
Comparison of Implicit and Explicit Feedback from an
Online Music Recommendation Service

Gawesh Jawaheer

CeRC, City University London
Northampton Square

London, EC1V 0HB, UK
Gawesh.Jawaheer.1@city.ac.uk

Martin Szomszor
CeRC, City University London

Northampton Square
London, EC1V 0HB, UK

Martin.Szomszor.1@city.ac.uk

Patty Kostkova
CeRC, City University London

Northampton Square
London, EC1V 0HB, UK

Patty@soi.city.ac.uk

ABSTRACT
Explicit and implicit feedback exhibits different characteristics
of users’ preferences with both pros and cons. However, a
combination of these two types of feedback provides another
paradigm for recommender systems (RS). Their combination in
a user preference model presents a number of challenges but can
also overcome the problems associated with each other. In order
to build an effective RS on combination of both types of
feedback, we need to have comparative data allowing an
understanding of the computation of user preferences. In this
paper, we provide an overview of the differentiating
characteristics of explicit and implicit feedback using datasets
mined from Last.fm, an online music station and recommender
service. The datasets consisted of explicit positive feedback (by
loving tracks) and implicit feedback which is inherently positive
(the number of times a track is played). Rather than relying on
just one type of feedback, we present techniques for extracting
user preferences from both. In order to compare and contrast the
performances of these techniques, we carried out experiments
using the Taste recommender system engine and the Last.fm
datasets. Our results show that implicit and explicit positive
feedback complements each other, with similar performances
despite their different characteristics.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Measurement, Performance, Experimentation.

Keywords
Explicit feedback, implicit feedback, recommender system,
music recommendation, combination of feedback, Taste
recommender system.

1. INTRODUCTION AND MOTIVATION
All recommender systems (RS) require a model of the users’
interests in order to function. A common approach to building
such a user preference model is through eliciting feedback from

the user, either explicitly or implicitly. Explicit feedback, such
as rating scales, provides users with a mechanism to
unequivocally express their interests in items. On the other
hand, implicit feedback is generated by the RS itself, through
inferences it makes about the user’s behaviour. What constitutes
implicit feedback depends on the application domain: Typically,
it will be one or multiple observable and measurable parameters
that arise out of the user’s interactions with the RS. Most of the
research in RS has focussed on using one or the other type of
feedback; only few have combined these two heterogeneous
feedbacks.

In this paper, we present an overview of the differentiating
characteristics of explicit feedback provided by the user in
relation to implicit feedback gathered by a music
recommendation service, namely, Last.fm1 - an online radio
station and music recommender service that recommends tracks
to users based on their listening habits. It collects implicit
feedback about the tracks played by a user, e.g. the number of
times a track is played -commonly known as the playcount. It
also allows users to express explicit feedback through its ‘Love
a track’ or ‘Ban a track’ feature.

In a previous work [6] we presented a detailed examination of
these two types of feedback. Explicit and implicit feedbacks
provide different degrees of expressivity of the user’s
preferences. In order to build a more effective RS and maximise
the potential of combining these two types of feedback, we
compare the performances of each type of feedback on a RS.

For our experiment, we harvested the Last.fm profiles for 527
users, downloading metadata about all the tracks they listened to
as well as the tracks they voted for using the ‘Love track’
feature. Together this provided us with a rich dataset that we
used to experiment upon using the Taste2 recommender engine.
We used a collaborative filtering (CF) algorithm to generate the
recommendations. However, the choice of the recommender
algorithm is orthogonal to our concerns as we are not interested
in the performance of the algorithms but rather the performance
of the user preference models.

In the next section, we present an overview of the different
characteristics of these two types of feedback. We then provide
some notation and describe the datasets we used in Section 3. In
Section 4 we present the techniques we used for extracting user
preferences from our datasets. We present our experiments in
Section 5, and a discussion of the results in Section 6. Finally,
we conclude with some related work in Section 7.

1 http://www.last.fm
2 http://taste.sourceforge.net/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

HetRec '10, September 26, 2010, Barcelona, Spain.

