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Enhanced control of self-doping in halide
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Metal halide perovskites have emerged as promising photovoltaic materials, but, despite

ultralow thermal conductivity, progress on developing them for thermoelectrics has been

limited. Here, we report the thermoelectric properties of all-inorganic tin based perovskites

with enhanced air stability. Fine tuning the thermoelectric properties of the films is achieved

by self-doping through the oxidation of tin (ΙΙ) to tin (ΙV) in a thin surface-layer that transfers

charge to the bulk. This separates the doping defects from the transport region, enabling

enhanced electrical conductivity. We show that this arises due to a chlorine-rich surface layer

that acts simultaneously as the source of free charges and a sacrificial layer protecting the

bulk from oxidation. Moreover, we achieve a figure-of-merit (ZT) of 0.14 ± 0.01 when

chlorine-doping and degree of the oxidation are optimised in tandem.
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W ith rapidly rising greenhouse gas emissions to the
atmosphere, it is paramount to develop technologies
able to generate energy at negligible cost to the

environment, and to reverse the currently accelerating climatic
changes. However, to successfully fulfil the transition from fossil
fuels to renewable energy sources, we can no longer rely solely on
existing materials, but must focus on the synthesis of other
material classes with improved properties. Halide perovskites
have been recognized as promising photovoltaic materials1–3

achieving a power conversion efficiency exceeding 25%4, due to
their large absorption coefficients, high charge carrier mobilities5

and large carrier diffusion lengths6. They are a highly versatile
class of semiconductors, with a band gap that is tuneable through
the composition of the inorganic framework, the choice of
organic or inorganic cation, stoichiometry, and through self-
assembly into layered structures7–10 and nanoparticles11. This
diversity in structure has enabled the range of applications of
these materials to extend to other optoelectronic devices,
including light-emitting diodes (LEDs)12–14, X-ray detectors15,16

and lasers17,18.
Despite intense research on halide perovskite materials for

optoelectronics, there have only been a small number of experi-
mental studies on their thermoelectric properties, where a tem-
perature gradient across the material can move free charge
carriers and generate a thermal voltage. Thermoelectric gen-
erators can produce electrical power from temperature gradients,
and to do so efficiently, must use materials possessing a high
figure-of-merit, ZT:

ZT ¼ σα2T=κ ð1Þ
where σ, α and κ are the electrical conductivity, Seebeck coeffi-
cient and thermal conductivity, respectively. T is the temperature.
Halide perovskites have an ABX3 stoichiometry comprising a
network of inorganic (metal-halide) octahedra with loosely bound
organic or inorganic cations occupying the cavities between
octahedra. These cations provide rattling modes which scatter
phonons, enabling ultralow values of thermal conductivity that
are now well-documented19,20. Combined with the high charge
mobilities5 observed in many halide perovskites, the relatively
small number of experimental reports of ZT to date21,22 in these
materials is perhaps surprising.

In 2014, He et al. studied thermoelectric properties of methy-
lammonium lead iodide (MAPbI3) and methylammonium tin
iodide (MASnI3) by ab initio calculations23. They found that both
materials exhibit small carrier effective mass and weak phonon-
phonon and hole-phonon couplings, and predicted ZT in the range
of 1–2, in-line with state-of-the-art thermoelectric materials.
Shortly afterwards, Mettan et al.21 measured the thermoelectric
properties of MAPbI3 and MASnI3 bulk crystals21 finding that
photo-induced doping of MAPbI3 and chemical doping of MASnI3
improved ZT. They concluded that MAPbI3 would be a good
candidate for the thermoelectric applications due the high hole
mobility, large Seebeck coefficient and a remarkably low thermal
conductivity. However, the low charge carrier density is a barrier to
further development. Low charge carrier density in these materials
is a product of ionic compensation of charged point defects24, as
well as a defect tolerant electronic structure arising from bonding
orbitals at the conduction band minimum, and antibonding orbi-
tals at the valence band maximum25. The resulting low density of
deep defects is an excellent feature for optoelectronic applications
since defects can quench electroluminescence in LEDs or lead to
recombination of photo-generated charges in solar cells. On the
other hand, thermoelectric applications require charge densities
typical of heavily doped semiconductors ~1018–1020 cm−3, and
doping would usually come from defect sites, such as substitution
of a higher valency metal atom on the perovskite B-site26. This

makes development of halide perovskites for thermoelectrics
challenging.

