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Abstract  39 

Systemic sclerosis (SSc) is a complex, multi-organ, autoimmune disease. Lung fibrosis occurs in ~80% 40 

of patients with SSc; 25–30% develop progressive interstitial lung disease (ILD). The pathogenesis of 41 

fibrosis in SSc-associated ILD (SSc-ILD) involves cellular injury, activation/differentiation of 42 

mesenchymal cells and morphological/biological changes in epithelial/endothelial cells. Risk factors 43 

for progressive SSc-ILD include older age, male sex, degree of lung involvement on baseline high-44 

resolution computed tomography, reduced diffusing capacity for carbon monoxide and reduced 45 

forced vital capacity. SSc-ILD does not share the genetic risk architecture observed in idiopathic 46 

pulmonary fibrosis (IPF) with key risk factors yet to be identified. Presence of anti-Scl-70 antibodies 47 

and absence of anti-centromere antibodies indicate increased likelihood of progressive ILD. Elevated 48 

levels of serum Krebs von den Lungen-6 and C-reactive protein are both associated with SSc-ILD 49 

severity and predict SSc-ILD progression. A promising prognostic indicator is serum chemokine (C-C 50 

motif) ligand 18. SSc-ILD shares similarities with IPF, although clear differences exist. Histologically, a 51 

non-specific interstitial pneumonia pattern is commonly observed in SSc-ILD, whereas IPF is defined 52 

by usual interstitial pneumonia. The course of SSc-ILD is variable, ranging from minor, stable disease 53 

to a progressive course, while all IPF patients experience progression of disease. Although 54 

appropriately treated patients with SSc-ILD have better chances of stabilization and survival, a 55 

relentlessly progressive course, akin to IPF, is seen in a minority. Better understanding of cellular and 56 

molecular pathogenesis, genetic risk and distinctive features of SSc-ILD, and identification of robust 57 

prognostic biomarkers are needed for optimal disease management.  58 

 59 

Keywords: Systemic sclerosis; interstitial lung diseases; autoimmune diseases; risk factors; 60 
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Introduction  63 

Systemic sclerosis (SSc) is a complex autoimmune disease with a range of manifestations 64 

including vasculopathy, Raynaud’s phenomenon, immune dysfunction and fibrosis of the 65 

skin and internal organs (1-3). It is a rare disease, with an estimated global prevalence of 3–66 

24 per 100,000 (4). Diagnostic criteria for SSc were published jointly by the European League 67 

Against Rheumatism and the American College of Rheumatology in 2013, with a scoring 68 

system based on a range of possible signs, symptoms and autoantibodies (5).  69 

Lung fibrosis occurs in up to around 80% of patients with SSc, with varying 70 

prevalence depending on ascertainment methods and 25–30% of patients develop 71 

progressive interstitial lung disease (ILD) (2). In a large international cohort study, 35% of 72 

SSc-related deaths were attributed to pulmonary fibrosis, making it the leading cause of 73 

mortality in this patient population (6). The course of SSc-associated ILD (SSc-ILD) is highly 74 

variable; some patients have limited or stable lung involvement whereas in others, lung 75 

disease progresses inexorably. Due to the largely irreversible and potentially progressive 76 

nature of ILD, it is important that diagnostic tests are performed early, so that treatment 77 

can be initiated with minimal delay.   78 

In this article, we review SSc-ILD with a focus on pathogenesis, risk factors and 79 

patient characteristics associated with the condition, with a view to identifying patients 80 

most at risk of the disease and its progression. We also highlight similarities and differences 81 

between SSc-ILD and idiopathic pulmonary fibrosis (IPF), the most frequent and deadly of 82 

the idiopathic ILDs. 83 

 84 
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Pathogenesis 85 

The architectural disruption and collagen-rich extracellular matrix (ECM) in SSc-ILD results 86 

from the interaction of cells in the epithelial, endothelial and interstitial compartments with 87 

components of the innate and adaptive immune system, and the ECM, following chronic 88 

micro-injuries in the lung. The first step in the pathological process is thought to comprise 89 

repetitive endothelial and epithelial cell injury. This leads to activation of the innate and 90 

adaptive immune system, recruitment and activation of fibroblasts, and differentiation of 91 

fibroblasts to a myofibroblast phenotype (7) with accumulation of ECM and development of 92 

fibrosis (8). Apoptosis is triggered in some epithelial cells, while others undergo epithelial 93 

mesenchymal transition (EMT) (7). Many of the phenotypic changes occurring in respiratory 94 

epithelial cells in the context of fibrosis remain unknown and require further study. Cells 95 

undergoing EMT exhibit profound morphological and biological changes such as loss of 96 

polarity, increased capacity for migration, increased production of ECM components and 97 

increased resistance to apoptosis (7). Resistance to apoptosis is also characteristic of certain 98 

myofibroblasts, which may contribute to the rate and extent of fibrosis (7) in SSc-ILD.  99 

A plausible model of pathogenesis for parenchymal lung involvement in connective 100 

tissue disease, which consolidates current evidence on SSc-ILD pathology and describes 101 

initial alveolar epithelial and endothelial injuries that are triggered by environmental 102 

factors, pathogens or inflammation is shown in Figure 1 (9). The latter event results in 103 

damage to the lung tissue and initiation of repair pathways including the recruitment of 104 

fibroblasts and myofibroblasts; close anatomical and functional interactions between 105 

alveolar epithelial and endothelial compartments result in recruitment of circulating cellular 106 

components and mediators such as platelets and progenitor cells. In this model, 107 

myofibroblasts are key profibrotic cells that persist in affected lung tissue; the extent of 108 
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their persistence determines the pattern and type of fibrotic reaction. Interplay of 109 

myofibroblasts with the ECM via matricellular proteins such as integrins and microfibrils 110 

together with soluble factors such as connective tissue growth factor drive the fibrotic 111 

process. The degree of irreversible architectural disruption likely determines the 112 

progression or reversibility of the lung condition (9).   113 

Transforming growth factor beta (TGF-β) is believed to be one of the key factors in 114 

the process of fibrosis. It has been implicated in ECM accumulation and the regulation of 115 

immune response (7, 8). Injured cells secrete TGF-β, which leads to the recruitment of 116 

immune cells, including macrophages, which in turn release more TGF-β (7). Increased 117 

expression of genes regulated by TGF-β has been confirmed in patients with progressive 118 

lung fibrosis (10). Type 2 helper T-cells that secrete interleukins (IL; e.g., IL-4, IL-13) are also 119 

believed to play a role in the development of fibrosis (8). Moreover, levels of thrombin are 120 

increased in the lungs of patients with SSc-ILD (7), probably as a consequence of cellular 121 

injury. In addition to its role in the coagulation cascade, thrombin may contribute to fibrosis 122 

by increasing proliferation of fibroblasts in response to fibrinogen, and facilitating 123 

differentiation of fibroblasts into myofibroblasts (7). The Wnt/β-catenin pathway has been 124 

implicated in the activation of fibroblasts and in pulmonary tissue remodeling (7). 125 