Copyright 2010 ACM 978-1-4503-0407-8/10/09...$10.00.

2. EXPLICIT AND IMPLICIT FEEDBACK
In order to develop an effective RS, user preferences need to be
learned. However, it is difficult to obtain sufficient and
representative feedback from a population of users. This
reluctance to provide explicit feedback can be partially
explained by the cognitive effort it requires, and it is likely that
other factors as well serve as disincentives. On the other hand,
implicit feedback is abundant. In terms of modelling the users’
interests, it is generally accepted that explicit feedback is more
accurate than implicit feedback [2]. One possible reason may be
because there are several domain-independent, objective, well
researched and documented tools, such as Likert scale or
questionnaires, for capturing and analysing explicit feedback. In
contrast, an implicit feedback system relies on the application of
domain-dependent tools and methodologies for capturing and
interpreting implicit feedback. Typically, the system will
observe the user’s actions and make inferences about the user’s
interests based on these actions. For example, in a music
recommender system such as Last.fm, if a user listens to a track
5 times, the system may infer that the user has an interest in that
track.

There are similarities and differences between these two types of
feedback. Both suffer from noise [1,3,5], and are sensitive to the
user’s context, albeit not to the same extent. In terms of
differences, explicit feedback is scarce whereas implicit
feedback is abundant. Explicit feedback is generally more
accurate than implicit feedback in representing the user’s
interests (although this is dependent on the domain and the RS
application). Also, explicit feedback can be positive or negative,
whereas implicit feedback is only positive. Furthermore, explicit
feedback tends to concentrate on either side of the rating scale,
as users are more likely to express their preferences if they feel
strongly for or against an item [2].

Explicit and implicit feedback provides different degrees of
expressivity of the user’s preferences. In typical explicit
feedback RS, the user will provide ratings for items on a Likert
scale. The rating scale will usually go from ‘I like it a lot’ to ‘I
do not like it’. Thus explicit feedback captures both positive and
negative user preferences. On the other hand, implicit feedback
can only be positive. For example, if a user did not listen to a
track that does not imply he does not like the track. However,
implicit feedback can be mapped to degree of preference
analogous to going from the middle of a continuous scale to its
positive extremity. For example, if a user listened to track A, 10
times and track B, 100 times, then we can infer that he has a
higher preference for track B than track A. This leads to the
point that implicit feedback tend to be relative where as explicit
feedback is absolute. For example, a user listening to a track 10
times may still express high preference if typically the user tends
to listen to each track once or twice. Another point is that
implicit feedback is domain dependent. For example, in a movie
recommender system, a user may watch an actor or actress 10
times, but that does not imply he has a relative high preference
for that artist. It could be that the artist is a part of a series that
the user watches regularly.

To study the characteristics of implicit and explicit feedbacks,
we used data from Last.fm. The latter provides its users the
functionality to love (explicit positive feedback) and ban
(explicit negative feedback) a track. Last.fm also keeps a count,

called playcount, of all the tracks played by a user (implicit
feedback). This includes tracks played on the Last.fm website or
media players on the user’s computer or portable device. It
provides plug-in software that work with the media players to
send the user information to the Last.fm servers in a process
commonly referred to as scrobbling. Last.fm provides an
extensive set of tools and APIs to harvest its rich dataset.
Unfortunately, as the API does not expose a user’s banned
tracks, so we were only able to build datasets that included
positive explicit feedback (loved tracks) and implicit feedback
(played tracks). In Table 1 below, we summarise all the
pertinent characteristics of implicit and explicit feedback.

Table 1. Characteristics of explicit and implicit feedback

 Implicit feedback Explicit feedback

Accuracy Low High

Abundance High Low

Context-sensitive Yes Yes

Expressivity of user
preference

Positive
Positive and
Negative

Measurement
reference

Relative Absolute

In the next section, we introduce some notations used in the
remainder of this paper and also describe the datasets we
harvested and mined for our analysis.

