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A B S T R A C T

Metastability is a key source of itinerant dynamics in the brain; namely, spontaneous spatiotemporal reorgani-
zation of neuronal activity. This itinerancy has been the focus of numerous dynamic functional connectivity (DFC)
analyses – developed to characterize the formation and dissolution of distributed functional patterns over time,
using resting state fMRI. However, aside from technical and practical controversies, these approaches cannot
recover the neuronal mechanisms that underwrite itinerant (e.g., metastable) dynamics—due to their descriptive,
model-free nature. We argue that effective connectivity (EC) analyses are more apt for investigating the neuronal
basis of metastability. To this end, we appeal to biologically-grounded models (i.e., dynamic causal modelling,
DCM) and dynamical systems theory (i.e., heteroclinic sequential dynamics) to create a probabilistic, generative
model of haemodynamic fluctuations. This model generates trajectories in the parametric space of EC modes (i.e.,
states of connectivity) that characterize functional brain architectures. In brief, it extends an established spectral
DCM, to generate functional connectivity data features that change over time. This foundational paper tries to
establish the model’s face validity by simulating non-stationary fMRI time series and recovering key model pa-
rameters (i.e., transition probabilities among connectivity states and the parametric nature of these states) using
variational Bayes. These data are further characterized using Bayesian model comparison (within and between
subjects). Finally, we consider practical issues that attend applications and extensions of this scheme. Importantly,
the scheme operates within a generic Bayesian framework – that can be adapted to study metastability and
itinerant dynamics in any non-stationary time series.
1. Introduction

The brain continuously expresses transient patterns of coordinated
activity that emerge and dissolve in response to internal and external
perturbations. The emergence and evolution of such metastable coordi-
nation dynamics (in self-organizing complex systems, such as the brain)
has been studied extensively in nonlinear dynamics systems theory.
Furthermore, characterising itinerancy in the brain has attracted
increasing interest with advances in functional neuroimaging (Deco
et al., 2017; Roberts et al., 2019; Tognoli and Kelso, 2014). There is still
much to learn about the mechanisms of spontaneous spatiotemporal
reorganization in the brain, its neuronal underpinnings, and its relation
to cognition and behaviour. In particular, metastable dynamics are
closely tied to notions of functional integration and functional segrega-
tion (specialization) in the brain (Friston, 2002)—and how one con-
textualises the other.

The tendency of segregated neuronal populations to communicate
over a distributed network is known as functional integration. Although
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neuroanatomy (i.e. structural connectivity) provides the infrastructure for
cross-talk between regions, there need not necessarily be a direct (mono)
synaptic, anatomical link between two areas to mediate functional inte-
gration. Hence, to get a rough picture of functional integration, one can
quantify statistical dependency between distinct (observable) regional
responses, which is generally known as functional connectivity (FC). Ex-
amples of such statistical relationships include correlations, coherence
and transfer entropy. Conversely, estimating how remote neuronal dy-
namics influence (i.e., cause) each other—in different contexts—is the
topic of effective connectivity (EC) research (Friston, 2011).

In past years, the functional neuroimaging community has focused on
characterizing the spontaneous reorganization of functional connectivity
patterns at rest (i.e. during task-free periods). Considerable effort has
been invested into developing methods and procedures that can track
changes in FC patterns through time. This field is known as dynamic
functional connectivity (DFC). Among the non-invasive functional neuro-
imaging modalities that have been used for this purpose, functional
magnetic resonance imaging (fMRI) remains particularly popular, given
riston).
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its high spatial resolution and inherent circumvention of the inverse
problem (i.e., source localization).

Since the inception of DFC, the brain connectivity community has
been contending with a number of theoretical and practical issues. These
include ongoing debates over: the most reliable (sensitive and robust) FC
measures and techniques, definitions of (non)stationarity, the pertinent
time scales of changes, the cognitive relevance of the fluctuations, the
extent of artefactual (e.g. motion related) effects, interpretational issues,
and so on; see (Hutchison et al., 2013; Preti et al., 2017) for review and
references. However, the more fundamental limitation of DFC (for
studying functional integration and metastability) inherits from the
descriptive nature of FC. In other words, statistical relationships (or
changes thereof) between measured brain signals do not disclose the
underlying neuronal dynamics and their interactions. In the case of fMRI,
the problem is further compounded by the neurovascular coupling of
neuronal dynamics to measurable hemodynamics—rendering fMRI a
slow and indirect measure of neuronal activity. Therefore, as useful as
(D)FC results can be – as potential biomarkers for classification and
prediction purposes – they are not apt for disclosing the mechanisms of
functional integration (and endogenous or autonomous dynamics) in the
brain. Put succinctly, this is because “[d]ynamics occur in the underlying
neuronal system … then they cause nontrivial statistics in time-resolved
data samples” (Heitmann and Breakspear, 2018); the latter is what DFC
analyses can quantify, without a straightforward connection to the
former.

The closest the community has come to grounding DFC fluctuations in
neuronal phenomena has been by (1) establishing correlations with
power envelopes of certain band-limited electrophysiological and elec-
troencephalography (EEG) recordings (Chang et al., 2013; Tagliazucchi
et al., 2012; Thompson et al., 2013) and (2) by showing overall accor-
dance with emergent dynamics from large-scale computational models
(Deco et al., 2017, 2011; Rabinovich and Varona, 2011). These initiatives
acknowledge that fluctuations in functional connectivity have neuronal
correlates – and are not simply artefactual, despite physiological and
measurement noise. However, one still needs to solve an inverse problem
to interpret functional connectivity in terms of function integration
mediated by effective connectivity: i.e., a procedure to map these
(observable and) evolving spatiotemporal patterns back to the (unob-
servable and) evolving neuronal networks that generate them. This can
only be achieved by constructing generative models of the observations,
and adopting an inference procedure to estimate time varying effective
connectivity.

Effective connectivity is – by definition – model-based. That is, it
relies on generative models of coupled neuronal systems that can explain
empirical observations. The goal is to identify the model (network) that
has the greatest evidence for any given data, and to infer the corre-
sponding (context-sensitive) coupling or effective connectivity parame-
ters. So how can effective connectivity analysis contribute to our
understating of functional integration (particularly at rest), and its pre-
sumed transient dynamics?

Among the existing EC approaches, we focus on the most established:
dynamic causal modelling (DCM) (Friston et al., 2003). Specifically, we
opt for a spectral dynamic causal model (spDCM) for task-free fMRI
(Friston et al., 2014b). This spectral DCM is an efficient
biologically-grounded model that can explain (i.e., predict) the complex
cross spectra of the blood oxygenation level dependent (BOLD) signals
generated by endogenous neuronal fluctuations. Based on some local
linearity assumptions (on the state space equations of neuronal dy-
namics, and the observation equation for the measured hemodynamic
signal) – together with parametrized power law distributions for the cross
spectra (of endogenous fluctuations and observation noise) – spectral
DCM effectively converts a (nonlinear) state space model into a (linear)
deterministic model, which can be inverted quickly and efficiently (Razi
et al., 2015). This model has been validated elsewhere (Friston et al.,
2014a; Razi et al., 2015) and has been used extensively in imaging
neuroscience over the past few years. Importantly, since cross spectra are
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the Fourier counterparts of cross-correlations, and a zero-lag cross--
correlation is the most prevalent FC measure, spDCM is essentially an EC
model of how FC is generated.

To date, spectral DCM has been applied largely to whole sessions of
resting state (rs)fMRI data, inferring networks and couplings that explain
the session-average cross-spectra (i.e. the Fourier generalisation of FC).
To track network reconfigurations through time, a few studies have
applied spDCM to successive epochs of data. For instance, in the context
of epilepsy research, spDCM (in a more physiologically detailed form)
has been applied to successive epochs of (invasive and non-invasive) EEG
recordings and electrophysiological data to follow the evolution of the
coupling parameters through time (Cooray et al., 2015; Papadopoulou
et al., 2017, 2015).

Recently, spDCM has been used to estimate the fluctuations of
coupling parameters in successive epochs of rsfMRI data (Park et al.,
2017). To this end, the authors added a linear probabilistic model to the
generative model of spDCM, which allowed for parameter variations
(over epochs) to be explained as a weighted average of a number of
(constant and oscillatory) regressors. This augmented – parametric
empirical Bayesian (PEB) (Friston et al., 2016) – scheme is essentially a
Bayesian general linear model (GLM), with the advantage that the pos-
terior expectations and uncertainty about EC parameters are accounted
for; furnishing a Bayesian treatment of between-epoch effects. For a
concise mathematical description of spDCM and PEB see (Park et al.,
2017). The key finding of this research was that the subject-specific
baseline effective connectivity is more consistent, across sessions, when
dynamic components are modelled explicitly. However, interestingly, the
authors also noted that the first (subject-specific) eigenvariate of tem-
poral fluctuations in effective connectivity was also conserved across
sessions. This speaks to a reproducible connectivity dynamics that we
pursue in the present paper, through hierarchical Bayesian modelling.

The generative model that we propose is a mixed (discrete and
continuous) hierarchical model that calls on constructs from nonlinear
dynamical systems theory to explain metastable dynamics in the brain.
To this end, we associate the itinerancy in configurations or modes of EC
with reproducible transient dynamics (characteristic of complex self-
organizing systems). Under minimal assumptions, this connectivity dy-
namics can be cast as a latent variable or hidden Markov model—that we
adopt and implement. With such a generative model at hand, the
outstanding issue is to establish and validate a procedure for efficient
model inversion (i.e., mapping from a set of observations to the under-
lying model parameters and hidden states). It is worth reiterating that
generative models of EC dynamics can explain the temporal evolution of
functional connectivity patterns (of the sort investigated in DFC). In other
words, in the same sense that conventional DCM for CSD provides a
complete explanation of functional connectivity, the current scheme
explains dynamic functional connectivity.

In what follows, we describe the fundaments of our generative model,
outline the accompanying (variational Bayesian) inference procedure
and establish the face-validity of the approach (through simulations and
numerical analyses). We conclude with a discussion of the implications of
the analyses, along with some potential applications.

