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The pseudopotential multiphase lattice Boltzmann (LB) model is a very popular model in the LB community
for simulating multiphase flows. When the multiphase modeling involves a solid boundary, a numerical scheme
is required to simulate the contact angle at the solid boundary. In this work, we aim at investigating the implemen-
tation of contact angles in the pseudopotential LB simulations with curved boundaries. In the pseudopotential LB
model, the contact angle is usually realized by employing a solid-fluid interaction or specifying a constant virtual
wall density. However, it is shown that the solid-fluid interaction scheme yields very large spurious currents in
the simulations involving curved boundaries, while the virtual-density scheme produces an unphysical thick
mass-transfer layer near the solid boundary although it gives much smaller spurious currents. We also extend
the geometric-formulation scheme in the phase-field method to the pseudopotential LB model. Nevertheless, in
comparison with the solid-fluid interaction scheme and the virtual-density scheme, the geometric-formulation
scheme is relatively difficult to implement for curved boundaries and cannot be directly applied to three-
dimensional space. By analyzing the features of these three schemes, we propose an improved virtual-density
scheme to implement contact angles in the pseudopotential LB simulations with curved boundaries, which does
not suffer from a thick mass-transfer layer near the solid boundary and retains the advantages of the original
virtual-density scheme, i.e., simplicity, easiness for implementation, and low spurious currents.
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I. INTRODUCTION

The lattice Boltzmann (LB) method has been developed
into an efficient numerical methodology for simulating fluid
flow and heat transfer in the past three decades [1–8]. Owing
to its kinetic nature, the LB method has exhibited some
distinct advantages over conventional numerical methods
and has been widely used in modeling multiphase flows and
interfacial phenomena. The existing multiphase LB models
can be generally classified into four categories [1–3], i.e., the
color-gradient LB model, the pseudopotential LB model, the
free-energy LB model, and the phase-field LB model. Among
these four categories, the pseudopotential LB model [9–11] is
probably the simplest one. In this model, the intermolecular
interactions are represented with an interaction force based on
a density-dependent pseudopotential and the phase separation
is naturally achieved by imposing a short-range attraction
between different phases.

Historically, the first attempt of using the pseudopotential
LB model to simulate wetting phenomena was made by
Martys and Chen [12], who proposed a solid-fluid interaction
scheme to describe the interaction between a fluid phase
and a solid wall. Different contact angles were obtained by
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adjusting the interaction strength of the solid-fluid interaction.
Another type of solid-fluid interactions was later developed
by Raiskinmäki et al. [13,14]. In their scheme, the pseudopo-
tential serves as a pre-sum factor, while in the solid-fluid
interaction scheme of Martys and Chen the pre-sum factor is
the density. Kang et al. [15,16] have also formulated a solid-
fluid interaction scheme for the pseudopotential LB model and
investigated the displacement of immiscible droplets subject
to gravitational forces in a two-dimensional channel and a
three-dimensional duct. Moreover, based on the work of Mar-
tys and Chen, Colosqui et al. [17] have proposed a modified
solid-fluid interaction scheme composed of a repulsive core
and an attractive tail.

According to the mechanical equilibrium of a multiphase
system in the presence of a boundary condition, Benzi et al.
[18] derived a formula for the contact angle of the pseu-
dopotential LB model and presented an alternative treatment
to implement wetting boundaries. They introduced a virtual
wall density ρw to fix the pseudopotential at a solid wall. By
tuning ρw from ρl (density of liquid phase) to ρg (density
of gas phase), the contact angle in simulations can be varied
from 0° to 180°. A similar scheme can also be found in the
color-gradient multiphase LB model [19], which is called
the fictitious-density scheme [20]. However, as shown in
Ref. [20], the fictitious-density scheme leads to an unphysical
thick mass-transfer layer near the solid boundary. Such a
phenomenon can also be observed in the pseudopotential LB
simulations using the virtual-density scheme [21].

Besides the aforementioned studies, Huang et al. [22] have
investigated the wetting boundaries in the pseudopotential
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multi-component LB simulations and proposed a formula to
determine the adhesion parameters of different components
from the contact angle. In addition, the geometric-formulation
scheme, which is proposed by Ding and Spelt [23] for the
phase-field method, has also been employed to implement
contact angles in the pseudopotential LB simulations involv-
ing flat surfaces [24,25]. Compared with the solid-fluid in-
teraction scheme, the geometric-formulation scheme usually
yields much smaller spurious currents. Moreover, it can give
a slope of the liquid-gas interface that is consistent with the
prescribed value of the contact angle. However, such a scheme
is mainly applicable to flat surfaces and its implementation
for curved boundaries is much more complicated [26] than
that of the solid-fluid interaction scheme or the virtual-density
scheme.

