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Abstract  20 

Imaging techniques for quantifying how the hierarchical structure of deforming joints changes 21 
are constrained by destructive sample treatments, sample-size restrictions and lengthy scan 22 
times. Here, we report the use of fast, low-dose pink-beam synchrotron X-ray tomography 23 
combined with mechanical loading at nanometric precision for the in situ imaging, at 24 
resolutions lower than 100 nm, of mechanical strain in intact untreated joints under 25 
physiologically realistic conditions. We show that, in young, aged, and osteoarthritic mice, 26 
hierarchical changes in tissue structure and mechanical behaviour can be simultaneously 27 
visualized, and that tissue structure at the cellular level correlates with whole-joint mechanical 28 
performance. We also used the tomographic approach to study the co-localization of tissue 29 
strains to specific chondrocyte lacunar organizations within intact loaded joints, and for the 30 
exploration of the role of calcified-cartilage stiffness on the biomechanics of healthy and 31 
pathological joints. 32 

 33 

 34 

One-sentence editorial summary (to appear right below the article's title on the journal's website): 35 
Pink-beam synchrotron X-ray tomography combined with mechanical loading at nanometric 36 
precision enables the in situ imaging of intact untreated joints, resolving strains at sub-100-37 
nm resolution.   38 
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Imaging methods have proven essential to our understanding a range of key biomechanical 39 
systems. This has been particularly true for musculoskeletal challenges, such as 40 
understanding a joint’s mechanical function, healthy ageing and the impact of changes in 41 
articular cartilage integrity on locomotion. Safeguarding the avascular, aneural articular 42 
cartilage tissue places burden on neighbouring mineralised tissues. Extensive incidence of 43 
degeneration of the entire joint in osteoarthritis is prima facie evidence of the likely scale of 44 
this threat. However, current imaging techniques are unable to resolve this detail in situ. 45 
Further, joint mechanics are also believed to be dominated by the extracellular matrix of the 46 
hyaline cartilage and by mineralized subchondral regions, where cancellous bone capped by a 47 
cortical plate is found beneath calcified cartilage, which merges with hyaline cartilage. These 48 
tissues are known to retain distinct physiology, structure and mechanics, but how they 49 
interact at the nano-scale to secure healthy joint mechanics under physiologically 50 
representative loading remains undefined. A method for resolving the ultra-structure of the 51 
joint, and in particular, the management of tissue strain as joint compressive stresses are 52 
transmitted from the low stiffness articular cartilage through to the high stiffness cortical 53 
plate is required. 54 

Current imaging methods of this key biomechanical system have advanced tremendously, but 55 
each is restricted to either scale or application. Nano-scale imaging in other contexts is now 56 
possible via many approaches1-4. For example small-angle and wide-angle X-ray scattering 57 
can yield bone collagen fibril/ mineral phase information as well as 3-dimensional (3D) strain 58 
maps; however, these nano-scale approaches can only measure thin tissue fragments5-8, or 59 
average the strain through thickness. Most require a very high X-ray dose, causing damage 60 
and/or limiting the technique to hard tissue. Further, many techniques are only applicable on 61 
thin histological samples due to field of view limitations. This failure to retain organ-level 62 
integrity due to restrictions imposed by scan conditions also arises in ptychography and 63 
focused ion beam scanning and transmission electron microscopy (FIB-SEM/TEM)9-12. 64 
Confocal microscopic alternatives for nano-scale imaging require staining to achieve 65 
anisotropic spatial resolution but can be applied only to a very restricted tissue depth13,14. 66 
Optical/confocal microscopy with 2D/3D digital image correlation (DIC) is also hampered by 67 
tissue opacity, distorting and limiting the resolution and depth15-19. Indentation-atomic force 68 
microscopy delivers nanomechanics, yet is restricted to surface imaging by inefficient ‘deep’ 69 
probing and tissue processing20-22. A method compatible with volumetric, ultra-high 70 
resolution imaging and quantification of mechanical strain during the repeated in situ 71 
biomechanical characterisation of hierarchical structure during loading of an intact sample, 72 
such as a whole joint, is therefore highly desirable.  73 

Magnetic resonance does allow the probing of whole joints at macroscopic scales, but 74 
imposes limits both upon spatial and temporal resolution. On the other hand, X-ray computed 75 
tomography (CT) yields greater spatial resolution, is nominally non-destructive, attuned to 76 
repeat imaging and offers excellent field of view trade-offs which, together with digital 77 
volume correlation (DVC), can realise full-field continuum- and tissue-level strain 78 
measurement23-26. The greater flux and high-end instrumentation in synchrotron computed 79 
tomography (sCT) enables even higher spatial and temporal resolution, making it ideal for 80 
rapid collection of multiple 3D volumes during in situ loading. However, sCT may cause 81 
substantial tissue damage and thus beam configuration and scan parameters that maintain 82 
both tissue integrity and tomographic reconstruction quality are required to enable DVC 83 
accuracy. The resolving of in situ nano-scale strain in intact mineralized tissues has however 84 
been deemed unattainable27. Improved methodologies are required to: i) enhance resolution 85 
without compromising field of view; ii) lessen total radiation exposure to preserve tissue 86 
mechanics28; iii) curb sample motion during scanning, and; iv) control in situ load application 87 
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to high levels of precision, in this case, to un-sectioned bones and intact joints. Additionally, 88 
significant advances are also required in DVC algorithms, allowing variable density point 89 
clouds that match the complex shape and internal microstructure of the bones comprising the 90 
joint’s structure that matches the imaging technique’s resolution.  91 

Herein, our sCT method attains greater resolution and imaging speed, allowing for DVC-92 
based strain fields calculated from displacements with better than 100 nm accuracy within 93 
intact, untreated mechanically loaded mouse bones and knee joints in physiological 94 
orientation. To understand the biomechanical functionality of the joint in health and in 95 
osteoarthritis, we have applied our method to STR/Ort and CBA mouse joints. The STR/Ort 96 
mouse is a well-established, spontaneous model of osteoarthritis, with disease resembling that 97 
in humans. Mice develop articular cartilage lesions predominantly on the tibia plateau, with 98 
other expected degenerative changes coinciding with the attainment of sexual maturity29. 99 
CBA mice are the most appropriate control for the STR/Ort mouse as they are the nearest 100 
available parental strain, and extensive analysis reveals they show no overt signs of 101 
osteoarthritis with ageing29. We demonstrate how our methods pinpoint many hitherto 102 
unaddressed questions in joint mechanobiology, including the extent to which osteoarthritis-103 
prone joints exhibit: (i) greater chondrocyte hypertrophy, (ii) abnormally high strains in the 104 
calcified cartilage, (iii) localised calcified cartilage cracking and (iv) development of tissue 105 
strains consistent with a stiffer articular construct. These quantitative imaging methods bridge 106 
gaps between whole joint mechanics and nanoscale strain development in sub-articular 107 
tissues, enabling the elusive structural cartilage-bone hierarchical features underpinning joint 108 
health and disease to be defined. 109 