2. Methods and theory

2.1. The generative model

Our generative model underlying itinerant brain states is based on the
notion that macroscopic (slow) dynamical modes (Haken, 1983; Jirsa
et al., 1994) visit a succession of unstable fixed points in the parameter
space of directed (effective) connectivity. In other words, we suppose
that neuronal dynamics are generated by patterns of intrinsic (with-
in-region) and extrinsic (between-region) connectivity changes over
time. In particular, we assume that patterns of connectivity trace out a
heteroclinic orbit (i.e., a stable heteroclinic cycle or SHC) in parameter
space; visiting a discrete number of unstable fixed points to produce a
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winnerless competition among different states or modes of brain activity1

(Afraimovich et al., 2008; Deco and Jirsa, 2012; Friston et al., 2014b).
We further assume that the transitions from one unstable fixed point to
the next are fast in relation to the amount of time connectivity remains in
the neighbourhood of a fixed point. This assumption is licensed by two
features of SHC. These include: (i) the origin of the structural stability of
the SHC, and (ii) the long passage time in the vicinity of saddles in the
presence of moderate noise (Rabinovich and Varona, 2018). The struc-
tural stability speaks to a discrete approximation to any SHC in terms of a
discrete number of connectivity modes, while the long passage time
endorses a model of discrete transitions from one connectivity state to the
next.

These characteristics of stable heteroclinic channels licence a hidden
Markov model (HMM) of transitions among connectivity states (i.e.,
unstable fixed points in parameter space), where each connectivity state
generates fast neuronal fluctuations that can be observed over epochs, in
terms of their cross spectral density (Daunizeau and Friston, 2007). This
follows in the spirit of (Rabinovich et al., 2008): who note that “The
reproducible transient dynamics based on SHC that we have discussed
contains two different time scales, i.e., a slow time scale in the vicinity of
the saddles and a fast time scale in the transitions between them. Taking
this into account, it is possible to build a dynamical model based not on
ODEs but on a Poincare map, which can be computationally very efficient
for modelling a complex system”. See also (Krupa, 1997) for a discussion
of robust heteroclinic cycles.2

Fig. 1 illustrates the generative model we have in mind. In brief, this
model uses a hiddenMarkovmodel of switching states that are associated
with a particular pattern of connectivity. Each connectivity state then
generates fast neuronal dynamics, driven by endogenous neuronal fluc-
tuations within each brain region. More specifically, one can describe this
model in terms of how data would be generated. First, we sample a state
transition matrix from a Dirichlet distribution parameterised by its con-
centration parameters b. This transition matrix (B) is then used to select
the current brain state given the previous state; assuming a small number
(n) of hidden states (s). The current state then selects a state specific
pattern of connectivity (β), sampled from a multivariate Gaussian dis-
tribution. A random Gaussian variate is then added to this pattern to
generate the connectivity (θ) for the current epoch. This connectivity
1 In general, winnerless competition need not be a cyclic process: “The par-
ticipants of such a process can become winners periodically, or, especially when
the number of participants is more than three, the process can be non-cyclic and
even can be terminated following a stable sequence of transients and one
participant becomes the ultimate winner (Busse and Heikes, 1980)” as cited in
(Afraimovich et al., 2010). However, the spontaneous quasi-periodic recurrence
of sequences of connectivity modes speaks to stable heteroclinic cycles (Kashyap
and Keilholz, 2019; Majeed et al., 2011). In theory—and evidenced in viv-
o—these (periodic) cycles might be embedded at different levels of the temporal
hierarchy of neuronal dynamics (Cabral et al., 2017; Handwerker et al., 2012;
Vidaurre et al., 2017). We elaborate on the distinction between heteroclinic
channels and cycles in the discussion.
2 Who note: "A notable feature of robust cycles is that they can be asymp-

totically stable (or possess some weaker form of stability). Intuitively, stability
can be expected when the stable eigenvalues of the equilibria on the cycle are on
the average stronger than the unstable ones. A stable cycle defines a mechanism
of intermittency—a solution approaching it spends long periods near equilibria
and makes fast transitions from one equilibrium to the next. In a perfectly
symmetric system, the return times increase monotonically and rapidly
approach infinity, thus making the intermittent behaviour uninteresting. How-
ever, under small, symmetry-breaking perturbations, the cycling behaviour
persists (even if there no longer is a cycle) and the transition times no longer
converge to infinity. In many cases the transition times are either bounded or
extremely long transition times are very infrequent. In a similar manner sto-
chastic perturbations, or round-off errors in numerical computations, lead to
boundedness of transition times. Hence, in applications, the existence of a stable
heteroclinic cycle in the idealized model problem can be linked to the occur-
rence of intermittence."
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defines the neuronal network’s transfer functions (K) and cross spectra
(Y(ω)), under local linearity assumptions – and parameterised, scale free,
endogenous fluctuations in each brain region. The predicted or generated
cross spectra are then used to generate sample cross spectra.

A technical aspect of this generative model is the form of the likeli-
hood for the complex cross spectra that are generated. With ideal esti-
mators, one could assume that these spectral data features had a Wishart
distribution, with one degree of freedom for each frequency. However,
we assume that the cross spectra constitute the average of estimates, with
consistent and asymptotically normal estimates. In this setting, the
variance of the difference between the predicted and observed spectral
estimates is equal to the cross spectral density times the (effective) de-
grees of freedom, which we treat as an unknown parameter. See (Cam-
ba-Mendez and Kapetanios, 2005) for details.

2.2. Model inversion with variational message passing

Fig. 2 shows the same generative model but in the form of a normal or
Forney style factor graph, as compared to the graphical model shown in
Fig. 1. A factor graph is a useful schematic summary because it shows
clearly the architecture of message passing implicit in model fitting or
inversion. The graphical model in Fig. 1 associates nodes with random
variables and edges with conditional dependencies. Conversely, the
factor graph in Fig. 2 associates nodes with the factors or marginal
probability distributions of the generative model (denoted by the
numbers in green squares), while the edges now correspond to random
variables. Once the architecture of the (Forney style) factor graph has
been specified in this way, one can envisage model inversion in terms of
variational message passing along the edges (in both directions).

Model inversion refers to inverting the generative model of the
probabilistic mapping between causes and observable consequences, so
that one can map from observations to (inferred) causes; here, the un-
known or hidden parameters of the generative model. The key parame-
ters of interest include the probability transition matrix among hidden
states (B) and the patterns of connectivity (β) associated with each of n
states. However, to evaluate the posterior over these quantities one also
has to optimise the posterior over all other parameters (and hyper-
parameters). For example, one has to infer the amplitude of various
random (Gaussian) fluctuations, the (scale free) form of endogenous
neuronal fluctuations and the degrees of freedom with which the cross
spectra were estimated.

The equations on the left of Fig. 2 summarise the principles of vari-
ational inversion. In brief, one constructs a variational free energy bound
on model evidence (also known as an ELBO in machine learning). This
lower evidence bound is a functional of the observed data and an
approximate posterior density or Bayesian ‘belief’. The data in this
instance are the cross spectra estimated for a succession of epochs that
constitute an fMRI timeseries. The approximate posterior corresponds to
a mean field approximation over all unknown parameters and states and
is denoted by Q. This approximate posterior is then optimized with
respect to the free energy functional, thereby minimising the KL diver-
gence between the approximate posterior belief and the true posterior
(see equalities in Fig. 2). At the same time, this optimisation renders the
free energy a lower bound on model evidence. This is important because
it means we can use the free energy functional to compare different
models in terms of the evidence or marginal likelihood (e.g., models with
different numbers of hidden Markov states).

Fig. 2 also shows that the solutions for the approximate beliefs render
the variation with respect to posterior beliefs (or derivative with respect
to their sufficient statistics q) zero. The solutions under the generative
model in Fig. 1 are provided in the white panel. These are effectively the
messages that are passed between model factors, until convergence and
maximisation of free energy. These messages (denoted by the circled
numbers) are shown on the factor graph on the right to illustrate the
bidirectional and hierarchical message passing implicit in this scheme.
For people who are familiar with fMRI data analysis, this message passing



Fig. 1. The generative model in terms of its constituent factors (left) and corresponding graphical model (right). Specifically, B indicates the transition matrix, s
denotes the hidden states, β stands for state-specific connectivity pattern, θτ reflects epoch-specific connectivity and YτðωÞ represents the complex cross spectra of an
epoch. For more details concerning the generative model, please refer to the main text.

Fig. 2. Variational message passing (left) and normal style factor graph (right) based upon the generative model in Fig. 1. Please note the key inferred model pa-
rameters: B indicates the posterior expectation of the transition matrix, s denotes the posterior expectation of hidden states, β stands for the posterior state-specific
connectivity patterns, θ reflects the posterior epoch-specific connectivity and Yτ represents the complex cross spectral data features of an epoch.
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3 We use the term orbit as a convenient shorthand for a stable heteroclinic
cycle (SHC) – this is closely related to a heteroclinic orbit (which is the technical
term for the path that connects different equilibria, in dynamical systems the-
ory). In SHC, the fixed points are unstable (i.e., saddle points) and connected via
saddle-sink connections.
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scheme can be divided into three parts: the lower part corresponds to a
conventional dynamic causal modelling (DCM) analysis of complex cross
spectra within each epoch. The parameter estimates from the DCM then
constitute the evidence for a hierarchical model of changing connectivity
over epochs; estimated using parametric empirical Bayes (PEB). Finally,
the third part of this model corresponds to a hiddenMarkov model (HMM),
which furnishes empirical priors for the PEB scheme.

In summary, changes in connectivity are constrained by the prior
belief that there are transitions among a small number of brain connec-
tivity states, while connectivity estimates from the PEB level provides
evidence for the hidden Markov model that the brain is in one state or
another. This evidence is summarised as L in the figure. Interestingly,
under this formulation of model inversion, one can regard the hidden
Markov model as providing Bayesian model averages for the PEB (in-
termediate) level that in turn provide empirical priors for each DCM
epoch. The ascending messages about the current connectivity – that
provide evidence for connectivity states in the hidden Markov model –
are shown in green while the descending messages – that constitute
Bayesian model averages of connectivity – are shown in red.

Crucially, the variational message passing that emerges from free
energy minimisation has, unsurprisingly, formal similarities with many
established schemes; including the Baum-Walsh algorithm, expectation
maximisation and nonlinear system identification in timeseries analysis.
In what follows, we try to establish the face validity of this inversion
scheme by generating synthetic data and ensuring that we can recover
the underlying state transitions. A focus of this validation will be to show
how optimising variational free energy can also be used for Bayesian
model selection; here, to estimate the number of hidden states and the
nature of structured transitions.

