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Abstract

We consider the filtering problem of estimating a hidden random variable X by
noisy observations. The noisy observation process is constructed by a randomised
Markov bridge (RMB) (Zt)t∈[0,T ] of which terminal value is set to ZT = X. That
is, at the terminal time T , the noise of the bridge process vanishes and the hidden
random variable X is revealed. We derive the explicit filtering formula, governing
the dynamics of the conditional probability process, for a general RMB. It turns
out that the conditional probability is given by a function of current time t, the
current observation Zt, the initial observation Z0, and the a priori distribution ν
of X at t = 0. As an example for an RMB we explicitly construct the skew-normal
randomised diffusion bridge and show how it can be utilised to extend well-known
commodity pricing models and how one may propose novel stochastic price models
for financial instruments linked to greenhouse gas emissions.
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1 Introduction

Let E ⊂ Rn and let T ∈ (0,∞). On a probability space (Ω,F ,P), consider an E-valued
(y, T, z)-Markov bridge Y (y,T,z) := (Y

(y,T,z)
t )t∈[0,T ] so that

Y
(y,T,z)
0 = y, Y

(y,T,z)
T = z a.s., (1.1)

and an E-valued random variable X, which is independent of Y (y,T,z). Here, by a
(y, T, z)-Markov bridge, we mean a process obtained by conditioning a Markov process
Y := (Yt)t≥0 to start in y ∈ E at time 0 and arrive at z ∈ E at time T ∈ (0,∞). For its
construction, we follow Fitzsimmons et al. (1993). We define the process Z := (Zt)t∈[0,T ]

by
Z := Y (y,T,X),

which we call randomised Markov bridge (RMB). We further define

FZt := σ(Zs; s ∈ [0, t]), t ∈ [0, T ],

and let Z be the noisy observation process of the hidden random variable X. At the
terminal time T , the noise in the bridge process Y (y,T,z) vanishes and the hidden variable
X(= ZT ) is revealed. We are interested in the stochastic filtering problem of estimating
the hidden random variable X through the observation of Z. That is, we are interested
in computing the conditional probability,

πt(dx) := P
(
X ∈ dx|FZt

)
, t ∈ [0, T ), (1.2)

and the conditional expectation,

πt(f) := E
[
f(X)|FZt

]
=

∫
E
f(x)πt(dx), t ∈ [0, T ), (1.3)

where f : E → R is Borel-measurable so that f(X) is integrable.
The problem (1.2)-(1.3) of filtering a hidden random variable X by observing a sub-

class of RMB processes Z has been studied in a financial context by, e.g., Brody et al.
(2008), Hoyle et al. (2011), and Filipović et al. (2012). In those financial applications,
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f(X) represents the cash flow of a financial asset that is paid at the terminal date T ,
and Z is called the information process. The conditional expectation (1.3) is used to
model the asset price process (St)t∈[0,T ) by

St := e−r(T−t)πt(f) = E
[
e−r(T−t)f(X)

∣∣ FZt ] , (1.4)

where r ≥ 0 is the constant risk-free interest rate and P is regarded as being the so-
called risk-neutral probability measure. In the above-mentioned works, Brownian ran-
dom bridges and, more generally, Lévy random bridges (LRB) are employed, and the
stochastic dynamics of asset prices are derived.

Randomised Markov bridges generalise the class of information processes which can
be applied to develop information-based asset pricing models. Such models describe the
stochastic nature of asset prices as the market’s price adjustments to the information
flow about market factors, modelled by the hidden random variable X, which affect the
payoff function of a financial contract. In this setting, the effect of emerging information
about market factors is manifested in the conditional probability process underlying the
stochastic dynamics of asset prices. By extending the class of information processes
with RMBs, the class of information-based asset price models is also extended. The
generalised class can now be constructed by starting off with any Markov process, also
those that have dependent increments, leading to information processes beyond the LRB
class (which are constructed on the basis of Lévy processes). Further work making use
of LRBs, that now may be extended by RMBs, includes Macrina (2014) on heat kernel
asset pricing models, Hoyle et al. (2015) on insurance claim reserving, and Crépey et al.
(2016) on interest rate modelling.

The main contribution of the present article is to provide the explicit representations
of (1.2) and (1.3) for a general RMB, focusing on its interesting features from a stochastic
filtering viewpoint. It is well-known that in the general stochastic filtering problem, the
conditional probability (1.2) has an infinite-dimensional structure; it is the solution to
the measure-valued Kushner-Stratonovich stochastic differential equation (SDE). In the
problem we consider, unlike in the general situation, we obtain the relation

P
(
Zt ∈ dy|FZs

)
= P (Zt ∈ dy|Zs, Z0) =: Ps,t(Zs, dy|Z0) (1.5)

for 0 ≤ s < t ≤ T (see Propositions 2.1 and 2.2, and Remark 2.3 for details). In words,
we can regard Z as satisfying the Markov property with respect to its natural filtration
(FZt )t∈[0,T ), once the initial value Z0 is fixed (see Proposition 2.2). From the above
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relation, it follows that

πt(dy) = P
(
ZT ∈ dy|FZt

)
= Pt,T (Zt, dy|Z0).

We thus observe that the pair of observations (Z0, Zt) determines πt(dz), and the past
observation (Zs)s∈(0,t) is not necessary for the computation of the conditional probabil-
ity. As a consequence, the dynamics of (πt(dz))t∈[0,T ) can be determined by a finite-
dimensional Markovian SDE, see Proposition 2.3.

Remark 1.1. We refer to Baudoin (2002) and Çetin and Danilova (2016) for related pieces
of work: conditioned stochastic differential equations (CSDE) introduced by Baudoin
(2002), and the weak conditioning of (Markovian) SDEs via h-transforms considered
by Çetin & Danilova (2016) are directly related with our RMBs (with respect to the
filtration (FZt )t∈[0,T )). Although the works by Baudoin (2002), Çetin and Danilova
(2016), and the analysis presented in this article overlap in places, the following viewpoint
and motivation appear to be different. For example, (a) we are interested in providing
a stochastic filtering interpretation of RMBs, see Propositions 2.1 and 2.3, and (b) we
consider general RMBs whereas Baudoin (2002) and Çetin & Danilova (2016) study
SDEs driven by Brownian motions only.

In the following sections, after preparing the setup in detail, we state our results,
give additional explanations in the remarks, and provide the proofs. In Section 4, we
introduce a new RMB, the skew-normal randomised diffusion bridge (SNRDB) which is
applied to commodity pricing, and which, in doing so, extends the models by Gibson &
Schwarz (1990) and Schwarz (1997). In our view we also find a natural way to apply this
class of pricing models to securitise climate risk associated to greenhouse gas emissions.

