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This paper examines experimentally the dispersion and stability of weakly nonlinear
waves on opposing linearly vertically sheared current profiles (with constant vorticity).
Measurements are compared against predictions from the 1D+1 constant vorticity nonlin-
ear Schrödinger equation (the vor-NLSE) derived by Thomas, Kharif & Manna [Physics
of Fluids, 24, 127102 (2012)]. The shear rate is negative in opposing currents when the
magnitude of the current in the laboratory reference frame is negative (i.e. opposing the
direction of wave propagation) and reduces with depth, as is most commonly encountered
in nature. Compared to a uniform current with the same surface velocity, negative shear
has the effect of increasing wavelength and enhancing stability. In experiments with a
regular low-steepness wave, the dispersion relationship between wavelength and frequency
is examined on five opposing current profiles with shear rates from 0 s−1 to −0.87 s−1.
For all current profiles, the linear constant vorticity dispersion relation predicts the
wavenumber to within the 95% confidence bounds associated with estimates of shear
rate and surface current velocity. The effect of shear on modulational instability was
determined by the spectral evolution of a carrier wave seeded with spectral sidebands
on opposing current profiles with shear rates between 0 s−1 and −0.48 s−1. Numerical
solutions of the vor-NLSE are consistently found to predict sideband growth to within
two standard deviations across repeated experiments, performing considerably better
than its uniform-current NLSE counterpart. Similarly, the amplification of experimental
wave envelopes is predicted well by numerical solutions of the vor-NLSE, and significantly
over-predicted by the uniform-current NLSE.

1. Introduction

Interactions between opposing waves and currents have long been known as potentially
hazardous to shipping. In 2015 the Cemfjord cement carrier was found capsised in
the Pentland Firth of Scotland; the concluding report stated that “Cemfjord capsised
suddenly and rapidly at 13.16 on 2 January 2015 when it encountered extraordinarily
violent, breaking seas (...) created by gale force winds opposing a strong ebb tidal stream”
(Marine Accident Investigation Branch 2016). While these effects of opposing waves
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and currents on shipping have been understood qualitatively by seafarers for centuries,
only in the latter half of the 20th century, did these interactions become the subject of
research (as reviewed in the seminal papers by Peregrine (1976) and Peregrine & Jonsson
(1983)). Waves meeting an opposing current are known to increase in amplitude, a, and
wavenumber, k, a combination which causes an overall increase in steepness, ε ∝ ka. The
relationship between wavenumber and frequency (dispersion relation) is fundamental to
the evolution of dispersive waves through all media, and thus wave-current interactions
are important, as they affect the dispersion relationship. Additionally, the increase in
steepness not only makes waves more prone to violent breaking but can also bring
otherwise linear waves into a parameter space subject to amplitude-dependent nonlinear
effects such as modulational instability.

Modulational instability affects medium- and high- steepness, narrow-banded waves
propagating on water deeper than k0d = 1.36 (with k0 being the carrier wavenumber
and d the water depth). At first-order, wavetrains subject to modulational instability
experience exponential amplitude growth of their sideband components, seen as a puls-
ing or modulation in the time domain with extreme wave crests often being formed
(Benjamin & Feir 1967; Hasimoto & Ono 1972). The nonlinear Schrödinger equation
(NLSE) provides the simplest framework for investigating this phenomenon and admits
a number of solutions exhibiting modulational instability. One such family of analytic
solutions is the ‘breather wave’ family named for the manner in which their envelope
amplitudes (periodically) increase to 3 or 5 times that of their initial amplitude (Ma
1979; Chabchoub et al. 2011, 2012). Whereas breather waves require precise initial
conditions to complete their prescribed evolution, unstable Stokes plane waves provide
a more general context for investigating modulational instability. Stokes plane waves
exhibit modulational instability when sideband frequency perturbations are introduced
to a carrier wave within a range of unstable perturbation wavenumbers (found through
linear stability analysis) (Yuen & Lake 1982). Many experiments have been carried out
on the break-down of unstable wavetrains following the pioneering studies by Benjamin
& Feir (1967); Yuen & Lake (1982); Melville (1982); and Lake et al. (1977a).

In their simplest form, sub-surface currents exist as one-dimensional and uniform with
depth. Waves initially propagating on still water that begin to interact with such a
uniform current, experience alterations in amplitude and wavelength in accordance with
the conservation of wave action, first derived for low-steepness linear waves by Bretherton
& Garrett (1968) and Whitham (1965) then subsequently extended to nonlinear waves
by Andrews & McIntyre (1978). In essence, opposing currents tend to increase amplitude
and shorten wavelength, whereas for following currents the reverse is true, as captured by
the uniform-current linear dispersion relationship and the conservation of wave action.
In real flows that often experience bed friction and surface winds, variations in inline
current velocity with depth introduce vertical shear to the flow.

The most complex forms of sheared current exist as arbitrary variations in all 3-
component velocities, (U, V,W ) within a fluid. Nonlinear numerical models for two-
dimensional waves and arbitrary distributions of vorticity by Thomas (1990) and Dal-
rymple (1977) have been shown to agree very well with laboratory experiments (Swan
et al. 2001). However, their complexity generates a need for analytic approximations
to the dispersion relationship. These have been derived for moderate shear (Skop 1987;
Kirby & Chen 1989), weak shear (Swan & James 2000) and high depth-averaged shear
rates (Ellingsen & Li 2017). In addition to direct changes to the free surface, shear affects
sea bed pressure measurements and the transfer functions used to determine free surface
elevation from bottom pressure (Constantin & Strauss 2004). While the effect of arbitrary
vorticity on determining surface elevation from pressure measurements is known (Henry
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2013), only recently have the pressure transfer functions and amplification factors been
derived for the most general case (Henry & Thomas 2017). Often, investigations into the
effects of sheared current on wave behaviour constrain current velocity variation to one
dimension.

Horizontally sheared currents can take the form of inline velocities that vary either
along the axis of wave propagation or perpendicular to it. Propagation of waves across
an inline horizontally sheared current (dU/ dx 6= 0) and onto an opposing current has the
effect of steepening waves by the conservation of wave action. Experiments have shown
this process to trigger rogue waves in random unidirectional Gaussian wave spectra
(Toffoli et al. 2015) as well as to destabilise regular wavetrains (Onorato et al. 2011).
Jet-type horizontally sheared currents (dU/ d y 6= 0) are known to exist in the Agulhas
current around the South African east coast (Mallory 1974). These jet currents are of
interest as a possible mechanism of rogue wave formation through wave trapping (Shrira
& Slunyaev 2014).