2.3. Modelling latent states

The inversion problem we are dealing with presents many challenges.
This is because we are trying to infer an unknown number of hidden or
latent states, the probability transitions among those states and the
likelihood mapping to the connectivity parameters at a lower level of a
hierarchical model. Furthermore, this inversion accommodates uncer-
tainty about the connectivity parameters at the lower level, conditioned
upon the data. This is a difficult problem for several reasons.

First, there is an indeterminacy or degeneracy when trying to estimate
both the probability transitions and the likelihood mapping from latent
states. This follows because these mappings are only defined up to an
unknown order or labelling of hidden states. In other words, permuting
the states will change the transition and likelihood parameters without
changing the data that are generated. We will see below that this de-
generacy can be finessed by a systematic relabelling of the hidden states.

However, we are then still left with an ill-conditioned information
geometry of the posterior parameter space. In other words, because the
number of parameters (i.e., Dirichlet concentration parameters) of the
probability transition matrices can be large, the free energy functional of
this space is not convex. This means that the gradient ascent – inherent in
the optimisation of variational free energy – will encounter numerous
local maxima. The usual solution to this problem is to consider re-
parameterisations of the generative model, to ensure that the free en-
ergy functional is well-behaved. An example of this can be found in
(Friston et al., 2014b), where connectivity matrices are re-parameterised
in terms of their eigenvalues and eigenvectors. However, here, we do not
have the latitude to reparametrize the probability transitions, due to their
Dirichlet parameterisation.

An alternative approach to the local maxima problem is to initialise
the variational inversion at different starting points. Normally, this
would be computationally intractable, due to the high dimensional
problem at hand. However, we can use the computational efficiency
afforded by Bayesian model reduction (Friston et al., 2016) to perform an
exhaustive search of all plausible initialisations. This requires us to define
a plausible initialisation in terms of prior beliefs about the probability
5

transitions. As noted in the introduction, the use of a hidden Markov
model is motivated by the notion of orbits3 through connectivity
parameter space that visit a succession of unstable fixed points (Rabi-
novich et al., 2008; Rabinovich et al., 2012). This assumption tells us
immediately that there are certain attributes that the probability transi-
tion matrices must possess. These can be summarised as follows:

� First, the dwell time at any unstable fixed point must be small. In
other words, the probability of staying in a particular latent state of
connectivity – at the time scale imposed by the choice of epoch length
– is small. We will refer to this as a dwell prior.

� Second, there will be a systematic structure to the orbit among latent
states; such that the transition from one unstable fixed point to the
next is relatively predictable. We will call this an orbit prior

� Finally, if a certain number of hidden states are necessary to explain
the data, then they must all be occupied for a nontrivial proportion of
the time over which the data were observed. Wewill refer to this as an
equilibrium or equidistribution prior.

It is relatively straightforward to formalise these three prior beliefs in
terms of corresponding prior energies as follows, where a ⋅ denotes an
inner or dot product:

�ln pðBÞ¼ ln
�
4
n
� traceðBÞ þ e�α

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dwell potential

�β ln n � 1
n
traceðB � ln BÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Orbit potential

þβ ln n � eigðBÞ � ln eigðBÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Equilibrium potential

(1)

The first term (dwell prior) is simply the log of the trace of the prob-
ability transition matrix. This means that if the probability of staying in
any state is low, the trace or average probability will also be low, leading
to a small prior potential. The second term is the average conditional
entropy of transitions, such that a deterministic transition from one state
to another state results in a minimal conditional entropy (of zero). The
final term is the entropy over the equilibrium distribution (obtained from
the principal eigenvector of the density dynamics; i.e., the probability
transition minus the identity matrix). If all n states are occupied with
equal probability over time, then this entropy (i.e., equilibrium potential)
attains its minimum of zero. The hyperparameters ðα; βÞ ensure that the
prior potentials scale naturally with beliefs about what is likely and un-
likely. For example, the parameter β ¼ 8 means the entropy terms have a
range of eight. This means one can interpret potential differences as log
Bayes factors; namely, a strong prior belief would correspond to a prior
potential difference of three, while a very strong prior belief would
correspond to a potential difference of five (Kass and Raftery, 1995).

Equipped with this formal (itinerancy) prior over probability tran-
sition matrices, we can now perform an exhaustive search over all
plausible probability transition matrices – by using samples from the
prior distribution to initialise a gradient ascent. Furthermore, the log
prior can also be entered into the gradient ascent; thereby destroying a
large number of local maxima. Fig. 3 shows an example of plausible
probability transition matrices – and some typical trajectories.

Equippedwith the itinerantpriorabove,wecan identifyplausibleprior
transition matrices within an Occam’s window of 3 (nats), for a given
number of hidden states. In other words, we can define a plausible prior
transition as being at most expð3Þ � 20 times less likely than the most
probable. To finesse degeneracy in the state labels, we consider all permu-
tations of each transition matrix and treat the column entries as



Fig. 3. This figure illustrates the distinction between a priori
plausible and unlikely probability transition matrices, where
the prior probability or potential of a probability transition
matrix is defined above with three potential terms (dwell,
orbit and equilibrium potentials). In this example, we
created several thousand probability transition matrices by
assigning four Dirichlet parameters at random to each col-
umn of transition matrices over four hidden or latent states.
These matrices were then scored in terms of their prior po-
tential. Unique transition matrices were then identified – on
the basis of the three terms of the prior potential. The
resulting distribution of prior potentials is shown on the
upper left. For interest, the orbit potential is plotted against
the dwell potential (for this sample) on the upper right. The
middle row shows the three most likely (left) and least likely
(right) transition matrices according to this specification of
prior beliefs. Note the degeneracy in the state labels: the first
and second transitions from the left appear distinct, whereas
upon rearranging the labels, one can see that the second
transition is also an orbit—with a slight uncertainty over one
of the transitions. Exemplar trajectories for these transition
matrices are shown in the corresponding panels below,
starting from the first hidden state (in cyan). The key thing to
observe is that trajectories that could be plausibly associated
with metastable dynamics are generated by, and only by,
those probability transition matrices that have a high prior
probability (or low prior potential). In this example, the most
likely prior probability transition matrix is a deterministic
orbit among four states that would correspond to a stable
heteroclinic cycle. The trajectories generated by unlikely
matrices converge upon a single state, after a short period of
time.
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concentration parameters of a Dirichlet distribution. This furnishes the KL-
divergence between each permuted transition and that of a canonical orbit
of the same size (cycling through states1 ton). This allows one to retainonly
the permuted (transition) matrix with the smallest divergence from the
canonical orbit. Furthermore, all the hidden state sequences are presumed
to start in state 1. This consistent reordering or alignment of the states re-
solves the degenerate labelling and enables one to perform an exhaustive
search over (unique and aligned) transition priors – that also serve as the
initialisation of the posterior and associated trajectory of states.

Having inverted the hidden Markov model under all plausible priors
(using Bayesian model reduction), one can then perform a Bayesian
model average by treating each prior as a model. This entails weighting
the posterior Dirichlet parameters of the transition matrix by the relative
evidence for each prior (based upon the associated free energy).
Crucially, the itinerant prior potential is included during this model
averaging; transforming the evidence into a posterior probability of each
model of connectivity state transitions.

Practically, the model inversion scheme takes about a second to run
for each prior transition. For example, with ðα; βÞ ¼ ð2; 8Þ and with three
hidden states, there are 9 plausible (unique) transition priors – using
prior concentration parameters that sum to 3 for each transition; hence,
initialisation for each subject takes about 9 s. By including only plausible
priors within Occam’s window, we are effectively excluding all the other
possible transition matrices from the final Bayesian model average
(under the assumption that their evidence would not be sufficiently high
to compensate for their prior implausibility).
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2.4. Bayesian model comparison

As noted above, the inference problem that we are contending with is
extremely ill posed. This follows because there are an enormous number
of connectivity state transitions that could explain the same data. How-
ever, one can finesse this problem by a careful specification of the in-
ferences that are – and are not possible – based upon the sort of questions
people want to ask of their data. In brief, we focus on Bayesian model
comparison at the group level as the ultimate objective.

For any given subject, we will be interested in comparing models that
do and do not feature transitions among states of effective connectivity.
Formally, this requires the evidence for models of multiple connectivity
states to be greater than models with a single connectivity state (i.e., no
transitions). Having established the optimum number of states is greater
than one, one can ask whether there is evidence for an orbit by
comparing models with and without orbital priors. Finally, if there is
evidence for (or against) an orbit, we can meaningfully interpret the
parametric nature of these transient dynamics, in terms of the probability
transition matrices and associated states of connectivity. Using simula-
tions, we will show that this greedy search procedure (using Bayesian
model comparison) correctly disambiguates orbits from irregular or non-
orbits, and correctly identifies the number of connectivity states. In terms
of group comparisons, we can repeat the above procedure, with and
without modelling group differences at the between-subject level. In
other words, we can first identify the best model for all subjects and then
ask whether there are any differences in the group specific parameters,