An exception are the lead-free tin halide perovskites, such as
the cubic perovskite CH3NH3SnI3, which shows metallic con-
ductivity27. Takahashi et al.28 noted that high conductivity in
CH3NH3SnI3 bulk crystals arises from a self-doping process
through the oxidation of Sn2+ to Sn4+28. In 2017, Lee et al.
reported the ultralow thermal conductivity of a single CsSnI3
nanowire and a ZT of 0.11 at 320 K22, whilst Saini et al. report a
ZT in thin films of 0.137 at 292 K29. However, the underlying
physical mechanisms that determine thermoelectric performance
of halide perovskite materials are not completely understood, and
significant issues remain unaddressed such as identification of ZT
optimisation strategies.

In this work, we develop a series of vacuum thermal evaporation
methods to fabricate lead-free CsSnI3 perovskite thin films. We find
air stability and electrical conductivity of our films to be highly
tuneable by the deposition process with films formed by sequential
deposition of the precursors yielding electrical conductivity
25 times that of films formed by co-evaporation of the same pre-
cursors. Compared with organic-inorganic hybrid perovskites, all-
inorganic halide perovskites present significant improvements in
thermal stability30,31, but we enhance this further by developing a
method to substitutionally dope chlorine into the perovskite
structure in the top 10 nm of our films. A by-product of air
exposure is the oxidation of Sn2+ to Sn4+ (self-doping), and we
exploit this in a controlled manner to fine tune the electrical
conductivity and thermoelectric properties of the mixed halide
CsSnI3−xClx perovskite thin films. We quantify the Sn oxidation
states as a function of depth in mixed halide perovskite films using
Auger electron spectroscopy, showing an unusual mechanism
whereby an oxidised top surface-layer (<10-nm thick) is respon-
sible for electrical doping the underlying film (250–300-nm thick).
In this surface doping configuration, the dopants do not disrupt the
crystal structure in the part of the film responsible for charge
transport. In fact our Seebeck measurements indicate that the
electrical doping levels in our films rise in tandem with the amount
of Cl substituted in the top layers, showing that chlorine doping is
simultaneously providing free charges to the system and acting as a
sacrificial surface layer that slows oxidation of the bulk. We fur-
thermore verify the applicability of the Wiedemann-Franz law in
this class of materials with a value of the Lorenz number close to
the Sommerfeld value, and achieve a ZT of 0.14 at 345 K upon
simultaneous optimisation of the degree of Cl-doping and the
degree of oxidation.

Results
Thermal vapour deposition of CsSnI3 perovskite films. Past
approaches to synthesize CsSnI3 have included solution proces-
sing by spin-coating31 and growth of single crystals22,32. In our
case we have developed thermal vapour deposition approaches in
order to achieve a high quality of films with fine control over
morphology and composition.

