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ABSTRACT 
Explicit and implicit feedback exhibits different characteristics 
of users’ preferences with both pros and cons. However, a 
combination of these two types of feedback provides another 
paradigm for recommender systems (RS). Their combination in 
a user preference model presents a number of challenges but can 
also overcome the problems associated with each other. In order 
to build an effective RS on combination of both types of 
feedback, we need to have comparative data allowing an 
understanding of the computation of user preferences. In this 
paper, we provide an overview of the differentiating 
characteristics of explicit and implicit feedback using datasets 
mined from Last.fm, an online music station and recommender 
service. The datasets consisted of explicit positive feedback (by 
loving tracks) and implicit feedback which is inherently positive 
(the number of times a track is played). Rather than relying on 
just one type of feedback, we present techniques for extracting 
user preferences from both. In order to compare and contrast the 
performances of these techniques, we carried out experiments 
using the Taste recommender system engine and the Last.fm 
datasets. Our results show that implicit and explicit positive 
feedback complements each other, with similar performances 
despite their different characteristics. 

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Information 
Filtering 

General Terms 
Measurement, Performance, Experimentation. 

Keywords 
Explicit feedback, implicit feedback, recommender system, 
music recommendation, combination of feedback, Taste 
recommender system. 

1. INTRODUCTION AND MOTIVATION 
All recommender systems (RS) require a model of the users’ 
interests in order to function. A common approach to building 
such a user preference model is through eliciting feedback from 

the user, either explicitly or implicitly. Explicit feedback, such 
as rating scales, provides users with a mechanism to 
unequivocally express their interests in items. On the other 
hand, implicit feedback is generated by the RS itself, through 
inferences it makes about the user’s behaviour. What constitutes 
implicit feedback depends on the application domain: Typically, 
it will be one or multiple observable and measurable parameters 
that arise out of the user’s interactions with the RS. Most of the 
research in RS has focussed on using one or the other type of 
feedback; only few have combined these two heterogeneous 
feedbacks. 

In this paper, we present an overview of the differentiating 
characteristics of explicit feedback provided by the user in 
relation to implicit feedback gathered by a music 
recommendation service, namely, Last.fm1 - an online radio 
station and music recommender service that recommends tracks 
to users based on their listening habits. It collects implicit 
feedback about the tracks played by a user, e.g. the number of 
times a track is played -commonly known as the playcount. It 
also allows users to express explicit feedback through its ‘Love 
a track’ or ‘Ban a track’ feature.  

In a previous work [6] we presented a detailed examination of 
these two types of feedback. Explicit and implicit feedbacks 
provide different degrees of expressivity of the user’s 
preferences. In order to build a more effective RS and maximise 
the potential of combining these two types of feedback, we 
compare the performances of each type of feedback on a RS.  

For our experiment, we harvested the Last.fm profiles for 527 
users, downloading metadata about all the tracks they listened to 
as well as the tracks they voted for using the ‘Love track’ 
feature. Together this provided us with a rich dataset that we 
used to experiment upon using the Taste2 recommender engine. 
We used a collaborative filtering (CF) algorithm to generate the 
recommendations. However, the choice of the recommender 
algorithm is orthogonal to our concerns as we are not interested 
in the performance of the algorithms but rather the performance 
of the user preference models. 

In the next section, we present an overview of the different 
characteristics of these two types of feedback. We then provide 
some notation and describe the datasets we used in Section 3. In 
Section 4 we present the techniques we used for extracting user 
preferences from our datasets. We present our experiments in 
Section 5, and a discussion of the results in Section 6. Finally, 
we conclude with some related work in Section 7. 

                                                                 
1 http://www.last.fm 
2 http://taste.sourceforge.net/ 
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2. EXPLICIT AND IMPLICIT FEEDBACK 
In order to develop an effective RS, user preferences need to be 
learned. However, it is difficult to obtain sufficient and 
representative feedback from a population of users. This 
reluctance to provide explicit feedback can be partially 
explained by the cognitive effort it requires, and it is likely that 
other factors as well serve as disincentives. On the other hand, 
implicit feedback is abundant. In terms of modelling the users’ 
interests, it is generally accepted that explicit feedback is more 
accurate than implicit feedback [2]. One possible reason may be 
because there are several domain-independent, objective, well 
researched and documented tools, such as Likert scale or 
questionnaires, for capturing and analysing explicit feedback. In 
contrast, an implicit feedback system relies on the application of 
domain-dependent tools and methodologies for capturing and 
interpreting implicit feedback. Typically, the system will 
observe the user’s actions and make inferences about the user’s 
interests based on these actions. For example, in a music 
recommender system such as Last.fm, if a user listens to a track 
5 times, the system may infer that the user has an interest in that 
track. 

