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Abstract

■ Recent work suggests that a key function of the hippocampus
is to predict the future. This is thought to depend on its ability to
bind inputs over time and space and to retrieve upcoming or
missing inputs based on partial cues. In line with this, previous
research has revealed prediction-related signals in the hippocam-
pus for complex visual objects, such as fractals and abstract
shapes. Implicit in such accounts is that these computations in
the hippocampus reflect domain-general processes that apply
across different types and modalities of stimuli. An alternative is
that the hippocampus plays a more domain-specific role in pre-
dictive processing, with the type of stimuli being predicted
determining its involvement. To investigate this, we compared
hippocampal responses to auditory cues predicting abstract
shapes (Experiment 1) versus oriented gratings (Experiment 2).

We measured brain activity in male and female human partici-
pants using high-resolution fMRI, in combination with inverted
encoding models to reconstruct shape and orientation infor-
mation. Our results revealed that expectations about shape
and orientation evoked distinct representations in the hippo-
campus. For complex shapes, the hippocampus represented
which shape was expected, potentially serving as a source of
top–down predictions. In contrast, for simple gratings, the hip-
pocampus represented only unexpected orientations, more
reminiscent of a prediction error. We discuss several potential
explanations for this content-based dissociation in hippocampal
function, concluding that the computational role of the hippo-
campus in predictive processing may depend on the nature and
complexity of stimuli. ■

INTRODUCTION

Sensory processing is strongly influenced by prior expecta-
tions (De Lange, Heilbron, & Kok, 2018). Expectations about
both simple features (e.g., orientation; Jabar, Filipowicz, &
Anderson, 2017; Kok, Mostert, & De Lange, 2017; Kok,
Jehee, & De Lange, 2012) and complex objects (e.g., shapes;
Kaposvari, Kumar, & Vogels, 2018; Manahova, Mostert,
Kok, Schoffelen, & De Lange, 2018; Richter, Ekman, &
De Lange, 2018; Utzerath, St John-Saaltink, Buitelaar, &
De Lange, 2017; Meyer & Olson, 2011) modulate process-
ing in visual cortex. However, it is unclear whether these
two kinds of expectations arise from the same top–down
sources and operate via the same underlying mechanisms.
Previous research has revealed prediction-related signals

in the hippocampus for complex visual objects, such as frac-
tals (Hindy, Ng, & Turk-Browne, 2016; Schapiro, Kustner, &
Turk-Browne, 2012) and abstract shapes (Kok & Turk-
Browne, 2018; Wang, Shen, Tino, Welchman, & Kourtzi,
2017). These studies used fMRI to reveal that the pattern
of activity in the hippocampus contains information about
expected visual objects upon presentation of a predictive
cue. Based on this, it has been suggested that the hippo-
campus may generate perceptual expectations, especially
when these predictions result from rapidly learned

associations between arbitrary stimuli (Schapiro, Turk-
Browne, Botvinick, & Norman, 2017; Hindy et al., 2016;
Davachi & DuBrow, 2015; McClelland, McNaughton, &
O’Reilly, 1995). The role of the hippocampus may be par-
ticularly relevant when the associations are cross-modal,
given its bidirectional connectivity with all sensory systems
(Lavenex & Amaral, 2000).

This perspective raises the possibility that the hippo-
campus implements general-purpose computations that
subserve all kinds of (associative) prediction (Buzsáki &
Tingley, 2018; Stachenfeld, Botvinick, & Gershman, 2017;
Lisman & Redish, 2009). That is, upon presentation of a
predictive cue or context, the hippocampus may retrieve
the associated outcome through pattern completion
(Henke, 2010; McClelland et al., 1995), regardless of
the exact nature of the stimuli. This is in line with evi-
dence that the hippocampus is involved in many different
types of predictions, pertaining to, for example, faces and
scenes (Turk-Browne, Scholl, Johnson, & Chun, 2010), au-
ditory sequences (Recasens, Gross, & Uhlhaas, 2018),
odors (Eichenbaum & Fortin, 2009), and spatial locations
(Liu, Sibille, & Dragoi, 2018; Stachenfeld et al., 2017).