In the present work, we aim at investigating the imple-
mentation of contact angles in the pseudopotential LB simu-
lations with curved boundaries. An improved virtual-density
scheme is proposed, which retains the basic advantages of
the original virtual-density scheme but does not suffer from a
thick mass-transfer layer near the solid boundary. Meanwhile,
it yields much smaller spurious currents than the solid-fluid
interaction scheme and is easy to implement in both two-
dimensional and three-dimensional space in comparison with
the geometric-formulation scheme. The rest of the present
paper is organized as follows. The pseudopotential multiphase
LB model and the solid-fluid interaction scheme as well as
the virtual-density scheme are briefly introduced in Sec. II.
An improved virtual-density scheme is proposed in Sec. III.
In addition, a curved geometric-formulation scheme, which is
extended from a recently developed contact angle scheme for
two-dimensional phase-field simulations with curved bound-
aries, is also presented there. Numerical results and discussion
are given in Sec. IV. Finally, a brief summary is provided in
Sec. V.

II. THE PSEUDOPOTENTIAL MULTIPHASE LB MODEL

A. Basic formulations

The LB equation that uses a multiple-relaxation-time
(MRT) collision operator can be written as follows [3,27,28]:

fα (x + eαδt , t + δt ) = fα (x, t ) − �̄αβ

(
fβ − f eq

β

)∣∣
(x, t )

+ δt (Gα − 0.5�̄αβGβ )|(x, t ), (1)

where fα is the density distribution function, f eq
α is the equi-

librium distribution function, x is the spatial position, eα is
the discrete velocity along the αth direction, δt is the time
step, Gα is a forcing term in the discrete velocity space, and
�̄αβ = (M−1�M)αβ is the collision operator, in which M is a
transformation matrix and � is a diagonal matrix [29–31].

Through the transformation matrix M, the density dis-
tribution function fα and its equilibrium distribution f eq

α

can be projected onto the moment space via m = Mf and
meq = Mfeq, respectively, in which f = ( f0, f1, · · · , fN−1)T

and feq = ( f eq
0 , f eq

1 , · · · , f eq
N−1)T. The subscript N is the total

number of the discrete velocities. Accordingly, the right-hand

side of the LB equation can be rewritten as

m∗ = m − �(m − meq ) + δt

(
I − �

2

)
S, (2)

where I is the unit tensor and S = MG is the forc-
ing term in the moment space [3,28,32,33] with G =
(G0, G1, · · · , GN−1)T. For the two-dimensional nine-velocity
(D2Q9) lattice model, the diagonal matrix � is given by � =
diag(τ−1

ρ , τ−1
e , τ−1

ε , τ−1
j , τ−1

q , τ−1
j , τ−1

q , τ−1
v , τ−1

v ). More
details about the diagonal matrix �, the transformation matrix
M, and meq = Mfeq in Eq. (2) can be found in Ref. [34]. The
streaming step of the LB equation is given by

fα (x + eαδt , t + δt ) = f ∗
α (x, t ), (3)

where f∗ = M−1m∗. The macroscopic density ρ and velocity
u are determined by

ρ =
∑

α

fα, ρu =
∑

α

eα fα + δt

2
F, (4)

where F is the total force acting on the system. The dynamic
viscosity is given by μ = ρν, in which ν = c2

s (τv − 0.5)δt is
the kinematic viscosity. Here cs = c/

√
3 is the lattice sound

speed with c = 1 being the lattice constant.
For single-component multiphase flows, the intermolecular

interaction force is given by [9–11]

Fm = − ψ (x)
∑

α

wαψ (x + eαδt )eα, (5)

where ψ (x) is the pseudopotential, is the interaction
strength, and wα are the weights. For the nearest-neighbor
interactions on the D2Q9 lattice, the weights are given by
wα = 1/3 for |eα|2 = 1 and wα = 1/12 for |eα|2 = 2. The
pseudopotential is taken as [35–37]

ψ (x) =
√√√√2

(
pEOS − ρc2

s

)
c2

, (6)

where pEOS is the nonideal equation of state. For such a
choice, the main requirement for the value of the interaction
strength is to ensure that the whole term inside the square

root is positive [35] and is taken as = −1 in the present
work.