There are similarities and differences between these two types of 
feedback. Both suffer from noise [1,3,5], and are sensitive to the 
user’s context, albeit not to the same extent. In terms of 
differences, explicit feedback is scarce whereas implicit 
feedback is abundant. Explicit feedback is generally more 
accurate than implicit feedback in representing the user’s 
interests (although this is dependent on the domain and the RS 
application). Also, explicit feedback can be positive or negative, 
whereas implicit feedback is only positive. Furthermore, explicit 
feedback tends to concentrate on either side of the rating scale, 
as users are more likely to express their preferences if they feel 
strongly for or against an item [2]. 

Explicit and implicit feedback provides different degrees of 
expressivity of the user’s preferences. In typical explicit 
feedback RS, the user will provide ratings for items on a Likert 
scale. The rating scale will usually go from ‘I like it a lot’ to ‘I 
do not like it’. Thus explicit feedback captures both positive and 
negative user preferences. On the other hand, implicit feedback 
can only be positive. For example, if a user did not listen to a 
track that does not imply he does not like the track. However, 
implicit feedback can be mapped to degree of preference 
analogous to going from the middle of a continuous scale to its 
positive extremity. For example, if a user listened to track A, 10 
times and track B, 100 times, then we can infer that he has a 
higher preference for track B than track A. This leads to the 
point that implicit feedback tend to be relative where as explicit 
feedback is absolute. For example, a user listening to a track 10 
times may still express high preference if typically the user tends 
to listen to each track once or twice. Another point is that 
implicit feedback is domain dependent. For example, in a movie 
recommender system, a user may watch an actor or actress 10 
times, but that does not imply he has a relative high preference 
for that artist. It could be that the artist is a part of a series that 
the user watches regularly. 

To study the characteristics of implicit and explicit feedbacks, 
we used data from Last.fm. The latter provides its users the 
functionality to love (explicit positive feedback) and ban 
(explicit negative feedback) a track. Last.fm also keeps a count, 

called playcount, of all the tracks played by a user (implicit 
feedback). This includes tracks played on the Last.fm website or 
media players on the user’s computer or portable device. It 
provides plug-in software that work with the media players to 
send the user information to the Last.fm servers in a process 
commonly referred to as scrobbling. Last.fm provides an 
extensive set of tools and APIs to harvest its rich dataset. 
Unfortunately, as the API does not expose a user’s banned 
tracks, so we were only able to build datasets that  included 
positive explicit feedback (loved tracks) and implicit feedback 
(played tracks). In Table 1 below, we summarise all the 
pertinent characteristics of implicit and explicit feedback. 

Table 1. Characteristics of explicit and implicit feedback 

 Implicit feedback Explicit feedback 

Accuracy Low High 

Abundance High Low 

Context-sensitive Yes Yes 

Expressivity of user 
preference 

Positive 
Positive and 
Negative 

Measurement 
reference 

Relative Absolute 

In the next section, we introduce some notations used in  the 
remainder of this paper and also describe the datasets we 
harvested and mined for our analysis. 

3. NOTATIONS AND DEFINITIONS 
Our dataset is composed of a set of users U, artists A, tracks T, 
and timestamps Z the set of integers). S is a relation such that:   
S  ⊆ U x T x A x Z, describes which users have played which 
tracks, by which artist at each particular timestamp. Similarly, L 
is a relation such that L ⊆ U x T x A x Z, describing the tracks 
that users have loved, and when they expressed their affinity. A 
profile for a user u, is defined as a pair Pu = (Su, Lu) where Su = | 
(u,t,a,z) ∈ S | is the total number of tracks played, also known as 
the playcount, and Lu = | (u,t,a,z) ∈ L | is the total number of 
tracks loved, which we call the lovecount. 