However, an alternative and untested hypothesis is that
the hippocampus only generates predictions of complex
stimuli. Here, we define complex stimuli as conjunctions
of features (such as oriented lines) that cannot be reduced
to the sum of their parts. For instance, a triangle consists of1Yale University, 2University College London
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the conjunction of three oriented lines intersecting at spe-
cific locations; if the lines were arranged differently, the tri-
angle would cease to be. This definition of complexity is
mirrored by the hierarchical organization of the visual pro-
cessing pathway, with neural responses being tuned to sim-
ple visual features in early stages, and to increasingly
complex (i.e., conjunctive) objects in later cortical stages
(Cowell, Leger, & Serences, 2017). Visual processing in
areas of the medial-temporal lobe (MTL) most directly con-
nected to the hippocampus, such as perirhinal and parahip-
pocampal cortices, is dominated by high-level objects and
scenes, respectively (Martin, Douglas, Newsome, Man, &
Barense, 2018; Murray, Bussey, & Saksida, 2007; Epstein &
Kanwisher, 1998), as well as their spatial, temporal, and as-
sociative relations (Tsao et al., 2018; Garvert, Dolan, &
Behrens, 2017; Hafting, Fyhn, Molden, Moser, & Moser,
2005). Processing in these regions is thought to be ab-
stracted away from low-level sensory features (Murray
et al., 2007; Lavenex & Amaral, 2000), such as orientation
and pitch. It has been suggested that processing in the hip-
pocampus is defined by conjunctive coding of these MTL
representations, explaining its role in representing complex
stimuli such as events, sequences, and spatial maps (Cowell,
Barense, & Sadil, 2019; Behrens et al., 2018; Yonelinas,
2013). Theories casting sensory processing as hierarchical
Bayesian inference (Friston, 2005; Lee & Mumford, 2003;
Rao & Ballard, 1999) suggest that each brain region provides
predictions only to those lower order region(s) with
which it has direct feedback connections, rather than
bridging the full hierarchy. Therefore, given the high-level
selectivity of MTL cortex, hippocampal predictions may
only traffic in complex visual stimuli and not in low-level
sensory features.

In a recent study, we revealed hippocampal representa-
tions of visual predictions by exposing human participants
to complex auditory cues predicting the shape of an ab-
stract Fourier descriptor (Experiment 1, n = 24; Kok &
Turk-Browne, 2018). Here, we tested whether hippocampal
involvement is dependent on the nature of the predicted
stimulus by replacing the complex shapes of Experiment
1 with simple oriented gratings (Experiment 2, n = 24).
In both studies, we measured brain activity using high-
resolution fMRI and used inverted encoding models
(Brouwer & Heeger, 2009) to reconstruct shape and orien-
tation information. Keeping the experimental design and
analysis methods nearly identical between experiments al-
lowed us to directly compare the neural effects of complex
shape and low-level orientation predictions. To preview, we
found that predictions about orientation and shape were
represented qualitatively differently in the hippocampus.

METHODS

Participants

For both experiments, we planned to obtain a sample of
24 participants. The effect size of interest was not known

in advance, so this sample size was chosen to match
previous fMRI studies in our lab investigating effects of
predictions in hippocampus and MTL (Hindy & Turk-
Browne, 2016; Hindy et al., 2016).
Experiment 1 enrolled 25 healthy individuals from the

Princeton University community with normal or corrected-
to-normal vision. Participants provided informed consent to
a protocol approved by the Princeton University Insti-
tutional Review Board and were compensated ($20/hr).
One participant was excluded from analysis because they
moved their head between runs so much that their occip-
ital lobe was partly shifted outside the field of view. The
final sample consisted of 24 participants (15 women,
mean age = 23 years). We previously reported some find-
ings from this data set (Kok & Turk-Browne, 2018),
though we performed additional analyses for present
purposes that are reported here.
Experiment 2 enrolled 24 healthy individuals from the

Yale University community with normal or corrected-to-
normal vision (15 women, mean age = 24 years). Par-
ticipants provided informed consent to a protocol approved
by the Yale University Human Investigation Committee
and were compensated ($20/hr). This is a new data set
not previously reported.

Stimuli

Visual stimuli were generated using MATLAB (Mathworks;
RRID:SCR_001622) and the Psychophysics Toolbox
(Brainard, 1997; RRID:SCR_002881). In both experiments,
stimuli were displayed on a rear-projection screen
using a projector (1920 × 1068 resolution, 60 Hz re-
fresh rate) against a uniform gray background. Partici-
pants viewed the stimuli through a mirror mounted on
the head coil. Auditory cues consisted of three pure
tones (440, 554, and 659 Hz; 80 msec per tone; 5-msec
intervals), presented in ascending or descending pitch
through headphones.
In Experiment 1, the visual stimuli were complex

shapes defined by radio frequency components (RFCs;
Drucker & Aguirre, 2009; Op de Beeck, Wagemans, &
Vogels, 2001; Zahn & Roskies, 1972; Figure 1A–D).
These stimuli were created by varying seven RFCs and
were based on a subset of the stimuli used by Op de
Beeck et al. (2001, see their Figure 1A). By varying the
amplitude of three of the seven RFCs, a one-dimensional
shape space was created. Specifically, the amplitudes of
the 1.11-, 1.54-, and 4.94-Hz components increased to-
gether, ranging from 0 to 36 (first two components)
and from 15.58 to 33.58 (third component). Five shapes
were chosen along this continuum to create a percep-
tually symmetrical set, centered on the third shape (for
details, see Kok & Turk-Browne, 2018). To create slightly
warped versions of the shapes, to enable a same/different
discrimination task, a fourth RFC (the 3.18-Hz compo-
nent) was modulated. The shape stimuli were presented
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in black (subtending 4.5°), centered on a fixation bull’s-
eye.
In Experiment 2, visual stimuli consisted of grayscale

luminance-defined sinusoidal gratings that were dis-
played in an annulus (outer diameter: 10°, inner diame-
ter: 1°, spatial frequency: 1.5 cycles/°), surrounding a
fixation bull’s-eye (Figure 1E–H). Eight gratings were
used to span the 180° orientation space, in equal steps
of 22.5°. To enable a similar same/different discrimination
task as in Experiment 1, we modulated the phase of the
gratings.