Assuming a steady, one-dimensional, linearly-varying current velocity with depth
(constant vorticity) allows the addition of irrotational perturbations (in the form of
waves) and therefore the assumption of a potential fluid and the simplified governing
equations this implies (Ellingsen & Brevik 2014). For a rotational flow of constant
vorticity, the dispersion equation for linear waves was first derived independently by
both Thompson (1949) and Biésel (1950). The evolution of steep waves on constant shear
has been investigated numerically (using the Euler equations) (Dalrymple 1974; Vanden-
Broeck 1996; Da Silva & Peregrine 1988), and its effect on modulational instability found
to be destabilised by positive shear and vice versa (Choi 2009). It should be noted that
linear waves initially on still water approaching an opposing constant vorticity current are
steepened in a similar manner to the uniform-current case, by wave action conservation
altered for constant vorticity (Quinn et al. 2017).

The same effects of constant vorticity on wave stability found through numerical
analysis, have also been found through constant vorticity NLSEs (so-called vor-NLSEs)
as derived analytically for infinite depth and studied numerically for arbitrary depth
by Baumstein (1998). Thomas, Kharif & Manna (2012) (henceforth TKM12) derived a
constant vorticity NLSE with coefficients expressed as explicit functions of the carrier
wave properties, vorticity, and depth, which is the starting point of the present paper.
Linear stability analysis of the vor-NLSE has also shown that when the ratio of shear, Ω,
to carrier wave frequency, ω̃0 (in the surface current reference frame, denoted with tilde)
is less than −2/3 rad−1 (i.e. Ω/ω̃0 < −2/3 rad−1) wavetrains become entirely stabilised
regardless of perturbation wavenumber or depth.

Further to the aforementioned Doppler shift of waves propagating on a current, a
two-way exchange of energy and momentum between waves and currents may create
a velocity field more complex than the simple superposition of individual periodic and
mean flow solutions (see Jonsson et al. (1978); Craik (1988) for the literature discussing
such interaction). Coupled nonlinear interaction equations for plane waves on uniform
currents have been derived by Baddour & Song (1990a,b) and predict reductions in
current velocity during adverse wave-current interaction and vice versa. The change
in shear rate of constant vorticity currents and colinear waves has been measured in
experiments by Klopman (1994) using laser Doppler velocimetry. Groeneweg & Klopman
(1998) compare these experiments to numerical solutions of the equation they derive
based on the generalised Lagrangian mean, finding good agreement and showing an
increase in vertical shear near the surface in adverse currents and vice versa. In this
study, we do not consider the effect of the waves on the current’s magnitude and shear
rate and acknowledge that full velocity field measurements in the presence of waves could
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improve the robustness of our conclusions.
This paper investigates experimentally the propagation of medium-steepness weakly

nonlinear waves on a current profile that is steady, one-dimensional, has constant vorticity
and opposes the wave direction. The steepening behaviour that takes place as the waves
come into contact with the current is not examined. Instead, the focus is placed on
the evolution of the waves once they are on the current. In doing so, the effect of a
vertical shear is investigated and not the magnitude of the current itself. In particular,
the effects of vertical shear on the (linear) dispersion relationship and on the occurrence
of modulational instability are investigated experimentally in parts I and II of this paper
respectively. It is found that in all experiments, the constant vorticity equations predicted
wave linear evolution and stability very well, out-performing the zero vorticity equations.

This paper is laid out as follows. Section 2 reviews the derivation of the constant
vorticity nonlinear Schrödinger equation (vor-NLSE) and the constant vorticity dis-
persion (vor-dispersion) relationship. Section 3 discusses the method used to create a
linearly sheared currrent profile, collect wavelength and frequency measurements from
low-steepness regular waves, and measure the stability of weakly nonlinear modulated
waves. Section 4 discusses the linear and weakly nonlinear wave evolution measurements
and how both compare to predictions by constant vorticity and zero vorticity equations.
Finally, conclusions are drawn in Section 5.

2. Theoretical model

2.1. Coordinate system and reference frames

Figure 1 presents the coordinate system used in both the laboratory and the surface
current reference frames. The system is assumed two-dimensional, such that it is invariant
along the transverse y-axis. The location of the still water level is at z = 0, the free surface
elevation at z = η(x, t), and the bed at z = −d. The constant vorticity wave equations
(vor- equations) are typically derived in the surface current reference frame. In the
laboratory reference frame, the steady, inline current profile, U(z) with constant shear,
Ω = dU/ d z, is prescribed in the x-direction. This constant surface current velocity, U0

and shear rate, Ω define the current field as,

U = U0 +Ωz. (2.1)

All experiments presented herein consider waves propagating in the positive x-direction,
while current profiles are opposing, and associated velocities are therefore negative.
Wave frequencies measured in the laboratory reference frame, ω can be related to wave
frequencies in the surface current reference frame, ω̃ using a simple Doppler shift,

ω = ω̃ + U0k, (2.2)

where k is wavenumber, and the tilde denotes properties measured in the surface current
reference frame.

2.2. Governing equations and boundary conditions

In general, potential flow theory cannot be used in the presence of vorticity. The one
exception is a strictly two-dimensional flow with waves travelling either exactly opposing
or inline with the current and with the current’s vorticity being constant in time and
space, as considered here. The total velocity field u can be written as the sum of a
rotational current and irrotational water waves: u = U(z)̂i + ∇φ, where î is the unit
vector in the x-direction and φ is the potential of the waves. The potential, φ of the
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Figure 1. Schematic of laboratory (panel a) and surface current (panel b) reference frames used
herein. Both reference frames show a negatively sheared current on the left (U0 < 0, Ω < 0)
and negative uniform current on the right (U0 < 0, Ω = 0) with respect to the x-direction,
the direction of the wave phase velocity, cp. The tilde denotes properties measured within the
surface current reference frame.

system must satisfy the Laplace equation, ∇2φ = 0 in the range −d < z < η(x, t) and is
related to the streamfunction of the waves, ψ through the Cauchy-Riemann equations.
Kelvin’s circulation theorem shows that an irrotational streamfunction can be assumed
when vorticity within the flow is constant in space and time (Da Silva & Peregrine 1988).
The standard bottom boundary condition, φz = 0 at z = −d prevents flow through the
bed. At the surface, the kinematic and dynamic boundary conditions are respectively,

ηt+(Φx+Ωη)ηx−Φz = 0 and Φt+
1

2
Φ2
x+

1

2
Φ2
z+ΩηΦx+gη−ΩΨ = 0 for z = η(x, t),

(2.3a,b)
where Ψ ≡ ψ(z = η(x, t)) and Φ ≡ φ(z = η(x, t)) denote their respective lower case
variables evaluated at the free surface, and g is the gravitational constant.

2.3. Solutions using perturbation methods

2.3.1. Linear solutions: frequency dispersion

Assuming a carrier wave with amplitude a0, wavenumber k0, and frequency ω̃0, a
Stokes expansion in steepness, ε = a0k0 gives at first-order the linear, constant vorticity,
arbitrary-depth vor-dispersion relation (first derived by Biésel (1950) and Thompson
(1949)),

ω̃2
0 + (ω̃0Ω − gk0) tanh k0d = 0. (2.4)

By relating wave frequency to wavenumber, the implicit vor-dispersion relation describes
the evolution of linear waves (ε � 1), where nonlinear changes to the dispersion
relationship and instability do not play a role. Throughout the present work, frequencies
and wavenumbers are computed from (2.2) and (2.4).