With the type of pseudopotentials given by Eq. (6), the
pseudopotential LB model usually suffers from the problem of
thermodynamic inconsistency, i.e., the coexisting liquid and
gas densities given by the pseudopotential LB model are in-
consistent with the results given by the Maxwell construction
[36–38]. To solve this problem, Li et al. [28,37] proposed that
the thermodynamic consistency of the pseudopotential LB
model can be achieved by adjusting the mechanical stability
condition of the model through an improved forcing scheme.
For the D2Q9 lattice model, the forcing term S in Eq. (2) is
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taken as follows [28]:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

6u · F + 12σ |Fm |2
ψ2δt (τe−0.5)

−6u · F − 12σ |Fm |2
ψ2δt (τς −0.5)

Fx

−Fx

Fy

−Fy

2(uxFx − uyFy)

(uxFy + uyFx )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (7)

where the constant σ is utilized to realize the thermodynamic
consistency [28]. For three-dimensional models (e.g., the
D3Q15 and D3Q19 lattice models), readers are referred to
Refs. [32,33,39].

B. Solid-fluid interaction scheme and virtual-density scheme

The intermolecular interaction force defined by Eq. (5)
represents the cohesive force of a system. When a solid wall
is encountered, an adhesive force should also be considered
[22]. To describe the interaction between a fluid and a solid
wall, Martys and Chen [12] proposed the following solid-fluid
interaction to mimic the adhesive force in the pseudopotential
LB model:

Fads = −Gwρ(x)
∑

α

wαs(x + eαδt )eα, (8)

where Gw is the adhesive parameter and s(x + eαδt ) is a
switch function, which is equal to 1 or 0 for a solid or fluid
phase, respectively. By adjusting the value of Gw, different
contact angles can be realized. Besides Eq. (8), some other
types of solid-fluid interactions can be found in Ref. [40].

The treatment or scheme that uses a virtual density was
developed by Benzi et al. [18], who introduced a constant
virtual density ρw to fix the pseudopotential of the solid phase,
i.e., ψ (ρw ). Then Eq. (5) can also be applied to the interaction
between the fluid phase and the solid phase. Similarly, differ-
ent contact angles can be obtained by tuning the value of ρw.
When ρw varies from ρl to ρg, the contact angle is tuned from
0 to 180° [21]. The advantages of the virtual-density scheme
lie in its simplicity and easiness for implementation, but some
previous studies showed that such a scheme usually produces
an unphysical mass-transfer layer near the solid boundary
[7,21].

III. ALTERNATIVE CONTACT ANGLE SCHEMES

A. Curved geometric-formulation scheme

In 2007, Ding and Spelt [23] proposed a geometric-
formulation scheme to implement wetting boundaries in the
phase-field method. For a two-dimensional flat surface, the
geometric-formulation scheme is given by

Ci,0 = Ci,2 + tan
(π

2
− θa

)
|Ci+1,1 − Ci−1,1|, (9)

ns

P
D2

D1

l2

l1

FIG. 1. Sketch of the characteristic lines of a point in the ghost
contact-line region.

where C is the order parameter of the phase-field method,
θa is an analytically prescribed contact angle, and Ci,0 is the
order parameter at the ghost layer (i, 0) beneath the flat
surface, in which the first index denotes the coordinate along
the flat surface and the second index denotes the coordinate
normal to the flat surface. Ding and Spelt [23] showed that
the geometric-formulation scheme can give a slope of the
liquid-gas interface that is consistent with the prescribed value
of the contact angle.

However, Eq. (9) is only applicable to flat surfaces [24,25].
Recently, Liu and Ding [26] devised a geometric-formulation
scheme for two-dimensional phase-field simulations with
curved surfaces, which is also referred to as “the characteristic
moving contact-line model”. They considered a ghost contact-
line region inside the solid phase, as illustrated in Fig. 1,
where the point P is within the ghost contact-line region and
ns is the unit normal vector of the solid surface. The liquid-gas
interface is supposed to intersect the solid substrate along
certain straight lines (or characteristics), and l1 and l2 in Fig. 1
are two possible characteristic lines of the point P, which are
symmetric about ns and intersect the mesh lines at the points
D1 and D2, respectively. The order parameter at the point P is
determined as follows [26]:

CP =
{

max
(
CD1 , CD2

)
, θ � π/2

min
(
CD1 , CD2

)
, θ > π/2

, (10)

where CD1 and CD2 are the order parameters at the points D1

and D2, respectively.
The aforementioned geometric-formulation scheme can be

extended to the pseudopotential LB model. First, the order
parameter in Eq. (10) is replaced by the density ρ, i.e.,

ρP =
{

max
(
ρD1 , ρD2

)
, θ � π/2

min
(
ρD1 , ρD2

)
, θ > π/2

. (11)

In the phase-field method, the unit normal vector of the solid
surface is calculated by [26]

ns = − ∇CS

|∇CS| , (12)

where CS is the order parameter of the solid phase [26]. Since
there is no such a quantity in the pseudopotential LB model,
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ns