Starting from the precursors caesium iodide (CsI) and stannous
iodide (SnI2), we developed three different vacuum deposition
methods to prepare the perovskite films: co-evaporation, sequential
deposition and seed layer plus sequential deposition (SLS)
(Fig. 1a–c). For the co-evaporation process (Fig. 1a), the perovskite
was obtained directly from simultaneous vacuum thermal
evaporation of the two precursor materials (SnI2 and CsI). For
the sequential deposition method (Fig. 1b), CsI and SnI2 were
sequentially deposited to form a bilayer film which was then baked
to form the perovskite. For the SLS method (Fig. 1c), a co-
evaporated perovskite seed layer was introduced before sequential
deposition, and the film was post-baked to form the perovskite
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structure. Co-evaporated films were mirror-black, characteristic of
the CsSnI3 perovskite, whilst sequentially deposited and SLS films
were red-brown, but became mirror-black after baking at 170 °C in
nitrogen atmosphere (Supplementary Fig. 1). Scanning electron
microscopy (SEM) revealed the dense polycrystalline morphology
of the vapour-deposited CsSnI3 thin films (Fig. 1d–f). Sequential
deposition produced perovskite thin films with around 1 μm
diameter grains, which were larger than grains in the co-
evaporated perovskite thin film (300–500 nm diameter). The SLS
perovskite thin films also contained sub-micron grains, yet with a
rougher surface morphology. As shown in Fig. 1g, X-ray diffraction
patterns of CsSnI3 films made by all three deposition procedures
showed features of the orthorhombic black phase, B-γ32 of CsSnI3,
with peaks at 25.02° and 29.15° (2θ) corresponding to (220) and
(202) planes, respectively. The sequentially processed films have a
dominant peak at 29.15°, showing a preferred orientation of the
(202) crystal plane parallel to the substrate. On the other hand, the
co-evaporated films present preferential orientation of the (220)
plane parallel to the surface. In the case of the SLS processed films,
multiple peaks were observed, including both (220) and (202),
indicating mixed orientations of crystallites in the film. The films
are present in the B-γ phase regardless of deposition method,
which is confirmed with grazing-incidence X-ray diffraction
(GIXRD) experiments (Supplementary Fig. 2), and there was no
evidence of diffraction peaks associated with Cs2SnI6 or the
precursor materials. The thickness of all films studied was between
250 and 300 nm.

Electrical conductivity and stability. To characterise the elec-
trical stability of our films, we performed time-dependent elec-
trical conductivity measurements both in inert atmosphere (N2

glovebox) and in air. CsSnI3 thin films from all three deposition
methods showed high stability when tested in a N2 atmosphere,
in fact showing a modest increase in electrical conductivity over a
period of 1 h (Fig. 1h). In total over that period a reproducible
increase in conductivity by a factor of 3.6 was observed for co-
evaporated films, 1.3 for sequentially evaporated and 1.2 for SLS
films, reaching maximum conductivities of 8.5 × 10−3, 7.3 and
6.8 S cm−1, respectively. When the thin films were exposed to air,
σ increased by a factor of 2 to 7 in all cases (Fig. 1i), which would
be expected from a self-doping process during oxidation of Sn2+

to Sn4+33,34. σ of co-evaporated thin films continuously increased
for 45 min, while σ of sequentially deposited films increased for
just 5 min before degradation caused a rapid decrease. The thin
films deposited by the SLS method can sustain increases in σ for
11 min, reaching a value 7 times the initial one and remain rea-
sonably stable afterwards, showing only 30% reduction in σmax

over the following 50 min. CsSnI3 thin films deposited by SLS
show a similar maximum electrical conductivity (37.1 S cm−1) to
sequentially deposited films (32.2 S cm−1), which is ~25 times
higher than the maximum for co-evaporated films (1.2 S cm−1), a
value we consider too low for thermoelectric applications. Co-
evaporated films with dominate orientation (220) therefore show
the best air stability but lowest electrical conductivity. Sequen-
tially deposited films with dominate orientation (202) show a
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Fig. 1 Morphology, crystal structure and electrical conductivity of CsSnI3 films. a–c Schematics of film deposition of the co-evaporation, sequential and
SLS methods, respectively (before any annealing steps). d–f Corresponding scanning electron microscopy (SEM) images of the films after any annealing
steps. g X-ray diffraction spectra of three types of thin film with lattice plane indices of the most prominent peaks in each case. Electrical conductivity of
three types of perovskite film in nitrogen atmosphere (h) and in air (i).
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poor air stability despite their larger grain sizes, but do have
higher electrical conductivity. Previous work has shown that grain
orientation can have a significant effect on degradation rates of
halide perovskite films35 and this is likely to be the case here.
Since SLS films have enhanced stability compared with the
sequentially deposited films, we chose SLS produced films as
the platform from which to optimise the thermoelectric proper-
ties of CsSnI3 perovskites.