Experimental Procedure

Each trial of Experiment 1 started with the presentation
of a fixation bull’s-eye (0.7°). During the “prediction”
runs, an auditory cue (ascending or descending tones,
250 msec) was presented 100 msec after onset of the
trial. After a 500-msec delay, two consecutive shape stim-
uli were presented for 250 msec each, separated by a
500-msec blank screen (Figure 1A). The auditory cue (as-
cending vs. descending tones) predicted whether the
first shape on that trial would be Shape 2 or Shape 4, re-
spectively (out of five shapes; Figure 1B). The cue was
valid on 75% of trials, whereas in the other 25% of trials,
the unpredicted shape would be presented. For instance,

an ascending auditory cue might be followed by Shape 2
on 75% of trials and by Shape 4 on the remaining 25% of
trials. During omission runs, the cues were also 75%
valid, but on the remaining 25% of trials, no shape was
presented at all, with only the fixation bull’s-eye remain-
ing on screen. All participants performed two prediction
runs (128 trials, ∼13 min per run) and two omission runs
(128 trials, ∼13 min per run), in interleaved ABBA fashion
(order counterbalanced across participants). Halfway
through the experiment, the contingencies between the
auditory cues and the shapes were flipped (e.g., ascend-
ing tones were now followed by Shape 4 and descending
by Shape 2). The order of the cue–shape mappings was
counterbalanced across participants. Participants were
trained on the cue–shape associations during two prac-
tice runs (112 trials total, ∼8 min) in the scanner, one be-
fore the first prediction/omission run and one halfway
through the experiment after the contingency reversal.
During these practice runs, the auditory cue was 100%
predictive of the identity of the first shape on that trial
(e.g., ascending tones were always followed by Shape 2
and descending tones by Shape 4). The two practice runs
took place while anatomical scans (see below) were ac-
quired to make full use of scanner time. On each trial,
the second shape was either identical to the first or
slightly warped. This warp was achieved by modulating

Figure 1. Experimental
paradigms. (A) During
prediction runs in Experiment 1,
an auditory cue preceded the
presentation of two consecutive
shape stimuli, where the second
shape was either identical to
the first or slightly warped.
Participants indicated whether
the two shapes were the same or
different. (B) The auditory cue
(ascending vs. descending
tones) predicted whether the
first shape would be Shape 2 or
Shape 4 (of five shapes). The
cue was valid on 75% of trials,
whereas in the other 25%
of (invalid) trials the other,
unpredicted shape was
presented (prediction runs)
or the shapes were omitted
(omission runs). (C) During
shape-only runs, no auditory
cues were presented. As in
the other runs, two shapes
appeared sequentially and
participants reported same or
different. (D) All five shapes
appeared with equal (20%)
probability on trials of the
shape-only runs. (E) The design
of Experiment 2 was identical to
Experiment 1, except that the shapes were replaced by oriented gratings. The second grating was either the same as the first or its phase was shifted
slightly. (F) The auditory cue predicted whether the first grating would be rotated 45° or 135°, and this cue was valid 75% of the time. (G) During
grating-only runs, no predictive auditory cues were presented. (H) All eight gratings were equally likely to appear (12.5%) during grating-only runs.
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the amplitude of the orthogonal 3.18-Hz RFC component
defining the shape by an amount much smaller than the
differences between shape indices on the continuum de-
fined over the three other varying components. This
modulation could be either positive or negative (counter-
balanced across conditions), and participants’ task was to
indicate whether the two shapes on a given trial were the
same or different.

The design of Experiment 2 was identical to Experiment 1,
except that the visual stimuli consisted of oriented grat-
ings instead of complex shapes (Figure 1E–H). That is,
Experiment 2 contained two prediction and two omission
runs, but here, the auditory cues (rising and falling tones,
250 msec) predicted the orientation of an upcoming grat-
ing (45° or 135°, 250 msec). A second grating (250 msec)
with the same orientation was presented after a 500-msec
delay and was either identical or slightly phase shifted
with respect to the first grating. As with the shape modu-
lation for the same/different task, changes in phase were
orthogonal and much smaller than the differences in ori-
entation across stimuli. Participants’ task was to indicate
whether the two gratings were the same or different.

Finally, both experiments contained two additional runs
in which no auditory cues were presented. Each trial started
with the presentation of the fixation bull’s-eye, a delay of
850 msec (to equate onset with runs containing the audi-
tory cues), the first stimulus (250 msec), another delay of
500 msec, and the second stimulus (250 msec). The two vi-
sual stimuli (Experiment 1: complex shapes, Experiment 2:
oriented gratings) were either identical or slightly differ-
ent (Experiment 1: warped shape, Experiment 2: phase
shift). Participants indicated whether the two visual
stimuli were the same or different. In Experiment 1 (120
trials, ∼13 min per run), each trial contained one of the
five shapes with equal (20%) likelihood (Figure 1D). In
Experiment 2 (128 trials, ∼13 min per run), each trial
contained one of the eight gratings with equal (12.5%)
likelihood (Figure 1H). These “nonpredictive” runs were
designed to be as similar as possible to the prediction/
omission runs, save the absence of the predictive auditory
cues. They were collected as the first and last runs of each
session, and the data were used to train the neural decod-
ing models (see below).