Results 110 

Fast sCT imaging of nano-resolved load-induced strains in intact mouse joints: was 111 
enabled via satisfying the challenging trade-off between spatial resolution, field of view 112 
(FOV), signal to noise ratio (SNR), DVC accuracy, radiation dose, and sample motion. To 113 
achieve nano-resolution in intact joints, we employed high-flux/short-exposure continuous 114 
imaging to facilitate high efficacy collection of less damaging high-energy photons, reducing 115 
tissue exposure to ionizing radiation (Suppl. Methods). The high efficacy imaging was 116 
achieved using high and low bandpass filtering, tailored to select harmonics primary centred 117 
at 20 keV, producing a high-flux ‘pink’ beam30 coupled to a high dynamic range pco.edge 5.5 118 
sCMOS camera (Fig. 1A and Methods), allowing collection of 2401 projections with 30% 119 
transmission in 4.4 minutes (FOV 4.1x3.45 mm, effective pixel size 1.6 µm, 2401 120 
projections, SNR ~1.4; see Setup 1 in Suppl. Table ST1). 121 

Applying these conditions to entire knee joints enabled cell lacunae in the calcified cartilage 122 
(hypertrophic chondrocytes) and subchondral bone (osteocytes) to be readily resolved with 123 
unprecedented resolution for the radiation dose (~100 kGy; Fig. 1B-E) and speed (Suppl. 124 
Table ST1-Setup 1 and Suppl. Fig. S3c,f). This compares to the equivalent monochromatic 125 
beam setup dose of ~157 kGy and time of almost 40 minutes (Suppl. Table ST1-Setup 4 and 126 
Fig. S3h). 127 

The natural tissue ‘texture’ created by hypertrophic chondrocytes in calcified cartilage and 128 
osteocytic lacunae in subchondral bone is ideal for the reliable measurement of nano-scale 129 
load-induced displacements within the intact joint using DVC. For DVC, the 3D texture is 130 
correlated between a sequence of snapshots capturing the local movement/distortion of the 131 
tissue texture as global load displacements are applied. Therefore, three more advances were 132 
made: firstly, synchronising our unique nano-precision joint motion replicator with 133 
meticulous built-in rotation into the imaging chain (see Methods); secondly, further reducing 134 
the dose (to <25 kGy) and scan time (1.1 min, Suppl. Table ST1- Setup 2, and Fig. S3F), and 135 
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thirdly, application of an in-house high accuracy DVC code (Diamond-DVC, open-access, 136 
ccpforge.cse.rl.ac.uk). 137 

The nano-precision joint motion replicator design: was developed by adapting a bespoke 138 
nano-precision tension-compression-torsion rig31,32 (Fig. 1A) that has air-bearing rotation 139 
within the load train, enabling continuous sample rotation at high speed (>10 rpm), 140 
synchronously with better than 0.001° differential error [see Methods]. Key to avoiding 141 
unwanted off-axis forces and misalignment artefacts during sCT was laser alignment of the 142 
rams rotating on air-bearings to ensure concentricity to better than 50 nm, or <10% of voxel 143 
size. Load measurement accuracy of greater than 0.1 N with 50 nm displacement control was 144 
enabled by pre-scanning of joints and 3D printing the grips/cups to ensure alignment was 145 
conserved during rotation. 146 

The unique digital volume correlation code: allows flexible point cloud specification of sub-147 
volume locations, concentrating correlation into the regions where displacement values are 148 
sought, preventing subvolumes from locating within voids and overlapping surfaces (Fig. 149 
1)33. Discrete DVC sub-volume centres were obtained by extracting nodes using unstructured 150 
3D meshing of the joint generated from tomographic data (Figs. 1F, G). Combined with 151 
customized image processing, DVC point density was readily modifiable in distinct 152 
anatomical joint compartments to allow variable measurement accuracy levels of load-153 
induced strain to be attained (Fig. 1H).  154 

This combination of advances (Fig. 1A,H,K and Fig. 2) allows the generation of 3D full-field 155 
displacements in the subchondral bone and calcified cartilage of a whole joint with 240-480 156 
nm precision (0.3 voxel, Fig. 1H). Accuracy was increased further to yield 80-160 nm 157 
precision (0.08 voxel) when only the calcified cartilage compartment (which has strong 158 
image texture at the micron scale) of the joint was considered (Fig. 1H). This non-invasive 159 
measurement of displacement/strain within whole joints under load demonstrates a facility 160 
for direct measurement of tissue mechanical response across the articular calcified 161 
cartilage/subchondral bone interface for the first time (Fig. 1K), enabling integration with 162 
existing anatomical and organ scale data as well as validation of multiscale finite element 163 
models. When applying loads to whole joints, the deconvolution of the complex 3D 164 
interactions between tissue material properties and structure is, however, difficult. They 165 
nonetheless demonstrate that the distribution and concentration of displacements (and hence 166 
strain) can now be measured across the tibial plateau, even within relatively small areas 167 
(<500 μm or <1/8 of the area), as the femur transfers the applied load. Strain can also be 168 
further localised in the subchondral trabecular struts of the tibia. 169 

