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Abstract
Semi-linear sets, which are rational subsets of the monoid (Zd,+), have numerous applications in
theoretical computer science. Although semi-linear sets are usually given implicitly, by formulas
in Presburger arithmetic or by other means, the effect of Boolean operations on semi-linear sets
in terms of the size of description has primarily been studied for explicit representations. In this
paper, we develop a framework suitable for implicitly presented semi-linear sets, in which the
size of a semi-linear set is characterized by its norm – the maximal magnitude of a generator.

We put together a toolbox of operations and decompositions for semi-linear sets which gives
bounds in terms of the norm (as opposed to just the bit-size of the description), a unified presen-
tation, and simplified proofs. This toolbox, in particular, provides exponentially better bounds
for the complement and set-theoretic difference. We also obtain bounds on unambiguous decom-
positions and, as an application of the toolbox, settle the complexity of the equivalence problem
for exponent-sensitive commutative grammars.
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1 Introduction

Semi-linear sets [20] are a generalisation of ultimately periodic sets of natural numbers to
any dimension d. By a classic result due to Ginsburg and Spanier [6], they coincide with
the sets of integers1 definable in Presburger arithmetic (the first-order theory of the integers
with addition and order), and hence enjoy closure under all Boolean operations. Their nice
properties make them a versatile tool in many application domains such as formal language
theory, automata theory, and database theory.

More formally, semi-linear sets are finitely represented finite and infinite subsets of Zd.
For d ≥ 1, a semi-linear set M in dimension d is a finite union of linear sets. The latter are
presented as a base vector b ∈ Zd and a finite set of period vectors P = {p1, . . . ,pn} ⊆ Zd
and have the form

L(b, P ) := b+ {λ1 · p1 + · · ·+ λn · pn : λ1, . . . , λn ∈ N}. (1)

∗ This research was sponsored in part by the ERC Synergy award ImPACT.
† Present address: Department of Computer Science, University of Oxford, UK.
‡ Supported by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS.
1 In the literature, semi-linear sets are often defined as subsets of Nd instead of Zd as in this paper. All of

our results do, however, carry over if one wishes to restrict semi-linear sets to Nd.
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128:2 The Taming of the Semi-Linear Set

Such representations are, in fact, only rarely encountered in applications, because in many
contexts semi-linear sets are defined implicitly. A semi-linear set can, for instance, be
succinctly encoded by a formula in Presburger arithmetic; or a set can be just proved to
be semi-linear with an estimation of its norm, ‖M‖. The norm is the absolute value of
the largest number occurring in the smallest description of M as a union of sets of the
form (1). Examples of implicitly presented semi-linear sets include languages of various
types of commutative grammars [10, 18] and reachability sets of reversal-bounded counter
automata [13, 9].

The effect of Boolean operations is, however, not easy to track in terms of the size of
vectors b and pi if semi-linear sets are only presented implicitly. As an example, consider the
set of non-negative integer solutions to a system of linear inequalities S : A · x ≤ c, which
is a semi-linear set S ⊆ Nd encoded by S with exponential succinctness. Huynh [12, 11]
shows that for a given semi-linear set M , in general, whenever the complement M := Nd \M
of M (with respect to Nd; the same holds for Zd) is non-empty, then there is some u ∈M
whose entries are bounded by an exponential in the explicit representation of M – which
amounts to doubly exponential in the size of description of S. This upper bound is far
from optimal: by Farkas’ lemma, M contains an element u whose magnitude ‖u‖ is at most
singly-exponential in the size of description of S.

Somewhat surprisingly, to the best of the authors’ knowledge, there has been no unified
framework for deriving bounds of this kind for implicitly presented semi-linear sets. Even if
we take an explicitly given linear set as in (1) and describe it by an existential formula Ψ(x)
in Presburger arithmetic, the representation of the complement with a universally quantified
formula ¬Ψ(x) provides poor estimates on the magnitude of small elements: although upper
bounds can be derived from an analysis of quantifier-elimination procedures, these bounds
are only doubly exponential (see, e.g., [25]) and hence far from being optimal.

Our contribution

In this paper, we develop a framework suitable for implicitly presented semi-linear sets
(explicitly presented sets are, of course, included as the simplest special case). In this
framework the size of a semi-linear set M ⊆ Zd is characterised by its norm, ‖M‖, rather
than the full bit-size of the description of M . We prove novel upper bounds in which, as
a rule of thumb, the norm of the result of an operation is upper-bounded by ‖M‖E where
the exponent E behaves in a “controlled” way (say, E = poly(d)), thus taming the effect of
Boolean operations and decompositions. In more detail, our contributions are as follows:

We put together a “toolbox” of operations and decompositions for semi-linear sets, with
tame bounds, unified presentation, and simplified proofs. This toolbox includes improved
bounds on the norm of the complement and, as a corollary, improved bounds on the norm
of the set-theoretic difference. These bounds can give an exponential advantage over
previously known techniques that upper-bound the bit-size of the result by nE where n
is the bit-size of the description of M – because n can be exponential in ‖M‖.
We derive from our toolbox an alternative proof of the ΠP

2 upper bound for deciding
semi-linear set inclusion, shown originally by Huynh [12, 11]. As a further application,
we settle the complexity of the equivalence problem for exponent-sensitive commutative
grammars, which have recently been introduced by Mayr and Weihmann [18].
We give a new proof of and provide an explicit upper bound on unambiguous decomposition
of semi-linear sets. It was first asked by Ginsburg [5] whether any semi-linear set is
equivalent to a semi-linear set in which every element is generated in a unique way by
exactly one linear set. This question was independently positively answered by Eilenberg
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and Schützenberger [3] and by Ito [14]. However, to the best of our knowledge, no bounds
on this decomposition have been established so far.