2.3.2. The vor-NLSE

Performing a combined Stokes and multiple-scales expansion, Baumstein (1998) (for
deep water) and subsequently TKM12 (for arbitrary depth) derived a NLSE with coef-
ficients reflecting the presence of vorticity: the vor-NLSE. In their derivations, a carrier
wave varying on the fast scales x, and t is modulated by a wavepacket evolving on the
slow spatial and temporal scales,

ξ = ε(x̃− c̃gt) and τ = ε2t, (2.5a,b)
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where the group velocity, c̃g, and the slow scales are defined in the reference frame of
the surface current, as denoted by the tilde. At third-order in the small parameter ε, the
nonlinear evolution of a narrow-banded wavepacket of amplitude, A is described by the
constant vorticity NLSE (vor-NLSE) with linear coefficient, L, and nonlinear coefficient,
M , (TKM12),

iAτ + LAξξ −M |A|2A = 0. (2.6)

For brevity, we present these coefficients for deep water,

L = − ω̃0(1 + Ω̄)2

k20(2 + Ω̄)3
and M =

ω̃0k
2
0

8(1 + Ω̄)

(
4 + 10Ω̄ + 8Ω̄2 + 3Ω̄3

)
, (2.7a,b)

where Ω̄ = Ω/ω̃0. The arbitrary-depth coefficients (used for all calculations herein) can
be found in TKM12 (their (48)-(58)) and Appendix A of this paper. The first-order free
surface is reconstructed using,

η(1) = Re
[
εA(ξ, τ)ei(k0x̃−ω̃0t)

]
. (2.8)

2.3.3. Linear stability analysis of the vor-NLSE

To investigate the effect of shear on the stability of the vor-NLSE, a linear stability
analysis of the Stokes wave solution, A = a0exp

(
−iMa20τ

)
, is performed by perturbing

the wavetrain by a sideband wave of infinitesimal amplitude and phase shift,

A = [a0 + δ(τ, ξ)]e−iMa20τ . (2.9)

The perturbation solution, δ, is assumed to take the periodic form, exp (i(Kξ − γ̃τ)),
and from this, the relationship between perturbation wavenumber, K and perturbation
frequency, γ̃ is found (first presented in TKM12),

γ̃ = ±
√
K2L(K2L+ 2Ma20). (2.10)

When γ̃ is imaginary and negative, sideband amplitudes grow exponentially in time,
τ . At depth parameter, k0d, the sideband growth rates in the (K,Ω) domain can be
defined. Figure 2 presents both the growth rates for k0d = 3 (the depth parameter used
herein) and experimental parameters used in part II experiments. For each shear rate,
the maximum instability, γmax = Ma0, is achieved at the perturbation wavenumber,
K = a0

√
−M/L. In deep water and with zero shear, this reduces to the well-known

result of γmax = ω0k
2
0a

2
0/2 at K = 2k20a0 (Yuen & Lake 1982). Figure 2 shows the

generally destabilising effect of positive shear whereby the growth rate of previously
unstable regions increases and the region of instability expands to include previously
stable perturbation wavenumbers; on negatively sheared current the reverse is true.
Additionally, complete stability is reached at a vorticity of Ω/ω̃0 = −2/3 rad−1, and
this stability boundary is insensitive to the perturbation wavenumber.

Although a useful tool in determining first-order stability characteristics, linear sta-
bility analysis is non-conservative and does not provide information on the long-term
behaviour of the system. A long-term recurrence phenomenon known as Fermi-Pasta-
Ulam-Tsingou (FPUT) recurrence (Fermi et al. 1955) is revealed by a nonlinear stabil-
ity analysis on the NLSE (Janssen 1981). In FPUT recurrence, energy is periodically
transferred from sideband waves back to the carrier wave over the evolution of many
wavelengths (Ford 1992). For the limited evolution distances in all experiments presented
herein, we do not expect to observe FPUT recurrence. Numerical time-marching solutions
to the NLSE also show the emergence of secondary sidebands at multiples of the primary
sideband frequency, if run for a longer duration than considered herein. Additionally,
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Figure 2. Sideband growth rate, γ̃ normalised by the maximum growth rate at zero shear,

γ̃∗
max = M∗a20, as a function of normalised perturbation wavenumber, K̂ = K/

(
a0
√
−M∗/L∗

)
and shear rate, Ω/ω̃0, where M∗ and L∗ are the linear and nonlinear vor-NLSE coefficients
evaluated at depth, k0d = 3 and Ω = 0 s−1. The normalised maximum growth rate for zero

shear is 1 at K̂ = 1 and Ω/ω̃0 = 0. Panel (a) provides an overview of the experimental parameter
range used in part II, as indicated by the coloured horizontal lines corresponding to the three
current profiles used (defined in table 1). The solid dots in panel (b), which zooms in on the
rectangular box in panel (a), indicate individual experiments (see §4.2).

asymmetric sideband growth has been observed experimentally in the absence of shear
(Lake et al. 1977b; Melville 1982) and numerically (Lo & Mei 1985) using the modified
NLSE equation of Dysthe (1979), capable of predicting asymmetric evolution. We have
observed such asymmetric sideband growth, but do not focus on it herein (see Appendix
C).

3. Experimental methodology

The experiments aim to determine the effect of vertical, linearly sheared current on the
frequency dispersion of low-steepness linear waves and the stability of weakly nonlinear
wavetrains. To achieve this, three stages are defined: current creation, in which a suitable
current profile is sought; linear dispersion (part I), in which the dispersive behaviour of
linear (low-steepness) waves is measured; and, ultimately, modulational instability (part
II), in which the behaviour of weakly nonlinear waves is examined.

3.1. Wave-current facility

The wave-current flume in the Department of Mechanical Engineering at University
College London (UCL) is used for all experiments considered in this paper. The flume
consists of a recirculating current system and two force-feedback wavemakers capable of
both generation and absorption as laid out in the facility schematic (figure 3). Current
is recirculated underneath the flume by three parallel 0.3 m diameter pipes and three
impeller pumps, before passing through turning vanes and upwelling into the bottom
of current conditioning units. The flume has width, w = 1.2 m, a working depth,
d = 0.5 m, and wavemaker-to-wavemaker length of 16 m. It should be noted that the
current conditioning units limit the working length of the flume to approximately 9 m.
The first wave gauge defines the x-axis origin, and all horizontal distance measurements
along the flume are given with reference to this point. Steel rails allow wave gauges to
be fixed 0.3 m from the flume side.