  170 
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Fig. 1 Ultra-high resolution synchrotron computed tomography (sCT) and digital 173 
volume correlation (DVC) of intact joints: (A) Schematic of in situ sCT imaging setup (see 174 
Suppl. Fig. S1). (B) 3D cut-away rendering of sCT data from the medial side of a murine 175 
knee joint (STR/Ort 20 week), with (C) expanded view from articular calcified cartilage 176 
(ACC) region of the femur showing hypertrophic chondrocyte lacunae as dark regions within 177 
the sCT data (left) and as rendered voids (right) and (D) likewise for osteocyte lacunae from 178 
subchondral bone (SCB) region of the tibia. Development of DVC point clouds: (E) 179 
rendering of the proximal tibia segmented through a region-growing algorithm (left) followed 180 
by morphological closure of hypertrophic chondrocyte and osteocyte lacunae (right), and (F) 181 
expanded views showing subsequent tetrahedral finite element mesh (left) and nodes used as 182 
the DVC point cloud (right). (G) DVC displacement precision determined from correlation of 183 
repeat reference images as +/-1 standard deviation (indicated by vertical lines) of 184 
displacement components (u,v,w) in the coordinate (x,y,z) directions: between 80-160 nm for 185 
the ACC and 240-480 nm for the entire joint including SCB. Results are representative of 186 
n=2 joints. (H) Two subvolumes of size 48 voxels (39 µm) in reference (left) and deformed 187 
(right) states with red points representing the point cloud for ACC (top) and SCB (bottom) 188 
regions (higher density in ACC where strains are higher). (I) 3D cut-away rendering of the 189 
medial aspect of a STR/Ort 40 week joint illustrating femur (top) and tibia (bottom) 190 
morphologies, and (J) superimposed displacement magnitude obtained by DVC. 191 
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 192 
To demonstrate use of the technique to probe how the tibia accommodates loading with even 193 
greater precision, an alternative methodology for applying a highly controlled load via a 194 
spherical tipped indenter onto the tibial plateau (where osteoarthritic lesions appear most 195 
prominently in this strain) was developed (Fig. 2). The indenter allows application of 196 
identical, controlled loads to the tibial plateau in both mouse strains at a highly reproducible 197 
location, without anatomical or morphological differences that would otherwise complicate 198 
interpretation. This enables localised mechanical behaviour, particularly material fracture 199 
characteristics, to be probed using region of interest scanning, enabling even higher spatial 200 
strain resolution. The joint was disarticulated, and the tibia and its articular cartilage and 201 
medial meniscus preserved. This was then mounted and a 200 µm radius tip diamond 202 
indenter located directly over the medial plateau. Fig. 2A shows the measured 203 
displacements/strains for relevant non-invasive whole joint loading. Fig. 2B demonstrates 204 
that indentation introduces no imaging artefacts and the tibia sample is stable, allowing 205 
volumetric imaging with resolution suitable for morphological and mechanical response 206 
measurements analogous to those for whole joint loading. This technique was then used to 207 
apply highly controlled loads in 1 N increments (Suppl. Methods) up to failure. These 208 
methods provide data critical to unravelling the relationships between   morphological 209 
changes and localised mechanical properties across the calcified cartilage and subchondral 210 
bone interface in both joints of mice that exhibit healthy ageing and those prone to 211 
osteoarthritis (Fig. 2C, discussed below).  212 

Hypertrophic chondrocyte lacunar size in the osteoarthritis-prone joint: Image processing 213 
and surface rendering techniques can be applied to 3D images attained using our 214 
methodology (Fig. 1 & 2) to effectively measure changes, as well as differences, in articular 215 
morphology. For example, we can measure larger hypertrophic chondrocyte lacunar volumes 216 
in the calcified cartilage of a 20-week old STR/Ort (osteoarthritic) murine joint (Fig. 3B & F) 217 
than in an age-matched control CBA (healthy) joint (Fig. 3A & E). The scope to measure 218 
these larger hypertrophic chondrocyte lacunae was also apparent in an ageing 40 week-old 219 
osteoarthritic STR/Ort mouse joint (Fig. 3C, D, G, H, I, P<0.001) which, at this age, was 220 
coupled to a significantly greater thickness in the joint’s calcified cartilage tissue layer (Fig. 221 
3J). Direct imaging of intact joints is also useful for revealing greater elongation of these 222 
expanded calcified cartilage hypertrophic chondrocyte lacunae in the STR/Ort than in the 223 
healthy CBA joints (Fig. 3K – Q, P<0.01).  224 
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 225 

Fig. 2. 3D strain mapping of intact tibia: (A) Schematic of the full mouse joint loading 226 
model (left), (a1) expanded view showing ultra-high resolution imaging (0.8 µm pixel size) 227 
of the medial plateau of a 40 week-old STR/Ort mouse (n=1) with superimposed 228 
displacement field. Further expanded views of (a2) displacement magnitude, (a3) first 229 
principal strain and (a4) shear strain fields. The full joint loading configuration is 230 
representative of physiologic loading, and closely recapitulates a common in vivo 231 
experimental protocol. (B) Schematic of indentation loading applied to the disarticulated tibia 232 
(left), (b1) lateral (left) and posterior (right) views of the 200 µm tip radius diamond indenter 233 
in contact with the medial plateau, and (bottom) representative tomography slice under the 234 
indenter showing highly-resolved hypertrophic chondrocyte and osteocyte lacunae of a 40 235 
week-old CBA mouse (n=1). Further expanded views of (b2) displacement magnitude, (b3) 236 
first principal strain and (b4) shear strain fields within the articular calcified cartilage and 237 
subchondral bone regions. Indentation allows highly controlled loading whilst local imaging 238 
allows excellent resolution. (C) Schematic highlighting the capability of this method to 239 
enable ultra-high resolution imaging during highly controlled indentation, with loading 240 
transmitted through the articular cartilage and mineralized subchondral layers. 241 
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 242 