We now give a brief guide to the developed techniques and to the remainder of the paper.
Our starting point is the fact that the set of non-negative solutions of a system of inequalities
S can be obtained as L(B,P ) :=

⋃
b∈B L(b, P ) for some finite sets B,P ⊆ Nd. We call

semi-linear sets of the form L(B,P ) hybrid linear sets and use them, instead of linear sets,
as basic building blocks for general semi-linear sets. A hybrid linear set preserves more
structural information about the “infinitary behaviour” of the linear sets it contains; it is, in
fact, a discrete analogue of the Minkowski–Weyl representation of a convex polyhedron as
the sum of a polytope and a convex cone.

Since the effect of operations on linear sets is primarily dominated by the magnitude and
number of period vectors, reasoning in terms of hybrid linear sets lets us treat a potentially
exponential number of linear sets in a uniform way. This, in turn, enables us, for instance,
to obtain bounds on the representation of the intersection of two hybrid linear sets of the
form L(B,P ) where, as one would indeed expect, the magnitude of the generators of the
result does not depend on the cardinality of B (Subsection 2.3).

Our further path to the results on the complement and set-theoretic difference of semi-
linear sets (Section 4) goes through another development, a proper disjoint decomposition
theorem. It splits a hybrid linear set into a union

⋃
i∈I L(Bi, Pi) where each Pi is proper

(i.e., consists of linearly independent vectors) and the convex hulls of L(Bi, Pi) are disjoint
(Section 3). For this result, we use the concept of a generalised simplex in order to construct
triangulations of infinite polyhedra in Qd, and use the technique of half-open decompositions
to ensure the disjointness of the aforementioned convex hulls.

Decomposing Qd into convex polyhedra is by no means a new technique in the study of
semi-linear sets. In particular, such decompositions were used by Huynh [12, 11] and recently
by Kopczyński [15] in the context of semi-linear set inclusion. However, our decomposition
theorem is different from theirs and gives stronger corollaries, in that we obtain a full
semi-linear representation of the complement and, through intersection, of the set-theoretic
difference. While the window theorem of Kopczyński in [15] gives an upper bound on the
magnitude of the smallest vector in the set difference, our results upper-bound the magnitude
of the largest generator.

2 Preliminaries

2.1 Basic definitions
Let Z, N, Q, and Q≥0 denote the set of integers, non-negative integers, rationals, and
non-negative rationals, respectively. For x ∈ Q, bxc is the largest integer that does not
exceed x. For subsets of numbers or vectors A and B, we use the Minkowski sum notation:
A+B := {a+ b : a ∈ A, b ∈ B}. In this and other contexts, we often omit the curly braces
when referring to singletons. For sets of vectors P = {p1, . . . ,pn}, Q ⊆ Zm, we may assume
some fixed ordering on their elements, e.g., a lexicographic ordering, and thus sometimes
treat P as a matrix whose column vectors are p1, . . . ,pn. This leads to the notation P · λ
and P ·Q, for products of P with a vector λ and a matrix Q, respectively.

Linear, hybrid linear, and semi-linear sets

Suppose a natural d ≥ 1 is fixed; we will call this d the dimension. A set L ⊆ Zd is called
linear if it is of the form

L = L(b, P ) := {b+ λ1p1 + · · ·+ λkpk : λ1, . . . , λk ∈ N,p1, . . . ,pk ∈ P} (2)

ICALP 2016
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where b ∈ Zd and P ⊆ Zd is a finite set. We call the vector b the base vector and vectors
p ∈ P the period vectors (or simply base and periods) of L. A set S ⊆ Zd is called semi-linear
if it is a finite union of linear sets. Semi-linear sets can be represented as

S =
⋃
i∈I

L(Bi, Pi) where (3)

L(Bi, Pi) :=
⋃

bi∈Bi

L(bi, Pi) (4)

and L(bi, Pi) is as in (2); we call sets L(Bi, Pi) in (4) hybrid linear sets. Every linear set is
also a hybrid linear set, and every hybrid linear set is semi-linear, but the converse statements
are not true in general.