P

D2

l2 ns

P

D2
l2

ns

P D2 l2

FIG. 2. Illustration of the intersection point D2 for different contact angles.

ns is evaluated as follows:

ns(x) = −
∑

α ωαs(x + eαδt )eα∣∣∑
α ωαs(x + eαδt )eα

∣∣ , (13)

where the switch function s(x + eαδt ) is the same as that
in Eq. (8). To improve the numerical accuracy, a high-order
isotropic discretization scheme can be used to evaluate ns,
such as the eighth-order isotropic scheme proposed by Sbra-
gaglia et al. [38,41]:

ωα

(∣∣e2
α

∣∣) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

4/21
∣∣e2

α

∣∣ = 1

4/45
∣∣e2

α

∣∣ = 2

1/60
∣∣e2

α

∣∣ = 4

2/315
∣∣e2

α

∣∣ = 5

1/5040
∣∣e2

α

∣∣ = 8

. (14)

When ns is determined, the unit vectors along the character-
istic lines l1 and l2 can be obtained by the following vector
rotation:

n1 = (ns, x cos θ ′ − ns, y sin θ ′, ns, x sin θ ′ + ns, y cos θ ′)

n2 = (ns, x cos θ ′ + ns, y sin θ ′, −ns, x sin θ ′ + ns, y cos θ ′)
,

(15)

where θ ′ = π/2 − θ . According to the unit vectors n1 and n2,
the intersection points D1 and D2 can be identified. Usually,
different cases will be encountered when varying the contact
angle. Figure 2 gives an example of the intersection point D2

when the contact angle θ in Fig. 1 is changed. Obviously,
the implementation of the geometric-formulation scheme is
much more complex than that of the solid-fluid interaction
scheme or the virtual-density scheme. More details about
the determination of the points D1 and D2 can be found in
Ref. [26].

After identifying the intersection points D1 and D2, the
densities at these two points can be obtained by an interpo-
lation of the densities at their neighboring lattice points. A
quadric interpolation was used in the study of Liu and Ding
[26], which involves three neighboring points around D1 or
D2. Without loss of generality, one can also employ a linear
interpolation. With the densities of the points D1 and D2, the
density at the point P can be determined by Eq. (11), and then
the pseudopotential can be calculated by Eq. (6). Similar to
the virtual-density scheme, the curved geometric-formulation

scheme also applies Eq. (5) to the interaction between a fluid
phase and a solid phase.

B. Improved virtual-density scheme

The advantage of the geometric-formulation scheme lies
in that it is able to make the liquid-gas interface intersect a
solid boundary at an angle in consistence with the prescribed
contact angle. On the contrary, when employing the solid-fluid
interaction scheme or the virtual-density scheme, we should
adjust the value of Gw or ρw in simulations so as to achieve a
required contact angle. However, as can be seen in the previ-
ous section, the implementation of the geometric-formulation
scheme is very complicated in comparison with the solid-fluid
interaction and virtual-density schemes. Moreover, the above
curved geometric-formulation scheme cannot be directly ap-
plied to three-dimensional space due to the fact that in two-
dimensional space there are only two possible characteristic
lines making an angle θ with ns (as shown in Fig. 1), but
in three-dimensional space the characteristic lines that make
an angle θ with ns form a circular cone surface around ns

[20]. Hence, in this section we devise an improved contact
angle scheme for the pseudopotential LB model, which is easy
to implement in both two-dimensional and three-dimensional
space.

Actually, in the geometric-formulation scheme the density
at a solid point is also a virtual density, but the virtual density
in the solid phase is a local quantity instead of a constant for
the whole solid domain, which implies that the drawback of
the original virtual-density scheme may be overcome when
a local virtual density is employed. On the basis of such
a consideration, we propose the following formula for the
virtual density in the solid phase near a curved boundary:

ρw(x) =
{

ϕρave(x), ϕ � 1, for decreasing θ,

ρave(x) − �ρ, �ρ � 0, for increasing θ,

(16)

where ϕ and �ρ are constants. When ϕ = 1 or �ρ = 0,
Eq. (16) reduces to a standard case, i.e., ρw(x) = ρave(x), in
which ρave(x) is given by

ρave(x) =
∑

α wαρ(x + eαδt )sw(x + eαδt )∑
α wαsw(x + eαδt )

, (17)
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fluid node
solid node

FIG. 3. Illustration of the halfway bounce-back boundary scheme.

where sw(x + eαδt ) equals 1 for a fluid phase and is zero for
a solid phase. The weights wα in Eq. (17) are the same as
those in Eq. (5). For the standard case (ϕ = 1 or �ρ = 0), the
contact angle obtained in simulations is usually around θ ≈
90◦. Accordingly, different contact angles can be realized by
tuning the constant ϕ or �ρ. In applications, a limiter should
be applied to Eq. (16) as the local virtual density should be
bounded within ρg � ρw(x) � ρl . Hence, the virtual density
is set to ρl when ρw(x) calculated by Eq. (16) is larger than
ρl , and it is taken as ρg when it is smaller than ρg.