Fig. 3. Ultra-high resolution synchrotron CT imaging of calcified cartilage: Example 243 
tomography sections from: (A) CBA 20+ week old, (B) STR/Ort 20+ week old, (C) CBA 244 
40+ week old, and (D) STR/Ort 40+ week old. Calcified cartilage chondrocyte lacunae 245 
morphology and distribution illustrated for CBA (E-20 wk, G-40 wk) and STR/Ort (F-20 wk, 246 
H-40 wk), with (I) equivalent volume spherical pore diameter and (J) calcified cartilage layer 247 
thickness quantified.  Depiction of angle between longest lacunae dimension (maximum 248 
Feret diameter) and tibial axis for CBA (K-20 wk, M-40 wk) and STR/Ort (L-20 wk, N-40 249 
wk), with (O) smallest dimension, (P) largest dimension, and (Q) orientation quantified. 250 
Box-whisker plots: n=1 joint in each age/strain with n>1000 individual chondrocytes 251 
measured in each joint; boxes of 25th/75th percentiles with median bar and whiskers 252 
encompass 99% of data points; different from adjacent population with (***) p<0.001 and 253 
(**) p<0.01.  254 
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Tissue-specific correlation of microfracture surfaces with strain patterns and 255 
morphological features at high spatial resolution: With a view to documenting fracture 256 
surfaces, strain patterns and morphological features, we utilized indentation loading to create 257 
localized tissue deformation under the medial condyle of tibiae isolated from a healthy, 258 
ageing control (40 week-old CBA) and from early and late-stage osteoarthritic joints (20 and 259 
40 week-old STR/Ort; Figure 4). Results show an unprecedented level of detail for 260 
localization of deformation and damage in specific subchondral tissues of intact bones. We 261 
observed load-induced fracture only within the deep subchondral bone regions of a healthy 262 
control tibial condyle, with the calcified cartilage layer remaining structurally intact. DVC 263 
strain patterns exhibit high apparent tensile strains associated with the tissue fractures, which 264 
can be difficult to otherwise observe. The relationship between fracture surface and nearby 265 
osteocyte lacunae is also demonstrated through morphological analysis of the imaging data. 266 
In marked contrast, load application in an osteoarthritic 40-week old STR/Ort mouse tibial 267 
condyle instead produced fracture surfaces restricted to the calcified cartilage layer, with an 268 
orientation parallel to and near the overlying condylar layer. A sample of intermediate age 269 
from the osteoarthritic mouse line (20-week old STR/Ort) exhibited intermediate behaviour, 270 
with a complex fracture surface spanning the depth of the calcified cartilage, passing through 271 
a region of clustered large pores and with high apparent compressive strains. These data, 272 
albeit from single representative tibial samples, show that this technique can be used to 273 
explore the evolution of damage within sub-articular tissues and whether osteoarthritis 274 
susceptibility is linked to greater vulnerability to calcified cartilage cracking. Specific 275 
hypotheses concerning load-induced strain can be explored (Figure 4d), with response 276 
mapped directly to observable microstructural features. DVC strain measurement will define 277 
fracture location, orientation and susceptibility and create a basis for evaluation of 278 
microstructural tissue models. 279 
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 280 

Fig. 4. Correlative visualisation of microstructure, strain patterns, and fracture 281 
surfaces: (A) Fracture surfaces (red) appear deep to the articular surface within subchondral 282 
bone (below dashed yellow line) in an aged CBA control sample, but (B) shallower, within 283 
calcified cartilage (above dashed yellow line) in an aged STR/Ort arthritic sample. DVC 284 
analysis aids fracture identification (red) with localized patterns of high apparent tensile 285 
strain, and highly resolved spatial association with osteocyte (yellow) and chondrocyte 286 
lacunae (orange) is demonstrable through morphological analysis. (C) A younger 20 week 287 
STR/Ort sample exhibits clear fractures through the articular calcified cartilage in 288 
tomography sections (c1, bottom panel), as part of a complex fracture surface spanning 289 
between subchondral bone and articular cartilage (c1, c2). Portions of the fracture surface 290 
(c3) pass through clusters of hypertrophic chondrocyte lacunae in calcified cartilage (c4) and 291 
exhibit high apparent compressive strains (c5). Results represent analysis of n=1/strain/age. 292 
(D) These multi-faceted measurements support development of detailed tissue function 293 
hypotheses: (d1) healthy joint: loads transferred through a stable layer of calcified cartilage 294 
with small homogenously distributed chondrocyte lacunae, overload fractures within 295 
repairable subchondral bone (CBA 40 weeks); (d2) early-stage OA: defective transfer of joint 296 
loads through larger clustered hypertrophic chondrocyte lacunae, complex trans-calcified 297 
cartilage fractures (STR/Ort 20 weeks); and (d3) late-stage OA: calcified cartilage thinning 298 
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and stiffening, with fractures localized to the calcified cartilage/subchondral bone interface 299 
(STR/Ort 40 weeks).   300 
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Quantification of tissue-level strains during physiologically representative whole joint 301 
loading in the STR/Ort mouse model of osteoarthritis progression:  302 

A loading regime was developed to recapitulate steady-state levels achieved during typical 303 
use of the flexed-knee model whilst supporting digital volume correlation. Reference images 304 
were collected by compressing samples at 5 microns/s to a preload of 1.0±0.1N, waiting 10 305 
minutes for load relaxation, then sCT scanning with sample motion stabilized. Two load steps 306 
increasing peak load by 0.2N each were then added, with subsequent relaxation and scanning. 307 
Peak loads were then increased into the 2.0 to 2.5 N range for final relaxation and scanning 308 
sequences. Relaxed load levels were approximately half of the peak load levels in all cases 309 
and were stable within the ±0.1N measurement precision of the loading system. Strain maps 310 
(Fig. 5) reflect correlation between the preload and highest applied load scan volumes.  311 

The whole-joint methodology was used in a longitudinal sequence within the STR/Ort line 312 
(8, 36 and 60 weeks of age), with a single joint from a mouse at each age/strain evaluated. 313 
Tissue compression in the medial tibial plateau (the osteoarthritis-prone condyle in the 314 
STR/Ort mouse), as documented through minimum (third) principal strain in Fig. 5A, is high 315 
in magnitude prior to osteoarthritis onset (8 weeks) throughout the contact region directly 316 
adjacent to the femoral condyle, mostly through the region of articular calcified cartilage with 317 
some extension into the subchondral bone. At this age, direct femoral contact dominates the 318 
joint compressive loading. By 36 weeks (osteoarthritis) higher magnitude compressive strains 319 
are seen predominantly in the articular calcified cartilage and there is also evidence of 320 
compliance within the deeper bone trabeculae supporting the tibial subchondral mineralized 321 
plate (Fig. 5B). By 60 weeks (advanced osteoarthritis) a very different pattern is observed, 322 
with relatively low levels of tissue compression throughout the direct tibial contact region 323 
and deeper supporting tissues (Fig. 5C). These data indicate a utility for this technology in 324 
revealing general trends in joint tissue mechanics. They pinpoint a need to further study 325 
whether the articular construct shifts from a broadly compliant toward a stiffer structure 326 
before, during or after onset of osteoarthritis and whether this is also partly recapitulated in 327 
healthy, ageing joints.  328 