A hybrid linear set L(Bi, Pi) is proper if the vectors Pi are linearly independent. Moreover,
a hybrid linear set L(Bi, Pi), #Pi = r, is called unambiguous if for every x ∈ L(Bi, Pi)
there exist a unique b ∈ Bi and a unique λ ∈ Nr such that x = b + Pi · λ. A representa-
tion

⋃
i∈I L(Bi, Pi) is an unambiguous decomposition if each hybrid linear set L(Bi, Pi) is

unambiguous and the union is disjoint.
From the computational perspective, it is standard to represent semi-linear sets of the

form (3) by listing all vectors in the sets Bi, Pi for all i ∈ I; components of the vectors are
written in binary. We use the following notation to refer to various size measures for this
representation. For any set A, the number of elements of A is #A. For any v = (v1, . . . , vd) ∈
Zd, ‖v‖ := max1≤i≤d |vi|; similarly, for any A ⊆ Zd we denote ‖A‖ := maxv∈A ‖v‖; observe
that #A ≤ (2 ‖A‖+ 1)d. Finally, for the representation (3) of a semi-linear set S we write
‖S‖ := max(maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ , 2), #b S := maxi∈I #Bi, and #p S := maxi∈I #Pi.

Convex polyhedra

We now introduce some terminology and notation from convex geometry (see, e.g., [22, 4,
19, 23]). For a system of vectors v1, . . . ,vk ∈ Qd, a linear combination λ1v1 + . . . + λkvk
with λ1, . . . , λk ∈ Q is called: non-negative, or conical, if all λi ≥ 0; affine if

∑k
i=1 λi = 1;

and convex if it is non-negative and affine. For a possibly infinite set of vectors A ⊆ Qd,
by coneA, aff A, and convA we denote the (rational) cone generated by A, the affine hull
of A, and the convex hull of A, respectively: they are the sets of all non-negative, affine,
and convex combinations of finite subsets of A, respectively. We use the convention that
0 ∈ coneA for any A; in particular, cone ∅ = {0}. However, conv ∅ = ∅. Sets of the form
b+ coneA, for b ∈ Qd, are shifted cones; we often refer to them simply as cones.

For any non-empty set X ⊆ Qd its affine hull satisfies aff X = X0 + v for some vector
v ∈ Qd and a uniquely determined linear subspace of Qd denoted X0. The dimension of X,
written as dimX, is the dimension of the subspace X0.

A (rational) convex polyhedron in Qd is a set of the form {x ∈ Qd : A · x ≤ c} where
A ∈ Zm×d, c ∈ Zm for some m, and ≤ is interpreted compontent-wise. A face of a convex
polyhedron W ⊆ Qd is a set of points where some linear function η : Qd → Q achieves its
maximum η∗ over W ; if η is non-constant, the hyperplane h = {x ∈ Qd : η(x) = η∗} is a
supporting hyperplane of W . A face of a convex polyhedron is always a convex polyhedron
itself. Faces of dimension 0, 1, and dimW − 1 are vertices, edges, and facets respectively. All
faces of W form a partial order with respect to set inclusion, the largest element being the
set W itself (it is always a face).

For a hybrid linear set L(B,P ), we denote K(B,P ) := convL(B,P ) = convB + coneP .
Note that if B is a singleton, i.e., if L(B,P ) is a linear set, then K(B,P ) is a rational cone;
in general, though, K(B,P ) is a convex polyhedron.
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Given a set S, we call its representation (3) a proper disjoint decomposition if each hybrid
linear set L(Bi, Pi) is proper and K(Bi, Pi) ∩K(Bj , Pj) = ∅ for i 6= j.

2.2 Auxiliary tools: Systems of linear inequalities
Let A ∈ Zm×n be an integer m× n matrix and c ∈ Zm. We call S : A · x ≤ c a system of
linear inequalities and T : A ·x = c a system of linear equations. By JSK, JTK ⊆ Zn we denote
the solution set of S and T, i.e, the set of all v ∈ Zn such that A · v ≤ c and A · v = c,
respectively. We use JTK≥0 as a shorthand for JTK∩Nn, and write LSM for the set of rational
solutions from Qn of S. Moreover, we define ‖S‖, ‖T‖ := max{‖A‖, ‖c‖}.

The following two propositions connect two representations of polyhedra in Qd.

I Proposition 1 ([23]). Let S : A · x ≤ c be a convex polyhedron in Qd. Then there are
B ⊆ Qd and P ⊆ Zd such that LSM = convB + coneP , ‖P‖ ≤ 2O(d log d) · ‖S‖d, and all
numerators and denominators in B are bounded by 2O(d log d) · ‖S‖d.

Proof. By the Minkowski–Weyl theorem, there exist C,Q ⊆ Qd such that LSM = convC +
coneQ. In fact, it is possible (cf. [23, Theorem 10.2]) to find C and Q in which all vectors have
numerators and denominators of all entries bounded by d!·‖S‖d: they can essentially be chosen
as solutions to linear systems defined by square submatrices of the matrix

[
A c

]
. J

I Proposition 2 ([23]). Let M = L(b, P ) ⊆ Zd be a proper linear set with r = #P . Then
there exists a system of linear inequalities S : A · x ≤ c such that

A is a (2d− r)× d matrix that does not depend on b;
‖A‖ ≤ 2O(r log r) ·max(‖P‖, 1)r; ‖c‖ ≤ d · ‖A‖ · ‖b‖; and
convL(b, P ) = LSM.