To further improve the air stability of SLS perovskite thin films,
chloride was introduced in the deposition process, as mixed
halide perovskites are known to exhibit improved air stability
over analogous single-halide materials31,36. This was done by
thermal deposition of a thin layer (<20 nm) of tin chloride
(SnCl2) on top of the 250–300-nm thick SLS films prior to
thermal annealing (schematic in Fig. 2a). Deposition was followed
by baking under nitrogen atmosphere at 170 °C. An initial SEM
investigation revealed an elongated grain structure on the top
surface of our films (Fig. 2b) which was attribute to a pure SnCl2
phase. As baking progresses (Fig. 2c), the typical polycrystalline
perovskite morphology with polygonal grains emerges, although a
small number of the elongated crystals remain on top. On further
baking, the remaining elongated crystals show reduced aspect
ratio and the underlying perovskite grains merge into micron-
sized features (Fig. 2d), until after 40 min of baking (Fig. 2e),
there was little evidence of the elongated crystals at all. The
mixed halide films have XRD features similar to CsSnI3 with an
absence of peaks that could be assigned to SnCl2 or CsSnCl3

(Supplementary Figs. 3 and 4). It should be noted that SnCl2 can
sublime at 170 °C, so we used SEM and STEM combined with
energy-dispersive X-ray spectroscopy (EDS) (Supplementary
Fig. 5 and Fig. 2f–k, respectively) to confirm residual Cl
incorporation into our samples. Furthermore, high-resolution
transmission electron microscopy (HRTEM) of a single grain of
our mixed halide perovskite (Fig. 2f), showed two regions of
different crystal lattices (marked with red and yellow squares).
The lattice spacing of 0.328 nm measured in the red region
corresponds to the CsSnI3 crystal (122) plane, whilst the lattice
spacing of 0.546 nm measured in the yellow region corresponds
to the (001) plane of the CsSnCl3 cubic lattice. This indicates a
degree of nanoscale phase separation between chlorine-rich and
iodine rich phases within perovskite grains. The absence of
CsSnCl3 features in the XRD spectra is due to the low
concentration of Cl in our films. Corroborating evidence for the
incorporation of chlorine into perovskite structures is provided
by X-ray photoelectron spectroscopy (XPS), with the Cl 2p peak
of our mixed halide films showing a significant broadening
compared with SnCl2 (Supplementary Fig. 6)31. Moreover, we
used XPS to get a depth profile of the Cl concentration in our
films (Supplementary Fig. 7), finding that Cl was present in the
top layer, penetrating only a few nanometres into the bulk. We
could not detect any chlorine by XPS at depths larger than 10 nm
from the film surface. In what follows, we studied 0.5, 1, 3 and 5%
SnCl2 mixed halide CsSnI3−xClx perovskite films. The percentage
we use refers to the mass of SnCl2 relative to SnI2 in our thin films
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before the baking step. The final atomic % of Cl in the film will be
much lower.

To demonstrate the improved stability of our mixed halide
perovskite films, we studied the quenching of the optical
absorption peak at 420 nm (Supplementary Fig. 8). 5% Cl-
doped SLS films show enhanced stability, with just 3% quenching
of the 420 nm peak after 100 min air exposure, whereas SLS
CsSnI3 films without Cl-doping showed a 40% quenching of the
peak under the same conditions. In fact, in terms of their optical
properties, the 5% Cl-doped SLS films are more stable than
undoped co-evaporated films, showing less than half of the
quenching of the absorption after 500 min in air.