Our methodology also quantifies tissue tension as evidenced by maximum (first) principal 329 
strain. Prior to osteoarthritis onset (8 weeks), highly heterogeneous tissue tension is observed 330 
throughout the medial tibial plateau (Fig. 5D) and these tissue tensions become more uniform 331 
and decrease in magnitude with osteoarthritis development at 36 weeks (Fig. 5E), and more 332 
so at 60 weeks of age (Fig. 5F). The fact that these changes can be measured indicates that 333 
the methods allow an examination of the role of microstructure in strain development. Our 334 
data also evidence the scope to map these load-induced tissue strains directly to changes in 335 
tissue structure. In the samples studied here tissue strain changes are measured in parallel 336 
with articular calcified cartilage morphological characteristics measured at high spatial 337 
resolution (Fig. 5G). Our observations of nano-scale resolved strains in intact loaded joints 338 
also allow emerging high tensions at the tibial insertion of the anterior cruciate ligament prior 339 
to osteoarthritis onset to be examined (8 weeks; Fig. 1D) (arrow). With osteoarthritis 340 
development at 36 and 60 weeks, this region of tensile strain has expanded (Fig. 5E & F), and 341 
dominates the strain pattern. 342 
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 343 

Fig. 5. Nano-resolved strain under physiologically representative loading prior to and 344 
after the onset of osteoarthritis: (A,D) STR/Ort 8+ week, (2.4/1.2±0.1N), prior to onset of 345 
osteoarthritis (B,E) STR/Ort 36+ week, (2.4/1.4±0.1N), post osteoarthritis onset, and (C,F) 346 
STR/Ort 60+ week, (2.2/1.2±0.1N), advanced osteoarthritis. Applied loads are shown as 347 
(peak/relaxed ±1 standard deviation), with preloads for strain measurement of 1.0/0.5±0.1N. 348 
A single joint from a mouse at each age/strain was evaluated. (A-C) Tissue compression 349 
(third principal strain) evolves during different stages of osteoarthritis progression. (A) 350 
Distributed strain under the femoral condyle that permeates throughout the articular calcified 351 
cartilage and into the subchondral bone in the knee joint of an 8 week-old mouse. (B) At 36 352 
weeks, compression localizes more, shifting to a location adjacent to the now hypertrophied 353 
mineralized meniscus. (C) By 60 weeks the pattern is very different, with relatively low 354 
levels of tissue compression throughout the direct tibial contact region and deeper supporting 355 
tissues. (D-F) Tissue tension (first principal strain) also evolves with age. Magnitudes are 356 
initially high in the articular contact regions, but low at 36 weeks and beyond. In contrast the 357 
anterior cruciate ligament location on the tibial plateau exhibits low magnitude tensile strain 358 
initially followed by a higher magnitude and more expansive region as age increases. (G) 359 
Articular calcified cartilage (ACC) thickness, the average chondrocyte lacunae pore volume, 360 
and the change in chondrocyte lacunae pore volume under load. (H) Schematic of the 361 
standard loading model used.34.  362 
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Discussion  363 
Our methodology bridges the gap between whole joint mechanics and nanoscale strain 364 
measurement in sub-articular tissues, which will allow the elusive structural cartilage-bone 365 
features underpinning joint health to be defined. These techniques can clearly be used to 366 
reveal hierarchical changes in tissue structure and mechanical behaviour. They show that it is 367 
possible to examine whether strategies for adapting to physiologically representative 368 
mechanical joint loading diverge in diseased joints and that early changes in calcified 369 
cartilage structure are worthy of study, as they may prefigure disease onset. These data 370 
provide the enabling technology for the role of sub-hyaline mineralized tissue microstructure 371 
in strain development to be explored. They also signpost a specific and vital mechanical role 372 
for stiffening in this calcified cartilage layer in disease progression (Fig. 5).     373 

A major challenge in osteoarthritis research is understanding the intimate interactions 374 
between the adjoining joint tissues. This challenge is perhaps most obvious, specifically in 375 
the biological and physical crosstalk between the articular cartilage and subchondral bone, 376 
where the calcified cartilage layer is found sandwiched35. Indeed studies have shown that this 377 
crosstalk can be facilitated by vessels reaching from the subchondral bone into the calcified 378 
cartilage; patches of uncalcified hyaline cartilage being in contact with the subchondral bone, 379 
and microcracks and fissures extending through the osteochondral unit36. Previous studies 380 
have either scanned and examined deformation and ensuing crack formation in a single bone 381 
at the micron scale37  or have probed surface and near-surface mechanical properties at the 382 
nano-scale in isolated tissue segments20; our technique allows the  direct measurement of 383 
mechanical strains in intact joints under controlled and physiologically realistic loading 384 
conditions. Several studies have used diffraction or small-angle X-ray scattering to measure 385 
strain, but again this was only achievable in extracted bone fragment samples38,39 .  386 

Our studies have gleaned information across the entire osteochondral unit by combining the 387 
use of two joint loading protocols - an indenter and a non-surgical knee joint loading model – 388 
together with ultra-high resolution imaging of intact mouse knee joints from control and 389 
osteoarthritis-prone strains. The indenter protocol allows application of identical, controlled 390 
loads to the murine tibial plateau at a highly reproducible location, without anatomical or 391 
morphological differences that would otherwise complicate interpretation. The large radius 392 
indenter (with respect to tibial plateau curvature) therefore allows more controlled and 393 
consistent probing of localized mechanical response. It is recognised that the precise tilt 394 
(angle or articulation) of the tibial plateau does show some variation between samples, and 395 
that this may be a factor contributing to tissue strain development. We used a vertical 396 
orientation of the indenter and contact with the middle of the tibial plateau as a means of 397 
creating consistent force input into the samples and to allow the effects of multiple geometric 398 
and material influences to manifest without attempts to adjust for any particular factor. Future 399 
studies using our method described herein will enable the material property and geometry 400 
influences on tissue strain to be examined. 401 