Proof (sketch). Since M is proper, convL(b, P ) has exactly r facets; r inequalities in S

define them, with another 2(d− r) for aff M . It can be shown (cf. [23, Theorem 10.2]) that
there exists an appropriate A such that LA · x ≤ 0 M = convL(0, P ); and then c = A · b. J

We will also need a result of von zur Gathen and Sieveking on the sets of all integer
solutions of systems of linear inequalities [24].

I Proposition 3. Let S : A · x ≤ c be a system of inequalities such that A ∈ Zm×n. Then
JSK =

⋃
i∈I L(Bi, Pi) such that

K(Bi, Pi) ∩K(Bj , Pj) = ∅ for all i 6= j,
maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤ 2O(n logn) · ‖A‖n−1 · ‖S‖, and
#I ≤ 2n.

Next, we additionally recall a result on the sets of integer solutions of linear equalities
that follows from results of Pottier [21].

I Proposition 4. Let S0 : A · x = 0 and S : A · x = c be systems of linear Diophantine
equations, where A ∈ Zm×n. Then JS0K≥0 = L(0, P ) and JSK≥0 = L(B,P ) such that
‖B‖ ≤ ((n+ 1) · ‖A‖+ ‖c‖+ 1)m, ‖P‖ ≤ (n · ‖A‖+ 1)m.

Finally, we will need a discrete version of Carathéodory’s theorem:

I Proposition 5. Let M = L(C,Q) ⊆ Zd be a hybrid linear set. Then M =
⋃
i∈I L(Bi, Pi)

such that
maxi∈I‖Bi‖ ≤ ‖C‖+ (#Q · ‖Q‖)O(d),
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maxi∈I #Pi ≤ d, Pi ⊆ Q and each Pi is linearly independent, and
#I ≤ (#Q)d.

The statement of Proposition 5 can essentially be shown by a combination of Lemmas 2.7
and 2.8 in [10], which, however, do not establish any concrete bounds. In our proof, we use
the result on the intersection of hybrid linear sets from the following subsection 2.3.

2.3 Intersection of semi-linear sets
I Theorem 6. Let M and N be semi-linear sets with representations M =

⋃
j∈J L(Cj , Qj),

N =
⋃
k∈K L(Dk, Rk). Then the set L := M ∩ N is a semi-linear set with representation

L =
⋃
i∈I L(Bi, Pi) such that I = J ×K,

maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ ≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d), and
#I ≤ #J ·#K.

Moreover, if Qj ⊆ Rk and i = (j, k) then Pi = Qj.

Proof (sketch). We haveM∩N =
⋃
j∈J L(Cj , Qj)∩

⋃
k∈K L(Dk, Rk) =

⋃
j∈J,k∈K L(Cj , Qj)∩

L(Dk, Rk). Hence it suffices to show that every L(Cj , Qj) ∩ L(Dk, Rk) is some L(Bj,k, Pj,k)
with the desired properties. To this end, one can obtain the set of elements in the intersection
as the set of solutions to a suitable system of linear equations and then apply the bounds from
Proposition 4. Finally, the fact that if Qj ⊆ Rk then Pi = Qj follows from Theorem 5.6.1
in [5, p. 180]. J

3 Hybrid linear sets

In the sequel, we develop a close connection between hybrid linear sets and convex polyhedra
viewed as generalized convex hulls. Convex polyhedra in Qd are sets of the form convC +
coneQ for C,Q ⊆ Qd; they can be viewed as a convex hulls of a set of points C and directions
Q. Suppose C = {b1, . . . , br} and Q = {p1, . . . ,pm}. The connection builds upon on the
similarity of the following sets:

convC + coneQ =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ Q≥0,

r∑
i=1

λi = 1, µj ∈ Q≥0

 and

L(C,Q) =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ N,
r∑
i=1

λi = 1, µj ∈ N

 .

As mentioned above, convL(C,Q) = K(C,Q) = convC + coneQ.

3.1 Proper disjoint decompositions (PDD)
Recall that S =

⋃
i∈I L(Bi, Pi) is a proper disjoint decomposition if vectors in each Pi are

linearly independent and the convex hulls K(Bi, Pi) = convL(Bi, Pi) are pairwise disjoint.

I Theorem 7 (PDD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has a
proper disjoint decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2) and
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#I ≤ (#Q)d+1.

The idea of the proof of Theorem 7 is to rely on the connection between hybrid linear sets
and convex polyhedra. We will use the observation that each set of the form convC + coneQ
has a triangulation. While this term usually refers to the basic construction that splits
a convex polygon in a plane into a number of non-overlapping triangles, we will use a
construction that extends this concept in two ways: first, instead of Q2 the sets are in Qd, so
triangles become simplices; second, the sets can be infinite, i.e., with Q 6= ∅.

The strategy of the proof of Theorem 7 is depicted in the following diagram:

L(C,Q) 3−−−−→ Π, a proper disjoint decomposition of L(C,Q)y1
x3

K(C,Q) 2−−−−→ T , a triangulation of K(C,Q)

Step 1 is taking the convex hull, step 2 is triangulation in Qd, and step 3 constructs a proper
disjoint decomposition given the original set L(C,Q) and the triangulation of K(C,Q).