Having a width of 1.2 m, wave energy dissipation in the facility arising from side-
wall friction (the dominant source of dissipation (Hughes 1993)) was considered. Linear
waves are known to undergo exponential amplitude attenuation due to side-wall friction;
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Current
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Figure 3. Schematic diagram illustrating the wave-current flume at UCL configured for a typical
case of currents (with inline velocity, U(z)) opposing wave phase velocity, cp. Individual wave
gauges are denoted by solid vertical lines. Gauges are arranged in pairs separated by 0.15 m
to allow estimates of the incident and reflected free surface elevation at the mid-point of each
gauge pair (denoted by the dotted vertical lines).

Figure 4. Current conditioning unit located above the outlet of the wave-current flume at the
UCL Mechanical Engineering Department. Porous mesh cylinders make up the bulk conditioner
(left) and triangular current shaping portion (right). The locations of the units are shown in the
facility schematic of figure 3.

high-frequency waves being attenuated more than low-frequency waves (Hughes 1993).
Additionally, Hammack et al. (2005) suggest that modulational instability may be en-
tirely stabilised by any form of dissipation. Kimmoun et al. (2016) show theoretically and
experimentally that a perturbation from precise initial conditions causes a phase shift to
FPUT recurrence and, in the case of the spatially localised Akhmediev breather, induces
FPUT-type recurrence, where it would otherwise not occur. However, the evolution
distance of our experiments did not allow for long-term recurrence effects to be observed.
Using the equations presented in Hughes (1993), we estimate frictional attenuation to be
no more than 3% along the working length of the flume. Additionally, the propagation
of regular waves at k = 6.0 rad m−1 (the carrier wavenumber in all experiments in part
II) was recorded on each current profile, and attenuation was found to be smaller than
the variation between the four repeated experiments and thus undetectable.

3.2. Current conditioning

Figure 4 shows a current conditioner positioned above the outlet turning vanes.
The system of current conditioning described herein has been employed in previous
experiments at the facility and is described in detail by Stagonas et al. (2014) and
Santo et al. (2013). Each conditioning unit spans the width of the flume and consists
of a rectangular bulk conditioner whose primary purpose is to reduce turbulence and
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Figure 5. Measured current velocity profiles used in experiments presented herein. Open circles
represent mean measurements taken at x = 0 m and crosses at x = 9 m. Error bars span one
standard deviation calculated across the 60 s velocity record. (a): All non-zero velocity profiles.
Solid black lines represent the linear regression used to estimate the shear rate. All measurements
were taken midway across the flume (at y = 0 m). (b-d): The Ω = −0.48 s−1 current profile
measured at one quarter, midway and three-quarters across the width of the flume, w, namely
at y/w = −1/4, 0 and 1/4. The (identical) solid lines correspond to the mean current profile
measurement across all 6 locations.

distribute current evenly as it enters the flume. The rectangular unit abuts onto a
triangular current-shaping unit. The bulk conditioner is constructed from porous wire
mesh cylinders of diameter ≈ 0.1 m. During construction, pairs of horizontal cylinders
are laid transversely across the flume and additional cylinders stacked on top, the stack
reaching an elevation well above the still water level. Along the flume, the stacks are
separated by 0.1 m gaps in which vertical porous mesh cylinders are placed. The current
shaping unit consists of porous mesh cylinders placed horizontally across the flume and
stacked to form a right-angled triangle. The current conditioners were optimised to
generate current profiles which do not change considerably along the flume and have
a significant linear portion.

3.3. Current profile approximation

Experiments were conducted with opposing currents (with negative surface current
velocity), because the effective length of evolution in the following-current case was
considered too short to observe any nonlinear effects. Five current profiles were created
and will be referred to herein by their shear rates, Ω: 0 (zero current), −0.21, −0.48,
−0.68, and −0.87 s−1. These values can be found, along with their associated surface
current velocities, in table 1 where the 95% confidence bounds of both parameters are
also given.

Acoustic Doppler velocimetry (ADV) was used to measure the depth-varying, three-
component velocity profiles at two positions defined by the coordinates, (x, y, z) along the
flume centreline: at (0, 0, z) m and at (9, 0, z) m (with y = 0 corresponding to midway
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Ω (s−1) U0 (m s−1)

0 0
−0.21 ± 0.01 −0.11 ± 0.01
−0.48 ± 0.01 −0.22 ± 0.01
−0.68 ± 0.02 −0.33 ± 0.01
−0.87 ± 0.04 −0.44 ± 0.01

Table 1. Mean and associated 95% confidence bound values of surface current velocity, U0

and linear shear rate, Ω for the 5 current profiles used in experiments.

across the flume). As the fastest current profile used in the stability experiments, the
−0.48 s−1 shear current profile was also measured at three positions across the flume to
assess three-dimensional effects. Velocity measurements through the flume depth were
taken from the bed in consecutive 0.04 m vertical increments to the free surface. At
each position, all three velocity components, (U, V,W ), were measured at 200 Hz for one
minute. Prior to each current profile change, the flume was allowed to settle for one hour
to reach a steady state, at which time seeding material was added.

Figure 5 presents the mean and standard deviation values of the inline velocity, U ,
as calculated from the full time-series data. The shear rate, Ω, and surface current, U0,
fully define the linearly varying approximation of each current profile and are presented
in table 1 along with their 95% upper and lower confidence bounds. The shear rate was
estimated using a linear regression fit through the current’s upper, linear portion. The
deeper in the fluid, the smaller the effect of the current’s velocity and shear rate on
wave phase velocity Stewart & Joy (1974). Excluding current data below z = −0.35 m
from the linear regression fit allows an accurate estimation of shear rate (see Appendix
B for a detailed estimation of the small resulting error based on the Rayleigh equation
(Skop 1987)). Surface current was estimated using a smoothing spline fitted through the
entirety of the depth-varying current data.

3.4. Part I. Linear dispersion relation

By observing the relationship between frequency and wavenumber for low-steepness
regular waves, experimental estimates of the vor-dispersion relation (2.4) are obtained.
For all five current profiles, regular waves with input frequencies between the wavemaker’s
low-frequency mechanical limit and the high-frequency wave-blocking limit (3.6 < ω <
9.4 rad s−1) were selected. Free surface elevation data were both recorded and displayed
in real-time at two gauges spaced at the estimated wavelength of the generated wave.
The wave gauge pair spacing was then adjusted to bring both free surface measurements
into phase, and this distance (now at precisely one wavelength) was recorded. Waves
at each frequency were generated at a sufficiently low amplitude (ka � 0.1) to keep
behaviour primarily linear. The precise frequency in the laboratory frame was extracted
from the measured free surface elevation data. To remove the effect of surface current and
determine the effect of shear, this measured frequency, ω was converted to the surface
current frame through (2.2). Measured dispersion relation data were compared against
vor-dispersion predictions and the zero-shear dispersion relation (see §4.1 for discussion
and figure 6 for results).