Elements involved in the pathogenesis of SSc, such as IL-6 and M2-like macrophages, 126 

may also contribute to the development of SSc-ILD, especially early in the disease (11-13). 127 

Increases in both macrophage polarization, elevated C-reactive protein, and serum IL-6 128 

levels have been associated with the progression of early SSc-ILD (10, 12, 14). 129 

 130 
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Genetics and Epigenetics 131 

SSc-ILD has been associated with a number of human leukocyte antigen (HLA)-dependent 132 

genes and non-HLA genes (Supplementary Tables 1 and 2) (15). Following the analyses of at 133 

least 200 patients with SSc-ILD, only two variants conferred an odds ratio of at least 2.0 with 134 

statistical significance: HLA-DRB1*3 (Han Chinese population) and CTGF rs6918698 (GG 135 

genotype; UK population) (15). 136 

In spite of the number of reported associations, genetic biomarkers relevant to the 137 

risk of ILD in patients with SSc are yet to be established with certainty (15). Many of the 138 

individual studies reporting associations of genetic variants with SSc-ILD have been small, 139 

and follow-up studies of specific associations are either lacking or have reported conflicting 140 

data. Therefore, a concerted effort is needed, involving large numbers of patients of 141 

different ethnicities, to establish more definite genetic risk factors for SSc-ILD and its 142 

progression. 143 

A few studies have investigated the epigenetics of SSc-ILD (7). Epigenetic factors that 144 

may play a role in the pathogenesis of SSc-ILD include CpG methylation, which is related to 145 

increased DNA methyltransferase expression in fibroblasts. Increased DNA 146 

methyltransferase expression may affect the activities of nitric oxide synthase or the 147 

collagen transcription suppression factor Friend leukemia virus integration 1 (Fli1). Fli1 148 

appears to play a role in protecting against ILD, by up-regulating the expression of genes 149 

including autoimmune regulator and CXCL13 (7, 16). A genome-wide study of genes in 150 

peripheral blood mononuclear cells identified four methylation-regulated genes (F2R, FYN, 151 

PAG1 and PRKCH) as being under-expressed in patients with SSc-ILD versus patients with SSc 152 

and no ILD (17). Significantly increased expression of the XRCC4 DNA repair gene was 153 

reported in SSc patients with versus without ILD (18). Micro-ribonucleic acid (miRNA) 154 
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expression has also been assessed in animal models, and in lung tissue and peripheral blood 155 

mononuclear cells derived from patients with SSc-ILD. Studies have shown that increased 156 

expression of miR-155 is associated with worsened lung function and increased lung fibrosis 157 

(19). 158 

 159 

Risk Factors for the Development and Progression of SSc-ILD 160 

Risk factors associated with progressive ILD among patients with SSc include diffuse 161 

cutaneous SSc, male gender, African-American race,  and the presence of anti-Scl-70 162 

antibodies, also known as anti-topoisomerase I antibodies or ATA, discussed previously in 163 

the section on genetics and epigenetics (20-22). Other indices of SSc-ILD severity have also 164 

been associated with progressive disease, including the extent of disease on high-resolution 165 

computed tomography (HRCT), reduced diffusing capacity of the lungs for carbon monoxide 166 

(DLCO) (% predicted), and decreased forced vital capacity (FVC; % predicted) (23, 24).  167 

Similarly, risk factors for mortality in SSc-ILD include older age, male gender, extent 168 

of disease on HRCT, lower FVC and lower DLCO (23). Several models including the Composite 169 

Physiologic Index; Interstitial Lung Disease-Gender, Age, Physiology Index; du Bois index; 170 

modified du Bois index, have been reported to help predict mortality in patients with SSc-171 

ILD (25). These models are based on readily-available clinical details such as age, gender and 172 

FVC. HRCT is routinely performed at most centers, and the findings can be integrated with 173 

pulmonary function tests (PFT) results as per the Limited/Extensive Staging System 174 

developed by Goh et al. for SSc-ILD (26). This staging system, which is based on the visual 175 

estimation of disease extent of disease on HRCT and, as necessary, integrated with FVC (% 176 

predicted), appears to predict the patients’ risk of mortality more accurately than either of 177 

the component variables when used in isolation (26). This validated staging system proposes 178 
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the rapid identification of limited or extensive lung disease using HRCT based on a disease 179 

extent threshold of 20%. In cases in which disease extent remains indeterminate on HRCT, 180 

FVC is used to classify lung disease as either limited or extensive based on a FVC threshold 181 

of 70%. This system represents a practical means of integrating HRCT extent and functional 182 

severity in routine prognostic evaluation (26). HRCT images from patients with SSc-ILD are 183 

provided in Figures 2–4 to demonstrate examples of ILD with limited, indeterminate and 184 

extensive disease on CT, according to the Goh et al. 20% threshold (26). Stratification of 185 

patients using this system has been shown to be predictive of both progression-free survival 186 

and mortality.  187 

The 6-minute walk test has also been demonstrated to be an independent predictor 188 

of mortality in SSc-ILD. Certain blood biomarkers may also be used to predict the risk of 189 

disease progression (27, 28), although are not routinely used in clinical practice. 190 

In the Scleroderma Lung Study (SLS) I and II, higher baseline skin score, older age, 191 

and a decline in FVC and DLCO over 2 years were independently associated with an increased 192 

risk of mortality (29). A decline in the FVC and the DLCO over 2 years was a better predictor 193 

of mortality than the baseline FVC and DLCO (29). In a long-term study of the prognostic 194 

significance of PFT changes, the strongest 1-year predictor of future mortality in patients 195 

with SSc-ILD was a composite endpoint defined either by a decline from baseline in FVC of 196 