A generalized δ-dimensional simplex T is a set of the form T = convV + coneD ⊆ Qd
where #V + #D = δ + 1, V 6= ∅, and the dimension of the affine hull of T is exactly δ
(cf. [22, pp. 153f]). Elements of V are ordinary vertices of T , and elements of D are vertices
at infinity and can be understood as directions. (The set D is, in fact, the set of extreme
directions of the set T ; see [22, p. 162].) Faces of generalized simplices conv V + coneD are
also generalized simplices and have the form conv V ′ + coneD′ where V ′ ⊆ V and D′ ⊆ D.

A triangulation of a set W ⊆ Qd is a collection T of generalized simplices that satisfies
the following properties:
1.
⋃
F∈T F = W .

2. For every F ∈ T and every face F ′ of F , it holds that F ′ ∈ T .
3. The intersection of any two F1, F2 ∈ T is either empty or is a face of both F1 and F2.
4. All (generalized) simplices in the set of maxima of T , denoted Max T := {F ′ ∈ T : @F ∈
T . F ′ is a face of F and F 6= F ′}, have the same dimension δ, denoted dim T .

In other words, a triangulation of W is a pure polyhedral complex (see, e.g., [4, Chapter 6])
that consists of generalized simplices and covers exactly W .

To simplify notation, we write T = (T1, . . . , Tm) whenever Max T = {T1, . . . , Tm}; of
course, the set {T1, . . . , Tm} is a subset of the set T . It is straightforward that W =
T1 ∪ . . . ∪ Tm if T = (T1, . . . , Tm) is a triangulation of W . Conversely, if T1, . . . , Tm are
(generalized) simplices of equal dimension such that the collection T of all their faces satisfies
Condition 3 in the definition of triangulation, then this collection T is a triangulation of
T1 ∪ . . . ∪ Tm. Lemma 8 triangulates possibly unbounded convex polyhedra (for non-empty
Q, it treats its elements as vertices at infinity) without introducing new vertices or directions.

I Lemma 8. Every polyhedron of the form W = convC + coneQ ⊆ Qd has a triangulation
T = (T1, . . . , Tm) where m ≤ (#C + #Q)d+1 and Ti = convCi + coneQi with Ci ⊆ C and
Qi ⊆ Q for all i.

Note that adjacent simplices Ti and Tj in a triangulation can share points in common
lower-dimensional faces. However, for our purposes they should be made disjoint. Suppose U
is a polyhedron of the form X = {x ∈ Qd : ai · x ≤ ci, 1 ≤ i ≤ m} where ai ∈ Zd and ci ∈ Z
for all i. For any A ⊆ {1, . . . ,m}, we call the set

XA = {x ∈ Qd : ai · x < ci, i ∈ A, and ai · x ≤ ci, i ∈ {1, . . . ,m} \A}

a half-opening of U obtained by cutting off the hyperplanes ai · x = ci, i ∈ A.
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I Lemma 9. Let W be a δ-dimensional polyhedron in Qd. For each triangulation T =
(T1, . . . , Tm) of W there exists a collection of sets T 0 = (T 0

1 , . . . , T
0
m) ⊆ Qd that satisfies the

following conditions:
1. T 0

1 ∪ . . . ∪ T 0
m = W .

2. For every i, T 0
i is a half-opening of Ti.

3. Ti and Tj are disjoint for i 6= j.

Lemma 9 is the half-open decomposition, originally from [1] and [16]. Our formulation is
a direct corollary of Theorem 3 in the latter paper; see also [8, Section 3.2].

I Lemma 10. Suppose T = conv V + coneD is a generalized δ-dimensional simplex in Qd
where V,D ⊆ Zd and #V + #D = δ + 1. Then for any half-opening T 0 of T it holds that
T 0 ∩ Zd = L(E,D) where ‖E‖ ≤ ‖V ‖+ (d+ 1) · ‖D‖.

Lemma 10 makes it possible to use half-open decomposition in the proof of Theorem 7.

Proof of Theorem 7 (sketch). Take a triangulation of W = K(C,Q) = convC + coneQ,
which exists by Lemma 8, and apply Lemma 9 to this triangulation. The result is a
collection T 0 = (T 0

1 , . . . , T
0
m) where each T 0

i is a half-opening of some generalized simplex
convCi + coneQi such that Ci ⊆ C and Qi ⊆ Q. By Lemma 10, T 0

i ∩ Zd = L(Di, Qi). We
now apply Theorem 6: since Qi ⊆ Q, we have L(Di, Qi)∩L(C,Q) = L(Bi, Pi) where Pi = Qi.
Vectors in each set Pi = Qi are, in fact, linearly independent, because convCi + coneQi is a
generalized simplex. Moreover, K(Bi, Pi) ⊆ convL(Di, Qi) ⊆ T 0

i for each i; since the sets
T 0

1 , . . . , T
0
m are pairwise disjoint, so are the sets K(Bi, Pi). Finally,

m⋃
i=1

L(Bi, Pi) =
m⋃
i=1

T 0
i ∩ Zd ∩ L(C,Q) = L(C,Q) ∩

m⋃
i=1

T 0
i

= L(C,Q) ∩W = L(C,Q) ∩ convL(C,Q) = L(C,Q). J

3.2 Unambiguous decompositions (UD)
The main results of this subsection are the following theorems:

I Theorem 11 (UD for proper hybrid linear sets). Every proper hybrid linear set M = L(C,Q)
has an unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the

following conditions are satisfied:
‖Bi‖ ≤ ‖C‖ and
#I ≤ (2 ·#C)#Q.