3.5. Part II. Modulational instability

In order to examine modulational instability, a 3-component wave was created con-
sisting of a carrier wave seeded with two sideband components, akin to the classical
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experiments on modulational instability without shear undertaken by Yuen & Lake
(1982). In particular, a medium-steepness carrier wave seeded with two symmetric
sidebands was selected. The target free surface elevation given as input to the generating
wavemaker was,

η(0, t) = Re
[
a0e

−iω0t + aδ

(
e−i(ω0+ωδ)t + e−i(ω0−ωδ)t

)]
, (3.1)

where aδ and ωδ are the real sideband amplitude and arbitrary sideband frequencies
respectively. To maintain a periodic signal over the repeat period, R, all frequencies
were defined in terms of an integer multiple N such that fδ = N/R Hz and ωδ =
2πfδ rad s−1. For each current profile, sideband frequency was altered across experiments
to explore a range of stability regimes. Sideband frequencies are given in table 3 as values
of N and are also shown, along with estimations of growth rate in figure 2. Although
breather-type solutions to the NLSE would produce the most extreme amplitude growth
and have been used successfully to study properties of the NLSE in the absence of
shear, they require precise control of the full input signal. Such control is impeded in the
present case because the waves created by the wavemaker first have to propagate onto
the current (and travel through the current conditioning unit), which has a different
effect on the phase and amplitude of components of different frequencies. Experimental
measurements of sideband amplitude were compared with numerical solutions of the vor-
NLSE and NLSE through a numerical, space-marching scheme and with predictions by
linear stability analysis. The error associated with removing shear from predictions could
then be quantified experimentally.

3.5.1. Data collection

To capture the evolution of the 3-component system, the free surface elevation was
recorded across a total length of 8.9 m by 14 wave gauges arranged in 7 pairs. Wave
gauges collected data for a total of 160 s at 250 Hz. A repeat period of 128 s was used to
ensure high frequency resolution and thus allow a high number of sideband frequencies
to be tested. To facilitate the application of simple reflection analysis (based on Goda
& Suzuki (1976)) of the free surface elevation time series, each pair of wave gauges
had a spacing of 0.15 m, and produced one incident and one reflected spectrum at a
virtual gauge located at each pair’s centre. Figure 3 presents the flume configuration for
stability experiments where individual wave gauges are represented by solid, free surface
penetrating lines and dotted lines represent virtual gauges.

Throughout the stability investigation, the same experimental procedure was followed
across multiple days. Firstly, current was generated for one hour to homogenise the flume
contents (for zero-current experiments, the flume was allowed to settle for a further hour
thereafter). All wave gauges were wiped with a damp cloth to remove contaminants. To
calibrate the wave gauges, the voltage of each wave gauge was recorded for 30 s at five
known free surface positions.

At each current profile, 15 to 17 sideband frequencies spanning nominally stable
and unstable regimes were propagated with a carrier wave. Each sideband frequency
experiment was carried out 4 times on different days. Confidence bands calculated from
these 4 repeats are thus indicative only. The data processing technique described below
was performed on each repeat individually before a mean and standard deviation result
was calculated. Between each experiment, the flume was allowed to settle for 5 min while
reflections and low frequency error waves attenuated; current conditioners helped with
this process.
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Ω (s−1) ω (rad s−1) ka0
0 7.62 0.15

−0.21 7.17 0.12
−0.48 6.63 0.10

Table 2. Carrier wave parameters for stability experiments (part II). All experiments were
carried out at k0 = 6.0 rad m−1 and k0d = 3.0. The average measured steepness at each shear
profile is also presented.

fδ, (N/128 Hz)
Ω (s−1) aδ/a0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 22 24 26 28 30 32

0 0.1
−0.21 0.1
−0.48 0.1

Table 3. Sideband frequency parameters of stability experiments (part II), with completed
experiments indicated by coloured cells. Frequencies are expressed as the integer multiple, N , of
the inverse of the repeat period, R, giving fδ = N/R Hz and ωδ = 2πfδ rad s−1 (corresponding

values of the perturbation wavenumber, K̂, are shown in figure 2b). Repeat period, R, was fixed
at 128 s across all experiments.

3.5.2. Experimental parameters

Table 2 details the carrier wave input parameters while table 3 details the sideband
parameters. The primary objective when selecting the input spectra and current profiles
for the stability experiments was to produce high-quality waves of medium steepness. Due
to the frequency range of the wavemakers, following currents could not be considered
because of the reduction in wave steepness through their interaction with waves and
their small effective length of evolution, limiting experiments to negative (stabilising)
shear rates. Additionally, the wave blocking criterion, ∂ω̃/∂k + U0 > 0 excluded the
highest frequencies and current strengths. Unpredictable attenuation of waves through
the current conditioning units and wave steepening by opposing currents meant that
input amplitude selection was based on preliminary measurements of a range of input
amplitudes.

Results from linear stability analysis of the vor-NLSE were used to inform stability
experiment parameters and target the stable and unstable regions of the sideband
frequency domain. To allow experimental parameters to be plotted on a single surface of
linear stability (cf. figure 2), the depth parameter was kept constant at k0d = 3 across
all current profiles. Constant flume depth was maintained, and input carrier frequency
altered across the three current profiles to maintain k0 = 6.0±0.1 rad m−1. The generated
wavelength was checked using the method detailed in §3.4, and the input carrier frequency
adjusted if required.

3.5.3. Reflection analysis

Following the collection and calibration of wave gauge time series, the 160 s free surface
elevation series was cut to the final 128 s to give a periodic signal of frequency resolution
1/128 Hz containing both incident and reflected waves. Amplitude spectra were estimated
from each gauge and a (linear) reflection analysis based on Goda & Suzuki (1976) applied
to each gauge pair. The reflection analysis assumes that, at two closely spaced gauges
(∆x � λ), complex amplitude spectra, A1 and A2, are comprised of incident, AI , and
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reflected, AR, components,

A1 = AIe
−ikI∆x/2 +ARe

ikR∆x/2 and A2 = AIe
ikI∆x/2 +ARe

−ikR∆x/2, (3.2a,b)

where the incident and reflected wavenumbers, kI and kR, are calculated using the
relevant dispersion equation (i.e. including current and shear). The method assumes
linear evolution between gauges within a pair, and linear stability analysis estimations
of sideband growth across the short, 0.15m distance confirmed this assumption to be
satisfactory. Our use of this technique deviates from the classical method described by
Goda & Suzuki (1976) only in that we use the vor-dispersion equation (validated in §4.1)
to compute incident and reflected wavenumbers. Reflections were found to be largest in
the zero current experiments where they comprised 5 − 10% of the measured energy.
This value reduced for adverse current experiments but reflection analysis was applied to
all experiments regardless. All results presented include only incident waves. Following
the reflection analysis, upper and lower sidebands were identified in the incident wave
spectrum at the first gauge and their amplitude tracked across all seven gauge pairs.