2 Setup and results

Let E ⊂ Rn be a Borel state space, and let T ∈ (0,∞) be a given constant. For the
construction of the E-valued (y, T, z)-Markov bridge Y (y,T,z) := (Y

(y,T,z)
t )t∈[0,T ] which

satisfies (1.1), we follow Section 2 of Fitzsimmons et al. (1993). We consider an E-valued
strong Markov process Y := (Yt)t∈[0,T ] with càdlàg sample paths, which is realised as
the coordinate process Y on Ω1

T , that is, on the space of right-continuous paths from
[0, T ) to E that have left limits on (0, T ). The law of the Markov process Y that starts
from y is denoted by P̃1

y, and the natural filtration of Y is denoted by (F1
t )t∈[0,T ]. We

4



assume that the transition probability of the Markov process Y has the density

P̃t(x, dy) = p̃t(x, y)m(dy)

with respect to a σ-finite measure m on E such that the Chapman-Kolmogorov identity

p̃t+s(x, z) =

∫
E
p̃t(x, y)p̃s(y, z)m(dy)

holds true, where t > 0 and s > 0 (s+ t ≤ T ), x ∈ E and z ∈ E, and p̃t(x, y) > 0 for all
(t, x, y) ∈ (0, T ] × E × E. Moreover, we assume the following duality: Associated with
(Y, (P̃t)t≥0), there exists

(
Ŷ , (P̂t)t≥0

)
, where Ŷ is the second Markov process with the

state space E and (P̂t)t≥0 is the transition probabilities of Ŷ , which satisfies∫
E

(P̃tf1)(x)f2(x)m(dx) =

∫
E
f1(x)(P̂tf2)(x)m(dx)

for t ≥ 0 and bounded Borel measurable f1, f2 : E → R, where we write (P̃tf1)(x) :=∫
E f1(y)P̃t(x, dy) and (P̂tf2)(x) :=

∫
E f2(y)P̂t(x, dy). Then, by Proposition 1 of Fitzsim-

mons et al. (1993), we see the following:

(a) Let F1
T− := σ

(
∪0≤t<TF1

t

)
. For each y and z ∈ E, we can construct the probability

measure P1
y,z on (Ω1

T ,F1
T−) that satisfies

dP1
y,z

∣∣
F1

t
= Λ

(y,T,z)
t dP̃1

y

∣∣
F1

t

for all t ∈ [0, T ), where

Λ
(y,T,z)
t :=

p̃T−t(Yt, z)

p̃T (y, z)
.

(b) The law of (Yt)t∈[0,T ) under P1
y,z is equal to that of the (y, T, z)-Markov bridge. In

particular, it holds that

P1
y,z (Y0 = y, YT− = z) = 1.

The corresponding transition densities that satisfy

p(z,T )(s, y; t, y′)m(dy′) := P1
y,z

(
Yt ∈ dy′|Ys = y

)
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for y, y′, z ∈ E and 0 < s < t < T are expressed by

p(z,T )(s, y; t, y′) =
p̃t−s(y, y

′)p̃T−t(y
′, z)

p̃T−s(y, z)
.

Furthermore, we introduce another probability space (Ω2,F2,P2) on which we consider
the random variable X with law ν := P2 ◦ X−1. Let Ω := Ω1

T × Ω2, Ft := F1
t ⊗ F2,

FT− = F1
T− ⊗F2, and let Py := P1

y ⊗ P2 such that

dPy(ω1, ω2)
∣∣
Ft

:= Λ
(y,T,X)
t (ω1, ω2)dP̃1

y(ω1)⊗ dP2(ω2)
∣∣
Ft

(2.1)

is satisfied for t ∈ [0, T ) where

Λ
(y,T,X)
t (ω1, ω2) :=

p̃T−t (Yt(ω1), X(ω2))

p̃T (y,X(ω2))
. (2.2)

Then, on the filtered product space (Ω,FT−,Py, (Ft)t∈[0,T )), the RMB (Zt)t∈[0,T ] is ob-
tained by setting Zt(ω1, ω2) := Yt(ω1) for t ∈ [0, T ) and ZT (ω1, ω2) := X(ω2).

Remark 2.1. Intuitively, the RMB is constructed as Z := Y (y,T,X), by inserting the
random variable X into the terminal value of the Markov bridge Y (y,T,·). For the validity
of such a direct approach, the measurability of the function z 7→ Y (y,T,z) is necessary.
The above construction of an RMB avoids this measurability issue. However, there are
situations where the measurability issue can be resolved directly: For example, if we
consider the SDE for Y (y,T,z), starting from the Markovian SDE (2.4) below, then, as
we will see in (2.6), we have

dY
(y,T,z)
t =

{
b
(
Y

(y,T,z)
t

)
+ (σσ>)

(
Y

(y,T,z)
t

)
∇ ln p̃T−t

(
Y

(y,T,z)
t , z

)}
dt

+ σ
(
Y

(y,T,z)
t

)
dWt

(
Y

(y,T,z)
0 = y

)
.

The continuity of z 7→ Y (y,T,z) can be shown by discussing the continuity of the solution
to the above SDE with respect to the parameter z, which is a standard result in SDE
theory if we assume the continuity of z 7→ p̃t(y, z).

Remark 2.2. For the construction of Markovian bridges, we follow classical results ob-
tained in Fitzsimmons et al. (1993). There are several recent studies, where extended
results are discussed: For example, we refer to Chaumont & Uribe Bravo (2011), and
Çetin & Danilova (2016). Both studies succeed in constructing Markov bridges without
assuming the duality condition of the underlying Markov process. The former work
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derives and utilises the weak continuity property of a Markov bridge with respect to
its terminal value. The latter work is interested in SDE representations of the bridges
driven by Brownian motions. Interestingly, the weak conditioning discussed in the lat-
ter work directly links to an RMB with respect to its natural filtration (FZt )t∈[0,T ); see
Remark 2.6 below.

2.1 Filtering results

For the filtering problem, we have the following:

Proposition 2.1. For t ∈ [0, T ), the conditional probability (1.2) is given by

πt(dz) =

p̃T−t(Zt, z)

p̃T (Z0, z)
ν(dz)∫

E

p̃T−t(Zt, z
′)

p̃T (Z0, z′)
ν(dz′)

.

Remark 2.3. From a stochastic filtering viewpoint, it is interesting that the conditional
probability πt(dz) is expressed by a function of t, Zt, Z0, and ν. At each point in
time, πt(dz) can be computed by inserting the current observation Zt and the initial
observation Z0, only. The past information (memory) (Zs)s∈(0,t) is not necessary.

Proof. By applying the Bayes rule and the relations (2.1) and (2.2), we have

πt(f) := Ey
[
f(X)|FZt

]
=

Ẽy
[
Λ
(y,T,X)
t f(X)

∣∣ FZt ]
Ẽy
[
Λ
(y,T,X)
t

∣∣ FZt ] ,

where we use the notation Ẽy[·] for the expectation with respect to the probability
measure dP̃1

y ⊗ dP2. Observing that FZt and X are independent under dP̃1
y ⊗ dP2, we

deduce that

πt(f) =

∫
E

p̃T−t(Zt, z)

p̃T (y, z)
f(z)ν(dz)∫

E

p̃T−t(Zt, z
′)

p̃T (y, z′)
ν(dz′)

. (2.3)

We note that once the initial value Z0 is fixed, the process (Zt)t∈[0,T ) is “Markovian”
in the following sense:
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Proposition 2.2. For 0 ≤ s < t < T , (1.5) holds where

Ps,t(x, dy|z0) = q(s, x; t, y|z0)m(dy)

and

q(s, x; t, y|z0) :=

p̃t−s(x, y)

{∫
E

p̃T−t(y, z)

p̃T (z0, z)
ν(dz)

}
∫
E

p̃T−s(x, z
′)

p̃T (z0, z′)
ν(dz′)

.

For a fixed z0, the transition density q(s, x; t, y|z0) satisfies the Chapman-Kolmogorov
identity:

q(s, x;u, z|z0) =

∫
E
q(s, x; t, y|z0)q(t, y;u, z|z0)m(dy)

for 0 < s < t < u < T and x, y, z ∈ E.

Remark 2.4. Let m(dx) = dx and ν(dx) = g(x)dx. Then, one can check that (a)

lim
t↑T

∫
E

p̃T−t(y, z)

p̃T (Z0, z)
ν(dz) =

∫
E

δy(z)

p̃T (Z0, z)
g(z)dz =

g(y)

p̃T (Z0, y)

where δy(·) is the Dirac delta function with point mass at y, and (b)

lim
t↑T

Ps,t(Zs, dx|Z0) =

p̃T−s(Zs, y)

p̃T (Z0, y)
ν(dy)∫

E

p̃T−s(Zs, z
′)

p̃T (Z0, z′)
ν(dz′)

= πs(dx).