We now explain why we choose ϕρave(x) rather than
ρave(x) + �ρ to increase the local virtual density (i.e., to
decrease the contact angle θ ) by taking a system with ρg = 0.5
and ρl = 10 as an example. For a solid point with ρave(x) =
5, we can set ϕ = 1.1 or �ρ = 0.5 to increase the virtual
density of this point from 5 to 5.5. Obviously, using these two
treatments, the maximum virtual densities are the same since
the local virtual density ρw is set to ρl when ρw(x) calculated
by Eq. (16) is larger than ρl . However, the minimum virtual
densities are different, which are given by ρw, mim = 0.55 and
1.0, respectively. It can be found that there is a relatively large
gap between ρw, mim and ρg = 0.5 when using the treatment
ρave(x) + �ρ. Hence, we adopt the treatment ϕρave(x) for
decreasing θ . Similarly, we choose ρave(x) − �ρ rather than

ρave(x)/ϕ for increasing θ so as to minimize the gap between
ρw, max and ρl .

Compared with the geometric-formulation scheme, which
provides a relatively accurate solution for the virtual density in
a solid phase, the present improved virtual-density scheme can
be regarded as a compromised solution. However, it retains
the simplicity of the original virtual-density scheme, avoids
the complex implementation of the geometric-formulation
scheme, and is easy to implement in both two-dimensional
and three-dimensional space. Moreover, the improved virtual-
density scheme can overcome the drawback of the original
virtual-density scheme.

IV. NUMERICAL RESULTS AND DISCUSSION

A. Contact angles on a cylindrical surface

Numerical simulations are now carried out to validate the
capability of the proposed improved virtual-density scheme
for implementing contact angles in the pseudopotential LB
modeling with curved boundaries. First, we consider the
test of static contact angles on a cylindrical surface. In our
simulations, the Peng-Robinson equation of state [35,42] is
adopted, i.e.,

pEOS = ρRT

1 − bρ
− aφ(T )ρ2

1 + 2bρ − b2ρ2
, (18)

where φ(T ) = [1 + (0.37464 + 1.54226ω − 0.26992ω2)
(1−√

T/Tc)]2, a = 0.45724R2T 2
c /pc, and b = 0.0778RTc/pc.

The parameter ω = 0.344 is the acentric factor. The details
of this equation of state can also be found in Ref. [35], in
which Yuan and Schaefer investigated different equations of
state in the pseudopotential LB simulations. The saturation
temperature is set to T0 = 0.86Tc, which corresponds to
a two-phase system with ρg ≈ 0.38 and ρl ≈ 6.5. The
computational domain is divided into Nx × Ny = 300 × 350
lattices. A circular cylinder of radius R = 70 is located at
(150, 130) and a droplet of r = 50 is initially placed on the
circular cylinder with its center at (150, 230). The periodic
boundary condition is applied in the x and y directions and
the halfway bounce-back scheme [6,8,43] is used to treat
the curved solid boundary, which is illustrated in Fig. 3. The

FIG. 4. Static contact angles obtained by the virtual-density scheme. (a) ρw = 4.5, (b) ρw = 3.25, and (c) ρw = 1.5. From left to right
θ ≈ 31◦, 65°, and 121°, respectively.
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FIG. 5. Static contact angles obtained by the improved virtual-density scheme. (a) ϕ = 1.4, (b) ϕ = 1, and (c) �ρ = 0.5. From left to right
θ ≈ 34◦, 88°, and 125°, respectively.

kinematic viscosity is taken as ν = 0.15 for both the liquid
and gas phases.

The static contact angles obtained by the virtual-density
scheme and the improved virtual-density scheme are shown
in Figs. 4 and 5, respectively. From the figures we can see
that both of them are capable of modeling different contact
angles on a cylindrical surface through adjusting the constant
or the parameter of these schemes. However, from Fig. 4 it can
be clearly seen that the virtual-density scheme causes a thick
mass-transfer layer near the solid boundary. On the contrary,
there is no such a thick mass-transfer layer in the results of the
improved virtual-density scheme, as shown in Fig. 5. Since the
difference between the original and improved virtual-density
schemes mainly lies in that a constant virtual density is used
in the original scheme whereas a local virtual density is
employed in the improved scheme, it can be deduced that the
thick mass-transfer layer in Fig. 4 is attributed to the constant
virtual density in the original virtual-density scheme.