Whilst the hierarchical structural and mechanical properties of the adjoining joint tissues are 402 
known to be dissimilar40, there is currently little awareness of how tissue strains manifest or 403 
whether mechanical properties across the osteochondral unit vary during healthy and 404 
pathological ageing of the joint. The calcified cartilage is clearly crucially located, linking the 405 
underlying, extensively vascularised subchondral bone through a mineralised interface with 406 
discontinuous, unmatched, collagen type I and II fibres, to the hyaline cartilage where a 407 
continuous traverse of collagen type II fibres abruptly transition from calcified into overlying 408 
non-mineralised cartilaginous tissue. The calcified cartilage is approximately 100 times 409 
stiffer than the overlying hyaline cartilage and 10 times less stiff than the underlying 410 
subchondral bone41,42. It is therefore unsurprising that the calcified cartilage layer is thought 411 
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to be integral to load transmission from the compliant hyaline cartilage, to the underlying stiff 412 
subchondral bone42. Indeed alterations in the calcified cartilage thickness, represented by the 413 
balance between the rate of tidemark advancement into the hyaline cartilage and the rate of 414 
calcified cartilage resorption at the osteochondral interface, are associated with increased risk 415 
of joint injury43. Our technique was also applied to healthy murine joints, allowing load-416 
induced strain localisation to be measured in the joint calcified cartilage and underlying 417 
subchondral bone (Fig. 5). Our technology permits examination of new questions: is joint 418 
function safe-guarded by the calcified cartilage? Does joint health rely on structural 419 
robustness at its two interfaces? Whilst these principles would be novel, they are nonetheless 420 
consistent with previous data showing the role of the calcified cartilage in preserving the 421 
structural integrity of the articular cartilage and in regulating subchondral bone mass and 422 
architecture.  423 

The stiffness gradient from the subchondral bone to the calcified cartilage may be attributed 424 
to mineralisation status. Reports of lower subchondral bone mineralisation and stiffness have 425 
indeed been reported in osteoarthritis44-48 and, similarly, alterations in the stiffness gradient 426 
from the calcified cartilage to the subchondral bone are observed at the macro-level in 427 
association with early degenerative changes42. Our data suggest that the transfer of high joint 428 
loads to the underlying subchondral bone should be examined further as a potential means by 429 
which healthy joint architecture is preserved; this is consistent with high vascularisation and 430 
scope for rapid and ordered remodelling of subchondral bone. The effectiveness of this 431 
transfer of high joint loads to the subchondral bone is also consistent with our findings 432 
indicating selective, longer term increases in subchondral plate thickness at these loaded joint 433 
locations in vivo49. Our methods also allow localised inhomogeneity in the strains to be 434 
observed, with some regions exhibiting strains much higher than the nominal, homogenized 435 
values that traditional testing reveals. This is consistent with both measurement and 436 
modelling of mechanical response to load across a broad range of hierarchical scales within 437 
bone and other biological tissues20,50. As our measurements are more spatially resolved than 438 
prior work, this broad distribution of strain magnitudes is not unexpected. 439 

The presence of cracks in the joint calcified cartilage has been recognised for some time, 440 
however their significance had remained undetermined51. It has been postulated that 441 
microcracks in the osteochondral interface may enable the transfer of molecules and 442 
substances to the hyaline cartilage, from which it is normally protected52,53. For example, 443 
subchondral-derived inflammatory cytokines and growth factors that have been shown to be 444 
detrimental to chondrocyte health35. The thickness and porosity of the cartilage and bone in 445 
both human and equine samples also influences bone-cartilage interface transfer54. 446 
Furthermore, microcrack propagation may also contribute to the mechanical failure of the 447 
joint when placed under high loads, as has been shown in Thoroughbred horse joints55. The 448 
hypothesis that greater levels of calcified cartilage chondrocyte hypertrophy predispose 449 
greater strain concentration, load-induced microcracking and osteoarthritis, is underpinned by 450 
our studies.   451 

The idea that mechanical failure may indeed occur in close proximity to the calcified 452 
cartilage has recently been supported by the seminal description of hyperdense mineralised 453 
protrusions (HDMP) from the subchondral plate in joints from Thoroughbred racehorse and 454 
more recently in human osteoarthritic hips56-59. These HDMPs comprise a hypermineralised 455 
infill material which may be an extension of a crack self-healing mechanism observed in 456 
bone60. Our technique described herein will enable the tracking of strain fields during HDMP 457 
development to potentially validate their proposed method of formation.  458 
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Mechanics and genetics are prime determinants of healthy joint ageing. Links to genetic 459 
selection for rapid growth also exist61 and recent research has prompted speculation that 460 
hyaline cartilage chondrocytes ‘switch’ from an inherently stable to a transient phenotype, 461 
similar to that observed in the growth cartilage62-64. This transience, vital for longitudinal 462 
bone growth, contrasts however with the stable hyaline chondrocyte phenotype required to 463 
assure life-long joint integrity. The data we have presented herein examining hypertrophic 464 
chondrocyte lacunae size conform with other studies highlighting a contribution of phenotype 465 
switching to the demise of the joint and is consistent with our previous work which 466 
investigated the expression of molecular markers of chondrocyte hypertrophy in these 467 
STR/Ort mice63. This revealed an expected pattern of type X collagen expression in the 468 
unaffected (lateral) condyles of STR/Ort mouse joints, with immunolabeling restricted to 469 
hypertrophic chondrocytes. Consistent with our data here, an increased type X collagen 470 
immunolabeling was observed throughout the medial (affected) condylar articular cartilage 471 
matrix in 8–10-week-old STR/Ort mice, before histologically detectable osteoarthritis. Also, 472 
consistent with our findings here, an additional marker of chondrocyte hypertrophy, MMP-473 
13, was detected to be increased in the calcified cartilage chondrocytes of STR/Ort mice63. 474 
Together these data warrant further investigation into the role of chondrocyte hypertrophy in 475 
the calcified cartilage in generating the abnormal strain localisation observed in osteoarthritic 476 
joints. Interlinks between these discordant phenotypes are however not fully deciphered and 477 
whilst the hypothesis that limited ‘switching’ contributes to preserving joint health is 478 
controversial, our newly described methods will undoubtedly provide clear insights into the 479 
mechanical role of chondrocyte hypertrophy in osteoarthritis.  480 