≥ 10% or a decline of 5–9% in FVC with a decrease in DLco of ≥ 15% (30). Thus, short-term 197 

changes in measurements of SSc-ILD progression appear to have important implications 198 

regarding long-term outcomes. The overlap between risk factors for ILD progression and for 199 

increased mortality is unsurprising. 200 

Treatment of SSc-ILD is beyond the scope of this review; however, several landmark 201 

studies have indicated that some treatments may be able to stabilize or slow down disease 202 
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progression, and, therefore, improve patient outcomes. All these trials focused on patients 203 

with clinically meaningful ILD, defined as a combination of moderate-to-severe ILD on HRCT, 204 

abnormal pulmonary physiology with symptoms. SLS I showed that 12 months of treatment 205 

of SSc-ILD with cyclophosphamide (CYC) improved FVC (% predicted) by 2.53% versus 206 

placebo (P < 0.03). A modest benefit was also reported in total lung capacity, dyspnea, skin 207 

thickening and health-related quality of life (31, 32). SLS II was a 24-month study comparing 208 

2-year treatment with mycophenolate mofetil (MMF) with 1 year of treatment with CYC 209 

followed by 1 year of placebo in patients with SSc-ILD. The two treatment approaches 210 

showed similar efficacy in terms of FVC % predicted (mean improvement of 2.19% and 211 

2.88%, respectively) at 24 months. However, MMF treatment was reported to be better 212 

tolerated (e.g., lower rates of leucopenia and thrombocytopenia) (33). The Fibrosing 213 

Alveolitis in Scleroderma Trial was a randomized, placebo-controlled study of low-dose 214 

prednisolone and six-monthly doses of intravenous CYC and oral azathioprine. Compared 215 

with placebo, study intervention showed a non-significant trend towards improving FVC 216 

(treatment difference 4.19%, P = 0.08) (34). Recently nintedanib became the first FDA-217 

approved treatment for SSc-ILD; it is indicated for slowing the rate of decline in pulmonary 218 

function in patients with SSc-associated ILD based on the results of the phase III, 219 

randomized, double-blind, placebo-controlled Safety and Efficacy of Nintedanib in Systemic 220 

Sclerosis (SENSCIS) trial (35). Primary endpoint analysis in the SENSCIS trial showed that the 221 

adjusted annual rate of decline in FVC was 52.4 mL/year in nintedanib-treated patients 222 

versus 93.3 mL/year in placebo-treated patients (difference 41.0 mL/year; 95% confidence 223 

interval [CI] = 2.9–79.0 mL/year; P = 0.04) over a 1-year period in the total study population. 224 

Subgroups analyses reported that nintedanib reduced the progression of ILD irrespective of 225 

mycophenolate use at baseline. Statistical testing did not indicate heterogeneity in the 226 
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treatment effect of nintedanib between those who were or were not receiving 227 

mycophenolate at baseline (P = 0.45 for treatment-by-time-by-subgroup interaction). While 228 

the absolute effect of nintedanib versus placebo in reducing the rate of decline in FVC was 229 

numerically lower in patients who were receiving mycophenolate at baseline compared with 230 

those who were not receiving mycophenolate at baseline (26.3 mL/year versus 55.4 231 

mL/year). The relative treatment effect of nintedanib was similar between these subgroups 232 

(40% and 46%, respectively) and consistent with that observed in the overall population 233 

(44%).  No other significant clinical benefits were observed (36).  234 

 235 

Blood Serum and Bronchoalveolar Lavage Fluid Biomarkers  236 

Blood serum or bronchoalveolar lavage fluid (BALF) biomarkers may be of value in 237 

diagnosing SSc-ILD and in prognostication. A number of potential biomarkers have been 238 

identified, which could be indicative of lung involvement in patients with SSc (Table 1 and 239 

Supplementary Table 3) (27). Autoantibodies are the only blood markers currently available 240 

in routine clinical practice (Table 1 and Supplementary Table 3). The presence of anti-Scl-70 241 

antibodies and the absence of anti-centromere antibodies in SSc indicate an increased 242 

likelihood of progressive ILD (20, 22, 37). Associations of these antibodies with major 243 

histocompatibility complex II antigens support the genetic basis of SSc-ILD (37).  244 

A number of biomarkers are being investigated in clinical research (Tables 1 and 245 

Supplementary Table 3), although they are not currently available for use in routine clinical 246 

practice, with the exception of Krebs von den Lungen-6 (KL-6) which is available but only in 247 

Japan. Among biomarkers under clinical investigation, high plasma levels of KL-6 appear to 248 

be predictive of lung involvement and ILD progression in patients with SSc (23, 38, 39), 249 

including in SLS-II. Serum chemokine (C-C motif) ligand 18 (CCL18), a macrophage 2-derived 250 



12 
 

protein that is chemotactic for a number of immune cells, has also been shown to be a good 251 

prognostic marker, even after adjustment for baseline ILD severity (40, 41). Analysis of 252 

serum CCL18 was able to differentiate the impact of tocilizumab versus placebo in SSc with 253 

early ILD on FVC% (14). 254 

Serum levels of matrix metalloproteinase-7 (MMP7) are higher in patients with SSc-255 

ILD versus SSc without ILD, and combined measurements of KL-6 and MMP7 have been 256 

suggested for identifying patients at risk of developing clinically significant ILD (27). Higher 257 

levels of MMP12 have been found in patients with SSc-ILD versus those without lung 258 

involvement; in the population with SSc-ILD, increased MMP12 levels appear to be 259 

associated with lower FVC (42). Data from two cohorts of patients with SSc showed that 260 

high plasma concentrations of chemokine (C-C motif) ligand 2 (CCL2) are predictive of ILD 261 

progression and shorter survival (43). Elevated acute phase reactants, such as high plasma 262 

C-reactive protein levels have been associated with an increased likelihood of progressive 263 

early SSc-ILD (44). Also, elevated serum IL-6 levels have been reported to be predictive of 264 

early disease progression (specifically, declines in DLCO and FVC or death within 12 months) 265 

in patients with SSc-ILD (12). However, IL-6 would provide only low specificity for diagnosing 266 

SSc-ILD because its levels are elevated in a range of inflammatory diseases. 267 

A proteome-wide analysis in SSc identified chemokine (C-X-C motif) ligand 4 (CXCL4) 268 

as the principal protein secreted by plasmacytoid dendritic cells (45). Plasmacytoid dendritic 269 

cells in the BALF are associated with the severity of disease on HRCT in SSc-ILD (46). Plasma 270 

levels of CXCL4 correlate with the occurrence of ILD in SSc patients, and higher levels of this 271 

biomarker are associated with more rapid decline in DLCO (45). Volkmann et al. found that 272 

plasma CXCL4 levels were higher in patients with SSc-ILD compared with healthy controls in 273 