In both experiments, participants indicated their re-
sponse using an MR-compatible button box. After the re-
sponse interval ended (750 msec after disappearance of
the second visual stimulus), the fixation bull’s-eye was re-
placed by a single dot, signaling the end of the trial while
still requiring participants to fixate. Also in both experi-
ments, the magnitude of the difference between the
two stimuli on a given trial (Experiment 1: shape warp,
Experiment 2: phase offset) was determined by an adap-
tive staircasing procedure (Watson & Pelli, 1983), up-
dated after each trial, to make the same/different task
challenging (∼75% correct) and comparable in difficulty
across experiments. This staircase was implemented
using Quest (psych.nyu.edu/pelli/software.html#quest),

a Bayesian adaptive psychometric procedure that places
each trial at the current most probably Bayesian estimate
of the 75% accuracy threshold. In Experiment 1, this
threshold was expressed as the logarithm of the differ-
ence in amplitude of the 3.18-Hz RFC component defin-
ing the shapes. In Experiment 2, it was the logarithm of
the difference in phase of the two gratings. These small,
just-detectable differences between the stimuli were thus
updated on a trial-by-trial basis to compensate for poten-
tial task learning and fatigue effects over time. Separate
staircases were run for trials containing valid and invalid
cues, as well as for the nonpredictive runs, to equate task
difficulty between conditions. That is, by running sepa-
rate staircases for the different conditions, task difficulty
was adjusted such that participants got approximately
75% correct in each condition. The staircases were kept
running throughout the experiments. They were initial-
ized at a value determined during an initial practice ses-
sion 1–3 days before the fMRI experiment (no auditory
cues, 120 trials). After the initial practice run, the mean-
ing of the auditory cues was explained, and participants
practiced briefly with both cue contingencies (valid trials
only; 16 trials per contingency). Because participants
were practicing both mappings equally, this session did
not serve to train them on any particular cue–shape asso-
ciation. Rather, this session was intended to familiarize
participants with the structure of trials and the nature
of the experiment.

MRI Acquisition

For Experiment 1, structural and functional data were
collected using a 3T Siemens Prisma scanner with a
64-channel head coil at the Princeton Neuroscience
Institute. Functional images were acquired using a mul-
tiband EPI sequence (repetition time [TR] = 1000 msec,
echo time [TE] = 32.6 msec, 60 transversal slices, voxel
size = 1.5 × 1.5 × 1.5 mm, 55° flip angle, multiband
factor = 6). This sequence produced a partial volume
for each participant, parallel to the hippocampus and
covering most of the temporal and occipital lobes.
Anatomical images were acquired using a T1-weighted
MPRAGE sequence (TR = 2300 msec, TE = 2.27 msec,
voxel size = 1 × 1 × 1 mm, 192 sagittal slices, 8° flip angle,
GeneRalized Autocalibrating Partial Parallel Acquisition
[GRAPPA] acceleration factor = 3). Two T2-weighted
turbo spin-echo images (TR = 11,390 msec, TE = 90 msec,
voxel size = 0.44 × 0.44 × 1.5 mm, 54 coronal slices, per-
pendicular to the long axis of the hippocampus, distance
factor = 20%, 150° flip angle) were acquired for hippocam-
pal segmentation. To correct for susceptibility distortions
in the EPI, a pair of spin-echo volumes was acquired in
opposing phase-encode directions (anterior/posterior
and posterior/anterior) with matching slice prescription,
voxel size, field of view, bandwidth, and echo spacing
(TR = 8000 msec, TE = 66 msec).
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For Experiment 2, data were acquired on a 3T Siemens
Prisma scanner with a 64-channel head coil at the Yale
Magnetic Resonance Research Centre. Functional images
were acquired using a multiband EPI sequence with virtually
identical parameters to Experiment 1 (TR = 1000 msec,
TE = 33.0 msec, 60 transversal slices, voxel size = 1.5 ×
1.5 × 1.5 mm, 55° flip angle, multiband factor = 6), as
was the pair of opposite phase-encode spin-echo volumes
for distortion correction (TR = 8000 msec, TE = 66 msec).
Anatomical images were similar to Experiment 1. T1-
weighted images were acquired using an MPRAGE se-
quence (TR = 1800 msec, TE = 2.26 msec, voxel size =
1 × 1 × 1 mm, 208 sagittal slices, 8° flip angle, GRAPPA
acceleration factor = 2). Two T2-weighted turbo spin-
echo images were acquired (TR = 11,170 msec, TE =
93 msec, voxel size = 0.44 × 0.44 × 1.5 mm, 54 coronal
slices, distance factor = 20%, 150° flip angle).