Fig. 4. Synthetic data and parameter estimates (regular orbit group). This figure illustrates the synthetic timeseries and various connectivity estimates following the
inversion of a hidden Markov model of state-dependent connectivity in fMRI. Panel A shows the causal network structure. In panel B, the first three plots show the
simulated timeseries for a single subject. The first plot shows the endogenous fluctuations driving neuronal responses. The second plot (upper right) shows the
neuronal responses for each of three nodes in the network (coloured lines) and the haemodynamic fluctuations they induce (cyan lines). These haemodynamic signals
generate BOLD responses that, with observation noise, constitute the simulated signal – shown in the third and fourth plots. The three simulated regional BOLD signals
have been separated in the inset figure, for clarity. The epochs (in blue) superimposed represent the (Hanning) windows applied to partition the timeseries. Each epoch
was inverted using Bayesian parameter averages, from a standard spDCM inversion of the entire timeseries, as the prior expectation (with very precise shrinkage
priors). A few selected connections were allowed to vary between epochs (by relaxing the shrinkage priors for these connections). In this example, the intrinsic (self-
inhibition) connectivity parameters of each node were allowed to change from epoch to epoch. The posterior densities for the last epoch are shown in the fifth (third
row) plot. The gray bars correspond to the posterior expectations and the pink bars denote the 90% Bayesian confidence intervals. The connectivity values used to
simulate the data are shown as black bars. It is evident from these results that the overall profile of connectivity has been captured; however, there is a high degree of
conditional uncertainty – as indicated by the confidence or Bayesian credible intervals. Note that the posterior estimates of other (conserved) connections are
satisfactory and show a characteristic regression to the (prior) mean. The lower panels show the true connectivity parameters over all 18 epochs from both subjects.
These nine parameters correspond to the adjacency (A) matrix coupling the three nodes. Note that only three connection parameters change, because we applied
precise shrinkage priors to extrinsic (between-node) fluctuations. The middle panel reports the maximum aposteriori estimates before (middle) and after (right)
applying empirical (PEB) priors from the hidden Markov model (HMM). The agreement between the final (PEB) estimates and the true pattern of state-dependent
connection changes is not perfect but reasonable. These posterior estimates were based upon empirical priors afforded by an HMM, whose posterior expectations
are shown in Fig. 6. This illustrative analysis shows how transitions among hidden or latent connectivity states can be estimated using PEB under the prior assumption
of orbital transitions among a known number of states. However, we now have to establish whether this orbital model is the best explanation for the data, using
Bayesian model comparison.
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Fig. 5. Bayesian model comparison. This figure shows how BMC can characterize the main attributes of the (simulated) data; that is, the presence of state transitions
(i.e., non-stationarity), the optimal number of hidden states (i.e., model size), and the orbital nature of the transitions (i.e., orbit evidence). These were achieved by
searching over a (prior) model space spanned by ðn; α; βÞ. After recording the free energy for each combination of these values (n 2 ½1;4�, α 2 ½0; 4�, β 2 ½0;8�), the
approximate log model evidences were passed through a softmax function to estimate the joint probability of all the combinations. Thereafter, marginalization over
subsets of this space furnished the model likelihoods presented in the bar plots in the upper panels. Specifically, non-stationarity is the probability of models with n >

1, and was established for both groups with high posterior confidence. The evidence for orbits reflects the probability of models inverted under orbital priors (i.e. β >

0), as opposed to orbit-free priors (i.e. β ¼ 0). As a result, the presence of the orbit has been identified confidently, for the regular orbit group – and BMC has
(correctly) detected the existence of certain non-orbital attributes in the irregular orbit group. These marginal likelihoods were based on the marginal likelihoods
conditioned upon each combination of ðn; α; βÞ, as evaluated by free energy. Panel C provides an example of the associated marginal likelihoods over the hyper
parameters ðα; βÞ for n ¼ 3. Panel D marginalises over the hyperparameters to show the marginal likelihoods over the number of latent states n, in the form of a
confusion matrix. This confusion matrix is based upon simulated data generated with different numbers of hidden or latent connectivity states (each column of the
confusion matrix corresponds to a different dataset). Please see main text for details.
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under the best model. In what follows, we illustrate these procedures
using synthetic data. In subsequent work, we will apply the analyses
described in this paper to empirical data to illustrate the sorts of ques-
tions that can be addressed.

3. Illustrative simulations

3.1. Simulation setup

In this section, we describe the setup for analysing synthetic data
generated by transitions among hidden (Markovian) states. These sim-
ulations are presented to establish the face validity of the scheme;
namely, to show it can recover structured fluctuations in connectivity
when they are present. We considered two sorts of structured fluctua-
tions; i.e. a regular orbit and an irregular orbit. For the former, we assume
that the succession of connectivity states conforms to a SHC with a dwell
time for each state that corresponds to epoch length.

The other form of state transition probability—which we call an
irregular orbit—is essentially a slower SHC with a greater dwell time for
a subset of the states. This sort of imbalance – in the period of a heter-
oclinic cycle – violates all three prior potential terms in Eq. (1). While this
is obvious for the dwell prior, an increased dwell time induces uncer-
tainty in moving to the next state from the current state; thereby
increasing the entropy of the transition matrix. Moreover, this implicit
transition uncertainty implies that the number of times each state is
visited is not definitive for any sample trajectory or sequence. This affects
the contribution of different states to the cycle and violates the equidis-
tribution prior. In short, an irregular orbit possesses non-orbital attri-
butes, which we hoped model comparison would identify. We will
address the theoretical and empirical implications of these distinct
transition patterns in the discussion.

In brief, we simulated fMRI timeseries for two pairs of subjects. This is
the smallest number of subjects needed to illustrate how one can test for
within and between group (i.e., pair) effects. Each subject’s data
comprised nine epochs of 128 scans with a TR of 2 s. The data were
generated using scale-free random fluctuations for neuronal activity
(with an exponent of one) and (region-specific) observation noise (with
an exponent of one half). In these simulations, state-dependent connec-
tivity was simply an increase in self-inhibition of about 50% in the first,
second and third nodes of a hierarchically connected network or graph.

In the first subject pair, after each epoch of 128 scans, the connectivity
switched to another (state dependent) pattern in a regular fashion,
through three hidden states (i.e., 1,2,3,1,2,3, etc.). For the second pair, the
same state-dependent connectivity profiles were used, but with irregular
switching. Specifically, we simulated a slow orbit with increased dwell
time in state 3. The state sequence generated from this transition (and
used in the simulations) was: (1,2,3,3,3,1,2,3,3) for nine epochs. Pre-
defined connectivity patterns (associated with each hidden state) were
used to specify the corresponding spDCM kernels, which translate
endogenous neuronal fluctuations into BOLD signals. Representative
simulations of neuronal and hemodynamic series are provided in Fig. 4.

In summary, we simulated timeseries from two groups (i.e. pairs) of
subjects with regular and irregular orbits. The differences between the
two groups were subtle; they differed only in the form of itinerant
9

transitions between the same connectivity states. This difference was
motivated by insights from dynamic functional connectivity analyses that
are reviewed in the discussion. In what follows, we first focus on whether
itinerant dynamics can be recovered at the within group level. We will
then turn to between group comparisons, to see if we can identify dif-
ferences between subjects with regular and irregular orbits.

3.2. Model inversion

Having generated fMRI data for all synthetic subjects, we performed
model inversion to characterize the ensuing fluctuations in functional
connectivity. In the middle left plot of Fig. 4, the superimposed epochs
(in blue) represent the Hanning windows applied to epoch the timeseries.
Each epoch from each subject was then inverted using Bayesian param-
eter averages (over subjects) following inversion of each subject’s
timeseries without epoching, as the prior expectation, with very precise
shrinkage priors. A selected number of connections were allowed to vary
between epochs (with uninformative shrinkage priors); namely, the
intrinsic (self-inhibition) connectivity parameters of each node. The
bottom middle panel of Fig. 4 reports the maximum aposteriori (MAP)
estimates from this procedure (from the regular orbit subjects), before
applying empirical (PEB) priors from the hidden Markov model (HMM).

The improvement in the posterior estimates (in relation to the values
used to generate the data) afforded by the use of empirical priors from the
HMM is self-evident. In other words, knowing that the states were
generated by orbital transitions among latent states of connectivity al-
lows us to recover the states actually generating the timeseries. In this
example, the PEB scheme assumed (correctly) the hyperparameters were
ðα;βÞ ¼ ð2; 8Þ.

Fig. 4 shows that one can recover the dynamical architecture of
(connectivity) state transitions from the spectral density features of
observed data. However, to do this, we needed to know the number of
states and hyperparameters generating heteroclinic cycles; i.e., ðn;α;βÞ. In
an empirical setting, one would not know these hyperparameters. In
what follows, we consider a range of values for the number of latent
states and the hyperparameters, such that each ðn; α; βÞ combination
furnishes a (prior) model—with an associated model evidence. One can
then use model comparison to establish the existence of state transitions
(i.e. non-stationarity), the number of latent states, and the strength of
orbital attributes.

3.3. Bayesian model comparison

This section illustrates the of use Bayesian model comparison to
evaluate the evidence for different models; namely, models of regular or
irregular orbital transitions among an unknown number of hidden or
latent connectivity states. In brief, we repeated the above inversion under
different priors to evaluate the evidence for each prior assumption. In our
case, the priors come into flavours; first, the number of connectivity
states and, second, the strength of prior beliefs about the form of state
transitions, as parameterised by the hyperparameters (α; βÞ in Equation
(1).

To recap, the presence of state transitions requires n > 1. If n > 1, we
can infer the presence of orbital transitions when β > 0. This follows



Fig. 6. Hidden Markov modelling of fMRI data (regular orbit
group). This figure summarises the posterior expectations
about hidden Markovian states (top panel) and associated
fluctuations in connectivity parameters (shown in the middle
two panels). The lower panels report the state-dependent
connectivity patterns associated with each state (left) and
the expected probability transition matrix describing transi-
tions among those states (right). The cyan dots correspond to
the true values of the hidden states (or the largest connection
strengths, where appropriate). These results are shown for all
18 epochs (nine epochs from two subjects). With these simu-
lated data, one can be nearly a hundred percent certain about
the state of the (synthetic) brain at each epoch, with a faithful
reproduction of the regular orbit through the three hidden
states. In this example, the associated patterns of connectivity
have been correctly identified in terms of their qualitative or
relative sizes. The true values are shown as a function of time
(epochs) in the third panel as broken lines. The posterior es-
timates of these parameter fluctuations are shown as dotted
lines and their empirical prior expectation as a solid line. In
this example, the posterior (within-epoch) estimates are
remarkably similar to the empirical prior (between-epoch)
estimates. This reflects the fact that the conditional uncer-
tainty from the first level was sufficiently high to enable the
empirical priors to dominate the posterior estimate. The true
state-dependent changes in connectivity involved increases
along the leading diagonal that have been roughly recovered
in the posterior estimates of state-dependent connectivity
(lower left). The posterior expectation of state transitions is
correct and precise, in virtue of having six instances of each
transition. These results were taken from a hidden Markov
model inversion, assuming three hidden states. This was the
model with the greatest evidence over all models tested; as
illustrated in Fig. 5.

4 P ¼ PP
Pðn; α; βÞ for noisier data (from shorter epochs).
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because when β ¼ 0 , the priors over the key terms in Equation (1)
disappear. This means that we can search over a model space that spans
different values of (n; α; βÞ and record the free energy for each combi-
nation of values (using different initialisations when necessary or
Bayesian model reduction, when appropriate). By applying a softmax
function to the resulting approximations to log-evidence, one can esti-
mate the joint probability of all combinations of hyperparameters (i.e.
Pðn;α;βÞ) and marginalise over subsets.