Proof. The proof is similar to the one for Proposition 2.1. We see that, for 0 ≤ s ≤ t < T ,

Ez0
[
f(Zt)|FZs

]
=

Ẽz0
[
Λ
(y,T,X)
t f(Zt)

∣∣ FZs ]
Ẽz0

[
Λ
(y,T,X)
t

∣∣ FZs ] ,

where we use the Bayes rule, (2.1) and (2.2). Recalling that FZt and X are independent
under dP̃1

z0 ⊗dP2, the numerator of the right-hand side of the above equation is equal to∫
E
p̃t−s(z0, y)

{∫
E

p̃T−t(y, z)

p̃T (z0, z)
ν(dz)

}
f(y)m(dy).

By computing the denominator in a similar way, we obtain the expression for Ps,t(x, dy|z0).

8



The Chapman-Kolmogorov identity is seen from

E[f(Zu)|FZs ] = E
[
E
[
f(Zu)|FZt

] ∣∣ FZs ] , 0 ≤ s ≤ t ≤ u < T,

which is the tower property of conditional expectation.

Next, we are interested in describing the (P,FZt )-dynamics of (πt(f))t∈[0,T ]. To this
end, we construct the RMB (Zt)t∈[0,T ], starting with the underlying (unconditioned)
Markovian SDE,

dYt = b(Yt)dt+ σ(Yt)dW̃t, Y0 = y (2.4)

on (Ω1
T ,F1

T , P̃1
y, (F1

t )t∈[0,T ]). Here, b : Rn → Rn and σ : Rn → Rn×d are given functions.
Further, W̃ :=

(
W̃ 1, . . . , W̃ d

)>, W̃ i :=
(
W̃ i
t

)
t∈[0,T ] is a standard d-dimensional (P̃1

y,F1
t )-

Brownian motion. Although assuming the existence (in the sense of its law) of a unique
weak solution to (2.4) is sufficient for constructing an RMB, we assume that there exists a
strong, pathwise unique solution to (2.4) in order to consider the filtering problem with
respect to FZt . Moreover, we assume that there exist associated transition densities
p̃t(x, y) > 0 with respect to the Lebesgue measure for t ∈ (0, T ], x, y ∈ E, which are
sufficiently smooth with respect to (t, x). We recall that p̃(·)(·, y) satisfies the Kolmogorov
backward equation

(−∂t + L) p̃t(x, y) =0 for (t, x) ∈ (0, T ]× E,

p̃0(x, y) =δy(x),
(2.5)

where
L(f)(x) := b(x)>∇f(x) +

1

2
tr
(

(σσ>)(x)∇∇f(x)
)

with ∇f := (∂x1f, . . . , ∂xnf)> and ∇∇f :=
(
∂xixjf

)
1≤i,j≤n being the infinitesimal gen-

erator of the Markov process Y . In this case, by using Itô’s formula, we see that (2.2)
satisfies

dΛ
(y,T,x)
t = Λ

(y,T,x)
t

[
∇ ln p̃T−t(Yt, x)>σ(Yt)dW̃t

]
,

where we denote ∇ ln p̃t(y, x) := (∂y1 ln p̃t(y, x), . . . , ∂yn ln p̃t(y, x))>. Hence, by Gir-
sanov’s theorem, we deduce that

Wt := W̃t −
∫ t

0
σ(Zs)

>∇ ln p̃T−s(Zs, X)ds, t ∈ [0, T )

is a (Py,Ft)-Brownian motion, and the SDE, defined on (Ω,FT−,Py, (Ft)t∈[0,T )) and
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satisfied by Z := (Zt)t∈[0,T ), can be written down as

dZt =
{
b(Zt) + (σσ>)(Zt)∇ ln p̃T−t(Zt, X)

}
dt+ σ(Zt)dWt (Z0 = y). (2.6)

We deduce that ZT− := limt↑T Zt = X, Py-almost surely. For the calculation of the
(Py,FZt )-dynamics of Z and πt(f), we prepare the following: (a) We rewrite (2.3) as

πt(f) =
ρt(f)

ρt(1)
, (2.7)

where
ρt(f) :=

∫
E
f(z)ρt(dz) and ρt(dz) :=

p̃T−t(Zt, z)

p̃T (y, z)
ν(dz).

(b) We define

R(t, z; f) :=

∫
E
f(z′)

p̃T−t(z, z
′)

p̃T (y, z′)
ν(dz′) and Π(t, z; f) :=

R(t, z; f)

R(t, z; 1)
, (2.8)

where we fix Z0 = y, recalling the relations

ρt(f) = R(t, Zt; f) and πt(f) = Π(t, Zt; f) =
R(t, Zt; f)

R(t, Zt; 1)
.

With this at hand, we obtain the subsequent result.

Proposition 2.3. Let f : E → R be Borel-measurable so that
∫
E |f(x)|ν(dx) < ∞.

Assume that (σσ>) > 0 and that∫ t

0

∫
E

∣∣∣σ>(Zs)∇p̃T−s(Zs, x)
∣∣∣2 f(x)

p̃T (Z0, x)
ν(dx)ds <∞ (2.9)

for any t ∈ [0, T ). For (s, x) ∈ (0, T )× E, let

`s(x) := ln p̃T−s(Zs, x).

Then, the following statements hold:
(1) On the filtered probability space (Ω,FT−,Py, (FZt )t∈[0,T )), the RMB Z := (Zt)t∈[0,T )

satisfies

dZt =
{
b(Zt) + (σσ>)(Zt)πt (∇`t)

}
dt+ (σσ>)1/2(Zt)dUt, (Z0 = y), (2.10)
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and ZT− := limt↑T Zt = X Py-almost surely. Here,

Ut :=

∫ t

0
(σσ>)−1/2(Zs)

{
dZs − b(Zs)ds− (σσ>)(Zs)πs(∇`s)ds

}
=

∫ t

0
(σσ>)−1/2(Zs)

{
σ(Zs)dW̃s − (σσ>)(Zs)πs(∇`s)ds

}
(2.11)

is an n-dimensional (Py,FZt )-Brownian motion.
(2) For t ∈ [0, T ), it holds that

πt(f) = π0(f) +

∫ t

0
{πs (f∇`s)− πs(f)πs (∇`s)}> (σσ>)1/2(Zs)dUs. (2.12)

Moreover, we have

∇Π(s, z; f) = Π(s, z; f∇`s)−Π(s, z; f)Π(s, z;∇`s), (2.13)

where ∇Π(s, z; f)> := (∂z1Π, . . . , ∂znΠ) (s, z; f), and hence

πt(f) = π0(f) +

∫ t

0
(∇Π)(s, Zs; f)>(σσ>)1/2(Zs)dUs (2.14)

follows.

Remark 2.5. From a stochastic filtering viewpoint, (2.12)–(2.14) are recognised as the
Kushner-Stratonovich equations for (πt(f))t∈[0,T ), which has the finite-dimensional Marko-
vian “information state” process Z.

Remark 2.6. Similar SDEs to (2.10) appear in Section 3 of Baudoin (2002) and Theorem
2.1 and 3.1 of Çetin & Danilova (2016).

Proof. (1) By the Kolmogorov backward equation (2.5) and Itô’s formula, we have

p̃T−t(Zt, x) = p̃T (Z0, x) +

∫ t

0
∇p̃T−s(Zs, x)>σ(Zs)dW̃s.
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Then, by making use of this relation, we deduce that

ρt(f) =

∫
E
f(x)

p̃T−t(Zt, x)

p̃T (Z0, x)
ν(dx)

=ρ0(f) +

∫
E

f(x)

p̃T (Z0, x)

[∫ t

0
p̃T−s(Zs, x)∇ ln p̃T−s(Zs, x)>σ(Zs)dW̃s

]
ν(dx)

=ρ0(f) +

∫ t

0

[∫
E
f(x)∇ ln p̃T−s(Zs, x)>

p̃T−s(Zs, x)

p̃T (Z0, x)
ν(dx)

]
σ(Zs)dW̃s

=ρ0(f) +

∫ t

0
ρs(f∇`>s )σ(Zs)dW̃s.