Quantitative analysis of Sn oxidation states. As the origin of
high conductivity in tin halide perovskites comes from hole
doping due to the oxidation of Sn2+ to Sn4+, we used XPS analysis
to probe the oxidation state of Sn in our films. Shifts in the
Sn 3d5/2 peak are relatively modest as a function of oxidation state
(Supplementary Fig. 9), so we focussed on the Auger region of
the spectrum. Since Auger electron spectroscopy (AES) probes
three-electron process, it is a much more sensitive measure of
oxidation state. We did this as a function of depth in CsSnI3−xClx
films (1% SnCl2) which had undergone a short air exposure
(Fig. 3a). The Sn MNN AES spectrum shows a broad line shape,
including several Sn MNN peaks (fitting curves labelled a, b, c and
d, with details in Supplementary Table 1). In the Sn0 metal
M5N4,5N4,5 AES spectrum reported by Barlow et al.37, 1S0 has a
peak at a kinetic energy of 421.2 eV, and showed a large broad-
ening after oxidation. In our case, the 1S0 peak (fitted curve a) is
broad, confirming the absence of Sn0 states. Fitted curve b
(425–430 eV) includes multiplet splitting of the 1G4, 3P2, 3F2,3 and
3F4 states (Supplementary Table 1). This broad peak shifts to
higher kinetic energy with increasing etching depth, correspond-
ing to oxidation in the top layer compared with the bulk38–40.
This is even more evident from peak c, which is linked to Sn4+

states38–40 and is prominent at the surface, but disappears com-
pletely within an etching depth of 7.5 nm (Fig. 3b).

The modified Auger parameter (α′) can be used for a more
robust identification of chemical states of elements in molecules

or solids, and is not susceptible to shifts caused by sample
charging38–41. It is defined as the sum of the kinetic energy of a
core-core-core Auger line, Ek, and the binding energy, Eb, of a
core electron, α0 ¼ Ek þ Eb and can be viewed more intuitively if
plotted in a Wagner format42 (a plot of Ek versus Eb recorded
from all chemical states of the atom). The Wagner plot in Fig. 3c,
combines our own data (as a function of depth) with some
literature references for Sn0, Sn2+ and Sn4+ states39,40,43, and
clearly illustrates a mixture of Sn2+ and Sn4+ oxidation states in
our film (Sn core binding energy, Auger kinetic energy and Auger
parameters detailed in Supplementary Tables 2–3 and Supple-
mentary Fig. 10)44. Moreover, there is a progressive change from
majority Sn4+ states at the surface of the film to Sn2+ at a depth
of 10 nm, further evidence that the oxidation process only occurs
in the top 7.5 nm of the film, the same region of the film that
incorporates chlorine dopants.

From this, we can conclude that the top surface layer of the
mixed CsSnI3−xClx acts as a sacrificial layer where initial
oxidation occurs. This layer provides hole doping to the bulk
(vide infra) from the surface Sn4+ species. This mechanism,
which separates the doping layer from the transport region,
minimises the structural impact of doping on charge mobility,
and enables our mixed halide perovskite structure to present high
electrical conductivity whilst retaining a reasonable degree of air
stability.

Thermoelectric properties of CsSnI3−xClx thin films. We per-
formed thermoelectric property measurements as shown in
Fig. 4a–f. The temperature dependence of σ and the sign of α for
1% Cl-doped CsSnI3−xClx in the range 290–360 K (Fig. 4a, b)
indicates band-like transport and that the majority charge carriers
are holes, as reported previously for CsSnI3 single crystal nano-
wires22, validating the high quality of our mixed halide perovskite
films. α increases approximately linearly with temperature due to
the shift of the Fermi level away from the valence band, following
the Fermi-Dirac distribution within the mobility edge model of
the Seebeck coefficient for a heavily doped semiconductors45.

We can fine tune the electrical conductivity of our films by
exposing them to air (3 min at a time) to further oxidise Sn2+ to
Sn4+. At room temperature, initial electrical conductivity, σ0, was
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8.0 ± 0.6 S cm−1 (Fig. 4a) and it dramatically increased to 69.0 ±
5.2 S cm−1 after a further air exposure (σ3), and saturated at
126.5 ± 9.7 S cm−1 after 9 min air exposure (σ9). Further air
exposure lead to a slower, but steady decrease in electrical
conductivity (σ12= 119.6 ± 9.2 S cm−1). The dependence of σ on
air exposure time comes from the competition between the
enhanced charge carrier concentration owing to self-doping from
Sn4+ species and reduced carrier mobility owing to defects caused
by air exposure, which can take the form of degradation in the
bulk or at the grain boundaries during the oxidation process, or
even increased ionised impurity scattering.