I Theorem 12 (UD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has an
unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2) and
#I ≤ ((‖C‖+ ‖Q‖+ d)O(d) + #C)d · (d+ #Q)O(d2) ≤ ‖M‖O(d3).

We now show how to prove Theorem 11. The idea is to reduce the disambiguation of a
proper hybrid linear set to disambiguation of an ideal in a finitely generated commutative
monoid, captured by the following lemma. Here and below, by e1, . . . , er we denote coordinate
vectors in Nr.

I Lemma 13. Every set of the form U = L(F, {e1, . . . , er}) = F + Nr with a finite F ⊆ Nr
has a representation U =

⋃
k∈K L(Gk, Ek) such that the following conditions are satisfied:
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each set L(Gk, Ek) is unambiguous,
the polyhedra convL(Gk, Ek) and convL(Gk′ , Ek′) are disjoint for k 6= k′,
‖Gk‖ ≤ ‖F‖,
Ek ⊆ {e1, . . . , er}, and
#K ≤ (#F + 1)r.

Proof (sketch). The condition that a vector x belongs to F + Nr can be specified by a
logical formula Φ over predicates of the form xj ≥ c. These predicates break up Nr into
at most (#F + 1)r disjoint regions, and each region is described by a unambiguous hybrid
linear set in a straightforward way. J

Proof of Theorem 11 (sketch). Take M = L(C,Q) ⊆ Zd where Q = {q1, . . . , qr} ⊆ Zd
and vectors in Q are linearly independent, r ≤ d. Consider the point lattice L = Q · Zr =
{Q · λ : λ ∈ Zr}; see, e.g., [17, Chapter 2]. Vectors x,y ∈ Zr are congruent modulo L,
written x ≡ y (mod L), if and only if x− y ∈ L. This congruence splits the set C into a
disjoint union C = C1 ∪ . . . ∪Cs where x ∈ Ci and y ∈ Cj are congruent if and only if i = j.
It is easy to see that M =

⋃
1≤j≤s L(Cj , Q) is a disjoint union, and disambiguating each

L(Cj , Q) separately will disambiguate M .
Suppose C1 = {x1, . . . ,xm} ⊆ x1 + L. Since the vectors in Q = {q1, . . . , qr} are

linearly independent, each vector from the set x1 + L has a unique expansion of the form
x1 +

∑r
j=1 ajqj . Consider the mapping ψ : x1 + L → Zr taking each vector x1 +

∑r
j=1 ajqj

to the vector (a1, . . . , ar) ∈ Zr. For each j, let a0
j be the smallest of the numbers ψ(xt)[j]

over 1 ≤ t ≤ m; here [j] refers to the jth component of an r-dimensional vector. Denote
a0 = (a0

1, . . . , a
0
r) and let ψ′ : x1 +L → Zr be given by ψ′(x) = ψ(x)− a0. Observe that the

mapping ψ′ is injective and maps C1 to some finite set F ⊆ Nr; in fact, ψ′(L(C1, Q1)) = F+Nr.
After this, it remains to apply Lemma 13. J

4 Semi-linear sets

In this section, we derive our main results on the complement, set-theoretic difference, and
decompositions of semi-linear sets. We will rely on Theorems 7 and 11 from Section 3.

4.1 Geometric ingredients: Splitting into atomic polyhedra
Consider a semi-linear set given by M =

⋃
j∈J L(Cj , Qj). Take the proper disjoint decompo-

sition of each L(Cj , Qj) according to Theorem 7; this decomposes M as

M =
⋃
j∈J

⋃
t∈Tj

L(Cjt, Qjt) (5)

where hybrid linear sets L(Cjt, Qjt) are proper, Qjt ⊆ Qj , and, moreover, for any fixed j the
polyhedra K(Cjt, Qjt) are pairwise disjoint.

Denote by H the collection of principal supporting hyperplanes for shifted cones K(b, Qjt),
b ∈ Cjt, t ∈ Tj , and j ∈ J : for each cone, take its d principal supporting hyperplanes, i.e.,
the hyperplanes obtained in Proposition 2, each of the form h : a · x = c (with fixed a ∈ Zd
and c ∈ Z), and put them into H. Note that each hyperplane h′ is associated with half-spaces
h− : a ·x ≤ c and h+ : a ·x ≥ c+1; moreover, we can pick the signs so that K(b, Qjt) ⊆ Lh−M.
An atomic polyhedron with respect to H is a non-empty set of the form

A(H) =
⋂
h∈H

Lh−M ∩
⋂

h∈H\H

Lh+M,

where H ⊆ H. Clearly, Zd ⊆
⋃
H⊆HA(H), and A(H) ∩A(H ′) = ∅ whenever H 6= H ′.
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I Lemma 14. For every L(b, Qjt) with b ∈ Cjt and every A = A(H), either A ⊆
convL(b, Qjt) or A ∩ convL(b, Qjt) = ∅.