Figure 6 displays the static contact angles obtained by
the solid-fluid interaction scheme. From the figure it can be
seen that the solid-fluid interaction scheme basically does
not suffer from a thick mass-transfer layer near the solid

boundary, but a thin mass-transfer layer between the droplet
and the solid cylinder is observed in Fig. 6(c) in the case of
Gw = 1.2 when using the solid-fluid interaction scheme. Ac-
tually, the adhesive force defined by Eq. (8) is a local quantity.
However, when the two three-phase contact points are very
close, the locality of the adhesive force may be affected, which
is probably the reason why a mass-transfer layer appears in
Fig. 6(c) while there is no such a phenonemenon in Fig. 6(a)
or Fig. 6(b).

To illustrate the thick mass-transfer layer caused by the
virtual-density scheme more clearly, the fluid density profiles
obtained by the aforementioned three contact angle schemes
are compared in Fig. 7 along the central vertical line of the
computation domain, i.e., x = Nx/2. Specifically, the density
profiles near the bottom of the circular cylinder are compared
in the left-hand panel of Fig. 7 for the results shown in
Figs. 4(a), 5(a), and 6(a), and the density profiles near the top
of the circular cylinder are compared in the right-hand panel
of Fig. 7 for the results shown in Figs. 4(c), 5(c), and 6(c).
From Fig. 7 we can see that the virtual-density scheme leads
to significant variations of the fluid density near the circular
cylinder and it can be found that the thickness of the mass-

FIG. 6. Static contact angles obtained by the solid-fluid interaction scheme. (a) Gw = −0.6, (b) Gw = 0.3, and (c) Gw = 1.2. From left to
right θ ≈ 38◦, 59°, and 119°, respectively.
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FIG. 7. The fluid density profiles along the central vertical line, i.e., x = Nx/2. (Left) The density profiles near the bottom of the cylinder
for the results shown in Figs. 4(a), 5(a), and 6(a). (Right) The density profiles near the top of the cylinder for the results shown in Figs. 4(c),
5(c), and 6(c). The solid circular cylinder is located at y ∈ [60, 200].

transfer layer caused by the virtual-density scheme is about
four lattices. In addition, a mass-transfer layer caused by the
solid-fluid interaction scheme in the case of Gw = 1.2 [i.e.,
Fig. 6(c)] can be observed in the right-hand panel of Fig. 7.
Moreover, it is clearly seen that the improved virtual-density
scheme performs much better than the virtual-density scheme
since the density variations in the results of the improved
virtual-density scheme are significantly smaller than those of
the virtual-density scheme.

Figure 8 shows the static contact angles obtained by
the geometric-formulation scheme. Some slight deviations
are observed between the numerically obtained contact an-
gles and the analytically prescribed contact angles given in
Eq. (15), which may arise from the use of a linear inter-
polation in our simulations. Figure 9 compares the spurious
currents produced by the solid-fluid interaction scheme at
Gw = 1.2, the virtual-density scheme at ρw = 1.5, and the
improved virtual-density scheme at �ρ = 0.5. The contact
angles of these cases are around 120°. From the figure we

can see that the spurious currents caused by the solid-fluid
interaction scheme are much larger than those produced by
the virtual-density scheme and the improved virtual-density
scheme.

To quantify the numerical results, a comparison of the max-
imum spurious currents yielded by the four schemes is made
in Fig. 10, from which we can find that the maximum spurious
currents are in the order of 0.1 for the solid-fluid interaction
scheme but are smaller than 0.006 for other schemes. As pre-
viously mentioned, in the geometric-formulation scheme the
density within the solid phase is also a virtual density. Hence,
the results in Fig. 10 indicate that applying the intermolecular
interaction force Eq. (5) to the interaction between a fluid
phase and a solid phase with a virtual density is better than us-
ing a solid-fluid interaction force in light of reducing the spuri-
ous currents. Moreover, Fig. 10 also shows that the maximum
spurious currents yielded by the virtual-density scheme are
larger than those given by the geometric-formulation scheme
and the improved virtual-density scheme, which implies that

FIG. 8. Static contact angles obtained by the geometric-formulation scheme. (a) θa = 60◦, (b) θa = 90◦, and (c) θa = 120◦. From left to
right θ ≈ 58◦, 88°, and 121°, respectively.
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FIG. 9. The spurious currents produced by (a) the solid-fluid interaction scheme at Gw = 1.2, (b) the virtual-density scheme at ρw = 1.5,
and (c) the improved virtual-density scheme at �ρ = 0.5.

the spurious currents may be further reduced by replacing a
constant virtual density with a local virtual density.