3.1 Dataset 
We first harvested the profiles for 16,394 random users of 
Last.fm. For each of these users, we collected information about 
all the tracks they loved. Removing the 6,382 users who did not 
love any tracks left us with |U| = 10,012 users and metadata 
about |L| = 1,833,804 tracks. We then queried Last.fm for 
metadata describing all the tracks played by a subset of users U' 

such that user u' ∈ U', lovecount, 20|| ≥′uL , playcount 

20|| ≥′uS  and 2000|| ≤′uS . We used this restrictive 

subset for practical reasons, namely the time constraint within 
which we could practically mine the metadata while also 
ensuring that users had a sufficient amount of data to mine. In 
order to give an overview of the users’ profiles in terms of the 
number of tracks loved and played, we reproduce below in 
Figure 1 and Figure 2, the cumulative frequency distribution 
(CFD) plots of the lovecount and placount respectively from our 



previous work in [6]. Thus, we have |U'| = 867 users for whom 
we had the complete history of the tracks they played and the 
tracks they loved. As we are interested in the combination of 
feedbacks, our dataset only includes users which have both 
played and loved tracks. 
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Figure 1. CFD plot of tracks loved by 10,012 users 
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Figure 2. CFD plot of tracks played by 10,012 users 

Typically in music recommender systems, user profile 
information is recorded on a track level whilst recommendations 
are made at the artist level [4]. Thus, we aggregated our dataset 
at the artist level. We then divided this dataset into two parts. 
The first part, which we called the Artist Playcount Dataset 
(initially 865 users and 29,094 unique artists) stores metadata 
about all the artists played by the various users and the 
playcount for each artist by each user. It represents the implicit 
feedback dataset. Similarly, the second part, called the Artist 
Lovecount Dataset (initially 865 users and 11,090 unique 
artists) stores metadata about all the artists loved by the users 

and the lovecount for each artist by each user. It represents the 
explicit feedback dataset. In order to avoid the few plays of an 
artist from affecting the overall performance, we removed from 
the Artist Playcount Dataset, all records where the user has 
played an artist less than 20 times. This shed a large part of the 
dataset such that the Artist Playcount Dataset now consisted of 
527 users and 2167 unique artists. Similarly, we pruned down 
the Artist Lovecount Dataset to the same 527 users (8242 
unique artists) although we did not remove records based on 
lovecount. Table 2 below summarises the various characteristics 
of these two datasets. 

Table 2. Characteristics of the two datasets 

Characteristics Artist Playcount 
Dataset 

Artist Lovecount 
Dataset 

Type of 
feedback 

Implicit (positive) Explicit (positive) 

No. of users 
(preprocessing) 

865 865 

No of artists 
(preprocessing) 

29,094 11,090 

Processing done Removed the 
records where users 
had < 20 playcount 
per artist and match 
users in both 
datasets 

Match users in 
both datasets 

No. of users 
(postprocessing) 

527 527 

No. of artists 
(post-
processing) 

2,167 8,242 

In the next section we discuss how we derived the user 
preferences for the artists from the above datasets. 

4. CALCULATING USER PREFERENCES 
We used the following three methods for calculating the user’s 
preference for an artist. We tested the following three methods 
for calculating the user’s preference for an artist (user-artist 
preference): 

• Absolute: the preference is a count of the number of times 
a user has played or loved an artist 

• Normalise: the preference is the ratio of counts of the 
number of times a user has played or loved an artist to the 
total number of artists played or loved by the user. Thus, 
we normalise the artist playcount or lovecount such to 
account for a user’s usage of the system. 

• Log: this is similar to the Absolute measure, except that 
preference is calculated as the log to base 10 of the artist 
playcount or lovecount. 

In order to understand the user preference values obtained using 
the three above methods when applied to the Implicit dataset 
(Artist Playcount Dataset) and the Explicit dataset (Artist 
Lovecount Dataset), we show in Figure 3, the histograms of 
these preference values. For each set of preference values, we 



divided the range in 5 bins and counted the number of values in 
each bin. 

 

Figure 3. Histograms of user preferences 

5. EXPERIMENT 
In our experiments, we applied user preference data obtained 
using the above described techniques as input to the Taste 
Collaborative Filtering (CF) engine from the Apache Mahout 
project. We setup Taste for user-based CF, using a nearest 
neighbourhood value of 3 and Pearson Correlation as the 
measure of similarity. We used 90% of the user preference data 
to train the Taste engine and the evaluation was carried out the 
remaining 10%. We measured the outcome of each experiment 
in terms of the Root Mean Squared Error (RMSE) between the 
given user preferences and the predicted user preferences. For 
each experiment, we did five runs and averaged the results.  

Table 3 shows the evaluation of the three methods for 
calculating the user preferences for an artist. Across both 
datasets, the normalised techniques produced the best results. 
Our better RMSE values than those traditionally seen in RS may 
be explained by the fact that we are only using positive user 
preferences – this is a limitation of our datasets and of any 
feedback dataset collected from Last.fm. Bearing in mind that 
our dataset is relatively small compared to others [10], it may 
also be the case that we were too aggressive in the pre-
processing described in Section 3.1. 