SLS II; however, the levels did not correlate with severity of ILD at baseline. Plasma CXCL4 274 
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levels reduced with immunosuppressive therapy; larger declines observed over the first 12 275 

months of treatment were associated with greater improvements in lung function over the 276 

subsequent 12 months (47). Moreover, levels of antibodies against chemokine (C-X-C motif) 277 

receptor 3 and CXCL4 have been reported to be increased in patients with SSc-ILD versus 278 

healthy controls, but lower in patients with deteriorating versus stable lung function (48). 279 

Serum levels of chitinase-3-like protein 1, also known as YKL-40, have been shown to be 280 

higher in SSc patients with versus those without pulmonary involvement (49). Levels of 281 

chitinase 1 have been reported to be significantly higher in patients with SSc-ILD than in 282 

patients with SSc and no lung involvement; as well as being a candidate biomarker, this 283 

enzyme could be considered as a therapeutic target (50). 284 

 Currently, bronchoalveolar lavage (BAL) is not routinely performed in patients with 285 

SSc-ILD; the previously observed link between BALF neutrophilia and mortality was 286 

subsequently found to be mainly related to disease severity (51, 52). However, BAL has been 287 

shown to be useful in identifying clinically unsuspected infections in a small minority of 288 

patients with SSc-ILD. If not appropriately treated, such infections have the potential to be 289 

aggravated by immunosuppressive therapy (53). In routine clinical practice, BAL is not 290 

considered to provide additional meaningful prognostic information; however, this could 291 

change if biomarkers independent of disease severity and without an equivalent correlate in 292 

the peripheral blood, are identified. BALF inflammatory cytokines have been described as 293 

potential predictive biomarkers of SSc-ILD deterioration; this, however, has so far only been 294 

reported in small patient cohorts (54). Furthermore, proteomic and gene expression analysis 295 

of BALF is likely to provide insights that are specific to SSc-ILD pathogenesis that may not be 296 

possible in the peripheral blood. Proteomic analysis of BALF has also identified the 297 
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differential expression of a number of potential biomarkers including C3a, APOAI, 14-3-3ε, 298 

SPFA2 and S100A6, involved in fibrosis, innate immune responses and vascular damage (55).  299 

Comparison with Idiopathic Pulmonary Fibrosis 300 

Respiratory clinicians are often more familiar with IPF than SSc-ILD, IPF being the prototypic 301 

ILD; IPF affects a greater number of patients and has been researched more extensively than 302 

SSc-ILD. Not surprisingly, there is a larger literature and clinical experience in IPF compared 303 

with SSc-ILD; therefore, it appears it is logical to explore the similarities and differences 304 

between SSc-ILD and IPF. A comparative summary is provided in Supplementary Tables 3 305 

and 4. 306 

Although ILD occurs in a large proportion of patients with SSc, only some will 307 

experience disease that worsens over time (2). Spontaneous regression can occur, albeit 308 

rarely, in SSc-ILD, and the disease course is likely to be stabilized by treatment with 309 

immunosuppressants or as part of natural history of the disease — changing from a 310 

declining trend to stability or, in a small percentage of cases, improving over time (13, 56). 311 

In contrast, all patients with IPF have progressive fibrosis, albeit at different rates (57), 312 

which never undergoes spontaneous regression.  313 

Immunological involvement appears to differ between SSc-ILD and IPF 314 

(Supplementary Table 3 and 4), although adaptive and innate immune mechanisms are 315 

implicated in both diseases. Most patients with SSc-ILD are positive for autoantibodies (e.g., 316 

antinuclear antibodies), while clinically relevant levels of autoantibodies are believed to be 317 

absent from patients with IPF (13). A single study has reported a link between anti-HSP70 318 

antibodies and poor survival in IPF, although, currently, this is not considered in routine 319 

clinical practice (58). The existence of specific activation mechanisms for different 320 
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macrophage subpopulations has been described in IPF, whereby M1 macrophages (inducers 321 

include lipopolysaccharide, interferon-γ and granulocyte stimulating colony factor) and M2 322 

macrophages (inducers include IL-4, IL-10 and IL-13, and TGF-β) are both involved in the 323 

pathogenesis of the disease (59). IL-4+ T cells in the BALF are associated with the severity of 324 

disease on HRCT in SSc-ILD (60). Levels of CCL18 are increased in BALF and serum of patients 325 

with either IPF or SSc-ILD. In both diseases, serum CCL18 has been linked to worse prognosis 326 

independent of disease severity (40, 61), and levels of serum CCL18 appear to decrease in 327 

response to anti-IL6 therapy (14) with stabilization in lung function.  328 

A study of lung tissue showed increased mast cell density in patients with IPF 329 

compared with healthy controls, whereas mast cell density was similar in patients with SSc-330 

ILD and healthy controls (62). With regards to adaptive immunity, numbers of CD4+CD25+ 331 

regulatory T-cells in the lungs appear to be increased in SSc-ILD but not in IPF (63, 64). Also, 332 

increased numbers of IL-22-producing T-helper cells have been observed in SSc-ILD, but not 333 

in IPF (65, 66). Consistent with these findings, individuals with SSc-ILD but not those with 334 

IPF, benefit from CYC treatment (13). There is, therefore, good evidence to suggest that 335 

adaptive immune mechanisms play a reduced role in IPF than in SSc-ILD. In fact, few 336 

patients with IPF are likely to respond to any immunosuppressant therapy, whereas most 337 

patients with SSc-ILD respond to such treatment. Further understanding of the phenotypes, 338 

activation mechanisms and roles of macrophages in lung fibrosis, both in IPF and SSc-ILD, 339 

may help in the development of therapeutic targets. 340 

Some of the pathological pathways involved in fibrogenesis in IPF are similar to those 341 

in SSc-ILD. The initial trigger of fibrosis in both diseases appears to be epithelial and/or 342 

endothelial cell injury (13). The associated cell death has several effects including the 343 

activation of TGF-β, which then triggers immune responses and causes fibroblast activation, 344 
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proliferation and differentiation into myofibroblasts. These processes culminate in the 345 

excess deposition of ECM (11).  346 

On histopathologic analysis, patients with SSc-ILD usually exhibit fibrotic (rarely 347 

cellular) non-specific interstitial pneumonia (NSIP; Figure 5) (67), while usual interstitial 348 

pneumonia (UIP) may be observed only in a minority of patients with SSc-ILD. In contrast, 349 