The Seebeck coefficient, α, in Fig. 4b shows a steady decrease
with exposure time (at room temperature, α0= 144.7 ± 1.5 μVK−1,
and after 12min air exposure α12= 103.0 ± 1.0 μVK−1), consistent
with a steady increase in the charge concentration shifting the
Fermi energy level, Ef, towards the valence band. The observation
that the Seebeck coefficient continues to decrease with air exposure
when the electrical conductivity has already peaked is further
evidence that the degradation in conductivity after extended
exposure to air is due to mobility lowering processes. To verify
this hypothesis, we used Hall measurements to determine the
charge carrier concentration as a function of air exposure, showing
an increase with air exposure from 2.38 × 1018 to 1.06 × 1019 cm−3

after 12min (Fig. 4e). Meanwhile, the Hall mobility decreases from
an initial value of 76.1 to 50.1 cm2 V−1 s−1 after oxidation. We note
that in Lee et al.’s work22, lower α (79 μVK−1) at room temperature
with higher σ (282 S cm−1) indicates a higher level of self-doping,
whereas our control of oxidation level allows us to precisely tune the
α/σ ratio and ultimately optimise ZT.

The measured temperature-dependent thermal conductivity
for 1% SnCl2 perovskite thin films is presented in Fig. 4c. At
room temperature after a minimal air exposure of 30 s, the
thermal conductivity is 0.38 ± 0.01Wm−1 K−1 and it increases
with air exposure to 0.47 ± 0.01Wm−1 K−1. To obtain the lattice
thermal conductivity κlattice from the measured κtotal (= κlattice+
κelectronic), we plotted κtotal as a function of σ (Supplementary

Fig. 11). The electronic thermal conductivity, κelectronic, is
described by Wiedemann-Franz law (κelectronic= σLT), enabling
us to determine κlattice and the Lorentz number, L, from the
intercept and slope, respectively, of a linear fit. We note that
since electrical doping is provided by a thin (<10 nm) surface
layer, we can assume that the lattice thermal conductivity in the
bulk of the film is not strongly affected by the doping process,
which is a requirement for this analysis. We found κlattice=
0.38 ± 0.01Wm−1 K−1 at room temperature, which is consistent
with Lee’s work (0.38 ± 0.04Wm−1 K−1), and extract a Lorentz
number of (2.40 ± 0.33) × 10−8 WΩ K−2 at room temperature
or an average of (2.26 ± 0.13) × 10−8 WΩ K−2 over the full
temperature range, close to the Sommerfeld value for free
electrons. Furthermore, we can confirm that polycrystalline
CsSnI3−xClx thin films exhibit a temperature dependence of
κlattice that is consistent with the Calloway model46, with
Umklapp scattering processes dominating in this temperature
range, as has been reported for methylammonium lead iodide
perovskites21,47.

Finally, the thermoelectric figure-of-merit, ZT, of our
CsSnI3−xClx perovskite films increases for oxidation time, τ,
in the range 0–6 min, and then decreases for τ more than 6
min, as shown in Fig. 4d. The largest ZT is 0.14 ± 0.01 at 345 K
for 1% CsSnI3−xClx, a factor of 7 higher compared with that of
the τ= 0 sample (ZT= 0.02 at 355 K). The figure-of-merit
shows a 32% reduction after 10 h in air, and a 30% reduction
after 10 days storage in nitrogen atmosphere (Supplementary
Figs. 12 and 13). We also note that thinner films showed higher
electrical conductivities, but no improvement in ZT (Supple-
mentary Fig. 14). This high degree of control over ZT through
tuning of σ and α indicates the effectiveness of self-doping in
the thermoelectric performance of Sn-halide perovskites.
Interestingly, the maximum ZT is a function of the degree of
Cl-doping (Fig. 4f), with a sharp increase of ZTmax from 0.07 at
0% Cl to a peak of ZTmax= 0.14 ± 0.01 at 1% Cl and steady
decrease upon further Cl-inclusion. In parallel, we observe that
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the Seebeck coefficient decreases as a function of Cl-doping
(Supplementary Figs. 15, 18), implying that the more heavily
Cl-doped the films are, the higher the charge carrier density
that is achieved. This is further evidence that the chlorine-rich
surface layer is acting not only as a protective layer slowing
down oxidation of the underlying CsSnI3, but also as a
sacrificial source of holes in this system that are donated from
the surface to the bulk. This separation of the dopants from the
charge transport channel prevents the introduction of scatter-
ing defects in the transport channel which can reduce charge
mobility, and is the reason that our Cl-doped films can achieve
up to four times the maximum electrical conductivity of our
pristine CsSnI3 films (Fig. 1 and Supplementary Fig. 18).