In what follows, we will compare the probability of models with n ¼ 1
and n > 1 to establish the existence of transitions among connectivity
states. We can then compare models with β ¼ 0 and β > 0 to infer the
presence of orbits; in both cases marginalizing over α. Specifically, the
evidence for an orbit; i.e. Porbit ¼ 1� Pnonorbit was evaluated using
Pnonorbit ¼ P

n

P
α�1

P
β¼0

Pðn;α;βÞ. The results of these model comparisons are

shown in Fig. 5.
Effectively, a high orbit evidence indicates that the data were

generated by a cycle through connectivity states. For example, our
simulated regular orbit data favours the orbit hypothesis (as indicated by
10
100% orbit evidence, in Fig. 5A); hence, the evidence for these data was
greatest when inverted with orbital priors, specifically ðα; βÞ ¼ ð2; 8Þ,
using the correct number of latent states (i.e. n ¼ 3 with 100% confi-
dence). The ensuing posteriors are shown in Fig. 6. Conversely, for data
generated by the irregular orbit, the evidence for orbital hyper-
parameters change profoundly (see Fig. 5C) and the posterior probability
of an orbit fell to 94% (see Fig. 5B).

To further illustrate this kind of Bayesian model comparison, we
repeated the above analysis using different numbers of states, to see if we
could recover the number used to generate the data. In brief, we gener-
ated data with regular orbits among different numbers of hidden states;
i.e., n ¼ {1,2,3,4}. and evaluated the marginal posterior over n and for
each simulated dataset. This allows one to construct a posterior confusion
matrix, where each column of the matrix corresponds to the posterior
(marginal) probability over the number of states; i.e. Pn ¼P
α

P
β>0

Pðn; α; βÞ4. Ideally, this confusion matrix will concentrate its
n
α β≫0



Fig. 7. Bayesian model comparison of hidden Markov models (regular orbit group).
This figure illustrates the key aspects of Bayesian model inversion and com-
parison. The upper left panel shows the contributions to log evidence in terms of
log likelihoods during five iterations of the HMM inversion, for a model with
three hidden states. The coloured lines show the relative contribution to the
total log evidence (i.e., free energy) shown as a cyan line. The blue line corre-
sponds to the log likelihood afforded by posterior beliefs about hidden states.
This increase in log likelihood more than compensates for the increasing
complexity at the level of each DCM (shown as a red line). In this example, the
contribution from the complexity due to parameters of the probability transition
matrix (green line) makes an exceedingly small contribution. Note that the
scheme converges in a handful of iterations. The total free energy after
convergence was evaluated for hidden Markov models with 1, 2, 3 and four
hidden states. The resulting posterior probability over the four models is shown
on the upper right. In this case, we can be almost certain that there are three
hidden states in play. The lower two panels illustrate model comparison in terms
of testing for group differences – in this case the differences between the two
simulated subjects. This form of Bayesian model comparison can be imple-
mented quickly and efficiently by inverting the hidden Markov model by
concatenating all epochs from both subjects and comparing the ensuing log
evidence with the sum of log evidences when a model of each subject data is
inverted separately. The difference provides the evidence for a model in which
the state transitions and associated state-dependent connectivity is allowed to
differ between subjects. In this example, we generated data using the same
parameters for both subjects and, unsurprisingly, find strong evidence for the
model with no differences. The posterior estimates of state-dependent connec-
tions are shown when estimated for the two subjects separately on the lower
right. Although the absolute values differ, they have a similar profile. Similar
results were acquired for the irregular orbit group (i.e., quick convergence,
correct model size and strong evidence for no differences). In the next section,
we revisit the simulations above, while addressing some practical issues con-
cerning network size and key data features.
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posterior probability mass around the leading diagonal. In other words,
the posterior probability should be greatest over the number of states
used to generate each timeseries. Fig. 5D shows the results of this analysis
and suggests that one can identify, precisely, the number of latent con-
nectivity states using this scheme – and simulation setup. These results
are presented to illustrate the use of confusion matrices, which can be
useful when trying to establish how levels of noise (or the length of the
timeseries) affects model identifiability.

The first column of the confusion matrix (Fig. 5D) has an important
interpretation: in the absence of connectivity dynamics, model evidence
correctly and precisely indicates that only n ¼ 1 connectivity state is
necessary to explain the data; in other words, there is no dynamic
functional connectivity. Previous studies have highlighted the need for
inference methods that can detect true (non)stationarity in FC fluctua-
tions (Hindriks et al., 2015; Leonardi and Ville, 2015; Zalesky and
Breakspear, 2015). However, the null-hypothesis is usually assessed
(using surrogate data) by testing for nonstationarity in the time series per
se—rather than changes in connectivity (Chang and Glover, 2010; Hin-
driks et al., 2015; Zalesky et al., 2014). The current Bayesian treatment
provides explicit evidence for models of stationary (n ¼ 1) versus
non-stationary (n > 1) effective connectivity. This kind of (Bayesian)
inference would also apply to the associated functional connectivity,
since dynamic EC provides a full account of DFC (as noted in the
introduction).

In summary, one can use the free energy bound on model evidence to
optimise the parameters and hyperparameters of the model – to identify
the best explanation for how the data were generated. In the foregoing,
Bayesian model comparison was used to identify the number of con-
nectivity states (and hyperparameters) generating the itinerancy of
connectivity state transitions. In the next section, we illustrate how
Bayesian model comparison can be used to identify differences in EC
dynamics between subjects. In brief, this involves comparing models that
allow for differences in parameters between groups with models that do
not.

3.4. Comparing groups of subjects

In this section, we turn to the analysis of between subject effects; here,
testing for differences between the two pairs of subjects of the simula-
tions above.We first tested for any within-group differences (between the
two subjects, in each group). This form of Bayesian model comparison
can be implemented quickly and efficiently by inverting the hidden
Markov model for all epochs from both subjects and comparing the
ensuing log evidence with the sum of log evidences when each subject is
inverted separately. The difference provides the evidence for a model in
which the state transitions and associated state-dependent connectivity is
allowed to differ between the two groups (or subjects). In this example,
we used the same parameters (and hyperparameters) for both subjects in
each pair and, unsurprisingly, found strong evidence for the model with
no differences. The posterior estimates of state-dependent connections
are shown when estimated for the two subjects separately on the lower
right of Fig. 7. Although the absolute values differ, they have a similar
profile. Similar results were obtained for the irregular orbit group (i.e.
strong evidence for null within-group difference). The accompanying
estimates of state transitions are shown in Fig. 8.

We then tested for a difference between the two groups (that is,
regular versus irregular orbit group) using the same approach. The evi-
dence for parametric differences between the two groups was positive,
but not strong (log Bayes factor� 2.9< 3) (Kass and Raftery, 1995). This
inconclusive evidence may reflect the fact that the two simulated groups
have identical state-dependent connectivity parameters and their tran-
sition patterns did not differ substantially. Note that we are not simply
rejecting the null hypothesis of no difference. We are fairly confident that
we do not know, given these data, whether there are differences or not. In
other words, we can assert that these data do not allow us to disambig-
uate confidently between the two models or hypotheses. This begs the
11



Fig. 8. Hidden Markov modelling of fMRI data (irregular orbit
group). This figure summarises the posterior expectations of
the parameters, after model inversion using data from the
second simulated group. The cyan dots correspond to the true
values of the hidden states (or the largest connection strengths
where appropriate). The hidden state posteriors and the
transition matrix are both accurate and precise. The parameter
fluctuations track the simulated values reasonably well.
Furthermore, the state-dependent connectivity parameters
correctly reflect the dominant connection in each state, with
moderate specificity. This (state to connection) mapping could
potentially be improved by including more subjects in the
analysis, furnishing more precise empirical priors for the
DCMs. Please refer to the caption of Fig. 6 for additional
details.
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pragmatic question: how many subjects would be needed to make a
definitive statement about group differences?

To show how this sort of question can be answered quantitatively, we
repeated the above analyses using two, four and eight subjects. Fig. 9
shows the results in terms of differences in log evidence, as a function of
the number of subjects for each group. The key thing to observe is that
the difference in log evidence or log Bayes factor becomes more defini-
tive (i.e., diverges from zero) as the number of subjects increases.

In short, one can use simulated data and Bayesian model comparison
to assess the number of subjects or length of time series that might be
needed to address key hypotheses about group effects. In practice, group
differences might arise from divergence in the state transitions, the
connectivity profiles, or both—which can be further explored using
Bayesian model comparison and inspection of the corresponding
posteriors.

3.5. More realistic simulations

So far, we have introduced a hierarchical generative model of
12
dynamic connectivity, based on the notion of stable heteroclinic cycles;
elaborated the accompanying variational inference scheme; outlined
Bayesian model comparison for characterizing itinerant dynamics and
have described a procedure for analyzing between-subject effects. We
also presented illustrative simulations to show how these methods apply
to neuroimaging data analysis—in this case, resting state fMRI signals.

These simulations were based on a simple causal architecture
comprising three nodes (Fig. 4). These nodes had dynamic inhibitory self-
connections that served to switch the EC mode (every 128 time points)
according to cyclic (i.e., orbital) dynamics. The results suggest that the
inference scheme and ensuing BMC can establish non-stationarity and
orbital behavior (or lack thereof) and disambiguate regular from irreg-
ular orbits. It was further demonstrated that variational model inversion
can characterize the dataset in terms of the posterior expectations of
Markovian transitions among the (optimal number of) latent states, the
parametric EC modes and the structured epoch to epoch fluctuations of
the dynamic connections. This simulation serves to formalise the con-
ceptual and methodological fundaments of the approach. Now we apply
the same procedures to a more sophisticated setup—of the sort



Fig. 9. Evidence for group differences, as a function of subject number. This graph
shows the change in the log Bayes factor (i.e., differences in log evidence as
scored by variational free energy) when comparing models with and without
group specific differences. Evidence for group differences emerges with an
increasing number of subjects. By convention, a log evidence difference of about
three (dotted line) is usually considered strong evidence for one model
over another.
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encountered in practice.
Specifically, we extend the neuronal architecture to a network of five

nodes5 and show that Bayesian model inversion and comparison can still
detect and characterize orbits. We will also simulate faster orbits (with
shorter minimum dwell time) and investigate how well they can be
identified using shorter epochs. Moreover, a model comparison proced-
ure is shown to reveal the intrinsic timescale of the underlying orbital
dynamics (by finding the optimum epoch length for model inversion).