The utility of our whole loaded joint imaging and DVC approach is perhaps best exemplified 481 
by the generation of unique, first of their kind, 3D full-field displacements and strains in the 482 
intact mineralised joint tissues (Fig. 5), indicating potential for future studies examining the 483 
interplay between genetics and mechanics in joint health and osteoarthritis. Our findings 484 
provide a means for generating new hypotheses in significant orthopaedic healthcare 485 
challenges such as osteoarthritis, as we have done here. However, one limitation of our study 486 
is the difficulty in obtaining data from a large number of replicate animal joints for statistical 487 
validation of these hypotheses, as synchrotron access for performing these ultra-high 488 
resolution in situ imaging is limited. The technique we have developed will nonetheless have 489 
a wide range of applications, for example, in orthopaedics measuring strain in both healthy 490 
joints and the impact of joint replacements on strain distributions. For osteoarthritis, these 491 
new insights provide a viable model system for the efficacy of new treatments to be explored 492 
in longitudinal studies, potentially shortening the drug development pipeline. They also 493 
expand studies across the length scales, from nanoscale resolution of the osteochondral unit 494 
to the whole joint. Further, the technique is applicable to many non-biological systems where 495 
strain measurements are required at the nano-scale with minimal radiation damage in situ or 496 
operando. 497 

Methods 498 

Animals 499 

Male STR/Ort (bred in-house at the Royal Veterinary College) were examined before 500 
osteoarthritis onset (8 weeks), at early osteoarthritis onset (20 weeks) and late osteoarthritis 501 
(40 weeks) in comparison to male age-matched CBA mice (Harlan UK Ltd. UK). CBA mice 502 
are the most appropriate control for the STR/Ort mouse as they are the nearest available 503 
parental strain, and extensive analysis reveals they show no overt signs of osteoarthritis with 504 
ageing29. Mice were kept in polypropylene cages, with light/dark 12-h cycles, at 21 ± 2°C, 505 
and fed ad libitum with maintenance diet (Special Diet Services, Witham, UK). All 506 
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procedures complied with Animals (Scientific Procedures) Act 1986, were approved by the 507 
local ethics committee of the Royal Veterinary College, and comply with the ARRIVE 508 
guidelines. STR/Ort mice were maintained by brother/sister pairing29. Whole hind limbs were 509 
dissected and stored frozen at -20oC. Knee joints were either scanned as intact limbs, or were 510 
dislocated on the day of scanning, all soft tissues removed from the distal tibial element 511 
before it was severed close to the midshaft with a bone saw. All samples, both intact joints 512 
and disarticulated indentation samples, were maintained hydrated in phosphate buffered 513 
saline during all scanning29.  514 

In situ testing using bespoke nano-precision rig 515 

Our bespoke in situ mechanical rig65 (P2R; Fig.1 and Suppl. Fig. S1) was designed with a 516 
granite base frame, two rotation shafts coupled with air bearings and servomotor assemblies, 517 
a load measurement system and its associated drive specifically for in situ X-ray tomography 518 
studies31,32,66. Full details are in Supplementary Methods, with only key attributes detailed 519 
here. The air bearings ensure frictionless axial movement of shafts engineered for permanent 520 
alignment accuracy of better than 50 nm, which is required during scanning to avoid 521 
misalignment artefacts and unwanted off-axis forces. Rotation shaft ends are fixed to pre-522 
aligned micrometre-resolution X-Y translation stages (T12XY, Thorlabs) and aligned 523 
specimen (intact knee joint) are biofilm-sealed to limit dehydration and loaded using custom-524 
built, 3D printed plastic cups designed to allow axial compression with sub-micron precision 525 
displacement steps to be applied across a flexed knee joint67.  526 

For dislocated tibias, the mid-shaft was embedded in 1.5 mm of acrylic resin in the pre-527 
aligned lower cup68 and specimens indented from above on the centre of the tibial medial 528 
plateau using a 120o diamond Vickers indenter with a 200 µm radius tip (Gilmore Diamond 529 
Tools, Inc.) with 10 micron displacement steps applied and measured loads reaching a 530 
maximum of 4N (note in the whole joint experiments 20 micron displacements were used). A 531 
fifteen minute-window was allowed after loading to avoid motion artefacts during scanning 532 
caused by stress relaxation. All the tests were carried out in wet conditions using a phosphate 533 
buffered solution (PBS)-filled environmental chamber placed in the P2R rig.  534 

Ultra-high resolution, fast pink beam imaging 535 

Ultra-high resolution imaging during indentation of the tibia and compression of intact joints 536 
under realistic loading conditions was performed using the Diamond-Manchester Imaging 537 
Branchline I13-269,70 of the third-generation synchrotron Diamond Light Source. 538 
Traditionally, monochromatic X-rays have been used for phase contrast enhanced images of 539 
bone27,71,72; instead we used a ‘pink beam’ to enable similar data quality with shorter 540 
acquisition times. Sample deformation represents a major obstacle to high-resolution 541 
tomography for joints under compression, and rapid imaging with a pink beam was essential 542 
to enabling this. Here the spectral distribution is determined by the design of the synchrotron, 543 
the insertion device (ID) settings and the choice of filters and mirrors. The resulting beam 544 
(once filtered as below) at I13-2 is ~100 times more intense than a monochromatic beam 545 
generated by a monolayer monochromator30. We used the Diamond mini-beta undulator (2 m 546 
long U22 undulator, 2.2cm period length) from which radiation from 90 periods interferes 547 
coherently to produce sharp peaks at harmonics of the fundamental frequency (Suppl. Fig. 548 
S3a). Using a 5 mm ID gap (deflection K~1.743), X-rays of 5-30 keV and flux density of 549 
about〖6x10〗^13 ph/s/〖mm〗^2 (flux simulations are detailed in Supplementary 550 
Methods) were generated. Radiation was then selectively filtered to attenuate low energy X-551 
rays, protecting instrumentation and reducing tissue radiation dose. Filters were used (C-1.3 552 
mm, Al-3.2 mm, and Ag-75 µm) to tune the flux to about〖4x10〗^11 ph/s/〖mm〗^2, 553 
using 6 harmonics between 16 and 25 keV (Suppl. Fig. S3a), approximately 10 times more 554 
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than the monochromatic flux (setup 4, E=19 keV, see Suppl. Table ST1). Here, our strategy 555 
is to use less photons at lower energies to reduce the mean energy imparted to the tissue by 556 
ionizing radiation. We satisfied these requirements by suppressing most of the harmonics 557 
below 19 keV (Suppl. Fig. S3b). Slits were used to truncate the beam just outside the field of 558 
view; this reduces both sample exposure and the intensity of noise arising from scintillator 559 
defects. We collected in fly-scan mode up to 4001 high-count projections with a transmission 560 
between 20-40% (effective pixel size of 1.6 µm using setup 1 and 0.8 µm using setup 3, see 561 
Suppl. Table ST1) in less than 7.3 minutes, by means of our precise mechanical rig with 562 
built-in rotation coupled to a fast, high dynamic range pco.edge 5.5 camera (16 bit, 100 fps) 563 
mounted on a scintillator-coupled microscope of variable magnification.  564 