Figure 11 compares the maximum and minimum densi-
ties obtained by the simulations with different contact angle
schemes. From the figure we can see that the maximum
and minimum densities given by the virtual-density scheme,
the geometric-formulation scheme, and the improved virtual-
density scheme are in good agreement with the prescribed liq-
uid and gas densities (ρl ≈ 6.5 and ρg ≈ 0.38) of the system,
respectively. However, when using the solid-fluid interaction
scheme, considerable deviations are observed either between
the maximum density and the liquid density or between the
minimum density and the gas density. Such a drawback of
the solid-fluid interaction scheme can also be found in the
pseudopotential LB simulations of contact angles on straight
solid surfaces [40].

B. Effects of the thick mass-transfer layer

The influence of the spurious currents has been well stud-
ied in the literature. Hence, in the present work we mainly
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FIG. 10. Comparison of the maximum spurious currents yielded
by different contact angle schemes.

reveal the adverse effects of the thick mass-transfer layer near
the solid boundary caused by the virtual-density scheme. First,
we employ the test of Poiseuille flow between two parallel
solid plates to analyze the effects of the thick mass-transfer
layer. The distance between the two plates is taken as L =
Ny = 80. The pseudopotential LB model is used as well as the
Peng-Robinson equation of state. The liquid and gas densities
are still chosen as ρl ≈ 6.5 and ρg ≈ 0.38, respectively. The
channel confined by the two solid plates is fully filled with
either liquid or gas phase. The non-slip condition is employed
at the two solid plates and the periodic boundary condition
is applied in the x direction with a body force in the x
direction representing the pressure gradient of the Poiseuille
flow.

Under the aforementioned conditions, the numerical results
obtained by the pseudopotential LB model should be consis-
tent with those of the standard single-phase LB model and
also the analytical solution of the Poiseuille flow regardless of
the setting of the contact angle for the two solid plates. The
body force applied in the x direction is taken as Fb = 0.00001
and the analytical solution for the Poiseuille flow is given
by ua

x (y) = (FbL2/2μ)[(y/L) − (y/L)2], where μ = ρν is the
dynamic viscosity, in which the kinematic viscosity ν is taken
as ν = 1/6.

The velocity profiles obtained by the virtual-density
scheme and the improved virtual-density scheme are com-
pared in Fig. 12. For comparison, the analytical solution
of the Poiseuille flow is also presented there. From the
figure we can see that the results of the improved virtual-
density scheme are always in excellent agreement with the
analytical solution regardless of the setting of the contact
angle for the two solid plates. Contrarily, the virtual-density
scheme yields significant deviations in the cases of θ ≈
113◦ and 158◦ and the corresponding relative errors Er =∑

y |ux(y) − ua
x (y)|/∑y |ua

x (y)| are about 7.7% and 22.9%,
respectively. For these two cases, the constant solid density
ρw in the virtual-density scheme is close to the gas density. As
a result, a thick mass-transfer layer appears around the solid
plates, which causes the deviations of the velocity profile.
Similarly, when the channel between the two plates is fully
filled with gas, significant errors are found in the case of
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FIG. 11. Comparison of the (a) maximum and (b) minimum fluid densities obtained by the simulations using different contact angle
schemes.

θ ≈ 44◦, for which the solid density ρw in the virtual-density
scheme is close to the liquid density.

Furthermore, another test is also considered, i.e., the im-
pact a droplet with an initial velocity on a cylindrical surface.
The computational domain is chosen as Nx × Ny = 300 ×
400. The circular cylinder with R = 70 is located at (150, 180)
and the droplet of r = 50 is initially placed at (150, 310). The
initial velocity of the droplet is taken as u = (0, −U0) with
U0 = 0.06 and the Reynolds number Re = U0(2r)/ν is set to
600. In this test, the static contact angle on the cylindrical
surface is tuned to be θ ≈ 60◦ for the investigated schemes,
with ρw ≈ 3.45, θa ≈ 63.5◦, and ϕ ≈ 1.135, respectively.
Some snapshots of the results obtained by the virtual-density
scheme, the geometric-formulation scheme, and the improved
virtual-density scheme are displayed in Figs. 13(a), 13(b), and
13(c), respectively. A mass-transfer layer that encloses the
solid cylinder can be observed in Fig. 13(a), although it is a

little thinner than the mass-transfer layer of the case θ ≈ 31◦
in Fig. 4(a). Due to the unphysical mass-transfer layer, at
t = 100δt the droplet in Fig. 13(a) has contacted the solid
circular cylinder, which indicates that the three-phase contact
line (reduces to contact points in 2D) appears earlier in the
simulation using the virtual-density scheme.