fMRI Preprocessing

Images for both experiments were preprocessed using
FEAT 6 (fMRI Expert Analysis Tool), part of FSL 5 (fsl.
fmrib.ox.ac.uk/fsl, Oxford Centre for Functional MRI of
the Brain, RRID:SCR_002823; Jenkinson, Beckmann,
Behrens, Woolrich, & Smith, 2012). All analyses were per-
formed in participants’ native space. Using FSL’s topup tool
(Andersson, Skare, & Ashburner, 2003), susceptibility-
induced distortions were determined on the basis of
opposing-phase spin-echo volumes. This output was con-
verted to radians per second and supplied to FEAT for B0
unwarping. The first six volumes of each run were dis-
carded to allow T1 equilibration, and the remaining func-
tional images for each run were spatially realigned to
correct for head motion. These functional images were reg-
istered to each participant’s T1 image using boundary-
based registration and temporally high-pass filtered with a
128-sec period cutoff. No spatial smoothing was applied.
Lastly, the two T2 images were coregistered and averaged,
and the resulting image was registered to the T1 image
through FLIRT (FMRIB’s Linear Image Registration Tool).

ROIs

Our main focus was the hippocampus. Using the auto-
matic segmentation of hippocampal subfields machine
learning toolbox (Yushkevich et al., 2015) and a database
of manual MTL segmentations from a separate set of 51
participants (Aly & Turk-Browne, 2016a, 2016b), hippo-
campal ROIs were defined based on each participant’s
T2 and T1 images for CA2-CA3-DG, CA1, and subiculum
subfields. CA2, CA3, and DG were combined into a single
ROI because these subfields are difficult to distinguish
with fMRI. Results of the automated segmentation were
visually inspected for each participant to ensure accuracy.
In visual cortex, ROIs were defined for V1, V2, and lat-

eral occipital (LO) cortex in each participant’s T1 image
using Freesurfer (surfer.nmr.mgh.harvard.edu/; RRID:

SCR_001847). To ensure that we were measuring re-
sponses in the retinotopic locations corresponding to
our visual stimuli, we restricted the visual cortex ROIs
to the 500 most active voxels during the nonpredictive
runs. Because no clear retinotopic organization is present
in the hippocampal ROIs, cross-validated feature selec-
tion was used instead (see below). All ROIs were col-
lapsed over the left and right hemispheres, because we
had no hypotheses regarding hemispheric differences.

fMRI Data Modeling

Functional data were modeled with general linear
models using FILM (FMRIB’s improved linear model).
This included temporal autocorrelation correction and
extended motion parameters (six standard parameters,
plus their derivatives and their squares) as nuisance
covariates.

For Experiment 1, we specified regressors for the con-
ditions of interest: shape-only runs, five shapes; pre-
diction runs, 2 shapes × 2 prediction conditions (valid
vs. invalid); omission runs, 2 shapes × 2 omission con-
ditions (presented vs. omitted). Delta functions were in-
serted at the onset of the first shape (or expected onset,
for omissions) of each trial and convolved with a double-
gamma hemodynamic response function (HRF). The
same procedure was used for Experiment 2, with the
following convolved regressors: grating only runs, eight
orientations; prediction runs, 2 orientations × 2 predic-
tion conditions (valid vs. invalid); omission runs, 2 orien-
tations × 2 omission conditions (presented vs. omitted).
For both experiments, we also included the temporal
derivative of each regressor to accommodate variability
in the onset of the response (Friston et al., 1998).

Additional finite impulse response (FIR) models were
fit in both experiments to investigate the temporal evolu-
tion of shape and grating representations in visual cortex.
This approach estimated the BOLD signal evoked by
each condition of interest at 20 × 1 sec intervals. We
trained the decoder on the FIR parameter estimates from
the shape-only or grating-only runs, averaging over the
time points spanning 4–7 sec (corresponding to the peak
hemodynamic response). This decoder was then applied
to the FIR parameter estimates from all of the time points
in the prediction and omission runs. The amplitude and
latency of this time-resolved shape/grating information
was quantified by fitting a double gamma function and
its temporal derivative to the decoder output.

Decoding Analysis

In both experiments, we used a forward modeling approach
to reconstruct visual stimuli from the pattern of BOLD ac-
tivity in a given brain region (Brouwer & Heeger, 2009).
This approach has proven successful in reconstructing
continuous stimulus features, such as hue (Brouwer &
Heeger, 2009), orientation (Brouwer & Heeger, 2011),
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and motion direction (Kok, Brouwer, Van Gerven, & De
Lange, 2013).