UIP is the defining morphological pattern in patients with IPF (68). Patients with SSc-ILD and 350 

a UIP pattern have a better prognosis than patients with IPF; moreover, patients with SSc 351 

and a UIP pattern do not appear to have a significantly worse survival than patients with SSc 352 

and NSIP (69, 70). Although the reasons for this are unclear, UIP in patients with a 353 

connective tissue disease is characterized by higher numbers of lymphoid follicles, smaller 354 

honeycomb cysts and fewer fibroblastic foci compared with UIP in IPF (71).  355 

Genetic variants associated with SSc-ILD and IPF do not appear to overlap. The 356 

association with the MUC5B promoter variant rs35705950, observed in sporadic IPF and 357 

familial idiopathic interstitial pneumonias (IIPs), is one notable example that is absent in SSc-358 

ILD (72, 73). MUC5B expression is increased in the small airways and honeycomb cysts in 359 

UIP/IPF but similar to controls in the small airways of SSc patients with an NSIP pattern (74). 360 

More generally, the genetic susceptibility loci identified in IIPs were not observed in a large 361 

North-American cohort of patients with SSc-ILD (75). It is possible that the underlying 362 

genetics of ILDs are related to the different histopathological patterns. For example, 363 

rheumatoid arthritis-associated ILD with a UIP pattern is associated with the MUC5B 364 

promoter variant rs35705950 (76); however, the same variant has also been associated with 365 

idiopathic NSIP (77). Further studies are needed to characterize the link between genetic 366 

characteristics and ILD patterns. A number of HLA alleles have been associated with SSc-ILD 367 

as discussed previously. Although associations between HLA alleles and IIP have been 368 
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reported (78, 79), specific HLA allele associations do not overlap between SSc-ILD and IPF. 369 

For instance, HLA DRB1*1501 observed to be associated with IPF (78), has been reported as 370 

protective against SSc (80).  371 

Epigenetic changes may underpin bronchiolar remodeling and the associated 372 

formation of enlarged bronchiolized airspaces (i.e., honeycombing, which occurs to differing 373 

extents in IPF and SSc-ILD). Chilosi et al. were the first to highlight the importance of the 374 

bronchioloalveolar junction and to report overexpression of markers of the Wnt pathway 375 

(e.g., β-catenin, MMP7) in IPF but not in NSIP (81). Differences between SSc-ILD and IPF are 376 

likely in specific miRNA profiles as well as in other epigenetic parameters; further studies are 377 

needed to characterize these differences and their relevance.  378 

Despite treatment not being the focus of this review, we briefly mention some 379 

important differences and similarities in terms of treatment of SSc-ILD and IPF as highlighted 380 

by key clinical trials. The anti-fibrotic agents nintedanib and pirfenidone have shown benefit 381 

and are approved as treatments in IPF. In SSc-ILD, nintedanib has been granted FDA 382 

approval to slow the rate of decline in pulmonary function in patients with SSc-ILD based on 383 

the results of the phase III SENSCIS trial, similar to its affect in patients with IPF.  384 

Furthermore and in line with the known safety profile of nintedanib in patients with IPF, 385 

diarrhea was the most common AE; all reported AEs were at worst mild or moderate in 386 

severity as reported in 49.5% and 45.0% of patients, respectively (36). The phase II LOTUSS 387 

trial showed that pirfenidone administered either as monotherapy or in combination with 388 

MMF had an acceptable tolerability profile in patients with SSc-ILD. The most common 389 

adverse events (AEs) were nausea, headache and fatigue which is consistent with its 390 

tolerability profile in patients with IPF (82). SLS III (NCT03221257), for which recruitment 391 

was ongoing at the time of writing, was designed to compare pirfenidone plus MMF, with 392 
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MMF alone in SSc-ILD. The results of this study, due in May 2021, may provide further data 393 

regarding the similarities and differences between treatment response in SSc-ILD and IPF. 394 

 395 

Conclusions  396 

ILD is a common complication of SSc and a significant cause of morbidity and mortality. 397 

Differentiation from IPF is particularly important since IPF is the most common fibrosing ILD. 398 

This is usually straightforward in the context of the classic extra-pulmonary SSc 399 

manifestations, but can be more difficult in patients with SSc sine scleroderma. Knowledge 400 

of SSc-ILD is important in our community to ensure that affected patients are managed 401 

optimally. Greater extent of lung fibrosis on HRCT, lower FVC and early lung function decline 402 

are predictors of early mortality. Familiarity with key clinical features (including established 403 

risk factors of progressive lung disease) may prove useful in raising our alertness to the 404 

possibility of SSc-ILD in relevant patients. Perhaps most importantly, high awareness of the 405 

disease and its characteristics will be needed to realize the potential of new treatment 406 

options.  407 
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Tables 820 

Table 1. Clinically-used biomarkers and biomarkers under investigation in SSc-ILD 821 

Biomarker Mechanistic Pathway References 

 Clinically-used biomarkers  

 Immune dysregulation or inflammation  

Anti-centromere  (20, 22, 37) 

Anti-Scl-70  (22, 37) 

Nucleolar pattern on ANA 
(representing anti-Th/To, U3 

RNP) 

 (83) 

Biomarkers supported by significant clinical data 

 Epithelial cell injury or barrier dysfunction  

CCL-18  (40, 61) 

KL-6  (23, 38, 39) 

SP-D  (84) 

 Immune dysfunction or inflammation  

IL-6/CRP  (12, 41) 

 Biomarkers under investigation  

 Epithelial cell injury or barrier dysfunction  

APOAI  (55) 

CC16  (85) 

ET-1  (86) 

Isoprostane  (86) 

SP-A  (87) 

sE-selectin  (86) 

sVCAM-1  (86) 

SPFA2  (55) 

S100A6  (55) 

TGF-β  (86) 
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VEGF  (86) 

14-3-3ε  (55) 

 Immune dysfunction or inflammation  

Anti-CXCR4  (48) 

Anti-CXCR3  (48) 

CCL2  (43) 

CRP  (88) 

CXCL4  (45) 

CXCL10  (89) 

CX3CL1  (90) 

C3a  (55) 

IL-10  (86) 

IL-15  (86) 

IL-17†  (65) 

IL-22†  (65) 

IL-23  (86) 

miR-155  (19) 

 Remodeling and fibrosis  

Chitinase-1  (50) 

CTGF  (86) 

Circulating 

fibrocytes 

 (88) 

GDF-15  (88) 

MMP7  (27) 

MMP12  (42) 

MMP13  (88) 

mIR-21  (19) 

mIR-92A  (91) 
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miR-200c  (88) 

PMN elastase  (86) 

TIMP-1   (86) 

TIMP-2  (88) 

YKL-40  (49) 

Definition of abbreviations: ANA = anti-nuclear antibody; APOAI = apolipoprotein A-I; CC16 = clara 822 

cell secretory protein; CCL = chemokine (C-C motif) ligand; CTGF = connective tissue growth factor; 823 