Discussion
Our work sheds light on optimisation strategies of halide per-
ovskites for thermoelectrics, with wider implications for the
development of halide perovskite films with targeted properties
across other application areas such as photovoltaics, photo-
detectors, thin film transistors and light-emitting diodes. We have
demonstrated a number of thermal vapour deposition methods for
the formation of high quality CsSnI3 thin films from its precursor
materials. These films are self-doping through oxidation of Sn2+

to Sn4+, and we have shown that the stability and electrical
conductivity of the films is highly dependent on whether a
sequential or co-evaporation process is adopted, with the former
offering higher electrical conductivity and the latter higher stabi-
lity. For this reason, we developed a hybrid of the two approaches
(SLS) to offer a suitable platform from which to optimise ther-
moelectric properties. Beyond this and building on knowledge that
mixed halide approaches can improve atmospheric stability of
halide perovskites, we adopted a unique approach to chlorine
doping of our CsSnI3 films, that results in substitution of chlorine
into a perovskite crystal lattice in a region <10 nm from the sur-
face. We have shown that the Cl-dopants not only enhance sta-
bility but simultaneously act as a sacrificial source of free charges.
The electrical doping is therefore coming from the outer atomic
layers of the film, but dopes to the pristine bulk, thus dividing the
film into a thin doping layer and a thicker charge transport
channel and ensuring that the introduction of dopants does not
degrade mobility in the transport channel.

The accessible free charge carrier concentration is therefore
determined by the Cl concentration and by tuning this in combi-
nation with the degree of oxidation, we have optimised thermo-
electric performance, achieving ZT= 0.14 ± 0.01, and verified that
the Wiedemann-Franz law is valid in these materials with a Lorenz
number similar to the Sommerfeld value for free electrons. These
results are important in identifying routes to develop the halide
perovskite class of materials for thermoelectric applications, but the
process of their optimisation for thermoelectrics has revealed a
deeper understanding of their thermal and electrical transport
properties, as well as strategies for controlled doping, which has
implications across all areas of their application. The potential
advantages of halide perovskite materials for thermoelectrics are
elemental abundance as well as mechanical flexibility, solution
processability and large area scalability. Finally, we note that the
stability of this tin based perovskite material could be further
improved by adding a strong reductant with favourable Gold-
schmidt tolerance into the structure, pursuing layered structures,
surface passivation or adopting mixed metal approaches.

Methods
Film deposition. We present three type of evaporated films: co-evaporated,
sequentially evaporated and seed layer plus sequential deposition (SLS). For co-
evaporated films, tin (II) iodide (SnI2, 99.99%, Sigma-Aldrich) and caesium iodide