3.5.1. Simulation setup
We first demonstrate the effect of scaling up the network; i.e.

increasing the number of nodes or regions. We embedded the causal
architecture and itinerant dynamics of the previous simulation (Fig. 4A)
in an extended network of five regions (Fig. 10A). We do not presume
transient connectivity dynamics on these new nodes, but rather let them
influence the original regions, via excitatory and inhibitory (extrinsic)
connections. The rest of the setup is similar to the regular orbit example
presented before.

In brief, we simulated sessions in two subjects each comprising 9
epochs; where each epoch comprises T time samples with TR¼ 2 s. The 3
state-dependent connectivity modes pertain to a 50% increase in the
inhibitory self-connections of the first three regions (one at a time) with
orbital Markovian transitions. The data were generated using scale-free
random fluctuations for neuronal activity (with an exponent of one)
and region-specific observation noise (with an exponent of one half),
using the generative model of spectral DCM for fMRI (Friston et al.,
2014a). The network is depicted schematically in Fig. 10A.

3.6. Characterizing slow transitions

Initially, to focus on the role of network size, we maintained T at 128
time samples (per epoch). This translates to an orbit that lingers in the
vicinity of a metastable state (i.e., EC mode) for about 4 min. Notably,
with fMRI data from faster acquisitions,6 the same number of samples can
5 Networks of 5–6 nodes are prevalent in spectral DCM studies with resting
state fMRI (Friston et al., 2014a).
6 Such as those available from the Human Connectome Project (HCP) with TR

¼ 0.7 s.
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correspond to an epoch of around 90 s. Such (relatively long) window
sizes are appropriate for tracking slow connectivity dynamics (Chang and
Glover, 2010; Handwerker et al., 2012; Leonardi and Ville, 2015).

Having generated the data, we followed the same Bayesian model
inversion and comparison procedure described above. As previously, we
assumed7 that we know the best epoch length for dividing the data into
shorter intervals (to which spectral DCM’s are fitted): i.e., 9 epochs per
session. The model evidence was recorded over a plausible range of
hyperparameters and model sizes to furnish the joint probability distri-
bution over the searched space; i.e., Pðn;α;βÞ, for n 2 ½1;4�; α 2 ½0; 4� and
β 2 ½0;8�. Thereafter, Bayesian model comparison characterized the main
attributes of the connectivity orbits by marginalizing Pðn; α; βÞ over
subsets of the hyperparameters ðα; βÞ and the model size ðnÞ—as
described above and in Fig. 5.

The results are summarised in Fig. 10. It is evident that the main at-
tributes (of non-stationarity, orbitiness and model size) have been
recovered perfectly (Fig. 10B). The posterior expectations of the pa-
rameters (i.e., the state sequence, transition pattern and epoch to epoch
variations in the self-connections) are also consistent with the values
used to generate the data. The between-subject analysis also returns
strong evidence (>3 nats) for no difference between the two simulated
subjects.

Note that the number of the estimated DCM connections has almost
doubled in this scenario (see Fig. 10C top right plot, compared to Fig. 4).
However, these simulations show that adding a few regions to the
network has not affected the performance of the scheme when detecting
and characterizing slow orbital dynamics. The reason is twofold: (1) the
number of the dynamic connections did not increase; and (2) the itin-
erant priors that we use for parametrizing the (prior) model space are
particularly efficient when detecting SHC-like behavior—despite the ill-
posed nature of the inference problem. Next, we consider how robustly
faster orbital dynamics can be inferred from the spectral data features,
generated within the same network, using shorter epochs.

3.7. Characterizing faster transitions

We repeated the above experiment, but this time decreasing T (the
number of samples per epoch) used for generating and inverting the non-
stationary data. That is, we simulate faster dynamics and use corre-
spondingly shorter epochs to track them. Specifically, four additional
datasets were generated with T 2 f96; 80; 64; 48g samples per epoch.
This decrease in epoch length speaks to SHC dynamics with shorter
minimum passage time around the saddles (i.e., metastable ECmodes). In
other words, T corresponds to the smallest dwell time in a specific EC
pattern, before switching to the next. The rest of the settings were
identical to those used in the previous section.

The model inversion and subsequent BMC results show that the SHC
dynamics of the simulated data is reflected clearly in the marginal like-
lihoods (Fig. 11). That is, the presence of non-stationarity, orbital itin-
erancy and the number of latent states are all correctly inferred—despite
the extended network structure and the shorter epochs. A closer in-
spection of the parameter posteriors (Figs. 12 and 13) reveals reliable
inference about the sequence of state occupations, transitions and
connection variations, in all cases. Evidence for (null) group difference is
either strong or positive. We showed earlier how the evidence for
between-subject effects could be augmented by including more subjects
(Fig. 9). Of note, only when T falls to 48 samples per epoch, the
parameter fluctuations become smeared over adjacent epochs, compro-
mising the temporal specificity of inferred states. In short, these simu-
lations illustrate the operational range of dynamic EC analysis for
inspecting orbital dynamics of different rates, when applied to idealized
fMRI data.
7 We will demonstrate how the best epoch size can be inferred from the data
below.
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Fig. 10. Inference over an extended network. This figure shows (A) a network of five regions, where the first three self-connections fluctuate over epochs. State-
dependent connectivity patterns were constructed by inducing 50% increase in the self-inhibitions of regions 1–3 (one at a time) to generate 3 states in the para-
metric space of effective connectivity. Sessions from two subjects were simulated, each comprising 9 epochs, with 128 time samples per epoch and TR ¼ 2 s. The
connectivity pattern changed from epoch to epoch, traversing a regular orbit through the 3 parametric states. The resultant timeseries were divided into sub-intervals
using 9 Hanning windows and a spectral DCM was inverted for each epoch (for details of this inversion using BPA and shrinkage priors, please refer to Fig. 4 and the
main text). To characterize itinerant connectivity, we explored a (prior) model space spanned by the model size and the hyperparameters, i.e. ðn; α; βÞ and recorded
the associated approximate log model evidences (i.e., free energies); these values were softmaxed to yield the joint probability distribution over the search space; i.e.
Pðn; α; βÞ, for n 2 ½1; 4�; α 2 ½0;4� and β 2 ½0; 8�; (B) Bayesian model comparison identified the main attributes of the connectivity fluctuations by marginalizing
Pðn; α; βÞ over subsets of the hyperparameters ðα; βÞ and the model size ðnÞ, as described in Fig. 5. In this example, the marginal likelihoods accurately and precisely
identify the underlying nonstationary connectivity dynamics, the existence of an orbit and the correct model size (of three latent states); (C) posterior expectations of
the key model parameters show perfect recovery of the state occupation sequence and the orbital transition pattern, as well as strong evidence for no difference
between the two subjects (see Fig. 7 for the group analysis procedure). The posterior expectations of the parameters from a representative (final) epoch are plotted in
panel C (top right) in gray bars; the superimposed black bars are the connection values used to generate data for that epoch, and the pink bars denote 90% confidence
intervals. The posterior expectations of the dynamic self-connections (in panel C, middle left) vary in accord with the simulated variations. Following previous plots,
the cyan dots correspond to the true values of the hidden states (or the largest connection strengths where appropriate).

8 Note that this eschews the problem of directly comparing the evidence for
different epoch lengths, which would entail comparing the evidence for
different datasets.
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Clearly, the epoch length limits the detectable rate of transitions and
affects the quality of model inversion. In fact, the choice of window size
has been long debated in DFC analyses (Hutchison et al., 2013; Leonardi
and Ville, 2015). This is largely because DFC interpretations can be
confounded by spurious FC fluctuations induced by very short windows.
Hence, different rules of thumb have been proposed to guide exploratory
DFC analyses for choosing (fixed or adaptive) window lengths – and
assessing the FC fluctuations that they capture (Chang and Glover, 2010;
Handwerker et al., 2012; Hindriks et al., 2015; Keilholz et al., 2013;
Leonardi and Ville, 2015; Sako�glu et al., 2010; Zalesky and Breakspear,
2015). Importantly, with a biophysically plausible model of effective
connectivity (in particular DCM), the observation function (i.e. the
neurovascular coupling) and the observation noise are modelled explic-
itly, hence separating observable fluctuations from the dynamics of their
causes. But inferring these causes efficiently still requires sufficient data.

Aside from the signal processing, statistical and optimisation reser-
vations that attend the choice of window size, a more fundamental issue
pertains to the relevant timescale(s) of the underlying dynamics. To date,
the most neurobiologically relevant timescales of connectivity fluctua-
tions are still unclear and debated in neuroscience (Hutchison et al.,
2013; Preti et al., 2017). In other words, identifying the most functionally
informative epoch size for disclosing the dynamics of neuronal in-
teractions is not trivial. This brings us to the next natural question: in an
empirical setting, how can dynamic EC analysis reveal (and be informed
by) the intrinsic timescale(s) of the underlying itinerant dynamics? The
next section tries to address this question.

3.8. Optimum epoch length

The functionally relevant timescales of connectivity fluctuations
(particularly at rest) are largely unknown – and an arbitrary window
length (T) could miss important dynamics. Hence, it would be useful to
establish the most plausible epoch length, for a given set of data, from
which the presumed SHC dynamics of EC modes can be efficiently
inferred. In this section, we present a realistic scenario in which one is
agnostic to both model size and minimum dwell period of the underlying
EC dynamics. We use this example to show howmodel evidence serves to
guide the choice of window size, such that it discloses the most relevant
orbital dynamics, when present.

The simulation was based on the extended network in Fig. 10,
comprising 5 regions with three fluctuating self-connections (on regions
1–3), associated with 3 EC modes. The orbital transitions caused the EC
pattern to change after every epoch of T ¼ 80 time samples (with TR ¼ 2
s). Data for each subject were generated from 9 such consecutive epochs.
Here, two subjects were simulated with the same changes in connectivity.