CRP = c-reactive protein; CX3CL1 = chemokine fractalkine; CXCL = chemokine (C-X-C motif) ligand; 824 

CXCR3 = chemokine (C-X-C motif) receptor 3; C3a = complement 3 anaphylatoxin;  ET-1 = endothelin-825 

1; HP = hypersensitivity pneumonitis; a; IL = interleukin; KL-6 = Krebs von den lugen-6; MMP = matrix 826 

metalloproteinase; miR = microRNA; PMN = polymorphonuclear;  Scl-70 = topoisomerase 1; SP-A = 827 

surfactant protein A; SP-D = surfactant protein D; sE-selectin = soluble E selectin; S100A6 = S100 828 

calcium-binding protein A6; TIMP-1 = Tissue inhibitors of metalloproteinases-1; TNF-α = tumor 829 

necrosis factor; U3 RNP = fibrillarin; VCAM-1 = vascular cell adhesion molecule 1; VEGF = vascular 830 

endothelial growth factor; YKL-40 = chitinase-3-like protein 1; * = approved by Japan’s Health 831 

Insurance Program as a diagnostic marker for ILDs in 1999; † = circulating interleukin-producing T 832 

cells.  833 
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Supplementary Tables 

Supplementary Table 1. Statistically Significant Associations Between SSc-ILD and HLA Alleles: 

Studies with Ssc-ILD Cohorts ≥ 100 Patients (15). Reproduced with kind permission of Takahashi T, et 

al. J Exp Med 2017. 

HLA region Allele/Serotype OR and P Value for SSc-ILD Population Cohort Size 

DPB1 301 OR = 3.56 (1.27–10.73)* 

P = 0.0069 

Han Chinese 199/78† 

 1301 OR = 2.25 (1.4–3.62)‡ 

P = 3.3 x 10-4 

Han Chinese 199/480§ 

DQB1 501 OR = 5.03‡ 

P = 6 x 10-7 

Han Chinese 134/239§ 

DRB1 3 OR = 2.47 (1.35–4.52)‡ 

P = 0.0026 

Han Chinese 295/458§ 

 

Definition of abbreviations: HLA = human leukocyte antigen; ILD = interstitial lung disease; OR = odds 

ratio; SSc = systemic sclerosis; SSc-ILD = systemic sclerosis-associated interstitial lung disease. 

*Versus SSc-no ILD. 

†SSc-ILD/SSc-no ILD. 

‡Versus control. 

§SSc-ILD/control.  
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Supplementary Table 2. Statistically Significant Associations Between SSc-ILD and Non-HLA Genes: 

Studies with SSc-ILD Cohorts ≥ 100 Patients (15). Reproduced with kind permission of Takahashi T, et 

al. J Exp Med 2017. 

Gene Polymorphism Function 

OR and P 

Value for SSc-

ILD Population Cohort Size 

CD226 rs763361:T>A – OR = 1.27 

(1.12–1.45)* 

P = 2.98 x 10-4 

French, 

German, 

Italian† 

662/1642‡ 

Haplotype rs763361:T>A, 

rs34794968:C>A, 

rs727088:G>A 

Correlates with 

expression levels 

in  

T cells 

OR = 1.27 

(1.05–1.54)* 

 

P = 0.032 

Spanish, 

German, 

Dutch, Italian, 

Swedish, 

British, 

Norwegian† 

729/3,966‡ 

CTGF rs918698:G>C Alters ratio of 

Sp1:Sp3 binding 

affecting 

transcriptional 

activity 

OR = 3.1  

(1.9–5.0)* 

 

P =0.001 

British 207/500‡ 

rs6918698:G>C See above OR = 2.0  

(1.5–2.6)* 

 

P = 0.001 

Japanese 188/269‡ 

IRAKI rs1059702:A>G/ 

rs1059703:G>A  

(in complete LD) 

Increased NFκ-B 

activity 

OR = 1.37 

(1.16–1.62)* 

 

P = 1.99 x10-4 

French, Italian, 

German† 

 

(Female only) 

604/2,217‡ 
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rs1059702:A>G/ 

rs1059703:G>A  

(in complete LD) 

See above OR = 1.30 

(1.07–1.58)* 

 

P = 8.46 x10-3 

Spanish, 

German, 

Dutch, British† 

(Female only) 

461/2,043‡ 

rs1059702:A>G/ 

rs1059703:G>A  

(in complete LD)§ 

See above OR = 1.2 

(1.05–1.37)‖ 

 

P = 0.007 

European 

descent† 

1,065/2,237¶ 

IRF5 rs2004640:G>T Results in 

transcription of 

alternative exon 

1 

OR = 1.44 

(1.19–1.76)* 

 

 

French 280/760‡ 

rs2004640:G>T See above OR = 1.38 

(1.1–1.75)* 

 

P = 0.028 

Han Chinese 502/227‡ 

Haplotype 

rs3757385:G>T – 

rs2004640:G>T –

rs10954213:G>A 

In LD with 5-bp 

indel which 

increases SP1 

binding 

OR = 0.64 

(0.51–0.79)* 

French 292/989‡ 

rs4728142:G>A Associated with 

lower expression 

Mean 

difference = 

2.64  

(0.43–4.84) 

 

P = 0.019 

American 

Caucasian 

914** 

 

 

(Linear 

regression 

analysis with 

FVC % 

predicted) 
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rs2004640:G>T§ See above OR = 1.12 

(1.02–1.22)‖ 

 

P = 0.014 

French, 

European 

Caucasian, 

Han Chinese† 

1,682/2,806¶ 

NLRP1 rs8182352:T>C – OR = 1.19 

(1.05–1.36)* 

P = 0.0065 

French, 

German, 

Italian† 

674/1,587‡ 

STAT4 rs7574865:T>G – OR = 1.42 

(1.16–1.73)* 

P = 0.008 

French 316/970‡ 

rs7574865:T>G – OR = 1.86 

(1.34–2.59)* 

P = 1.2 x 10-4 

Han Chinese 237/534‡ 

rs7574865:T>G§ – OR = 1.259 

(1.07–1.47)‖ 

P = 5.35 x 10-3 

French, 

Spanish, Han 

Chinese† 

640/842¶ 

rs10168266:C>T – OR = 1.73 

(1.24–2.41) 

P = 7.7 x 10-4 

Han Chinese 237/534‡ 

rs3821236:G>A – OR = 1.54 

(1.07–2.22)* 

P = 0.015 

Han Chinese 237/534‡ 

Unreplicated studies with small 

cohort sizes 

ALOX5AP       rs10507391:A>T 

(NC_000013.11: 

g_30737959A>T) 

– 

OR = 1.45 

(1.17–1.79)‖ 

P = 0.0006 

European 

descent 

439/399¶ 
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Definition of abbreviations: ALOX5AP = arachidonate 5-lipoxygenase activating protein; bp = base 

pairs; CTGF = connective tissue growth factor; FVC = forced vital capacity; CD226 = cluster of 

differentiation 226; HLA = human leukocyte antigen; ILD = interstitial lung disease; IRAK1= 

Interleukin-1 receptor-associated kinase 1; IRF5 = interferon Regulatory Factor 5; LD, linkage 

disequilibrium; NFκβ = nuclear factor κβ; NLRP1 = NLR family pyrin domain containing 1;  OR = odds 

ratio; SSc = systemic sclerosis; STAT4 = signal transducer and activator of transcription 4; SSc-ILD = 

systemic sclerosis-associated interstitial lung disease. 