Radiation dose 565 

Similar to Pacureanu et al. (2012) a method was developed to measure the signal-to-noise 566 
ratio (SNR) from the images and evaluate the radiation dose from the simulated flux73 (see 567 
Supplementary Methods). Prior to analysis, our simulations were compared with flux 568 
experiments obtained on the Diamond-Manchester Imaging Branchline and a good agreement 569 
was obtained (Suppl. Fig. S4). The dose rate ranges between 0.4-0.5 kGy/s, which is in the 570 
range of dose rates obtained at different synchrotron locations (Suppl. Table ST2). The trade-571 
off between scanning time, SNR, and total dose is depicted in Suppl. Fig. S3c-f. The total 572 
dose for each tomogram ranges from 100 kGy (setup 1) to 240 kGy (setup 2) for a 4-7 minute 573 
scan time, which is above the acceptable irradiation levels for in situ bone mechanics27. For 574 
comparison, our equivalent monochromatic beam setup (Suppl. Table ST1, setup 3) had a 575 
total dose of about 157 kGy/tomogram but the scanning time is 5 times higher and the SNR 3 576 
times lower (Suppl. Table ST1 and Fig. S3h). Reducing the number of projections to 600 in 577 
pink beam (~1.1 minute scan time, Suppl. Table ST1 - Setup 2) reduces total dose to 27 578 
kGy/tomogram (Suppl. Fig. S3e) such that hypertrophic cells are still resolvable but 579 
osteocyte lacunae are progressively lost (Suppl. Fig. S3c, d, e).  580 

Data processing prior to Digital Volume Correlation (DVC) 581 

Reconstruction was performed with the tomography reconstruction module of Dawn 1.774,75, 582 
with normalisation (forty flatfield and darkfield images) and ring artefact suppression prior to 583 
filtered back projection. Prior to DVC analysis, the tomograms were cropped, normalised and 584 
3D median filtered (kernel size 2). Input to the 3D texture correlation texture algorithm 585 
consists of two 8-bit image volumes (non-deformed/deformed) and a flexible point cloud file 586 
that specifies the subvolume locations where displacement values are sought. We developed a 587 
method to generate discrete DVC points analogous to the nodes where a displacement-based 588 
FEA (finite element analysis) calculates displacement results (Fig. 1). Images were imported 589 
into Avizo 9.0 software to create binary region of interest masks (femur/ tibia in intact joints 590 
and calcified cartilage/subchondral bone in the indent specimens). Masks were obtained by 591 
image processing using a region-growing algorithm and then a morphological closure process 592 
to fill porosity from subchondral bone and calcified cartilage (Fig. 1E). Images were then 593 
eroded by 8 voxels to avoid surface edge effects during the correlation process and then used 594 
to generate unstructured tetrahedral finite element (FE) meshes (Fig. 1F) by the well-defined 595 
methodology76. Finally, mesh nodes were extracted to define the point cloud (Fig. 1G) and 596 
high density points created to capture high strain gradients. 597 

Nanoscale displacements extracted from DVC 598 

3D displacement vector fields were calculated using the diamond.dvc open access code25,33. 599 
A Gauss–Newton minimization is applied with cubic spline volumetric image interpolation to 600 
an objective function, defined as the normalised squared differences between subvolumes in 601 
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the non-deformed and deformed image data, allowing displacements to be measured with 602 
subvoxel accuracy. To assess the a priori performance of DVC analysis, correlation of repeat 603 
reference images was performed (Fig. 1H) with standard deviation of measured displacement 604 
vector components used to quantify precision and allow adjustment for imaging noise and 605 
heterogeneous texture. There is generally trade-off between measurement uncertainty and 606 
resolution (Suppl. Fig. S3i) and 40-50 voxels subvolume size (32-40 µm) produced the best 607 
compromise with a 0.3 voxel DVC accuracy, if the point cloud is homogenously distributed; 608 
0.8-1.6 µm pixel size allowed displacements in subchondral bone and calcified cartilage to be 609 
measured with 240-480nm accuracy. Regardless of dose, accuracy was increased to 0.08 610 
voxel (~80-160 nm precision) if only calcified cartilage was considered (Fig. 1H, Suppl. 611 
Table ST1 and Suppl. Figs. S3c-f).  612 

A critical step in all DVC methods is selection of an accurate starting point in the vicinity of 613 
a global minimum and avoidance of secondary local minima33. To redress this, raw images in 614 
non-deformed and deformed states were co-registered using a robust iterative optimization 615 
algorithm (Avizo 9.0) to remove the rigid body motion (translation and rotation). Each 616 
deformed image was then registered with the reference image using the diamond.dvc code. 617 
Correlation quality was assessed by reference to magnitude of the objective function returned 618 
by the correlation process. Histograms of normalised correlation revealed very low and 619 
tightly grouped residuals, indicative of a good match. Point cloud location displacements 620 
were interpolated at a set of grid points using Delaunay triangulation and all Green-Lagrange 621 
strain components were computed using a centred finite differences scheme. The code 622 
modules for strain calculations were modified (from 77) to include the scattered point 623 
interpolation and all the principal strain components.  624 

Statistical analysis 625 

Normality and homogeneity of variance of all the data were checked, and two-sided one-way 626 
ANOVA conducted to compare groups. p < 0.05 was considered to be significant and noted 627 
as *; p-values of <0.01 and <0.001 were noted as ** and ***, respectively. In situ indentation 628 
experiments were performed on two different 20-week STR/Ort mice, at four loading steps. 629 
Similar strain patterns in the calcified cartilage are found for the two specimens (see Suppl. 630 
Fig. S5a). Higher magnitude compressive strains are seen predominantly in the articular 631 
calcified cartilage. The strain histograms of the first and third principal strains are similar and 632 
appear as asymmetrical distributions (Suppl. Fig. S5b). Animations showing the progressive 633 
compression of the hypertrophic chondrocytes in a transverse section are available for 634 
visualisation in Suppl. Video SV2.  635 

Data availability  636 

A representative sample of research data from the experiments along with the plot data for 637 
the graphs in this manuscript is provided in supplementary material. The underlying data are 638 
not provided online due to their size but are available on reasonable request from the 639 
corresponding authors. 640 
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