These data were inverted under a model space spanned by a range of
epoch numbers (w) and model sizes (n), assuming orbital dynamics.
Specifically, the model space was defined by ðw; nÞ pairs, with w 2
f6 : 12g and n 2 f1 : 4g. The associated epoch lengths (for model
inversion) were in the range of T ¼ 9� 80=w 2
15
f120;102;90;80; 72; 64; 60g time samples; noting that epoch length
decreases with epoch number for a session of the same generation.
Variational inversion furnished approximate model evidences (i.e., free
energies) for different combinations; i.e. Fðw; nÞ. To infer the optimal
number of latent states, we pooled evidence for each model size (n) over
all window lengths and picked the model size with maximum posterior
probability, (assuming a priori equally likely models):

PðnÞ¼ softmax
�X

w

Fðw; nÞ
�

(2)

nopt ¼ arg max
n

PðnÞ

with the optimal model size (noptÞ at hand, the outstanding task was to
infer the optimal epoch length. One can score different epoch lengths by
examining the relative log evidence under the best model size (nopt)
compared to the stationary model (n¼ 1), as a function of epoch length.8

This is simply the log Bayes factor (BF) or log odds ratio (Kass and Raf-
tery, 1995). The rationale here is that the best epoch length reveals the
greatest evidence for orbits. In short:

Log BFðwÞ¼ log
P
�
wjn ¼ nopt

�
Pðwjn ¼ 1Þ ¼F

�
wjn¼ nopt

�� Fðwjn¼ 1Þ (3)

wopt ¼ arg max
w

Log BFðwÞ

The outcome of this procedure is demonstrated in Fig. 14. On the
simulated dataset, the best model size has been inferred accurately (96%
evidence in favor of n¼ 3) and the log odds ratio points tow¼ 9windows
as the best choice, which coincides with the window length used to
generate the data.

These simulations were performed on a typically encountered
network size (of 5 nodes) with relatively fast orbital dynamics. Adopting
the inferred model size and the best epoch length furnishes the most
relevant dynamic EC analysis and reveals the intrinsic timescale of the
underlying dynamics, assuming orbital itinerancy. The posteriors from
this EC analysis (assuming 9 epochs) are illustrated in the previous sec-
tion (Fig. 12B). Importantly, the model size inferred herein (Fig. 14) did
not assume knowledge of the best window size, in contrast to the pre-
vious examples. Instead, both the model size and epoch length were
inferred from the data using a greedy search, as described above.

4. Discussion

Generative models of coupled neuronal systems – that can explain



Fig. 11. Bayesian model comparison results for the extended network with faster dynamics. This figure shows the BMC results with different transition rates. Each dataset
was generated using an orbital pattern of transitions among three latent states (i.e., EC modes), based on the network in Fig. 10. Notably, the connectivity pattern
switched after a designated period of 128, 96, 80, 64 or 48 samples. The horizontal axis values reflect both the time (in samples) over which effective connectivity
remains stationary, and the window size used to divide the data into epochs. The evidence is conclusive about the non-stationary orbital nature of the data and reliably
indicates the correct size of three, used to generate these transient dynamics. We will next inspect the posterior expectations of the model parameters in each case (in
Figs. 12 and 13).
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Fig. 12. Posterior expectations of the model parameters inferred from the extended network with faster dynamics. Supplementing the model comparison results in Fig. 11,
this figure shows the performance of model fitting (in terms of the posterior expectation of the parameters) as a function of epoch length, which denotes both the
minimum dwell time of the orbital dynamics and the window length used to divide the data into epochs. (A) Using epochs containing T ¼ 96 samples, the parametric
itinerant traits (i.e., the state sequence and transition profile) are correctly inferred and the evidence for null group difference (between two subjects) is positive. (B)
For T ¼ 80 samples per epoch, the key parameter posteriors are recovered fully and the connectivity fluctuations closely follow the simulated changes.
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Fig. 13. Posterior expectations of the model parameters inferred from the extended network with faster dynamics. Supplementing the model evidences in Fig. 11, this figure
shows the posterior expectation of the parameters when the inference scheme operates over shorter epochs of data, capturing faster orbital transitions (A) For T ¼ 64
time samples per epoch, the itinerant characteristics are precisely captured in the posteriors, with strong evidence for a null group difference. The parameter fluc-
tuations are partially correlated for two of the connections, but the strongest connection per state is quite indicative. (B) For T ¼ 48 samples per epoch, the state
sequence, transition pattern and group evidence are accurate, but the parameter fluctuations are smeared over the epochs; thereby losing state specificity.

Fig. 14. Optimum number of epochs or epoch length. This figure shows that the most informative number of epochs for dynamic EC analysis can be inferred from the
data, through a greedy search. In short, the data were generated using 3 states and 9 epochs of 80 time samples each, for 2 subjects, using the network of Fig. 10. This
dataset was inverted using different combinations of window numbers (i.e., epoch lengths) and model sizes, ðw;nÞ, where w spanned [6–12] windows, n was in the
[1–4] range, and the hyperparameters furnished itinerant priors (α ¼ 4;β ¼ 8). The resulting free energies (i.e. approximate log model evidences) were evaluated for
this model space, as Fðw;nÞ. By pooling (summing) evidence for each model size over the range of windows numbers, the optimum number of latent states was inferred
(left plot). Thereafter, a log Bayes factor was computed for each epoch length, scoring the plausibility of the orbital model with an optimal size (nopt ) against the
stationary model (n¼1). The epoch length (i.e., number of epochs) that produced the highest Bayes factor was deemed the most relevant for attributing orbital EC in
the given dataset. In this case, the correct (9) number of epochs produced the highest log odds ratio (right plot).
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empirical observations – enable mechanistic investigations of functional
integration in the brain—and, implicitly, the role of phenomena such as
metastability. In other words, using biologically-groundedmodels of how
neuroimaging data are generated, it is possible to recover the underlying
dynamics from measured signals, by solving an inverse problem. This is
the basis of dynamic causal modelling. In most DCM studies, the in-
ferences pertain to session-average responses and their underlying con-
nectivity. Here, we present a hierarchical extension to accommodate
temporal fluctuations (over successive epochs) in directed neuronal
coupling. Specifically, this hierarchical model augments an established
spectral DCM for resting state fMRI.

Conceptually, our hierarchical model assumes a winnerless
competition among itinerant patterns of effective connectivity (i.e.,
states or modes of connectivity) of the brain at rest. The mathematical
18
image of such itinerant (i.e. metastable) behaviour is a stable hetero-
clinic channel (SHCh) or stable heteroclinic cycle (SHC). For three
competitors (e.g., 3 states in our simulations), winnerless competition
naturally results in a SHC. However, when there are more than three
participants in a WLC, a SHCh is not necessarily cyclic (Afraimovich
et al., 2010). SHCh can account for the reproducible itinerancy in
neuronal dynamics (i.e. non-random sequences of modes) and repro-
ducible transients induced by stimuli (Jones et al., 2007; Stopfer et al.,
2003). However, a SHCh does not require the quasi-periodic recurrence
of sequences. Such sequences have been referred to as quasi-periodic
patterns (QPPs) in humans and rodents, with structured (and predict-
able) repetition rate and dwell time (Kashyap and Keilholz, 2019;
Majeed et al., 2011; Thompson et al., 2014). Therefore, in virtue of the
priors in our generative model, we commit to a particular class of SHCh,
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which we have associated with a SHC—as an apt description of
quasi-periodic connectivity patterns in the metastable brain.9 Crucially,
the transient dynamics of a SHC can be approximated by a hidden
Markov model (of transitions between EC states), when the transitions
possess certain itinerant characteristics; these characteristics were
expressed as prior beliefs over the plausible forms of transitions in our
model (Eq. (1), Fig. 3).

Having constructed the hierarchical generative model (Fig. 1), the
face validity of the approach was established using simulations; i.e.,
synthetic resting state fMRI time series were generated (Fig. 4) and
inverted (using variational Bayes, Fig. 2). We elaborated on the chal-
lenges of inverting a deep hierarchical model using sparse data (in this
case, a few epochs of fMRI data per session). This problem was finessed
by adopting a multi-start approach that evaluated and compared
different models (cast in terms of priors) for a given data. In particular,
this model space was spanned by the number of the latent states and
itinerancy hyperparameters—i.e. ðn; α; βÞ. By evaluating the model evi-
dence for different combinations of priors over these parameters, the
joint probability over all combinations can be estimated. Thereafter,
evidence for non-stationarity, model size and orbital state transitions can
be recovered by marginalizing over subsets of this joint probability dis-
tribution (see Fig. 5).

Equipped with the priors (i.e. hyperparameter values) apt for simu-
lated data, model inversion and comparison (using BMR) returned the
expected parameter posteriors, as illustrated in Figs. 6 and 8, for the
regular and irregular orbital transitions. The accompanying model evi-
dence (i.e., free energy) was further used to perform group comparisons
within and between pairs of subjects (Fig. 7), to characterize the sort of
parametric changes in EC dynamics that can be detected using Bayesian
model comparison.

In these simulations, the transition patterns for the two simulated
groups were regular and irregular orbits, respectively. The specific choice
of these transition patterns was motivated by the notion of exit time for
perturbed SHCs (Kifer, 1981; Stone and Holmest, 1990) and practically
by DFC reports of differences in state occupancies across populations.

A regular orbit is the simplest form of a structurally stable heteroclinic
cycle, with a nearly deterministic progression through a sequence of
saddles. The behaviour of such systems under random perturbations has
been investigated theoretically in the literature (Kifer, 1981; Stone and
Holmest, 1990). In brief, small random perturbations do not alter the
global structure of the heteroclinic events, but render the duration of the
events more stochastic. In our context, an event would correspond to an
emergent EC mode, which the brain presumably maintains over a num-
ber of epochs. In particular, the study of (Stone and Holmest, 1990)
concluded that, while weak additive noise does not essentially alter the
structure of the solutions in the phase space, it induces a radical change in
that it leads to “a selection of timescales”.10 In this sense, empirically
estimated timescales of EC dynamics might be useful for informing ca-
nonical models of metastability (for the normal and pathological brain);
which, in turn, can further clarify the role of noise and manifold in-
stabilities in inducing the potentially altered heteroclinic structures and
9 An interesting question could be about the location of SHCs in the brain.
Cyclic (periodic) behaviour has been observed at different levels of organization
of the brain, with separation of temporal scales (Cabral et al., 2017; Handwerker
et al., 2012; Kashyap and Keilholz, 2019; Majeed et al., 2011; Vidaurre et al.,
2017). We have assumed SHC at the level of immediate temporal dependencies
of the latent states, realized over epochs. In theory, in an extended model with a
deep hierarchy—encompassing different temporal scales— SHC could govern
the top level of the model, and both stable heteroclinic channels and cycles may
occupy lower levels. We will return to this later.
10 By linearizing the system at the saddles, the authors were able to predict the
probability distribution of the passage time (duration spent in the vicinity of a
saddle) and subsequently the expected passage (exit) time. They showed that the
latter depends only on the strongest unstable eigenvalue at the saddle and on the
root mean square of the noise level (provided that it is small).
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time-scales, in particular conditions and disorders.
Simulating slower SHC dynamics (through an irregular orbit) was

motivated by empirical DFC findings. For instance, a recent study
(Vidaurre et al., 2017) concluded that the time spent visiting different
(functional) connectivity states is not random, is heritable and predicts
behavioural traits. The same research further demonstrated that transi-
tion patterns in brain activity and (functional) connectivity are not
random; this non-random sequencing shows a hierarchical temporal
structure (revealing two metastates); and that the brain cycles between
distinct metastates. These findings (although phenomenological) tie in
closely with the notion of SHC dynamics and the significance of their
orbital periods.