Corrected P values given where available. ORs are shown as OR (95% confidence interval), 517 

where available.  

 

*Versus control. 

†Meta-analysis of the different populations 519 included. 

‡SSc-ILD/control. 

§Meta-analysis or previously published studies. 

‖Versus SSc-no ILD. 

¶SSc-ILD/SSc-no ILD. 

**Total number of SSc patients 518, when SSc-ILD number not given. 
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Supplementary Table 3. Levels of Serum Biomarkers in Ssc-ILD: Comparison with Healthy Controls, Ssc Without ILD and IPF. Significant Differences Between 

Study Groups Were Only Seen with Respect to KL-6, SP-D and MMP7 (the Kruskal–Wallis Test was Used to Assess for Differences Across the Four Groups) 

(27). Data are presented as median (interquartile range). Reproduced with kind permission of Kennedy B, et al. Diffuse Lung Dis 2015. 

 Controls SSc w/o ILD SSc-ILD IPF P Value 

KL-6 (ng/ml) 198 (52–360) 192 (0–525) 836 (431–1303) 633 (492–1,675) 0.0003* 

SP-D (ng/ml) 137 (97–284) 169 (137–219) 398 (190–727) 542 (305–577) 0.0012† 

MMP7 (ng/ml) 0 (0–0.06) 2.36 (1.2–5.1) 5.4 (2.6–7.25) 2.85 (1.5–3.6) 0.0009‡ 

TGF-β (pg/ml) 7,251 (5,654–10,034) 2,986 (2,483–4,029) 3,743 (1,855–5,500) 2,388 (1,501–7,367) 0.07 

CCL18 (ng/ml) 46.85 (34.6–153.1) 49.1 (43.65–65.05) 62.05 (52.3–137.4) 48.4 (36.8–90.5) 0.58 

PDGF-AA (pg/ml) 1,011 (605–2,989) 437 (314.5–649) 554 (328–935) 405 (167.5–1,222) 0.057 

TNF-α (pg/ml) 2.73 (2.18–3.39) 2.53 (2.43–3.21) 3.41 (2.24–10.06) 2.78 (1.9–5.3) 0.84 

VEGF (pg/ml) 60.32 (23.3–209.6) 22.9 (11.88–29.28) 24.96 (20.5–33.46) 24.14 (11.45–37.28) 0.053 

Thrombomodulin (ng/ml) 3.07 (1.84–4.45) 1.36 (1.1–2.57) 1.63 (1.05–3.07) 2.57 (1.72–6.2) 0.054 

PAI-1 (ng/ml) 37.2 (26.7–61.35) 21.3 (9.15–41.95) 40.55 (21.55–56.5) 32.7 (15.75–56.2) 0.35 

VCAM-1 (ng/ml) 467.5 (397.1–686.6) 700.1 (567–969.5) 706.1 (583.2–801.3) 753.7 (444.5–916.3) 0.12 

ICAM-1 (ng/ml) 297.7 (206.5–742.7) 259.5 (210.4–361.8) 431.4 (325.3–504.80) 416 (289.7–569.1) 0.18 

P-Selectin (ng/ml) 168.5 (91.35–224.6) 131.3 (110–137.3) 133.9 (115.4–167.1) 119.1 (100.9–170.3) 0.51 

L-Selectin (ng/ml) 1,397 (914.3–1,878) 1,385 (1,032–1679) 1329 (818.1–1746) 1,203 (891.4–1,784) 0.9 
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CCL2 (pg/ml) 84.9 (78.3–121.1) 86.7 (43.85–121.7) 145.2 (118.8–189.5) 159.4 (103.7–180.3) 0.06 

Definition of abbreviations: CCL = chemokine (C-C motif) ligand; ICAM-1 = Intercellular Adhesion Molecule 1; IL = interleukin; KL-6 = Krebs von den lugen-6; 

MMP = matrix metalloproteinase; Pal-1 = Plasminogen activator inhibitor-1; PDGF-AA = Platelet Derived Growth Factor AA; SP-A = surfactant protein A; 

TGF-β = Tumor growth factor beta; TNF-α = tumor necrosis factor alpha ; VCAM-1 = vascular cell adhesion molecule 1; VEGF = vascular endothelial growth 

factor. 
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Supplementary Table 4. Comparison of Clinical and Mechanistic Features of SSc-ILD and IPF 

Feature of 

Comparison SSC-ILD IPF 

Lung involvement  Lung fibrosis occurs in ~80% of 

patients with SSc, 25–30% of whom 

develop progressive ILD (2). 

All patients develop characteristic 

progressive lung fibrosis (57, 92) 

Pulmonary 

symptoms 

Dyspnea on exertion, nonproductive 

cough and predominantly basal 

inspiratory crackles on auscultation 

(13, 93, 94) 

Dyspnea on exertion, non-productive 

cough and predominantly basal 

inspiratory crackles on auscultation (13, 

92) 

Extra-pulmonary 

features 

Multisystem characteristics of SSc 

(e.g., vasculopathy, Raynaud’s 

phenomenon, immune dysfunction, 

skin fibrosis, gastro-esophageal 

reflux) (1-3) 

Digital clubbing (13) 

Clinical course Variable rate of progression (some 

patients show rapid, early decline; 

disease course may be stabilized by 

treatment with 

immunosuppressants; spontaneous 

regression can occur [albeit 

infrequently]); median survival is 5–8 

years (13, 56) 

Progressive decline in lung function; 

spontaneous regression never occurs 

and the disease is unlikely to respond to 

immunosuppressant therapy; median 

survival is 2–3 years (13, 57) 

Disease mechanisms Repetitive endothelial/epithelial cell 

injury leads to activation of innate 

Similar to SSc-ILD, fibroblast activation, 

proliferation and differentiation into 
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and adaptive immune system, 

recruitment and activation of 

fibroblasts, and differentiation of 

fibroblasts to a myofibroblast 

phenotype, accumulation of ECM 

and development of fibrosis (7, 8, 

93, 95). Increased numbers of 

CD4+CD25+ regulatory T-cells and IL-

22-producing T-helper cells (63, 65); 

mast cell density similar to healthy 

controls (62). 

myofibroblasts culminates in excess 

deposition of ECM (11, 95). However, 

unlike SSc-ILD, mast cell density is 

increased versus healthy controls and 

no increases in CD4+CD25+ regulatory 

T-cells or IL-22-producing T-helper cells 

are observed (62, 64, 66). 