Here, the stochastic version of Fubini’s theorem is employed while recalling the condition
(2.9), we refer to Theorem 4.65 in Protter (2005). So, we see that

ρt(1) = Ẽy
[
Λ
(y,T,X)
t

∣∣∣ FZt ]
satisfies

dρt(1) = ρt(∇`>t )σ(Zt)dW̃t = ρt(1)
{
πt(∇`>t )σ(Zt)dW̃t

}
,

where we recall (2.7). Using the above conditional
(
P̃y,FZt

)
-martingale density repre-

sentation, we apply Girsanov’s theorem to see that∫ t

0
σ(Zu)

{
dW̃u − σ(Zu)>πu(∇`u)du

}
=Zt − Z0 −

∫ t

0
b(Zu)du−

∫ t

0
(σσ>)(Zt)πt(∇`t)du, t ∈ [0, T )

is a
(
Py,FZt

)
local-martingale. Hence, we deduce that (Ut)t∈[0,T ) given by (2.11) is a(

Py,FZt
)
-Brownian motion by using Lévy’s characterization. (2.10) is seen by combining

(2.4) and (2.11).

(2) By using Itô’s formula, (2.7) and (2.11), we see that

dπt(f) =
dρt(f)

ρt(1)
− ρt(f)dρt(1)

ρt(1)2
− d〈ρ(f), ρ(1)〉t

ρt(1)2
+
ρ(f)d〈ρ(1)〉t

ρt(1)3

=
ρt(f∇`>t )σ(Zt)dW̃t

ρt(1)
− ρt(f)ρt(∇`>t )σ(Zt)dW̃t

ρt(1)2

− ρt(f∇`>t )(σσ>)(Zt)ρt(∇`t)
ρt(1)2

dt+
ρt(f)ρt(∇`>t )(σσ>)(Zt)ρt(∇`t)

ρt(1)3
dt

=
{
πt(f∇`>t )− πt(f)πt(∇`>t )

}(
σσ>

)1/2
(Zt)dUt,
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from which (2.12) follows. Equation (2.13) can be verified directly, and hence (2.14)
follows.

Remark 2.7. If we admit (t, z) 7→ Π(t, z; f) is in C1,2([0, T )×E), then (2.14) is obtained
from Itô’s formula.

The following is a direct interpretation of Proposition 2.3 in a financial context.

Corollary 2.1. On the filtered probability space (Ω,FT−,Py, (FZt )t∈[0,T )), the asset price
process (St)t∈[0,T ] given by (1.4) has the dynamics,

dSt = rStdt+ e−r(T−t)Σt(σσ
>)1/2(Zt)dUt, t ∈ [0, T ).

Here, (Ut)t∈[0,T ) is a (Py,FZt )-Brownian motion given by (2.11),

Σt := ∇Π(t, Zt; f),

where we use (2.8), and the dynamics of (Zt)t∈[0,T ) is given by (2.10).

Remark 2.8. As can be seen in Proposition 2.3, the volatility term Σt can be rewritten
as

Σt = {πt (f∇`t)− πt(f)πt (∇`t)}> . (2.15)

In the case of the linear Gaussian diffusion (3.1) treated in the next section, (2.15) is
simplified to

Σt = Covy
[
f(X), X

∣∣ FZt ]> V −1T−te
(T−t)K , (2.16)

where we use (3.3) and (3.12), and recall that

Covy
[
f(X), X

∣∣ FZt ] := Ey
[
f(X)X

∣∣ FZt ]− Ey
[
f(X)

∣∣ FZt ]Ey [X|FZt ] . (2.17)

We leave it to later to give an economic and financial interpretation to the representation
(2.16) of the volatility process. In Section 4.2, Proposition 4.1, we apply (2.16) to
compute the price sensitivities of a financial security linked to greenhouse gas emissions
with respect to model parameters.

We end this section by giving a simple example of an RMB, which is introduced in
Brody et al. (2008).

Example 2.1 (Randomized Brownian Bridge). In (2.4), let n = 1 and let b ≡ 0 and

13



σ ≡ 1. That is, we start with

Yt = y +Wt, t ≥ 0

on the state space E := R, where its transition density with respect to the Lebesgue
measure m is written as

p̃t(y, z) =
1√
2πt

e−
|y−z|2

2t .

Then, recalling (2.6) and

∇`t(x) =
1

T − t
(x− Zt) ,

the SDE for Z := Y (y,T,X) on (Ω,FT−,Py, (Ft)t∈[0,T )) is given by

dZt =
X − Zt
T − t

dt+ dWt, Z0 = y,

whose solution may be written as

Zt =
t

T
X +

T − t
T

(
y +

∫ t

0

T

T − s
dWs

)
.

We see that, in this case, the hidden variable X and the noise part are separated in
an additive way. The conditional probability πt(dz) = πt(dz|Zt, Z0) is represented
as a functional of (Zt, Z0) as shown in Proposition 2.1, and the dynamics of Z on
(Ω,FT−,Py, (FZt )t∈[0,T )) is given by

dZt =
πt(I)− Zt
T − t

dt+ dUt,

where we recall (2.10), use I(x) := x and the FZt -Brownian motion (Ut)t∈[0,T ) defined
by (2.11).

3 Skew-normal randomised diffusion bridge

In this section, we introduce a new example of an RMB, where the conditional proba-
bility πt(dz) given in Proposition 2.1 and the transition density q(s, x; t, y|z0) given in
Proposition 2.2 have explicit representations.

As the underlying Markov process, we employ the linear Gaussian diffusion

dYt = (k +KYt)dt+ ΣdWt, Y0 ∈ Rn, (3.1)

14



where k ∈ Rn, K and Σ ∈ Rn×n so that ΣΣ> > 0, and where (Wt)t≥0 is an n-dimensional
(Ft)-Brownian motion. In this case, the transition density p̃t(y, z) that satisfies

P (Yt ∈ dz|Ys = y) = p̃t−s(y, z)dz

for 0 ≤ s ≤ t, is given by
p̃t(y, z) = φn (z − µt(y), Vt) (3.2)

where
φn (z;Vt) :=

1

(2π)
n
2

√
det(Vt)

exp

(
−1

2
z>V −1t z

)
is the probability density function of the n-dimensional normal distribution with the
mean vector µt ∈ Rn and the covariance matrix Vt ∈ Sn++ := {S ∈ Sn|S > 0}, and

µt(y) :=etKy +

(∫ t

0
esKds

)
k,

Vt :=

∫ t

0
esKΣΣ>esK

>
ds.

(3.3)

Next, we set the law of the random variable X as the generalised multivariate skew
normal distribution GMSN(a, b, A,B,C). That is:

ν(dx) := P(X ∈ dx) := fGMSN(x; a, b, A,B,C)dx, (3.4)

where, for a ∈ Rm, b ∈ Rn, A ∈ Sm++, B ∈ Sn++, C ∈ Rm×n, m ∈ N, n ∈ N, and

Φm(x;A) :=

∫
∏m

i=1(−∞,xi]
φm(y;A)dy,

we have

fGMSN(x; a, b, A,B,C) :=
1

Φm

(
Cb− a,A+ CBC>

)φn(x−b, B)Φm (Cx− a,A) . (3.5)

Remark 3.1. The distribution GMSN(a, b, A,B,C) is introduced in Section 5 of Gupta
et al. (2004). In the case(

X1

X2

)
∼ N

((
a

b

)
,

(
A+ CBC> −CB
−BC> B

))
,
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we see that X2|{X1 ≤ Cb} ∼ GMSN(a, b, A,B,C). Here, noting the relation

GMSN(a, b, A,B, 0) = N (b, B),

we see that the parameter C controls the skewness of the GMSN distribution.