In our case, the continuous dimensions of shape con-
tour and grating orientation were modeled by a set of hy-
pothetical channels, each with an idealized tuning curve
(i.e., basis function). To decode shape in Experiment 1,
the basis functions consisted of five hypothetical chan-
nels, each a halfwave-rectified sinusoid raised to the fifth
power, spaced evenly such that they were centered on
the 5 points in shape space that constituted the five
shapes presented in the experiment (Figure 2A). To de-
code orientation in Experiment 2, the basis functions
consisted of six halfwave-rectified sinusoids raised to
the fifth power spaced evenly along the 180° orientation
space (Figure 2D). The number of orientation basis func-
tions was based on previous studies decoding circular
stimulus features (Kok et al., 2013; Brouwer & Heeger,
2009, 2011). Note that reducing the number of basis

functions in Experiment 2 to five, to match the number
used in Experiment 1, yielded qualitatively identical re-
sults (data not shown). It was not possible to define six
channels for Experiment 1, because the number of chan-
nels cannot exceed the number of exemplars (i.e., five).
Finally, the orientation space, unlike the shape space,
was circular, and therefore, the channels wrapped around
from 180° to 0°.
Other than these subtle differences in the definitions

of the basis functions, the forward modeling approach
was identical in Experiments 1 and 2. In the first “train-
ing” stage, BOLD activity patterns obtained from the
shape-only or grating-only runs were used to estimate the
weights of these channels for each voxel using linear regres-
sion. Specifically, let k be the number of channels, m the
number of voxels, and n the number of measurements
(i.e., the five shapes or the eight orientations in the non-
predictive runs). The matrix of estimated BOLD response

Figure 2. Illustration of the decoding methods. (A) We used a forward modeling approach to reconstruct shapes from the pattern of BOLD activity.
Shape selectivity was characterized by five hypothetical channels, each with an idealized shape tuning curve. BOLD patterns obtained from the
shape-only runs were used to estimate the weights on the five hypothetical channels separately for each voxel using linear regression. (B) Using these
weights, the second stage of the analysis reconstructed the channel outputs associated with the pattern of activity across voxels evoked by the
prediction and omission runs (only Shapes 2 and 4 were used in these runs). Channel outputs were converted to a weighted average of the five basis
functions, resulting in neural evidence across shape space. Decoding performance was quantified by subtracting the evidence at the presented shape
(e.g., Shape 2) from the evidence at the non-presented shape (e.g., Shape 4). (C) Finally, solely for the purpose of visualising the shape-specific
information, we collapsed across the presented shapes by subtracting the neural evidence for Shape 4 from that for Shape 2, thereby removing any
non-shape-specific BOLD signals. (D) An identical forward modeling approach was used in Experiment 2, except that orientation selectivity was
characterized by six hypothetical channels that wrapped around the circular orientation space. (E) Decoding performance was quantified by
subtracting the neural evidence at the presented orientation (e.g., 45°) from the evidence at the non-presented orientation (e.g., 135°). (F) As above,
we collapsed across the presented gratings by subtracting the neural evidence for the presented (e.g., 45°) from the nonpresented (e.g., 135°)
orientation, for visualization purposes. Shaded bands in B, C, E, and F indicate SEM.
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amplitudes for the different stimuli (Btrain, m × n) was re-
lated to the matrix of hypothetical channel outputs (Ctrain,
k × n) by a weight matrix (W, m × k):

Btrain ¼ WCtrain (1)

The least-squares estimate of this weight matrix W was
estimated using linear regression:

Ŵ ¼ BtrainC
T
train CtrainC

T
train

� �−1
(2)

These weights reflected the relative contribution of the
hypothetical channels in the forward model to the ob-
served response amplitude of each voxel. Using these
weights, the second stage of analysis reconstructed the
channel outputs associated with the test patterns of activ-
ity across voxels evoked by the stimuli in the main exper-
iment (i.e., the prediction and omission runs; Btest),
again using linear regression. This step transformed each
vector of n voxel responses (parameter estimates per
condition) into a vector of k channel responses. These
channel responses (Ctest) were estimated using the
learned weights (W):

Ĉtest¼ Ŵ
T
Ŵ

� � 1
Ŵ

T
Btest (3)

The channel outputs were used to compute a weighted
average of the basis functions, reflecting neural evidence
over the shape or orientation dimension (Figure 2B, E).
During the prediction and omission runs of Experiment 1,
only Shapes 2 and 4 were presented (Figure 1B). Thus, four
neural evidence curves were obtained for these runs: two
shapes by two prediction/omission conditions (valid vs.
invalid/presented vs. omitted). We collapsed across the pre-
sented shape by subtracting the neural evidence for Shape 4
from that for Shape 2, thereby subtracting out any non-
shape-specific BOLD signals (Figure 2C). Analogously, in
Experiment 2, we subtracted the neural evidence for
135° gratings from that for 45° gratings (Figure 2F).
For statistical testing, scalar decoding performance

values were calculated on the basis of decoded neural ev-
idence. For Experiment 1, decoding performance during
the prediction/omission runs was quantified by subtract-
ing the neural evidence for the presented shape (e.g.,
Shape 2) from that of the nonpresented shape (e.g.,
Shape 4). For Experiment 2, decoding performance was
quantified by subtracting the neural evidence for the
presented orientation (e.g., 45°) from that of the nonpre-
sented orientation (e.g., 135°). (Note that, for the omis-
sion trials, there was no presented shape or orientation,
and so we conditioned decoding performance on the
“expected” shape or orientation.) For each participant
in the two experiments, this procedure led to a measure
of decoding performance for validly and invalidly pre-
dicted stimuli (shapes or gratings), respectively. This
allowed us to quantify evidence for the stimuli as presented

on the screen (by averaging evidence for validly and inval-
idly predicted stimuli) and evidence for the cued stimuli
(by averaging [1 – evidence] for the invalidly predicted
stimuli with evidence for the validly predicted stimuli).
Finally, we calculated decoding performance for predicted
but omitted stimuli (shapes and gratings, respectively).
These measures were statistically tested at the group level
using mixed-design ANOVAs and independent samples
t tests (see Experimental Design and Statistical Analysis
section).