4. Results

4.1. Part I. Linear dispersion relation

Figure 6 presents the measured results from part I in the form of measured wavenum-
bers as a function of frequency in the surface current reference frame. The measured
wavenumbers are compared to the predictions by both the vor-dispersion equation
and the classical uniform-current dispersion equation. Mean wavenumber values are
represented by solid dots and error bars indicate the effect of using upper and lower
surface current confidence bounds when calculating ω̃ from (2.2). The vor-dispersion
prediction is delineated by solid lines surrounded by shaded areas which define the error
associated with use of the upper and lower shear rate confidence bounds when calculating
wavenumber from (2.4). The dot-dashed lines denote the wavenumber prediction by the
uniform-current dispersion relation. Normalisation by the wavenumber for zero current is
performed on all wavenumbers. This normalisation allows the fractional error associated
with discounting both surface current and shear rate to be clearly appreciated.

The dispersion measurements in the absence of currents exhibit almost zero deviation
from the prediction of the standard arbitrary-depth dispersion relation. The greatest error
in this data set is 2.6% above the predicted wavenumber. At the −0.21 s−1 shear rate, the
zero-shear prediction begins to deviate from the vor-dispersion prediction. In general, the
experimental measurements follow the trend of the vor-dispersion relation. Experimental
error bars at larger frequency values (ω̃ > 8.0 rad s−1) show that measurements lie within
the error associated with the measurement of shear. The −0.48 s−1 shear current profile
presents a much larger deviation in the zero-shear prediction with respect to experimental
measurements that fall almost entirely within the shaded region associated with the vor-
dispersion relation. This good agreement between experimental measurements and the
vor-dispersion predictions also occurs for the −0.68 s−1 and −0.87 s−1 shear rate current
profiles.

4.2. Part II. Modulational instability

Figures 7 - 11 present the measured and predicted evolution of the weakly nonlinear
wavetrains investigated in part II. Subplots within figures are titled according to the
normalised perturbation wavenumber, K̂ = K/K(γ̃∗max), where γ∗max is the maximum
growth rate evaluated at k0d = 3 and zero shear (i.e. K̂ = 1 at the zero shear maximum
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Figure 6. Comparison of the measured dispersion relationship (solid dots with error bars)
with wavenumber predictions from the calculated vor-dispersion relationship (solid lines) and
uniform-current dispersion relationship (dashed-dot lines). The wavenumbers on the y-axis have
been normalised by k∗, the wavenumber predicted at zero current. The horizontal error bars
represent the error associated with the surface current velocity estimation (95% confidence
bounds). Similarly, the shaded areas represent the error associated with the shear rate estimation
(95% confidence bound).

Figure 7. Ω = 0 s−1 : Combined upper and lower primary sideband Fourier amplitudes, Âδ
normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations from
the mean as averaged across four repeats (part II). All sideband wavenumbers are represented

as the normalised sideband wavenumber parameter K̂ = K/
(
a0
√
−M∗/L∗

)
. Solid lines denote

numerical predictions, while dotted line predictions are based on growth rates obtained from
linear stability analysis.

growth rate). Normalised perturbation wavenumbers allow results to be directly related
to the growth rate surface in figure 2. Following reflection analysis, spectral information
was extracted from incident wave spectra and is compared with the predictions of a
linear stability analysis of the vor-NLSE (overview in §2.3.3) and a space-marching
numerical split-step (or pseudospectral) scheme (see Weideman & Herbst (1986); Taha
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Figure 8. Ω = −0.21 s−1 : Combined upper and lower primary sideband Fourier amplitudes,

Âδ, normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations
from the mean as averaged across four repeats (part II). All sideband wavenumbers are

represented as the normalised sideband wavenumber parameter K̂ = K/
(
a0
√
−M∗/L∗

)
. Solid

lines denote numerical predictions, while dotted line predictions are based on growth rates
obtained from linear stability analysis. Brown lines delineate results obtained from the vor-NLSE
whereas green lines delineate results from the uniform-current NLSE.

& Ablowitz (1984) for details) that solves the same equation. Both theoretical methods
allow the removal of shear from their predictions in order to quantify the error associated
with ignoring vertical shear. The complex amplitudes and frequencies of sidebands and
carrier waves were extracted from the incident amplitude spectrum at x = 0.0 m; these
were then used as initial conditions for both theoretical methods. The numerical scheme
was executed for all experiment repetitions, and the average and standard deviation of
sideband amplitudes calculated across these.

Figures 7 - 9 present the evolution of seeded sideband amplitudes in both the absence
of currents and in the presence of opposing currents. Averages of the upper and lower
sidebands are given normalised by the initial carrier amplitude. Due to the spectral
symmetry of NLSEs, individual upper and lower sidebands are predicted less well than
their averages by the vor-NLSE, but are included for completeness in Appendix C.
Numerical solutions of the vor-NLSE and NLSE are presented alongside experimental
results. Mean amplitudes across four repeats are represented by dots (experimental) and
lines (theoretical), while error bars and shaded areas represent two standard deviations
from the mean for experimental and theoretical results respectively. Shaded areas are
not always visible due to strong repeatability.

Figure 10 presents a sample of the evolution of incident envelopes (linearised by filtering
bound waves and averaged over repeats) as measured experimentally and predicted
through the NLSE and vor-NLSE numerical solutions by showing these envelopes at the
first and final gauge. The ratio between maximum envelope amplitude at the final and
first gauge gives an amplification factor associated with the perturbation wavenumber
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Figure 9.Ω = −0.48 s−1 : Combined upper and lower primary sideband Fourier amplitudes, Âδ
normalised by the carrier Fourier amplitude, Â0. Error bars denote two standard deviations from
the mean as averaged across four repeats (part II). All sideband wavenumbers are represented

as the normalised sideband wavenumber parameter K̂ = K/
(
a0
√
−M∗/L∗

)
. Solid lines denote

numerical predictions, while dotted line predictions are based on growth rates obtained from
linear stability analysis. Brown lines delineate results obtained from the vor-NLSE whereas green
lines delineate results from the uniform-current NLSE.

and shear rate; this amplification factor is presented for all experiments in figure 11.
In both figures 10 and 11 the effect of shear on the formation of extreme wave crests
becomes clear. Incident free surface elevation time series and associated amplitude spectra
are presented in figures 12 and 13, respectively.

4.2.1. Zero current

Figure 7 presents sideband evolution in the absence of current (and shear). Growth is
clearly visible through the 0.52 6 K̂ 6 1.29 sideband wavenumber range, as predicted by
linear stability analysis. Here, sideband amplitudes all increase by more than 60% with
a maximum amplification by 87% occurring at K̂ = 0.90. We did not observe breaking
in any experiments, and significant decay in sideband amplitude was never recorded,
thus indicating we did not observe (the beginnings of) FPUT recurrence in our short
flume. Between 1.29 6 K̂ 6 1.67, sideband amplification reduces significantly, having
crossed the theoretical stability boundary at K̂ = 1.42 (beyond which sideband amplitude
behaviour is expected to become oscillatory). Such oscillations are observed in both exper-
imental measurements and the numerical solution throughout the stable region. Across
all still water experiments, small error band intervals indicate that experiments were very
repeatable. Numerical solutions of the NLSE exhibit very satisfactory agreement with
experimental measurements over the range of still water experiments, with predictions
usually falling within two standard deviations of experimental measurements.