Remark 3.2 (Multivariate Skew Normal Distribution). Indeed, Gupta et al. (2004)
mainly focus on the multivariate skew normal distribution (MSN), where n = m and

f
(1)
MSN (x; b, B,C) :=fGMSN(x;Cb, b, In, B, C)

=
1

Φn

(
0; In + CBC>

)φn(x− b;B)Φn (C(x− b); In) .

Azzalini and Dalla Valle (1996) and Azzalini and Capitanio (1999, 2013) focus on yet
another MSN distribution, where m = 1, b ∈ Rn, c ∈ Rn, and

f
(2)
MSN(x; b, c) :=fGMSN(x; c>b, b, 1, In, c

>)

=2φn(x− b; In)Φ1

(
c>(x− b); 1

)
.

Developments of these MSN families are motivated by modelling the skewness of prob-
abilitistic models. For related studies, we refer to Azzalini and Capitanio (2013), for
example.

Remark 3.3 (Univariate Skew Normal Distribution). The univariate skew normal prob-
ability density is given by letting m = n = 1 and by setting

fUSN(x;µ, σ, α) :=fGMSN

(
x;
αµ

σ
, µ, 1, σ,

α

σ

)
=

2

σ
φ1

(
y − µ
σ

; 1

)
Φ1

(
α

(
y − µ
σ

)
; 1

)
.

The parameters µ ∈ R, σ > 0, and α ∈ R are called the location parameter, the scale
parameter, and the shape parameter, respectively. For various properties and related
statistical methodologies of USN, we refer to, e.g., Chapter 1-4 of Azzalini and Capitanio
(2013).

Proposition 3.1. For the RMB specified by (3.1)-(3.5), the conditional probability
πt(dz) given in Proposition 2.1 is conditionally GMSN. That is, for t ∈ [0, T ),

πt(dz) = fGMSN

(
z; a, b̃(t, Z0, Zt), A, B̃t, C

)
dz,
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where

b̃(t, Z0, Zt) :=
(
V −1T−t − V

−1
T +B−1

)−1 {
V −1T−tµT−t(Zt)− V

−1
T µT (Z0) +B−1b

}
,

B̃t :=
(
V −1T−t − V

−1
T +B−1

)−1
.

The following lemma is useful for proving the proposition.

Lemma 3.1. Let P ∈ Sn+ := {S ∈ Sn|S ≥ 0} and p ∈ Rn. For the GMSN density given
by (3.5), it holds that

exp

(
−1

2
y>Py + p>y

)
fGMSN(y; a, b, A,B,C)

= fGMSN

(
y; a, b̃, A, B̃, C

)
× 1√

det(I +BP )

Φm

(
Cb̃− a;A+ CB̃C>

)
Φm

(
Cb− a;A+ CBC>

) exp

{
1

2

(
b̃>B̃−1b̃− b>B−1b

)}
,

where b̃ := (P +B−1)−1(p+B−1b) and B̃ := (P +B−1)−1.

Proof. We see that

exp

(
−1

2
y>Py + p>y

)
φn(y − b;B)

=
1

(2π)
n
2

√
det(B)

exp

{
−1

2
(y − b̃)>B̃−1(y − b̃) +

1

2

(
b̃>B̃−1b̃− b>B−1b

)}
= φn

(
y − b̃; B̃

) 1√
det(I +BP )

exp

{
1

2

(
b̃>B̃−1b̃− b>B−1b

)}
. (3.6)

Furthermore,

φn

(
y − b̃; B̃

)
Φm (Cy − a;A) = Φm

(
Cb̃− a;A+ CB̃C>

)
fGMSN

(
y; a, b̃, A, B̃, C

)
.

(3.7)

The proof is completed by combining (3.6) and (3.7).

Next we prove Proposition 3.1:

17



Proof. We observe that

pT−t(y, z)

pT (y0, z)
=

√
detVT

detVT−t
exp

[
−1

2
{z − µT−t(y)}> V −1T−t {z − µT−t(y)}

+
1

2
{z − µT (y0)}> V −1T {z − µT (y0)}

]
=

√
detVT

detVT−t
exp

[
−1

2
z>(V −1T−t − V

−1
T )z +

{
V −1T−tµT−t(y)− V −1T µT (y0)

}>
z

−1

2
µT−t(y)>V −1T−tµT−t(y) +

1

2
µT (y0)

>V −1T µT (y0)

]
.

We then apply Lemma 3.1 to obtain

Jt,T (z; y0, y) :=
pT−t(y, z)

pT (y0, z)

dν

dz
(z)

=fGMSN

(
z; a, b̃(t, y0, y), A, B̃t, C

)
× 1√

det
(
I +B(V −1T−t − V

−1
T )

) Φm

(
Cb̃(t, y0, y)− a;A+ CB̃tC

>
)

Φm

(
Cb− a;A+ CBC>

)
×

√
detVT

detVT−t
exp

[
1

2

{(
b̃>B̃−1t b̃

)
(t, y0, y)− b>B−1b

− µT−t(y)>V −1T−tµT−t(y) + µT (y0)
>V −1T µT (y0)

}]
. (3.8)

Hence, the statement of Proposition 3.1 follows by recalling that

πt(dz) =
Jt,T (z;Z0, Zt)dz∫
Rn

Jt,T (z;Z0, Zt)dz

.

Remark 3.4. By letting P = 0 in Lemma 3.1, we obtain the explicit expression of the
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moment generating function of a GMSN-distributed multivariate random variable:

M(p) :=

∫
Rn

ep
>yfGMSN(y; a, b, A,B,C)dy

=
Φm

(
C(b+Bp)− a;A+ CBC>

)
Φm

(
Cb− a;A+ CBC>

) exp

(
1

2
p>Bp+ b>p

)
.

From this we see for example that

∇M(0) =

∫
Rn

yfGMSN(y; a, b, A,B,C)dy

=b+BC>
(
∇Φm

Φm

)(
Cb− a;A+ CBC>

)
, (3.9)

where ∇Φm(x) := (∂x1Φm(x), . . . , ∂xmΦm(x))>.

We introduce the density

ν(dx) := P(X ∈ dx) = fGMSN (x; a, µT (Z0), A, VT , C) dx, (3.10)

which is constructed from the marginal law of YT , N (µT (Z0), VT ), by adding a skewness
effect. Then, the expression of the conditional probability πt(dz) can be simplified as
follows:

Corollary 3.1. For an RMB, consisting of (3.1)-(3.3) and (3.10), it holds that

πt(dz) = fGMSN (z; a, µT−t(Zt), A, VT−t, C) dz, t ∈ [0, T ).

In particular, the conditional probability πt(dz) is independent of Z0.

Moreover, we obtain the following:

Proposition 3.2. For the RMB specified by (3.1)-(3.3) and (3.10), the following holds:
(1) The transition density q(s, x; t, y|Z0), obtained in Proposition 2.2, is expressed by

q(s, x; t, y|Z0) = q(s, x; t, y) = fGMSN

(
y; ãt, µt−s(x), Ãt, Vt−s, C̃t

)
,

19



where

ãt :=a− C
(∫ T−t

0
euKdu

)
k,

Ãt :=A+ CVT−tC
>,

C̃t :=Ce(T−t)K ,

and is independent of Z0.
(2) The dynamical equation of the RMB Z under (Ω,FT−,Py, (FZt )t∈[0,T )) is given by

dZt =

{
k +KZt − (ΣΣ>)C>

(
∇Φm

Φm

)(
CµT−t(Zt)− a;A+ CVT−tC

>
)}

dt

+ (ΣΣ>)1/2dUt (3.11)

where Z0 = y and (Ut)t∈[0,T ) is the (FZt )-Brownian motion defined by (2.11) for b(z) =

k +Kz and σ(z) = Σ.