For all ROIs, voxel selection was based on data from the
shape- and grating-only runs, in which no predictions were
present to ensure voxel selection was independent of the
data in which we tested our effects of interest (i.e., the pre-
diction and omission runs). In visual cortex ROIs, we se-
lected the 500 most active voxels during the shape- and
grating-only runs. However, the hippocampus does not
show a clear evoked response to visual stimuli, as defined
by a lack of significant fit of a regressor of stimulus onset
times convolved with a canonical hemodynamic response
to the mean hippocampal time course. Therefore, we ap-
plied a different method of voxel selection for hippocam-
pal ROIs. Voxels were first sorted by their informativeness,
that is, how different the weights for the forward model
channels were from each other, as indexed by the stan-
dard deviation of the weights. Second, the number of
voxels to include was determined by selecting between
10% and 100% of the voxels, increasing in 10% increments.
We then trained and tested the model on these voxels
within the shape- and grating-only runs (trained on one run
and tested on the other). For all iterations, decoding perfor-
mance on Shapes 2 and 4 (Experiment 1) or 45° and 135° ori-
entations (Experiment 2) was quantified as described above,
and we selected the number of voxels that yielded the
highest performance (group average: Experiment 1, 1536
of 3383 voxels; Experiment 2, 1369 of 3229 voxels). We also
labeled the selected hippocampus voxels based on their
subfield from segmentation (group average: Experi-
ment 1, 436 voxels in CA1; 572 voxels in CA2-CA3-DG;
425 voxels in subiculum; Experiment 2, 394 voxels in
CA1; 490 voxels in CA2-CA3-DG; 380 voxels in subiculum).

For the hippocampal ROIs and searchlight analyses, the
input to the forward model consisted of parameter esti-
mates from a voxelwise general linear model that fit the am-
plitude of the BOLD response using regressors convolved
with a double-gamma HRF. However, for the visual cortex
ROI analyses, we supplied parameter estimates from a data-
driven FIR model that made no assumptions about the
timing or shape of BOLD responses. In this analysis, the
amplitude and latency of decoded shape/orientation infor-
mation was quantified by fitting a double gamma function
and its temporal derivative to the decoder output.

Searchlight

A searchlight approach was used to explore the specific-
ity of predicted shape and orientation representations, as
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well as significant differences between the two, within
the field of view of our functional scans (most of occipital
and temporal and part of parietal and frontal cortex). In
both experiments, a spherical searchlight with a radius of
5 voxels (7.5 mm) was passed over all functional voxels,
using the searchlight function implemented in the Brain
Imaging Analysis Kit (BrainIAK, brainiak.org, RRID:
SCR_014824). In each searchlight for each participant,
we performed shape/orientation decoding in the same
manner as in the ROIs, which yielded maps of decoding
evidence for the predicted shapes (Experiment 1) and
orientations (Experiment 2).

Each participant’s output volumes were registered to
the Montreal Neurological Institute (MNI) 152 standard
template for group analysis. This was achieved by apply-
ing the nonlinear registration parameters obtained from
registering each participant’s T1 image to the MNI tem-
plate using AFNI’s (RRID:SCR_005927) 3dQwarp (https://
afni.nimh.nih.gov/pub/dist/doc/program_help/3dQwarp.
html). Group-level nonparametric permutation tests were
applied to these searchlight maps using FSL randomise
(Winkler, Ridgway, Webster, Smith, & Nichols, 2014), cor-
recting for multiple comparisons using threshold-free clus-
ter enhancement (Smith & Nichols, 2009). To determine
where in the brain orientation and shape prediction
signals differed from one another, we conducted a two-
sample t test comparing predicted shape evidence to pre-
dicted orientation evidence at p < .05 (two-sided). This
test yielded one large cluster, so we identified local max-
ima within the cluster by reducing the critical p value to
.005. Follow-up one-sample t tests were used to explore
the two experiments separately at p < .05 (one-sided).

Experimental Design and Statistical Analysis

The aim of the current study was to compare differences
in neural representations evoked by predictions of com-
plex shapes and grating orientations, respectively. The
decoded neural representations for the complex shapes
(Experiment 1) were separately reported on in a previous
publication (Kok & Turk-Browne, 2018), and the decod-
ing results of that study, in hippocampus and visual cor-
tex, were retained for this study. The novelty of this study
lies in directly comparing these representations to those
evoked by simple grating orientations (Experiment 2).
Additionally, we here report neural representations of
predicted-but-omitted stimuli in hippocampus and visual
cortex, for both complex shapes and simple gratings.