Take a hybrid linear set L(Cjt, Qjt) and let b ∈ Cjt. We say that the linear set L(b, Qjt)
shares an atomic polyhedron A iff A ⊆ convL(b, Qjt); otherwise we say that it avoids A.

I Lemma 15. Every atomic polyhedron A(H) is the set of rational solutions to a system of
at most O(d ·

∑
j∈J(#Qj)d+1) linear inequalities with entries bounded by ‖M‖O(d2).

I Lemma 16. The number of atomic polyhedra is at most
(
d ·
∑
j∈J #Cj · (#Qj)d+1)d+1.

Consider an atomic polyhedron A; we will assume in the remainder of this subsection
that A is shared by at least one linear set of the form L(b, Qjt). Even though the total
number of linear sets of this form that share A can be large, the following property holds.

I Lemma 17. If linear sets L(b, Qjt) and L(b′, Qjt′) share A, then t = t′. In particular, the
number of pairs (j, t) such that some linear set L(b, Qjt) shares A does not exceed #J .

I Lemma 18. For every A there exist finite sets E ⊆ Qd and G ⊆ Zd that satisfy the
following conditions:
1. A = convE + coneG.
2. For every linear set L(b, Qjt) that shares A, the set G is a subset of L(0, Qjt).
3. Numerators and denominators of all entries in all e ∈ E are bounded by ‖M‖O(d3).
4. ‖G‖ ≤ ‖M‖#J·O(d4).
5. #G ≤ ‖M‖O(d4).

The proof of Lemma 18 first applies Proposition 1 to the representation of A from
Lemma 15. The upper bound on ‖G‖ then relies on the fact that, for every j ∈ J , our
decomposition (5) ensures disjointness of K(Cjt, Qjt) among t ∈ Tj ; the proof uses this
property via Lemma 17.

4.2 Decompositions, complement, and difference
We first state the results on decompositions of semi-linear sets and on the semi-linear
representation of the complement.

I Theorem 19 (PDD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has a

proper disjoint decomposition
⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d6),
‖Pi‖ ≤ ‖M‖#J·O(d4), and
#I ≤ ‖M‖O(d5).

I Corollary 20 (UD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has an

unambiguous decomposition
⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d6) and
‖Pi‖ ≤ ‖M‖#J·O(d4).

I Theorem 21 (complement of semi-linear sets). The complement of every semi-linear set
M =

⋃
j∈J L(Cj , Qj) has a representation of the form

⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d4) and
‖Pi‖ ≤ ‖M‖#J·O(d4).
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We will state the results on set difference at the end of this subsection, and now we focus
our attention on Theorems 19 and 21. Corollary 20 follows from Theorems 19 and 11.

Recall that in Subsection 4.1 we decomposed the space into disjoint atomic polyhedra
A. Each A = convE + coneG by Lemma 18, with E ⊆ Qd and G ⊆ Zd. By Carathéodory’s
theorem, for every vector x ∈ A there are νe ∈ N, e ∈ E, and µg ∈ N, g ∈ G, such that x
has an expansion of the form

x =
∑
e∈E

νe · e+
∑

g∈G′

µg · g = τ(x) + π(x), (6)

where τ(x) =
∑

e∈E νe · e +
∑

g∈G′(µg − bµgc) · g denotes the truncation of x, π(x) =∑
g∈G′bµgc · g denotes the periodic part of x, and G′ ⊆ G is some subset of linearly

independent vectors in G. We will consider sets X = A∩Zd\M and Y = A∩Zd∩M = A∩M .
It is not difficult to show that ‖τ(X)‖ and ‖τ(Y )‖ are bounded from above by ‖M‖#J·poly(d);

these estimations are relevant, as we prove that the equalities X = L(τ(X), G) and
Y = L(τ(Y ), G) hold. While the latter equality requires no sophisticated arguments, a
proof of the former turns out to be somewhat delicate. As an auxiliary statement, we show
that τ(X) ⊆ X; with this fact at hand, the proof of the inclusion L(τ(X), G) ⊆ X goes as
follows. Suppose, for the sake of contradiction, that there exists a vector z ∈ L(τ(X), G)∩M ,
say with z ∈ L(b, Qjt) such that L(b, Qjt) shares A. This implies the existence of another
vector x ∈ X with τ(x) ∈ b + Qjt · Zδ where δ is the cardinality of Qjt. At the same
time, this τ(x) also belongs to X and thus to A and to the cone K(b, Qjt) = b+Qjt ·Qδ≥0.
Since the vectors in Qjt are linearly independent (recall that sets Qjt come from a proper
disjoint decomposition of L(Cj , Qj)), it follows that τ(x) ∈ b+Qjt · Nδ = L(b, Qjt), which
contradicts the fact that τ(X) ⊆ X, because X excludes M .