Proof. 1. We apply Proposition 2.2 and Formula (3.8), where b = µT (z0) and B = VT

and observe that

q(s, x; t, y|z0) =

pt−s(x, y)

∫
Rn

Jt,T (z; z0, y)dz∫
Rn

Js,T (z; z0, x)dz

=φn (y − µt−s(x);Vt−s)
Φm

(
CµT−t(y)− a;A+ CVT−tC

>
)

Φm

(
CµT−s(x)− a;A+ CVT−sC

>
) .

By recalling here that

Φm

(
CµT−t(y)− a;A+ CVT−tC

>
)

= Φm

(
C̃ty − ãt; Ãt

)
,

Φm

(
CµT−s(x)− a;A+ CVT−sC

>
)

= Φm

(
C̃tµt−s(x)− ãt; Ãt + C̃tVt−sC̃

>
t

)
,

the assertion follows.
2. We compute the SDE (2.10) utilising the setting of this section. We consider
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b(t, z) = k +Kz, σ(z) = Σ, and

`t(z) = log p̃T−t(Zt, z)

=− 1

2
(z − µT−t(Zt))> V −1T−t (z − µT−t(Zt))−

1

2
log det(VT−t)−

n

2
log(2π).

(3.12)

By Formula (3.9) and Corollary 3.1, we deduce that

πt (∇`t) =V −1T−t

{
µT−t(Zt)−

∫
Rn

zπt(dz)

}
=− C>∇Φm

Φm

(
CµT−t(Zt)− a;A+ CVT−tC

>
)
,

and the assertion follows.

In Figures 1 and 2, considering the setting in Proposition 3.2, that is, the skew-normal
RMB specified by (3.1)-(3.3) and (3.10), we draw its marginal densities

{q(0, x0; t, x)}(t,x)∈[T0,T ]×R ,

where we set x0 = 0, T0 = 0.01, T = 1. The parameter values of the RMB are set to
n = 1, k = 0, K = −0.1, Σ = 0.3, a = 1, A = 1, and C = 20.
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Figure 1: Skew-normal densities q(0, 0; t, x) for 0.01 ≤ t ≤ 1.
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Figure 2: Skew-normal densities q(0, 0; t, x) for t ∈ {0.1, 0.5, 1.0}.
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4 Applications to commodity pricing and securitization of

greenhouse gas risk

In this section we apply the randomised Markov bridges to construct asset price mod-
els following Formula (1.4). We consider skew-normal randomised diffusion bridges
(SNRDB) to price commodity assets and for the securitisation of greenhouse gas (GHG)
risk. The applications driven by SNRDB are just an example; the pricing models can
be constructed with any RMBs, provided one agrees with the suitability of the implicit
statistics for the envisaged application.

It is customary in commodity pricing to assume a spot price process (St)0≤t≤T for
the considered commodity and to model the price process (FtT )0≤t≤T of a T -delivery
forward contract. The spot price process is (Ft)-measurable and the delivery date T is
a fixed date specified in the forward contract. The price FtT at time t of the forward
contract with delivery date T is given by

FtT = E [ST | Ft ] (4.1)

where the expectation is taken under the risk-neutral measure. We assume that the risk-
free interest rate is constant, which implies the distribution of ST under the T -forward
measure is unchanged, and we can evaluate the price FtT under the forward measure PT

by the relation
FtT = EPT

[ST | Ft ] = E [ST | Ft ] . (4.2)

Next, we construct a commodity pricing model driven by a randomised diffusion bridge
with terminal GMSN marginal.

4.1 Commodity pricing

We take the RMB (Zt)t∈[0,T ], specified by (3.1)-(3.3) and (3.10), as the state variable,
and define the spot commodity price process by

St := exp
(
p>Zt

)
(4.3)

for t ∈ [0, T ] and p ∈ Rn. This commodity spot price process can be regarded as
a flexible extension of the price models proposed in Gibson & Schwartz (1990) and
Schwartz (1997) so to incorporate the skewness of marginal distributions of the log-price
process (logSt)t∈[0,T ]. Indeed, the Gibson & Schwartz commodity spot price process is
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obtained as follows: Let C = 0, then GMSN(a, µT (Y0), A, VT , 0) = N (µT (Y0), VT ) and
ZT = X ∼ YT , see Remark 3.1. Hence the RMB (Zt) is equal to the linear Gaussian
process (Yt). For n = 2, we consider the parametrisation

d

(
Y 1
t

Y 2
t

)
=

[(
α

κλ

)
+

(
0 −1

0 −κ

)(
Y 1
t

Y 2
t

)]
dt+

(
σ1 0

σ2ρ σ2
√

1− ρ2

)
dWt,

where α, κ, λ, σ1, σ2 > 0 and −1 ≤ ρ ≤ 1. Then, St = ep
>Yt = eY

1
t with p := (1, 0)> is

precisely the Gibson & Schwartz (1990) model.
By making use of the spot commodity pricing model (4.3), we now have for the

forward price process, delivering at time T

FtT := E
[
ST | FZt

]
= E

[
ep
>X

∣∣ FZt ] (4.4)

for t ∈ [0, T ], where the expectation may be taken under the risk-neutral measure, and
the filtration (FZt )t∈[0,T ] is generated by the RMB (Zt). By Corollary 3.1 and Lemma
3.1, we obtain

FtT =

∫
Rn

ep
>xπt(dx)

=

∫
Rn

ep
>xfGMSN (x; a, µT−t(Zt), A, VT−t, C) dx (4.5)

=F (t, Zt),

where

F (t, z)

=
Φm

(
C (µT−t(z) + VT−tp)− a;A+ CVT−tC

>
)

Φm

(
CµT−t(z)− a;A+ CVT−tC

>
) exp

[
p>µT−t(z) +

1

2
p>VT−tp

]
.

On (Ω,FT−,Py, (FZt )t∈[0,T )), we write down the system in stochastic differential form

dFt =∇zF (t, Zt)(ΣΣ>)1/2dUt,

dZt =

[
k +KZt − (ΣΣ>)C>

(
∇Φm

Φm

)(
CµT−t(Zt)− a;A+ CVT−tC

>
)]
dt

+ (ΣΣ>)1/2dUt,
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where the SDE determining the dynamics of (Zt) is given in Proposition 3.2 (2). Further-
more, if we consider the derivative security, whose payoff at the derivative’s maturity
T ′ ≤ T has the form H := h (FT ′T ) with some integrable h : R++ → R, then its
(arbitrage-free) price at time t ∈ [0, T ′] is computed by using Proposition 3.2 (1) as
follows:

V (t, Zt) = E
[
e−r(T

′−t)h (FT ′T )
∣∣ FZt ]

= e−r(T
′−t)

∫
Rn

h
(
F (T ′, y)

)
q(t, Zt;T

′, y)dy

= e−r(T
′−t)

∫
Rn

h
(
F (T ′, y)

)
fGMSN

(
y; ãt, µT ′−t(Zt), Ãt, VT ′−t, C̃t

)
dy,

where r is a constant interest rate. In Figure 3, we consider a one-dimensional SNRDB
(Zt)0≤t<T given by (3.1)-(3.3) and (3.10) as the state variable, and plot the log-price
function L(t, z) := logF (t, z). The parameter values are set to n = m = 1, T = 1,
k = 0, K = −0.1, Σ = 0.3, Z0 = 0, a = 1, A = 1, C = −10,−5, 0, 5, 10, p = 1, and
t = 0.5. We note that L(t, z) is affine with respect to z when C = 0, that is,

L(t, z) =pµT−t(z) +
p2

2
VT−t

=

{
pk

K
eK(T−t) +

p2

4K

(
eK(T−t) − 1

)}
+ peK(T−t)z.