6. DISCUSSIONS 
As shown in Table 3, calculating user preferences in terms of 
absolute counts produced the worst results. This is because it 
does not account for the usage patterns of the user in contrast to 
normalised figures which produced the best results. If we 
exclude the esults from the experiment with absolute counts, we 
notice that both the implicit and explicit datasets produced 
similar results for the Normalised and Log experiments. Despite 
the different characteristics of these two datasets, they produced 
similar performances. This is counter intuitive as implicit 
feedback is seen as less accurate than explicit feedback [1][2]. 
The histograms in Figure 3, show that the calculated user 
preferences are all skewed to the lower end of the scale, except 
in the case of the user preference values calculated   using the 
Log method on the Implicit dataset (i.e Artist Playcount 
Dataset). This shows a lack in diversity of the preference values. 
The extremely good RMSE values and the lack in diversity in 
user preference values may be due to the limited size of the 
dataset and a consequence of the pre-processing we carried out. 
Another possible explanation we will explore as part of our 
future work is the suitability of RMSE as the evaluation metric 
for comparing the performances of the methods for calculating 
user preferences. 

7. RELATED WORK 
Feedback has been studied extensively in Information Retrieval. 
[7] provides an extensive overview of the literature on implicit 
feedback in IR and RS. Most previous works on this topic have 
studied either implicit or explicit feedback. [9] compared 
explicit and implicit feedback for online information retrieval, 
namely investigating the extent to which the two types of 
feedback are interchangeable. They found that some degree of 
substitution does exist. There is a disproportionate amount of 
literature studying implicit feedback for use in web search 
engines, personalisation and recommender systems. This is 
probably due to the fact that it is generally accepted that there is 
room for improvement in implicit feedback. But [1] recently 
showed that explicit feedback still needs to be improved. They 
found that user variability and inconsistency in providing 
explicit feedback, which they referred as natural noise 
negatively affects the accuracy of RS. They propose a system of 
re-feedback as a solution and suggest that removing noise in 
explicit feedback can be more beneficial in improving RS 
accuracy rather than gathering explicit feedback on unseen 
items. This natural noise in explicit feedback bears similarity to 
the differences in relevance judgements that [8] found in their 
work on personalisation. [10] proposed a method of learning 
multiple matrices over common items in order to improve 
overall predictive performance. Although the authors used 
datasets from Last.fm to illustrate their techniques, their work is 

Table 3. Evaluation of three ways of computing user-artist preference using RMSE 

User-
Preference 
Method 

RMSE for Artist Playcount Dataset RMSE for Artist Lovecount Dataset 

R1 R2 R3 R4 R5 AVG R1 R2 R3 R4 R5 AVG 

Absolute 50.53 65.82 99.58 86.06 109.20 82.24 1.76 2.82 3.38 3.20 3.78 2.99 

Log 0.30 0.33 0.30 0.30 0.35 0.32 0.33 0.33 0.30 0.37 0.42 0.35 

Normalised 0.09 0.11 0.07 0.04 0.10 0.08 0.04 0.04 0.07 0.04 0.06 0.05 

 



on combination of metadata about played tracks and user 
generated tags. Their combination technique can be applied to 
our explicit and implicit datasets. The researchers in [5] studied 
the use of collaborative filtering on implicit feedback datasets. 
They discuss the properties of such datasets and proposed the 
notion of applying confidence levels to interpret the implicit 
feedback measures as positive and negative preference values. 
They test their algorithm for calculating user preferences using 
Latent factor models rather than CF as we did. In contrast to our 
work, they do not have any comparative performance between 
explicit and implicit feedback as the combination of these two 
types of feedback was not the aim of their study. 

8. CONCLUSIONS 
In this paper we focussed on comparing implicit feedback and 
explicit feedback, two types of feedback with different 
characteristics. We built implicit and explicit feedback datasets 
out of the tracks played and tracks loved, respectively, for a  
random sample of users on Last.fm. We compared and 
contrasted three techniques for extracting user preferences from 
these datasets. Explicit and implicit feedbacks provide different 
degrees of expressivity of the user’s preferences. In order to 
build more effective RS and maximising the potential of 
combining these two types of feedback, we compared the 
performances of each type of feedback on a RS. Our 
experiments show that although they have different 
characteristics, the two datasets produced similar performances. 
Our aim in studying explicit and implicit feedback is to better 
understand their characteristics in order to combine them 
effectively in a RS. Thus, in our future work, we will be 
experimenting with different ways of combining these two types 
of feedback in a user preference model and finding better 
evaluation measures that work across datasets. 
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