3. NOTATIONS AND DEFINITIONS
Our dataset is composed of a set of users U, artists A, tracks T,
and timestamps Z the set of integers). S is a relation such that:
S ⊆ U x T x A x Z, describes which users have played which
tracks, by which artist at each particular timestamp. Similarly, L
is a relation such that L ⊆ U x T x A x Z, describing the tracks
that users have loved, and when they expressed their affinity. A
profile for a user u, is defined as a pair Pu = (Su, Lu) where Su = |
(u,t,a,z) ∈ S | is the total number of tracks played, also known as
the playcount, and Lu = | (u,t,a,z) ∈ L | is the total number of
tracks loved, which we call the lovecount.

3.1 Dataset
We first harvested the profiles for 16,394 random users of
Last.fm. For each of these users, we collected information about
all the tracks they loved. Removing the 6,382 users who did not
love any tracks left us with |U| = 10,012 users and metadata
about |L| = 1,833,804 tracks. We then queried Last.fm for
metadata describing all the tracks played by a subset of users U'

such that user u' ∈ U', lovecount, 20|| ≥′uL , playcount

20|| ≥′uS and 2000|| ≤′uS . We used this restrictive

subset for practical reasons, namely the time constraint within
which we could practically mine the metadata while also
ensuring that users had a sufficient amount of data to mine. In
order to give an overview of the users’ profiles in terms of the
number of tracks loved and played, we reproduce below in
Figure 1 and Figure 2, the cumulative frequency distribution
(CFD) plots of the lovecount and placount respectively from our

previous work in [6]. Thus, we have |U'| = 867 users for whom
we had the complete history of the tracks they played and the
tracks they loved. As we are interested in the combination of
feedbacks, our dataset only includes users which have both
played and loved tracks.

0 5000 10000 15000 20000 25000

0
20

00
40

00
60

00
80

00

Cumulative frequency distribution of loved tracks

No. of loved tracks

C
um

ul
at

iv
e

us
er

s

Figure 1. CFD plot of tracks loved by 10,012 users

5e+02 5e+03 5e+04 5e+05

0
20

00
40

00
60

00
80

00

Cumulative freq. dist. of played tracks

No. of played tracks (log)

C
um

ul
at

iv
e

us
er

s

Figure 2. CFD plot of tracks played by 10,012 users

Typically in music recommender systems, user profile
information is recorded on a track level whilst recommendations
are made at the artist level [4]. Thus, we aggregated our dataset
at the artist level. We then divided this dataset into two parts.
The first part, which we called the Artist Playcount Dataset
(initially 865 users and 29,094 unique artists) stores metadata
about all the artists played by the various users and the
playcount for each artist by each user. It represents the implicit
feedback dataset. Similarly, the second part, called the Artist
Lovecount Dataset (initially 865 users and 11,090 unique
artists) stores metadata about all the artists loved by the users

and the lovecount for each artist by each user. It represents the
explicit feedback dataset. In order to avoid the few plays of an
artist from affecting the overall performance, we removed from
the Artist Playcount Dataset, all records where the user has
played an artist less than 20 times. This shed a large part of the
dataset such that the Artist Playcount Dataset now consisted of
527 users and 2167 unique artists. Similarly, we pruned down
the Artist Lovecount Dataset to the same 527 users (8242
unique artists) although we did not remove records based on
lovecount. Table 2 below summarises the various characteristics
of these two datasets.

Table 2. Characteristics of the two datasets

Characteristics Artist Playcount
Dataset

Artist Lovecount
Dataset

Type of
feedback

Implicit (positive) Explicit (positive)

No. of users
(preprocessing)

865 865

No of artists
(preprocessing)

29,094 11,090

Processing done Removed the
records where users
had < 20 playcount
per artist and match
users in both
datasets

Match users in
both datasets

No. of users
(postprocessing)

527 527

No. of artists
(post-
processing)

2,167 8,242

In the next section we discuss how we derived the user
preferences for the artists from the above datasets.

4. CALCULATING USER PREFERENCES
We used the following three methods for calculating the user’s
preference for an artist. We tested the following three methods
for calculating the user’s preference for an artist (user-artist
preference):

• Absolute: the preference is a count of the number of times
a user has played or loved an artist

• Normalise: the preference is the ratio of counts of the
number of times a user has played or loved an artist to the
total number of artists played or loved by the user. Thus,
we normalise the artist playcount or lovecount such to
account for a user’s usage of the system.