Owing to the influences of the unphysical mass-transfer
layer, the numerical results predicted by the virtual-density
scheme gradually deviate from the results obtained by the
geometric-formulation scheme, which can be found by com-
paring Fig. 13(a) with Fig. 13(b). For example, the three-phase
contact points at t = 4000δt in Fig. 13(a) are much closer to
the central vertical line (x = Nx/2) of the domain than those in
Fig. 13(b). Moreover, significant deviations can be observed
between the results of the virtual-density scheme and the
geometric-formulation scheme at t = 10000δt . Contrarily, the
improved virtual-density scheme is shown to be capable of
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FIG. 12. Simulations of Poiseuille flow between two parallel solid plates. The channel confined by the two solid plates is fully filled with
the liquid phase. Comparison of the velocity profiles obtained by (a) the virtual-density scheme and (b) the improved virtual-density scheme.
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FIG. 13. Droplet impact on a cylindrical surface at Re = 600 and θ ≈ 60◦. A comparison of the results obtained by (a) the virtual-density
scheme, (b) the geometric-formulation scheme, and (c) the improved virtual-density scheme. From left to right t = 100δt , 300δt , 4000δt , and
10000δt , respectively.

producing numerical results consistent with those given by the
geometric-formulation scheme.

C. Contact angles on a spherical surface

Finally, the capability of the improved virtual-density
scheme for simulating three-dimensional contact angles is
validated by the test of static contact angles on a spherical sur-
face. The D3Q19 pseudopotential MRT-LB model proposed
in Ref. [33] is adopted in our simulations and the lattice sys-
tem is chosen as Nx × Ny × Nz = 200 × 200 × 280. Initially,
a solid sphere of radius R = 50 is located at (100, 100, 100)
and a droplet of r = 45 is placed on the spherical surface with
its center at (100, 100, 180). The periodic boundary condition
is applied in all the directions and the halfway bounce-back
scheme [6,8,43] is employed to treat the curved boundary.
Other treatments such as the equation of state and the coex-

isting liquid and gas densities of the two-phase system are the
same as those used in the above two-dimensional tests. Figure
14 presents the results of different three-dimensional contact
angles obtained by the improved virtual-density scheme, in
which the lower row displays the density contours of the x-z
cross-section at y = 100. The results clearly demonstrate that
the improved virtual-density scheme is capable of modeling
three-dimensional contact angles on a curved surface and does
not suffer from a thick mass-transfer layer near the solid
boundary, which exists in the simulations using the virtual-
density scheme.

V. SUMMARY

We have investigated the implementation of contact an-
gles in the pseudopotential LB simulations involving curved
boundaries. The solid-fluid interaction scheme and the
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FIG. 14. Validation of the improved virtual-density scheme for simulating 3D contact angles on a curved surface. A 3D view is shown in
the upper row, while in the lower row the density contours of the x-z cross-section at y = 100 are presented. (a) ϕ = 1.2 with θ ≈ 53◦, (b)
ϕ = 1 with θ ≈ 88◦, and (c) �ρ = 0.55 with θ ≈ 145◦.

virtual-density scheme, which are two popular schemes for
the pseudopotential LB modeling of wetting phenomena, are
shown to suffer from very large spurious currents and an
unphysical thick mass-transfer layer near the solid bound-
ary, respectively. A curved geometric-formulation scheme for
the pseudopotential LB model has been extended from a
recently developed contact angle scheme for two-dimensional
phase-field simulations. Although the geometric-formulation
scheme can give a slope of the liquid-gas interface that is
basically consistent with the prescribed contact angle, it is
rather difficult to implement (e.g., for moving solid particles)
and cannot be directly applied to three-dimensional space.

Hence, we have proposed an improved virtual-density
scheme, which employs a local virtual density to replace the
constant virtual density and therefore overcomes the draw-
back of the original virtual-density scheme. Meanwhile, the
spurious currents produced by the improved virtual-density
scheme are much smaller than those caused by the solid-
fluid interaction scheme and it is much easier to imple-

ment in both two-dimensional and three-dimensional space
as compared with the geometric-formulation scheme. The
features of the improved virtual-density scheme have been
well demonstrated by simulating contact angles on cylindrical
and spherical surfaces. For simplicity, the halfway bounce-
back scheme [6,8,43] is employed in the present work to
treat the curved solid boundaries. In the LB community, there
have been many curved boundary schemes for curved bound-
aries, such as the scheme proposed by Mei et al. [44], the
interpolated bounce-back scheme [45], and the single-node
curved boundary scheme [46]. However, it should be noted
that these curved boundary scheme usually suffer from severe
mass leakage in two-phase LB simulations [47].
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