Likewise, numerous other studies have established the relevance of
(altered) functional state occupation and transition to demographics,
consciousness, cognition, and clinical conditions: see (Preti et al., 2017)
for a recent review. For instance, the authors of (Yang et al., 2014) found
that the dwell time of a posterior-medial cortex seed, in a particular
connectivity state, predicts inter-subject variability in mental flexibility
and concept formation. Another DFC study (Cabral et al., 2017) found
that closed loops exist between some FC states, and that preserved
cognitive performance of healthy older adults is related to their ability to
maintain certain (resting state) FC states for longer, compared to poor
performers.

Furthermore, DFC researches on Schizophrenia (SZ) and post-
traumatic stress disorder (PTSD) patients have reported the tendency
of these subjects to linger or get trapped in certain states. These states
transpired to be functionally less defined (less connected) in SZ (Dam-
araju et al., 2014; Du et al., 2016; Miller et al., 2016). In the case of PTSD
patients, the state from which the subjects seemed unable to disengage
was attributed to negative mood (Ou et al., 2015). These are all in-
dications of pathological state dwell times (that can manifest as irregular
orbits).

In addition to the inherent time-scale of the transitions, another
potentially useful feature to quantify (across conditions or populations) is
the state space dimension—i.e. the size of the repertoire of EC modes.
This is the model size (n) that we inferred through BMC (Fig. 5). This
feature would be particularly relevant in conditions or disorders associ-
ated with enhancement or shrinkage of the connectomic repertoire. For
instance, recent studies demonstrated that psychedelics appear to
enhance the dimensionality of state space and increase the traverse rate
across this enlarged space (Atasoy et al., 2018; Tagliazucchi et al., 2014).
Conversely, another functional connectivity study (Miller et al., 2016)
suggests that SZ patients appear to be confined to a smaller state space
(compared to healthy controls), both in terms of the number of realized
meta-states and the distance (distinction) between the states. These ob-
servations might be usefully explored with dynamic EC, to further clarify
the neuronal basis of connectivity states that are associated with
psychopathology.

Having discussed some potential applications of the dynamic EC
model, we now consider some pragmatic points for using and extending
this model effectively. Based on our experiments so far, the limitation of
this scheme is not the size of the network per se. It is rather the difficulty
of estimating (fluctuating) DCM parameters from spectral features of
short epochs. So as long as one intends to track a few specified connec-
tions over time (and is content with session-average values for the other
connections), scaling up the network is not an issue. In fact, identification
of large-scale spectral DCMs (with tens of nodes) has been achieved
recently11 (Razi et al., 2017). To apply this scheme to such networks, a
few connections of interest should be specified a priori (based on bio-
logical hypotheses or data-driven dominant modes of FC (Seghier and
Friston, 2013), to be followed over epochs.

For instance, our focus (in the simulations of this paper) was on the
temporal evolution of inhibitory self-connections in the neuronal
11 Using FC modes to place prior constraints on the effective connections.
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network. This choice wasmotivated by the following reasons: (1) The key
mechanism underlying the winnerless competition in the brain is inhi-
bition12 (Buzs�aki, 2006); (2) the explanatory power of intrinsic (i.e. self)
connections has recently been emphasized in a spDCM study of seizure
onset, using intracranial EEG recordings13 (Papadopoulou et al., 2015);
(3) the sensitivity of brain regions to their intrinsic inhibitory afferents
speaks to the local excitation-inhibition balance—an important feature of
connectivity in pathophysiology; (4) following the excitability of the
regions through time allows one to estimate dwell time in different levels
of the cortical hierarchy (e.g. staying longer in a sensory versus cognitive
state), which is reportedly a consistent and heritable subject-specific
measure that is related to cognitive traits (Vidaurre et al., 2017). How-
ever, in general, there is no operational restriction on the (intrinsic,
extrinsic or combination of) connections that one may wish to track in
this dynamic framework.

Another important issue is the size, shape and overlap of the windows,
for partitioning the data into epochs. We have used Hanning windows (for
their well-recognised trade-off between frequency and amplitude preser-
vation), with 50% overlap. However, these choices could be optimized
using BMC, for any given set of data (i.e., using the data features that
provide the greatest relative evidence for any model). For example, we
have shown how this procedure can identify the optimum epoch size
(Fig. 14). In practice, the number of epochs is further restricted by the
length of the session (in this case resting state fMRI). Related research
(Park et al., 2017) used 200 time samples per epoch for the long rsfMRI
sessions from the Human Connectome Project (HCP) database (Van Essen
et al., 2012). Such long windows are suitable for tracking slow dynamics.
On the extended network (Fig. 10A), we reduced the epoch size (to as little
as 48 samples per window) to follow faster transitions. The presence of
rapid itinerant dynamics was disclosed in terms of model evidence
(Fig. 11). As for the posteriors, tracking very swift transitions (using 48
samples per epoch) can confound the parametric identification of EC
states (Figs. 12–13), under the generative model of spectral DCM used
here. However, the remaining parameter posteriors and model evidences
were robust to this challenging scenario. We have also described a greedy
search and BMC procedure for picking the most efficient window size,
when tracking orbital dynamics of unknown rate (Fig. 14). One could also
consider using adaptive epoch lengths, motivated by approaches such as
change point detection (Jeong et al., 2016). Finally, we reiterate that these
data feature parameters can be optimized based on the (relative) model
evidence for any given data, using BMC.

A final point pertains to the depth of the hierarchy. As a proof of
concept, we chose the simplest hierarchy; i.e. we adopted a fixed effects
model for the effective connectivity patterns and state transitions at the
group level. However, a random effects model could be considered that
incorporates small between-epoch variations of the connectivity modes,
per subject. It is possible, in theory, to model systematic differences in the
connectivity profiles and transition patterns of different subjects as well,
by entertaining additional random effects models. However, this would
entail inverting deeper and deeper hierarchical models.

One can also envisage deeper hierarchical models that can entertain
SHCs of SHCs/SHChs. In other words, the cyclic dynamics—that we
presumed underlines EC variations—might as well be cycles of cycles (or
trajectories) generated in higher (deeper) levels of a hierarchical model.
That is, every saddle of a deeper (slower) SHC re-routes the trajectory
between a number of lower level states, imposing a temporary form of
(faster) SHC/SHCh on the subordinate level; the latter is again re-wired
upon a transition to the next saddle in the higher SHC (Kiebel et al.,
12 In general, inhibitory connections mediated by interneurons are responsible
for spatiotemporal transient activity, whereas excitatory cell populations and
their connections ensure that the information “goes to the right place at the right
time” (Afraimovich et al., 2010; Buzs�aki, 2006).
13 In this study, it was demonstrated that the intrinsic synaptic changes were
sufficient to explain seizure onset.
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2009). This conjecture is in accordance with the empirically derived
(functional) metastates in (Vidaurre et al., 2017), which are located on
top of a temporal hierarchy. Their study showed that metastates evince
cyclic behaviour, and each metastate is associated with a number of
subordinate states – that tend to switchmore often into each other. This is
an example of a deeper hierarchical structure (presumably a SHC of
SHCs/SHChs) that might underlie the complex itinerancy of the brain’s
connectivity modes.

The viability of such extensions (and ensuing model inversions) for
the relatively short rsfMRI sessions remains to be further examined.
Nevertheless, since the proposed scheme operates within a generic
Bayesian framework, it is possible to accommodate different models on
the first level of the hierarchy (i.e. other than spDCM for fMRI); as a
result, it may be worthwhile integrating hierarchical models (of transient
dynamics) with the generative models of other neuroimaging data (such
as M/EEG) or electrophysiological recordings. Although these modalities
come with their own inverse problems, the higher temporal resolution
and the abundance of data might resolve some of the optimisation issues
inherent in the inversion of hierarchical models of fMRI timeseries.

For instance, animal models have been frequently used to investigate
the neural basis of (dynamic) functional connectivity, especially because
they facilitate simultaneous imaging and invasive electrophysiological
recordings (Keilholz, 2014; Majeed et al., 2009; Shmuel and Leopold,
2008; Thompson et al., 2014, 2013; Zhang et al., 2019). Furthermore,
image acquisition in high-field animal scanners—with shorter repetition
times—furnishes data with higher temporal and spatial resolution. These
studies have enhanced our understating of the contributions of different
frequency bands to functional connectivity (and its fluctuations) (see
(Keilholz, 2014) for review and references). Early evidence for repeated
spatiotemporal patterns in spontaneous BOLD fluctuations came from
anesthetized rats (Majeed et al., 2009) and subsequent work showed that
the process was nearly periodic (Majeed et al., 2011).

In short, animal models may prove useful, both for empirical vali-
dation of our approach (e.g., with benchmark states generated via
administration of drugs or with periodic tasks) and for exploratory
research on the dynamics of neuronal networks, in different contexts (for
instance in animal models of neurologic disorders). In other words, it is
possible to apply our proposed scheme to animal electrophysiological,
imaging, or multimodal recordings to investigate sequences of effective
connectivity modes and how they might be modulated under different
pharmacological or performance conditions. Of course, depending on the
question (or hypothesis)—and the data modality at hand—the right type
of DCM, with sufficient biophysical detail, has to be selected (Friston
et al., 2017; Kiebel et al., 2008; Moran et al., 2013). But once the pos-
teriors of the DCM parameters have been estimated, the rest of the
scheme described in this technical note is quite generic.

Clearly, many aspects and details remain to be investigated in future
studies. Particularly, we hope to show the predictive validity of the
proposed approach using empirical data from clinical populations in
future papers.
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