• Log: this is similar to the Absolute measure, except that
preference is calculated as the log to base 10 of the artist
playcount or lovecount.

In order to understand the user preference values obtained using
the three above methods when applied to the Implicit dataset
(Artist Playcount Dataset) and the Explicit dataset (Artist
Lovecount Dataset), we show in Figure 3, the histograms of
these preference values. For each set of preference values, we

divided the range in 5 bins and counted the number of values in
each bin.

Figure 3. Histograms of user preferences

5. EXPERIMENT
In our experiments, we applied user preference data obtained
using the above described techniques as input to the Taste
Collaborative Filtering (CF) engine from the Apache Mahout
project. We setup Taste for user-based CF, using a nearest
neighbourhood value of 3 and Pearson Correlation as the
measure of similarity. We used 90% of the user preference data
to train the Taste engine and the evaluation was carried out the
remaining 10%. We measured the outcome of each experiment
in terms of the Root Mean Squared Error (RMSE) between the
given user preferences and the predicted user preferences. For
each experiment, we did five runs and averaged the results.

Table 3 shows the evaluation of the three methods for
calculating the user preferences for an artist. Across both
datasets, the normalised techniques produced the best results.
Our better RMSE values than those traditionally seen in RS may
be explained by the fact that we are only using positive user
preferences – this is a limitation of our datasets and of any
feedback dataset collected from Last.fm. Bearing in mind that
our dataset is relatively small compared to others [10], it may
also be the case that we were too aggressive in the pre-
processing described in Section 3.1.

6. DISCUSSIONS
As shown in Table 3, calculating user preferences in terms of
absolute counts produced the worst results. This is because it
does not account for the usage patterns of the user in contrast to
normalised figures which produced the best results. If we
exclude the esults from the experiment with absolute counts, we
notice that both the implicit and explicit datasets produced
similar results for the Normalised and Log experiments. Despite
the different characteristics of these two datasets, they produced
similar performances. This is counter intuitive as implicit
feedback is seen as less accurate than explicit feedback [1][2].
The histograms in Figure 3, show that the calculated user
preferences are all skewed to the lower end of the scale, except
in the case of the user preference values calculated using the
Log method on the Implicit dataset (i.e Artist Playcount
Dataset). This shows a lack in diversity of the preference values.
The extremely good RMSE values and the lack in diversity in
user preference values may be due to the limited size of the
dataset and a consequence of the pre-processing we carried out.
Another possible explanation we will explore as part of our
future work is the suitability of RMSE as the evaluation metric
for comparing the performances of the methods for calculating
user preferences.

7. RELATED WORK
Feedback has been studied extensively in Information Retrieval.
[7] provides an extensive overview of the literature on implicit
feedback in IR and RS. Most previous works on this topic have
studied either implicit or explicit feedback. [9] compared
explicit and implicit feedback for online information retrieval,
namely investigating the extent to which the two types of
feedback are interchangeable. They found that some degree of
substitution does exist. There is a disproportionate amount of
literature studying implicit feedback for use in web search
engines, personalisation and recommender systems. This is
probably due to the fact that it is generally accepted that there is
room for improvement in implicit feedback. But [1] recently
showed that explicit feedback still needs to be improved. They
found that user variability and inconsistency in providing
explicit feedback, which they referred as natural noise
negatively affects the accuracy of RS. They propose a system of
re-feedback as a solution and suggest that removing noise in
explicit feedback can be more beneficial in improving RS
accuracy rather than gathering explicit feedback on unseen
items. This natural noise in explicit feedback bears similarity to
the differences in relevance judgements that [8] found in their
work on personalisation. [10] proposed a method of learning
multiple matrices over common items in order to improve
overall predictive performance. Although the authors used
datasets from Last.fm to illustrate their techniques, their work is