As seen from this sketch, our ability to construct the hybrid linear representation of X
(which corresponds to the complement of M) relies on the fact that our decomposition of M
in (5) uses linear sets with linearly independent periods only.

Proofs of Theorems 19 and 21 (sketch). Use equalities

M =
⋃
H⊆H

A(H) ∩M and Zd \M =
⋃
H⊆H

A(H) ∩ Zd \M

where it suffices to consider only (non-empty) atomic polyhedra A = A(H). Whenever all
linear sets L(b, Qjt), b ∈ Cjt (see (5)) avoid a polyhedron A, we have Y = A ∩M = ∅ and
X = A ∩ Zd \M = A ∩ Zd. Here the case of Y is trivial, and the case of X sends us to
Proposition 3. Otherwise, if at least one linear set shares A, we use the representations
X = L(τ(X), G) and Y = L(τ(Y ), G) as discussed above. For the purposes of proper disjoint
decomposition (Theorem 19), we need to invoke Theorem 7 on L(τ(Y ), G). Upper bounds
on ‖Bi‖, ‖Pi‖, and #I follow from Lemmas 18 and 16 and from Theorem 7. J

I Corollary 22 (difference of semi-linear sets). The set-theoretic difference M \N of semi-
linear sets M =

⋃
j∈J L(Cj , Qj) and N =

⋃
k∈K L(Dk, Rk) has a representation of the form

L =
⋃
i∈I L(Bi, Pi), where

maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤
(
#pM + ‖M‖+ ‖N‖#K·d5)O(d).

The following result combines Corollary 22 with Proposition 5.

I Corollary 23 (small vector in set difference). Let M,N be semi-linear sets such that
‖M‖, ‖N‖ ≤ m and M \N 6= ∅. Then there is v ∈M \N such that ‖v‖ ≤ 2mO(d2) .
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5 An application: Exponent-sensitive commutative grammars

In this section, we show that our bounds on the difference of semi-linear sets yield a novel
and tight upper bound for the equivalence problem for a class of commutative grammars.

Let Σ = {a1, . . . , am} be a finite alphabet. The free commutative monoid generated
by Σ is denoted by Σ�, and we treat elements of Σ� as vectors in Nd where d = |Σ|. By
Σ⊕ := Σ� \ {0} we denote the free commutative semi-group generated by Σ. An exponent-
sensitive commutative grammar (ESCG) is a tuple G = (N,Σ, S,Π), where N is a finite set of
non-terminal symbols; Σ is a finite alphabet, the set of terminal symbols such that N ∩Σ = ∅;
S ∈ N is the axiom; and Π ⊆ (

⋃
U∈N {U}

⊕)× (N ∪ Σ)� is a finite set of productions.
ESCG are essentially equivalent to a generalisation of communication-free Petri nets

in which incoming arcs may have multiplicity greater than one [18]. The size |G| of G is
the number of symbols required write it down; in particular we assume that commutative
words from Σ� are encoded in binary. Subsequently, we write V →W whenever (V,W ) ∈ Π.
Let D,E ∈ (N ∪ Σ)�, we say D directly generates E, written D ⇒G E, iff there are
F ∈ (N ∪ Σ)� and π ∈ Π such that π = V → W , D = V + F and E = F +W . We write
U ⇒∗G W for the reflexive transitive closure of ⇒G and say that U generates W in this case.
If G is clear from the context, we omit the subscript G. The language L(G) generated by G
is defined as

L(G) := {W ∈ Σ� : S ⇒∗ W}.

Given ESCG G,H and w ∈ Σ�, the word problem is to decide whether w ∈ L(G), and
equivalence is to decide whether L(G) = L(H). The word problem is PSPACE-complete;
the equivalence problem was shown PSPACE-hard and decidable in 2-EXPSPACE by Mayr
and Weihmann [18]. The latter result has recently been improved to coNEXP-hardness and
membership in co-2NEXP in [7]. An application of Corollary 23 enables us to settle the
complexity of the equivalence problem for ESCG.

I Theorem 24. Equivalence for ESCG is coNEXP-complete.

Proof (sketch). Let G,H be ESCG such that L(G) 6= L(H), and with no loss of generality
assume that there is some w ∈ L(G)\L(H). It is shown in [18] thatM = L(G) and N = L(H)
are semi-linear with ‖M‖, ‖N‖ ≤ 2p(|G|+|H|) for some fixed polynomial p. Consequently,
by Corollary 23 we may assume that ‖w‖ ≤ 22q(|G|+|H|) for some fixed polynomial q, and
hence the representation size n of w is upper-bounded by 2q(|G|+|H|). Thus, for the coNEXP
upper bound it only remains to show that w ∈ L(G) and w 6∈ L(H) can be checked in time
polynomial in the n. This is not completely obvious since the word problem for ESCG
is PSPACE-complete. In the full version of this paper, we show how this obstacle can be
avoided, bringing in a strategy that was used by Huynh [10] in order to show a coNEXP
upper bound for the equivalence problem for context-free commutative grammars. J
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