The RMB (Zt) is linear-Gaussian when C = 0, as we have seen. We draw the non-
linear increasing functions z → L(t, z) for the values C ∈ {−10,−5, 0, 5, 10}. Further,
in Figure 4, we draw the marginal probability density functions

pt,T (x) :=
P (FtT ∈ dx)

dx
,

for t ∈ {0.25, 0.5, 0.75, 1}, by setting the parameters to n = m = 1, T = 1, k = 0,
K = −0.1, Σ = 0.3, Z0 = 0, a = 1, A = 1, C = 5, and p = 1. We see that

pt,T (x) = fGMSN

(
F−1(t, x); ãt, µt(Z0), Ãt, Vt, C̃t

) 1

∂zF (t, F−1(t, x))
,

where we use Proposition 3.2 (1), the relation FtT = F (t, Zt), and the notation F−1(t, x)

to denote the inverse function of F (t, ·) that satisfies F
(
t, F−1(t, x)

)
= x, x ∈ R++.
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4.2 Greenhouse gas risk securitisation

In this section, we associate the RMB to greenhouse gas (GHG) emissions. Here we focus
on man-made emissions (e.g. burning fossil fuel, farming, etc.), which can be affected
by varying collective human activity. We regard the man-made emission as a process
that in principle can be controlled or on which one can at least intervene.

We assume that (Zt) is a randomised Markov bridge with arbitrary marginal distri-
bution at time t = T . This RMB is the model for man-made greenhouse gas emissions
in the environment. The arbitrary distribution of the ‘terminal’ random variable ZT is
taken to be the target distribution aimed at by, say, an (governmental) emissions policy.
Such a target distribution—or indeed the regulatory policy—is specified at t = 0, when
for instance a new (international) law is ratified. Time T is the date by which the target
emission level is to be achieved. Because we believe that it is unreasonable to set a
fixed target, we opt for a distribution of possible values. We might like to assume that
the mean of the distribution coincides with the agreed target value characterising a pol-
icy. Such environmental policies come with significant financial commitments. We next
present an idea on how environmental policies and related costs may sit at the interface
with financial markets and the securitisation of climate risk.

This is certainly not the first piece of work addressing the question of how finan-
cial markets can be involved in reducing GHG emissions. Howison & Schwarz (2015)
provide—in addition to several references—a useful overview in this area of research.
One learns that there are mainly three types of reduction mechanisms: (a) the Clean
Development Mechanism, (b) the Joint Implementation, and (c) Emissions Trading. The
financial mechanism we present next may be seen closest to Emissions Trading in that
financial contracts are traded which are written on emission allowance. Carmona & Hinz
(2011) use the so-called risk-neutral valuation approach to price such contracts. While
we also use a no-arbitrage approach, though we prefer to work under the real-world mea-
sure, we think that the design of the here proposed market instruments written on GHG
emissions is different. If we were to look for similarities with existing financial instru-
ments, then the GHG-contracts presented next would be related to inflation-linked or
possibly insurance-linked securities, see e.g. Dam et al. (2018) and Barrieu & Albertini
(2009). Such contracts provide financial protection against losses due to, for example,
currency depreciation or limit financial liabilities beyond a certain amount. Emission al-
lowance certificates have a different nature: the holder of such a note has paid the right to
emit a specified amount of GHG-equivalent. Allowance certificates, as exchanged on e.g.
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the European Energy Exchange, are not designed to provide financial compensation for
potential losses due to (direct or indirect) adverse effects caused by high levels of GHG at
a future point in time. While trading emission allowances and the GHG-securities both
aim at incentivising a reduction of future GHG levels, the latter mechanism builds in an
additional penalisation to the issuer (e.g. a central government)—beyond any specified
in international agreements—in a similar way as inflation-linked sovereign bonds result
in payments to bond holders by the issuing (governmental) body for failing to keep (fu-
ture) inflation below a contractually pre-specified level. A governmental GHG policy, as
illustrated below, may be viewed as an analogy to a monetary policy and the issuance
of GHG-linked securities as an assurance to, e.g., the insurance industry of a central
government’s plan to reduce GHG levels over a specified time period. We now move one
to the stochastic modelling of GHG by use of RMBs and to the no-arbitrage pricing of
the proposed GHG-linked securities.

We consider a central government that has agreed to reducing the GHG amount in
the atmosphere by a pre-specified future date. We refer to, e.g., The Paris Agreement
(2016)1 whereby the commitment is a reduction of GHG by 80% by 2050 relative to the
GHG amount in 1990, see UK Climate Action Following the Paris Agreement (2016)2.
The target GHG process is modelled by an RMB, where the terminal distribution is
a reflection of the uncertainty about the realised target emissions level at time T . We
suppose that the governing body needs to raise funds to finance the transition to a lower
GHG emissions regime by the fixed future date, and aims at doing business with the
financial industry. Here we shall consider the insurance industry, whereby (re)insurance
firms have a strong interest in a decarbonised future. It is commonly accepted that
climate-driven catastrophes are to become more severe (and thus more costly) if GHG
emissions do not decrease (c.f. related increase of average global temperature leading to
more severe flooding, droughts, hurricanes, etc.).

We thus consider a governing body that is prepared to sell GHG securities to an
insurer where the deal is that (a) if the pre-specified GHG target is met, or even exceeded,
then the government retains the funds raised through selling the securities, and (b) if the
target is underachieved then the government will have to pay the insurer the difference
between the realised GHG amount and the contractually pre-specified target. Such a

1The Paris Agreement (2016), United Nations, Framework Convention fro Climate Change, October
2016. http://unfccc.int/paris_agreement/items/9485.php

2UK Climate Action Following the Paris Agreement (2016), Committee on Climate Change,
pp 17-18. https://www.theccc.org.uk/wp-content/uploads/2016/10/UK-climate-action-following-the-
Paris-Agreement-Committee-on-Climate-Change-October-2016.pdf
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contract is known as a call option, and in the insurance industry such an instrument
may be identified with a stop-loss contract.

We consider the filtered probability space (Ω,F , (Ft),P) where P is the real prob-
ability measure. We take the RMB (Zt) as a model for the greenhouse gas emissions
and introduce a P-Brownian motion (Bt). We assume Ft = FBt ∨ FZt , where FBt and
FZt are the filtrations generated by (Bt) and (Zt), respectively. Further, we introduce a
stochastic discount factor (ζt) defined by

ζt = exp
(
−λBt − 1

2λ
2t− rt

)
.

The interest rate r and the market price of risk λ are assumed constant, for simplicity.
Next we introduce a random cash flow HT at the fixed date T ≥ t modelled by HT =

h(ZT ). The no-arbitrage price (Ht), 0 ≤ t ≤ T , of the GHG-linked security, with cash
flow HT at time T , is given by

Ht =
1

ζt
EP [ζT h(ZT ) | Ft] . (4.6)

Unless one has the view that GHG emissions have a direct impact on the dynamics of
the stochastic discount factor (ζt) (and vice versa), we may assume that ζt and Zt are
independent for all t ∈ [0, T ]. It then follows that

Ht =
1

ζt
EP [ζT | FBt ]EP [h(ZT ) | FZt

]
,

where it is assumed that h(ZT ) is integrable, and further that

Ht = e−r(T−t)E
[
h(ZT ) | FZt

]
owing to the fact that exp(−λBt − 1/2λ2t) is an {(Ft),P}-martingale. The conditional
expectation is calculated in an analogous way to Formula (4.5), which gives

Ht = e−r(T−t)
∫
h(x)fGMSN (x; a, µT−t(Zt), A, VT−t, C) dx, (4.7)

Here, in line with the previous section, we assume that (Zt) is an SNRDB.
Vanilla option. We next price a stop-loss contract (a call option). We envisage an

emissions derivatives market and present price models for GHG emissions options under
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the said assumptions. We have:

Vt = e−r(T−t)E
[
(HT −K)+ | FZt

]
= e−r(T−t)E

[
(h(ZT )−K)+ | FZt

]
(4.8)

where K is a strike price. This equation boils down to calculating

Vt = e−r(T−t)
∫

(h(x)−K)+ fGMSN (x; a, µT−t(Zt), A, VT−t, C) dx. (4.9)

This is a first simple example for a GHG-linked option. One might like to consider a
richer market where the option maturities are not necessarily associated with an interna-
tional GHG reduction treaty and dates agreed therein. In fact, a government could issue
GHG options with maturities T1 < T2 < . . . < Tn, where Tn = T could coincide with
the terminal date (e.g. 2050) by which the GHG reduction must be achieved. The gov-
ernment (and the insurance firms) could then consider holding a basket of GHG options.
The policymaker would have goals with shorter terms, which could be more plausible
to the buyers in a (financial) insurance market, and the insurers would potentially have
access to cash flows after shorter periods of time, which could be used to cover losses.
Another type of a contract could be a GHG-linked swap contract, where the insurer
exchanges a fixed rate for a floating one that is periodically updated with observations
of the realised GHG level. Such a contract gives an opportunity to update the financial
liability during a long-dated agreement.

