stochastic Processes and their Applications, 120(7):1133–
1158, 2010.

[20] François Delarue and Stéphane Menozzi. A forward-backward stochastic algorithm for quasi-linear
PDEs. The Annals of Applied Probability, bf16(1):140–184, 2006.

[21] Emmanuel Gobet and Céline Labart. Error expansion for the discretization of backward stochastic
differential equations. Stochastic processes and their applications, 117(7):803–829, 2007.

[22] Emmanuel Gobet, Jean-Philippe Lemor, and Xavier Warin. A regression-based Monte Carlo method
to solve backward stochastic differential equations. The Annals of Applied Probability, 15(3):2172–
2202, August 2005. Mathematical Reviews number (MathSciNet): MR2152657; Zentralblatt MATH
identifier: 1083.60047.

[23] Gergely Gyurkó and Terry Lyons. Efficient and Practical Implementations of Cubature on Wiener
Space. In Dan Crisan, editor, Stochastic Analysis 2010, pages 73–111. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

[24] Pierre Henry-Labordere, Xiaolu Tan, and Nizar Touzi. A numerical algorithm for a class of BSDEs
via the branching process. Stochastic Processes and their Applications, 124(2):1112–1140, 2014.

[25] Peter Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations, vol-
ume 23 of Applications of Mathematics (New York). Springer-Verlag, Berlin, 1992.

[26] Christian Litterer and Terry Lyons. High order recombination and an application to cubature on
Wiener space. The Annals of Applied Probability, 22(4):1301–1327, 2012.

[27] Terry Lyons and Nicolas Victoir. Cubature on Wiener space. Proceedings of The Royal Society of
London. Series A. Mathematical, Physical and Engineering Sciences, 460(2041):169–198, 2004.

[28] Colm Nee. Sharp Gradient Bounds for the Diffusion Semigroup. Imperial College London (University
of London), 2011.

[29] Gilles Pagès and Abass Sagna. Improved error bounds for quantization based numerical schemes for
BSDE and nonlinear filtering. ArXiv e-prints, October 2015.

[30] Étienne Pardoux and Shige Peng. Backward Stochastic Differential Equations and Quasilinear Para-
bolic Partial Differential Equations. Stochastic Partial Differential Equations and Their Applications,
176:200–217, 1992.

[31] Denis Talay and Luciano Tubaro. Expansion of the Global Error for Numerical Schemes Solving
Stochastic Differential Equations. Stochastic Analysis and Applications, 8(4):483–509, 1990.

[32] Guannan Zhang, Max Gunzburger, and Weidong Zhao. A Sparse-Grid Method for Multi-Dimensional
Backward Stochastic Differential Equations. Journal of Computational Mathematics, 31(3):221–248,
May 2013.

[33] Jianfeng Zhang. A numerical scheme for BSDEs. The Annals of Applied Probability, 14(1):459–488,
2004.


	1. Introduction
	1.1. Main Assumptions
	1.2. Forward scheme
	1.3. Backward scheme
	1.4. Main results

	2. Convergence analysis for the forward process
	2.1. Notation
	2.2. Cubature on Wiener spaces
	2.3. Forward Error expansion

	3. Study of the Backward Approximation
	3.1. One step analysis
	3.2. Error expansion

	4. Complexity reduction
	4.1. Interpolation operators and numerical schemes
	4.2. Example of multi-linear interpolation
	4.3. Numerical illustration

	Appendix A. Auxiliary results on the decreasing step discretization
	Appendix B. Sparse grid implementation
	References