Figure 11 shows the ratio of the maximum values of the final and first gauge envelopes
presented in figure 10. In figure 11a, the experimental amplification factors show a
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Figure 10. Envelopes of the linearised experimental incident wavetrains, A, at x = 0 m (grey
line, used as wavemaker boundary condition to numerical solution) and x = 8.9 m (black line)
normalised by the carrier component amplitude and compared with predictions by the vor-NLSE
(continuous brown lines) and zero-shear NLSE (dot-dashed brown lines) as a fraction of its carrier
amplitude (part II).

Figure 11. Maximum amplification factors, denoting the ratio between the maximum envelope
amplitudes at the first and final gauges, as a function of the normalised sideband wavenumber

parameter K̂ = K/
(
a0
√
−M∗/L∗

)
and for the three shear rates.

clear downward trend following a maximal amplification factor of approximately 1.9
at K̂ = 1, the perturbation wavenumber predicted by linear stability analysis to have
maximum growth at zero shear. The numerical solution to the vor-NLSE follows this
trend very closely, remaining within two standard deviations throughout the unstable
region (K̂ < 1.4). Similarly, the envelopes presented in figures 10a-d show increases in
amplitude for both unstable perturbation wavenumbers (a-b); there is good agreement
between experimental and numerical results. In the stable perturbation wavenumber
region (figure 10c-d), agreement between numerical and experimental envelopes is also
observed.
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Figure 12. Evolution of experimental incident free surface elevation for nominally unstable
(left) and marginally unstable (right) sideband frequencies (part II) for the three shear rates.
A scaled free surface elevation, 25η is presented to make plots clear. We note the gap between
gauge location 4 and 5 is due to a lack of data from a faulty wave gauge (this is also evident in
all other results figures).

Figure 13. Evolution of experimental incident amplitude spectra for unstable (left) and
marginally unstable (right) sideband frequencies. Black dashed lines mark the carrier and
primary sideband amplitudes through their spatial evolution (part II).

4.2.2. Opposing currents

In figure 8, which illustrates the sideband evolution in −0.21 s−1 shear rate experi-
ments, the experimental measurements show obvious growth for perturbation wavenum-
bers within the range 0.45 6 K̂ 6 0.98. Similarly, in the −0.48 s−1 shear rate experiments
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of figure 9, clear sideband growth is observed within the perturbation wavenumber range
0.59 6 K̂ 6 1.03. Maximum amplifications by 21% were observed at K̂ = 0.71 and
K̂ = 0.59 for the −0.21 s−1 and −0.48 s−1 shear rates respectively. Growths observed in
the −0.48 s−1 shear experiments are predominantly lower than in the −0.21 s−1 shear
case due to the carrier wave having lower steepness. As the perturbation wavenumber
is increased beyond the theoretical stability threshold, both current profiles exhibit
stabilisation of sideband amplitudes, with zero or negative amplification beyond K̂ ≈ 1.4.

The numerical solutions of the vor-NLSE closely match the experimental data for both
current profiles. In the −0.21 s−1 shear case, although removing shear from theoretical
predictions leads to over-prediction of sideband growth for all unstable cases, this does not
become significant until the edge of the stability region (K̂ = 1.42) is reached. However,
significant changes in sideband evolution are apparent in the −0.48 s−1 shear rate case
where the NLSE consistently over-predicts the amplification of sideband amplitudes at
all unstable perturbation wavenumbers. This maximum error occurs predominantly at
lower perturbation wavenumbers (0.59 6 K̂ 6 1.33). At K̂ = 0.59, the over-prediction
exceeds 100% of the measured value. Predictions from the vor-NLSE numerical scheme
closely follow the sideband evolution trend well into the stable perturbation wavenumber
region. In the −0.48 s−1 shear rate case, above K̂ = 1.62 the vor-NLSE predictions are
still in good agreement with experimental measurements, however the vor-NLSE and
NLSE results are almost indistinguishable.

The effect of discounting shear on wave height is illustrated by the linearised envelope
time series data presented in figure 10 where the over-prediction of the envelope amplitude
of 29% in panel (i) (K̂ = 0.59) by the NLSE is in stark contrast to the corresponding
vor-NLSE result which follows the experimental measurement to an error within two
standard deviations (seen as an overlap in vor-NLSE and experimental boundaries).
The incorrect prediction in envelope amplitude by the NLSE in figure 10 occurs at all
unstable perturbation wavenumbers of the −0.48 s−1 shear current case, displaying an
over-prediction of 16% in the K̂ = 1.03 (panel (j)); again the vor-NLSE results compare
favourably, with an under-prediction of only 7%.

Figure 11 shows this significant difference in predictions between the vor-NLSE and
uniform velocity NLSE occurs in all of the unstable perturbation wavenumbers at the
Ω = −0.48 s−1 shear rates. As with the zero current cases, the majority of vor-NLSE
amplification factor predictions fall within two standard deviations across repeats.

Across all perturbation wavenumbers, repeatability appears to be very good with
minimal changes in sideband amplitude across repeats. However, in the −0.48 s−1

shear case, when perturbation wavenumber approaches the stability boundary, a larger
standard deviation is seen. The perturbation wavenumbers at which larger deviations
exist emphasises the sensitivity of the system to initial conditions. At the very sharp per-
turbation wavenumber stability boundary, this nonlinear system becomes very sensitive
to initial conditions where slight changes in carrier amplitude may push the system into
a region of stability or instability (see Appendix C).

5. Conclusion

Measurements of physical experiments have been compared with the linear and weakly
nonlinear constant vorticity, arbitrary depth, linear shear wave evolution equations
derived by Thomas, Kharif, and Manna (Thomas et al. 2012) (TKM12). It has been
shown that in cases of shear Ω < −0.21 s−1 (i.e. for shear rates sufficiently large in
magnitude), the constant vorticity equations consistently perform significantly better
than the standard, uniform-current equations. The linear vor-dispersion equation gave
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results that remained within experimental error (part I). Sideband evolution predictions
of the vor-NLSE consistently remained within two standard deviations across experiment
repeats (part II).

In part I, the wavelengths and frequencies of low-steepness, regular waves were mea-
sured for five opposing current profiles (down toΩ = −0.87 s−1), and measured dispersion
relations obtained. The experimental measurements were compared with predictions from
arbitrary depth, constant vorticity and standard, uniform-current dispersion relations.
For all current profiles, results from the constant vorticity dispersion relation agreed
with physical measurements, where the experimental data points fell within 95% confi-
dence bounds associated with the estimation of current shear and surface current. For
Ω 6 −0.48 s−1, the predictions by the uniform-current dispersion relation deviated
significantly from both the vor-dispersion equation and experimental measurements.