Autoimmune 

characteristics  

Most patients are positive for 

antinuclear antibodies and other 

specific autoantibodies (13). 

No clinically relevant levels of 

autoantibodies (13) 

Radiographic 

features 

NSIP pattern is typical, including 

ground-glass opacities with areas of 

subpleural sparing, reticular 

markings and traction 

bronchiectasis. UIP observed in a 

minority of patients, with 

honeycombing of lower prominence 

compared with IPF (13, 71). 

UIP pattern with honeycombing; 

ground-glass opacities not seen (13, 68). 

 

Definition of abbreviations: ECM, extracellular matrix; IL = interleukin; ILD = interstitial lung disease; 

IPF = idiopathic pulmonary fibrosis; NSIP = nonspecific interstitial pneumonia; SSc = systemic 

sclerosis; UIP = usual interstitial pneumonia. 
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Figures 

Figure 1. Cellular pathogenesis of fibrotic lung injury in systemic sclerosis. ECM = extracellular 

matrix; EMT = epithelial-mesenchymal transition; IgG = immunoglobulin G; NK = Natural killer T cell; 

*including SPINT2hi, MFAP5hi and few WIF1hi fibroblasts 
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Figure 2. Limited disease (<20% extent; panels A–C) on HRCT in a 72-year-old female non-smoker. 

HRCT images at the level of (A) the aortic arch show no convincing ILD, and (B and C) very limited 

sub-pleural ground-glass opacification. ILD of ‘indeterminate’ extent (panels D–F) on HRCT in a 46-

year-old female non-smoker with SSc. Images (A) through (D) the upper zones showing minor 

reticulation, (E) just below the level of the right hemidiaphragm and (F) the costophrenic recesses 

demonstrating reticulation, ground-glass opacification and traction bronchiectasis/bronchiolectasis. 

The morphologic features are in keeping with a fibrotic NSIP pattern. Disease extent on HRCT with 

regard to the 20% threshold is difficult to gauge (i.e. ‘indeterminate’ according to the Goh staging); 

FVC in this patient was 60% predicted thereby indicating ‘extensive’ ILD. Note the marked 

esophageal dilatation containing food residue. FVC = forced vital capacity; HRCT = high resolution-

computed tomography; NSIP = nonspecific interstitial pneumonia 
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Figure 3. HRCT images in a 58-year-old female with systemic sclerosis, who never smoked; DLco 32% 

predicted and FVC 76% predicted. Axial images at (A) the level of the aortic arch, (B) the carina and 

(C) the lower lobes demonstrating extensive disease (>20% extent by visual estimation) and (D) 

coronal reconstruction. There is marked honeycombing, particularly in the lower lobes, indicating a 

UIP pattern. The coronal image shows striking lower zone preponderance of disease. FVC = forced 

vital capacity; HRCT = high-resolution computed tomography; DLco = diffusing capacity of the lung 

for carbon monoxide; UIP = usual interstitial pneumonia 
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Figure 4.  CT in 52-year-old male, ex-smoker with a DLco of 22% and FVC 56% predicted. Axial images 

at (A) the level of the arch, (B) the pulmonary venous confluence and (C) the costophrenic recesses 

showing extensive (>20%) disease. There is predominant ground-glass opacification with fine 

reticulation, no honeycombing but severe traction bronchiectasis. The CT features are consistent 

with a fibrotic NSIP pattern. Note also the marked esophageal dilatation. DLco = diffusing capacity 

for carbon monoxide. 
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Figure 5. Histopathology of systemic sclerosis-associated interstitial lung disease (SSc-ILD) and 

idiopathic pulmonary fibrosis (IPF) (13, 68). Reproduced with kind permission of (A) Cavazza A, et al. 

Respir Med 2010, and (B) Herzog EL, et al. Arthritis Rheumatol 2014. 

(A) SSc-ILD. i, Nonspecific interstitial pneumonia; note the diffuse alveolar septal thickening 

throughout the lobule with lack of peripheral accentuation in the area of an interlobular septum on 

the left. ii, UIP; note the peripheral involvement of a pulmonary lobule sparing the centrilobular area 

containing the broncho-vascular bundle. Arrows indicate fibroblastic foci. iii, Pulmonary arterial 

hypertension; note the hypertensive arterial changes with prominent intimal fibrosis. Arrow 

indicates separation of the media and intima by the internal elastic lamina. iv, Pleural fibrosis; its 

presence supports the diagnosis of SSc‐associated ILD in the appropriate clinical setting. 

Hematoxylin and eosin stained sections are shown in i, ii, and iv; Verhoeff-van Gieson stained 

sections in iii. Original magnification × 40 in i and ii; × 200 in iii; × 100 in iv. (B) UIP. i) At low 

magnification, the diagnostic key is the abrupt alternating of scarred and normal lung (patchwork 

pattern: scar-normal-scar-normal). In the scarred areas, the alveolar architecture is obliterated. ii) 

The fibrosis frequently prevails at the periphery of the lobule in the subpleurale-paraseptal regions 

(arrows), with relative sparing of the centrolobule. This is a useful diagnostic clue, particularly in 

early cases like here (haematoxylineeosin 20). iii) Honeycomb consists of enlarged airspaces lined by 

bronchiolar epithelium, frequently filled by mucus and surrounded by dense scars. Note the 

architectural distortion and the abrupt transition with residual normal lung seen in the right upper 

corner. iv) A fibroblastic focus consisting of a dome-shaped proliferation of myofibroblasts immersed 

in a myxoid matrix. Fibroblastic foci can be covered by bronchiolar epithelium, as here, or by 

hyperplasic pneumocytes. Hematoxylin and eosin stained sections are shown in i, ii, iii and iv. 

Original magnification × 20 in i and ii; × 20 in iii; × 100 in iv. UIP = usual interstitial pneumonia. 
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