(CsI, 99.99%, Sigma-Aldrich) were simultaneously deposited at 10−7 mbar. The
deposition rate was 1 Å s−1 for SnI2 (achieved with a crucible temperature of
160 °C) and 3 Å s−1 for CsI (achieved with a crucible temperature of 430 °C). The
mirror-black films were directly obtained from the co-evaporation methods without
annealing. For the sequential deposition methods, SnI2 was thermally evaporated at
10−7 mbar at 2 Å s−1 (170 °C), followed by CsI at 6 Å s−1 (450 °C). The initially red-
brown thin films were removed from the vacuum chamber for baking at 170 °C in
nitrogen atmosphere. Upon baking, the appearance of the films became mirror-
black indicating that CsSnI3 thin films were successfully fabricated. For SLS films, a
50 nm co-evaporated layer was first deposited as a seed layer. Above the seed layer,
followed a layer deposited by the sequential method without breaking vacuum. Dark
brown films were obtained from the SLS method, forming mirror-black CsSnI3 films
upon baking at 170 °C. For mixed halide perovskite samples, tin (II) chloride (SnCl2,
99.99%, Sigma-Aldrich) was evaporated at 0.5 Å s−1 (achieved with a crucible
temperature of 130 °C) on top of SLS films (which had not been baked) without
breaking vacuum. The mixed halide films were also baked at 170 °C in nitrogen
atmosphere to form mirror-black mixed halide perovskite films.

Scanning electron microscopy. The surface morphology of the films was per-
formed on a field-emission scanning electron microscope (FEI Inspect-F).

Optical absorption. UV-Vis absorption spectra were measured with Shimadzu
UV-2600 spectrophotometer, using 10 min intervals for time-dependent air sta-
bility studies.

X-ray diffraction. X-ray diffraction was performed on a Siemens D5000 X-Ray
Powder diffractometer using a Cu Kα source (λ= 1.54 Å).

Grazing-incidence X-ray diffraction. GIXRD measurements were performed at
the XRD1 beamline of the ELETTRA synchrotron facility in Trieste (Italy). The
X-ray beam had a wavelength of 0.7 Å and a beam size of 200 × 200 μm2.
2D-GIWAXS images were collected by using 2M Pilatus silicon pixel X-ray
detector (DECTRIS Ltd.) positioned perpendicular to the incident beam, at a
distance of 260 mm from the sample. The grazing incident angle was fixed at αi=
0.5° to probe the full thickness of the film.

Scanning transmission electron microscopy-energy-dispersive X-ray spec-
troscopy. Transmission electron microscopy (TEM) and high-resolution TEM
imaging was carried out on a Tecnai G2 F20 S-TWIN at 200 kV. High angle
annular dark field scanning transmission electron microscopy (HAADF-STEM)
imaging and energy-dispersive X-ray spectroscopy (EDS) elemental mapping were
performed on a JEM-ARM 200F at 200 kV. The TEM specimen fabrication was by
the evaporation process of CsSnI3−xClx perovskite mentioned in the Film
deposition section onto a copper grid with an amorphous carbon film on top.

X-ray photoelectron spectroscopy. XPS was performed on Thermo Scientific
K-Alpha X-ray photoelectron spectrometer with a monochromatic Al Kα X-ray
source under high vacuum (2 × 10−8 mbar). Etching of the films for depth profiling
was by in situ sputtering at room temperature using a beam of 3 keV Ar+ ions. The
etching depth profile was calculated from the etching time required to etch through
to the silicon substrate. Fitting was performed on the CasaXPS package, incor-
porating Voigt line shapes and a Shirley background.

Thermoelectric properties measurement. In-plane thermoelectric properties
(σ, κ and α) were measured simultaneously on the same sample with a Linseis Thin
Film Analyser (described elsewhere48–50). In this measurement geometry, in-plane
thermal conductivity is measured on a suspended SiN membrane by a 3-ω method.
Electrical conductivity is measured by the van der Pauw method with four needle
like electrodes at the four corners of the films. The Seebeck coefficient measure-
ment uses a thermometer and a heater on the suspended membrane to achieve a
temperature gradient (schematised in the Supplementary Fig. 19). Samples fabri-
cated in the glovebox were transferred to the Linseis Thin Film Analyser with
<2 min exposure to air. The humidity in lab was around 40%. All measurements
were performed under vacuum and in the dark. Hall effect measurements were
performed on PPMS-9 from Quantum Design Inc. When we wished to partially
oxidise the films, the measurement chamber was refilled with air to atmospheric
pressure for a designated time before pumping down again for the next
measurement.

Data availability
The data that support the findings of this work are available from the corresponding
author on request.
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