Table 3. Evaluation of three ways of computing user-artist preference using RMSE

User-
Preference
Method

RMSE for Artist Playcount Dataset RMSE for Artist Lovecount Dataset

R1 R2 R3 R4 R5 AVG R1 R2 R3 R4 R5 AVG

Absolute 50.53 65.82 99.58 86.06 109.20 82.24 1.76 2.82 3.38 3.20 3.78 2.99

Log 0.30 0.33 0.30 0.30 0.35 0.32 0.33 0.33 0.30 0.37 0.42 0.35

Normalised 0.09 0.11 0.07 0.04 0.10 0.08 0.04 0.04 0.07 0.04 0.06 0.05

on combination of metadata about played tracks and user
generated tags. Their combination technique can be applied to
our explicit and implicit datasets. The researchers in [5] studied
the use of collaborative filtering on implicit feedback datasets.
They discuss the properties of such datasets and proposed the
notion of applying confidence levels to interpret the implicit
feedback measures as positive and negative preference values.
They test their algorithm for calculating user preferences using
Latent factor models rather than CF as we did. In contrast to our
work, they do not have any comparative performance between
explicit and implicit feedback as the combination of these two
types of feedback was not the aim of their study.

8. CONCLUSIONS
In this paper we focussed on comparing implicit feedback and
explicit feedback, two types of feedback with different
characteristics. We built implicit and explicit feedback datasets
out of the tracks played and tracks loved, respectively, for a
random sample of users on Last.fm. We compared and
contrasted three techniques for extracting user preferences from
these datasets. Explicit and implicit feedbacks provide different
degrees of expressivity of the user’s preferences. In order to
build more effective RS and maximising the potential of
combining these two types of feedback, we compared the
performances of each type of feedback on a RS. Our
experiments show that although they have different
characteristics, the two datasets produced similar performances.
Our aim in studying explicit and implicit feedback is to better
understand their characteristics in order to combine them
effectively in a RS. Thus, in our future work, we will be
experimenting with different ways of combining these two types
of feedback in a user preference model and finding better
evaluation measures that work across datasets.

9. ACKNOWLEDGMENTS
Our thanks to Last.fm for making a rich dataset available to the
research community and the public in general through their
extensive API.

10. REFERENCES
[1] Amatriain, X., Pujol, J., Tintarev, N., and Oliver, N. Rate
it again: increasing recommendation accuracy by user re-
rating. Proceedings of the third ACM conference on
Recommender systems, ACM (2009), 173–180.

[2] Amatriain, X., Pujol, J., and Oliver, N. I like it... I like it
not: Evaluating User Ratings Noise in Recommender
Systems. In G. Houben, G. McCalla, F. Pianesi and M.
Zancanaro, User Modeling, Adaptation, and Personalization.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, 247-
258.

[3] Anand, S.S., Kearney, P., and Shapcott, M. Generating
semantically enriched user profiles for Web personalization.
ACM Transactions on Internet Technology 7, 4 (2007), 22-es.

[4] Herrada, C. Music recommendation and discovery in the
long tail. 2008.

[5] Hu, Y., Koren, Y., and Volinsky, C. Collaborative
Filtering for Implicit Feedback Datasets. 2008 Eighth IEEE
International Conference on Data Mining, (2008), 263-272.

[6] Jawaheer, G., Szomszor, M., and Kostkova, P.
Characterisation of explicit feedback in an online music
recommendation service. ACM Recommender Systems
Conference 2010, Barcelona (in press), (2010).

[7] Kelly, D. and Teevan, J. Implicit feedback for inferring
user preference: a bibliography. ACM SIGIR Forum, (2003).

[8] Teevan, J., Dumais, S., Horvitz, E., and others. Potential
for Personalization. ACM Transactions on Computer-Human
Interaction 1, 212 (2008), 1-35.

[9] White, R., Jose, J., and Ruthven, I. Comparing explicit
and implicit feedback techniques for web retrieval: Trec-10
interactive track report. NIST SPECIAL PUBLICATION SP,
(2002), 534– 538.

[10] Williamson, S. and Ghahramani, Z. Probabilistic models
for data combination in recommender systems. NIPS 2008
Workshop:, (2008), 1-4.