Swap contract. Let T1 < T2 < . . . < Ti < . . . < Tn be fixed dates. Associated
with these dates we have the cash flows HTi = gi(ZTi), i = 1, . . . , n, where ZTi has
the target distribution of the RMB (Z

(i)
t )0≤t≤Ti . The integrable functions gi may differ

for different i’s. Here the filtration (FZt )0≤t is generated by the collection of RMBs
{(Z(i)

t )0≤t≤Ti}i=1,...,n. Then we consider the following swap-like structure with price
process (Swt):

Swt = E

[
n∑
i

e−r(Ti−t) (HTi −K)
∣∣FZt

]
(4.10)

whereK is a strike value and (FZt ) is generated by the RMBs {(Z(1)
t ), (Z

(2)
t ), . . . , (Z

(n)
t )}.

The expression for the price Swt at time t can be written as

Swt =
n∑
i

e−r(Ti−t)E
[
gi(ZTi) | FZt

]
−K

n∑
i

e−r(Ti−t). (4.11)
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By setting Swt = 0 we obtain the so-called fair swap value Kt at time t given by

Kt =
n∑
i

E [gi(ZTi) | Ft]
/ n∑

i

e−r(Ti−t)

=
n∑
i

∫
gi(xi)fGMSN

(
xi; ai, µ

(i)
Ti−t(Z

(i)
t ), Ai, V

(i)
Ti−t, Ci

)
dxi
/ n∑

i

e−r(Ti−t),

(4.12)

where here {(Z(i)
t )}i=1,...,n are assumed to be SNRDBs. It is Kt that seller (government)

and buyer (insurer) trade at. In the case of a swap, the value of Kt is directly related to
how likely a government will actually meet the GHG target (or even reduce to below the
target). Also, since Swt may take positive and negative values, the trade counterparts
in principle rebalance their accounts as they go along in contrast to call option contracts
where there would be no cashflows for a potentially long period of time.

In Figure 5, we describe how an RMB may be applied to model GHG emission. At T0,
ZT0 denotes the observed initial level of emitted GHG. Also at T0, the prior distribution
of the random GHG level ZT is specified. The mean E[ZT ] of the prior distribution is set
to match the target GHG level that the guided emissions policy is supposed to meet by
the pre-specified date T . The dashed line depicts the GHG emission plan a policymaker
commits to and wishes to implement. The stochastic path is one possible realisation of
the GHG process (Zt), which is observed as one moves forward in time . The solid line is
the implicit drift of the process (Zt), which in the depicted example does not match the
planned GHG policy. At the end of the policy period, that is at T , the terminal GHG
level ZT exceeds the pre-specified target value, which the policymaker had committed to
realise. We emphasize that at first the realised GHG level (and in particular the realised
drift) is below the dashed GHG policy line, thus indicating, in this particular example,
that the implemented emission policy achieved a stronger abatement than intend up to
that point in time.
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Figure 5: Greenhouse gas (GHG) level modelled by an RMB (Zt).

We conclude the application of RMBs to GHG-risk securitization by taking a closer
look at what model parameters a policymaker may influence. In other words, what
parameters in the chosen RMB may capture trends a policymaker may wish to control
during the planned GHG abatement period. A candidate parameter is k in the linear
Gaussian diffusion (3.1), underlying the dynamics of (Zt), because it affects the drift of
the RMB. This can be seen explicitly via Corollary 3.1 and the set of equations (3.3).

The idea is that the GHG level increases or declines depending on what level of k
is selected. The parameter k, in turn, affects the price dynamics of a financial security
written on (Zt). Other degrees of freedom, such as the a priori target distribution of
ZT , also have an impact, but here we shall focus on the sensitivity of (Ht) on k. As
seen in Formula (4.7), the value (Ht) at time t is impacted by k via µT−t in the GMSN-
density. We express the ‘k-sensitivity’ of Ht at time t ∈ [0, T ) by ∂kHt. In the following
proposition, we also give an explicit expression for the so-called ‘Delta-sensitivity’ ∂zHt.
This is the measure of how much the price Ht at time t varies given a change in the
underlying value of Zt at time t. This result is given for the case that the SNRDB is
multivariate process.
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Proposition 4.1. Consider the SNRDB, given by (3.1)–(3.3) and (3.10). Let h :=

(h1, . . . , hd)
> : Rn → Rd, assuming that h(X) is integrable. It then holds that

∂zE
[
h(X)

∣∣ FZt ] = Cov
[
h(X), X

∣∣ FZt ]> V −1T−te
(T−t)K , (4.13)

∂kE
[
h(X)

∣∣ FZt ] = Cov
[
h(X), X

∣∣ FZt ]> V −1T−t

∫ T−t

0
esKds, (4.14)

where we use (2.17), (2.8), πt(h) = Π(t, Zt;h), and write

∂zE
[
h(X)

∣∣ FZt ] := ∂zΠ(t, Zt;h) =
(
∂zjΠ(t, Zt;hi)

)
1≤i≤d,1≤j≤n ,

∂kE
[
h(X)

∣∣ FZt ] :=
(
∂kjΠ(t, Zt;hi)

)
1≤i≤d,1≤j≤n .

Proof. Equation (4.13) is obtained from Proposition 2.3 and (2.15)–(2.17) in Remark
2.8. To show (4.14), we note that, in the right-hand side of the expression,

E
[
h(X)

∣∣ FZt ] =

∫
Rn

h(x)fGMSN (x; a, µT−t(Zt), A, VT−t, C) dx, (4.15)

where we use Corollary 3.1, only µT−t(Zt) depends on Zt and k. We see that

∂zµT−t(Zt) = e(T−t)K , (4.16)

∂kµT−t(Zt) =

∫ T−t

0
esKds. (4.17)

From (4.13), (4.15), (4.16) and the chain rule of differentiation, we deduce

∂b

{∫
Rn

h(x)fGMSN (x; a, b, A, VT−t, C) dx

} ∣∣∣
b=µT−t(Zt)

= Cov
[
h(X), X|FZt

]
V −1T−t.

(4.18)
From (4.15), (4.17) and (4.18), we see that

∂kE
[
h(X)

∣∣ FZt ] =∂b

{∫
Rn

h(x)fGMSN (x; a, b, A, VT−t, C) dx

} ∣∣∣
b=µT−t(Zt)

∂kµT−t(Zt)

=Cov
[
h(X), X|FZt

]
V −1T−t

∫ T−t

0
esKds.
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Remark 4.1. Letting h(z) = z in Proposition 4.1, we see that

∂zE
[
X
∣∣ FZt ] = Var

[
X
∣∣ FZt ]V −1T−te

(T−t)K ≥ 0,

∂kE
[
X
∣∣ FZt ] = Var

[
X
∣∣ FZt ]V −1T−t

∫ T−t

0
esKds ≥ 0.
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