In part II, in nonlinear experiments, the sidebands of modulated wavetrains were
observed to grow, creating large amplitude wave pulses and indicating modulational
instability in all current profiles within the unstable perturbation wavenumber region (as
predicted by linear stability analysis of the vor-NLSE). Experimental measurements of
sideband amplitude were compared with numerical predictions of space-marching solvers
of the vor-NLSE and the standard uniform-current NLSE. The vor-NLSE results provided
a very good match to experimental measurements over the range of current profiles
considered, unlike the uniform velocity NLSE whose sideband amplification predictions
were consistently 10% to 30% higher than measured.

Future work should include an investigation into the destabilising effects of positive
shear. This likely requires the use of a high-velocity wave-following surface current, which
is known to reduce amplitudes and thus their associated nonlinear effects. As such,
wavemakers capable of high frequencies (ω0 > 12 rad s−1) and a long evolution distance
would be required. A reduction in shear rate close to the surface may also be induced
by wave-current interactions (as studied in Groeneweg & Klopman (1998)), leading to
a reduction in the effect of shear on wave stability not considered here. Additionally,
the propagation of breather-type NLSE solutions (having known and previously verified
amplification factors on still water) on negatively sheared currents would help to quantify
the effect of a sheared current on their amplification factor, although their experimental
generation will most likely rely on an iterative experimental procedure.

The authors thank Mr L. Ansdell for technical assistance during experiments. JNS
acknowledges an EPSRC studentship (No. 1770088), and TSvdB a Royal Academy of
Engineering Research Fellowship. Declaration of interests, none.

Appendix A. Nonlinear Schrödinger equation: Arbitrary depth
coefficients

The arbitrary-depth coefficients of the constant vorticity nonlinear Schrödinger equa-
tion (vor-NLSE) were first derived by Thomas, Kharif & Manna (2012) (TKM12). For
completeness, we present here the same coefficients as in TKM12. Firstly, as in TKM12,
some recurring terms are defined,

µ = k0d, σ = tanhµ, X = σΩ̄, and Ω̄ = Ω/ω̃0, (A 1a,b,c,d)

where k0 and ω̃0 are the carrier wavenumber and carrier frequency, d is the depth, and
Ω is the shear rate. Tilde notation specifies a property measured in the surface current
reference frame (see figure 1 for details of reference frames used). The vor-NLSE takes



Dispersion and Instability of Gravity Waves on Constant Vorticity Currents 21

the form,

iAτ + LAξξ −M |A|2A = 0, (A 2)

with slow-scale coordinates,

ξ = ε(x̃− c̃gt) and τ = ε2t, (A 3a,b)

and fast-scale coordinate, x and t, where ε = k0a0 is the steepness of the carrier wave,
and phase and group velocities are (respectively),

c̃p =
ω̃0

k0
, c̃g =

c̃p
σ

(1− σ2)k0d+ σ(1 +X)

2 +X
, with ρ =

c̃g
c̃p
. (A 4a,b,c)

The arbitrary-depth linear vor-NLSE coefficient is,

L =
ω̃0

k20σ(2 +X)

{
µ(1− σ2)[1− µσ + (1− ρ)X]− σρ2

}
, (A 5)

where we have added in the outside parentheses accidentally omitted in TKM12 (their
(48)). The nonlinear coefficient is,

M =
ω̃0k

2
0(U + VW )

8(1 +X)(2 +X)σ4
, (A 6)

where,

U = 9− 12σ2 + 13σ4 − 2σ6 + (27− 18σ2 + 15σ4)X + (33− 3σ2 + 4σ4)X2

+ (21 + 5σ2)X3 + (7 + 2σ2)X4 +X5, (A 7)

V = (1 +X)2(1 + ρ+ µΩ̄) + 1 +X − ρσ2 − µσX, and (A 8)

W = 2σ3 (1 +X)(2 +X) + ρ(1− σ2)

σρ(ρ+ µΩ̄)− µ(1 +X)
. (A 9)

Appendix B. Current profile approximation

Although a perfectly linear profile could not be obtained, the current profiles used
throughout experiments were designed to contain a strongly sheared, linearly varying
velocity profile in their upper portion. The final current profiles were then investigated for
their linearity using a comparison of the linear wave phase velocity predicted by a linearly
sheared current, cp,Ω and the linear wave phase velocity predicted by an arbitrarily
sheared current, cp,A. A perfectly linearly varying current would produce no error between
these two phase velocities. Wave phase velocity, cp = ω/k, is calculated using the depth-
averaged velocity, Ū in the Doppler shift equation,

ω = ω̃(k) + kŪ , (B 1)

where the depth averaged velocity Ū is calculated from the Rayleigh equation (inviscid
Orr-Sommerfeld equation) in finite depth (Skop 1987) (see Stewart & Joy (1974) for deep
water),

Ū =
2k

1− e−4kd

[∫ 0

−d
U(z)e2kz dz + e−4kd

∫ 0

−d
U(z)e−2kz dz

]
. (B 2)

Equations (B 1) and (B 2) are used to calculate the percentage difference between the two
phase velocities given in figure 14. At the carrier wavenumber used for all experiments
in Part II (6 rad s−1), the error in linear wave phase velocity associated with assuming a
linear current is expected to be no more than 1% for the strongest current profile.
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Figure 14. Percentage difference between the linear phase velocity calculated when assuming
a linearly sheared current profile, cp,Ω , and when assuming an arbitrarily sheared current
profile, cp,A, for the four current profiles in table 1. The continuous lines show the effect of
the linear current approximation. The dashed lines show the effect of ignoring the current’s
shear altogether.

Figure 15. Percentage error in phase velocity associated with estimating current down to a
depth, D for a wave of wavenumber, k = 6 rad s−1 and the strongest shear rate (Ω = −0.87 s−1).

Stewart & Joy (1974) also present the error, E, in phase velocity associated with
limiting the depth-averaged integral to a depth, D. For deep water, the depth-averaged
velocity is evaluated through the depths −∞ < z < −D m and −D < z < 0 m, and the
ratio of these integrals calculated. Using the finite-depth depth-averaged velocity (B 2),
we calculate this error for k = 6 rad m−1 and present it in figure 15. In this figure, we
only show the strongest shear, as the other shear rates gave indistinguishable results. At
D > 0.2 m, the error in phase velocity is less than 5%, with this reducing further to less
than 1% at our chosen cut-off depth of 0.35 m.

Appendix C. Separated sideband evolution

Whereas averages are examined in the main text, figures 16-18 show the evolution of
the upper and lower sidebands separately.
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deviations from the mean as averaged across four repeats. All sidebands are represented as the

normalized sideband wavenumber parameter K̂ = K/K(γ̃max). Solid lines indicate predictions
made with the constant vorticity equations while dashed lines include only surface current in
their predictions.

Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrodinger equation for
application to deep water waves. Proc. R. Soc. A 369, 105–114.
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