For hippocampal ROIs, we quantified decoding evi-
dence for validly and invalidly predicted stimuli (shapes
and orientations, respectively) and subjected these mea-
sures to mixed-design two-way ANOVAs with Prediction
Validity (valid vs. invalid) as the within-group factor and
Stimulus Type (shape vs. orientation) as the between-
group factor. Significant interactions between these two
factors indicate differential effects of predictions de-
pending on stimulus type. Follow-up tests of the effect

of prediction validity within experiments were conducted
using paired-sample t tests.
We also quantified decoding evidence for predicted-

but-omitted stimuli (shapes and orientations, respec-
tively) as a measure of “pure” prediction effects in the
absence of actually presented visual stimuli. This analysis
focused on the neural activity evoked by the trials in
which an auditory cue predicted a specific stimulus
(shape or orientation), but the screen remained empty
(except for the fixation bull’s-eye). Decoding evidence
for these predicted-but-omitted shapes and orientations
was quantified per participant, and the effect of stimulus
type (shape vs. orientation) was tested by submitting
these measures to independent-samples t tests. Effects
of predicted-but-omitted stimuli within experiment were
tested using one-sample t tests.
For visual cortex ROIs, we quantified decoder evidence

in a time-resolved manner (see fMRI Data Modeling sec-
tion and Decoding Analysis section above) to be able to
investigate influences of prediction on both the ampli-
tude and the latency of neural responses. This time-
resolved analysis was motivated by our previous finding
of prediction modulating the latency of BOLD signals in
visual cortex (Kok & Turk-Browne, 2018). The ampli-
tudes and latencies of decoding signals were quantified
by fitting a canonical HRF and its temporal derivative,
respectively, to the decoder evidence time courses for
validly and invalidly predicted stimuli (shapes or orienta-
tions). These amplitude and latency estimates were
subjected to mixed-design two-way ANOVAs with Prediction
Validity (valid vs. invalid) as the within-group factor and
Stimulus Type (shape vs. orientation) as the between-group
factor. Decoding amplitude and latency for predicted-
but-omitted stimuli were compared between stimulus
types (shapes vs. orientations) using independent-samples
t tests.

RESULTS

Participants were exposed to auditory cues that predicted ei-
ther which complex shape was likely to be presented
(Experiment 1, Figure 1A–D) or the likely orientation of an
upcoming grating stimulus (Experiment 2, Figure 1E–H). In
both experiments, two stimuli were presented on each
trial, which were either identical or slightly different from
one another (Experiment 1: second shape slightly warped,
Experiment 2: second grating slightly different phase).
Participants were asked to report whether the two stimuli
on any given trial were the same or different.

Behavioral Results

Participants were able to discriminate small differences in
both complex shapes (36.9 ± 2.3% modulation of the
3.18-Hz radial frequency component, mean ± SEM )
and simple gratings (2.7 ± 0.2 radians phase difference,
mean ± SEM ) during the visual stimuli only runs. This
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was also the case during the prediction runs for both
complex shapes (valid trials, 31.6 ± 2.5%; invalid trials,
33.2 ± 2.9%; no significant difference in discrimination
threshold between valid and invalid trials, t(23) = 1.00,
p = .32) and simple gratings (valid trials, 2.4 ± 0.2 ra-
dians; invalid trials, 2.4 ± 0.2 radians; no significant
difference, t(23) = 0.36, p = .72). For Experiment 1, ac-
curacy and RTs did not differ between valid trials (accu-
racy, 70.6 ± 1.2%; RT, 575 ± 16 msec) and invalid trials
(accuracy, 68.8 ± 1.5%; RT, 573 ± 18 msec; both ps >
.20). In Experiment 2, participants were slightly more ac-
curate for valid (75.2 ± 1.3%) than invalid (72.0 ± 1.5%)
trials, t(23) = 2.25, p = .03. Note that this difference in
accuracy indicates that the staircase procedure did not
perfectly equate task performance for valid versus invalid
trials in Experiment 2. We address whether task difficulty
affected hippocampus representations below (see
Control Analyses section). RTs did not differ signif-
icantly between conditions (valid: 646 ± 13 msec, invalid:
646 ± 14 msec, p = .93).

Hippocampus

Predictions about complex shapes and grating orienta-
tions led to strikingly different responses in the hippo-
campus (interaction between Cue Validity and Stimulus
Type; F(1, 46) = 9.14, p = .0041; no main effects, ps >
.3; Figure 3). In both experiments, we quantified evi-
dence for the stimuli as presented on the screen (by av-
eraging evidence for the stimulus whether validly or
invalidly predicted) and evidence for the predicted stim-
uli (by averaging evidence for the stimulus when validly
predicted with [1 – evidence] for the stimulus when in-
validly predicted). In Experiment 1, the pattern of activity

in the hippocampus contained a representation of the
shape that was predicted by the auditory cue, t(23) =
2.86, p = .0089 (Figure 3A) but was unaffected by the
shape that was actually presented on screen, t(23) =
0.54, p = .59. However, the situation was strikingly differ-
ent for orientation in Experiment 2, where the pattern of
activity in the hippocampus did not contain a significant
representation of the orientation that was predicted by
the cue, t(23) = −1.59, p = .13, or the presented orien-
tation, t(23) = 1.35, p = .19 (Figure 3B). In short, there
was a difference between shape and orientation predic-
tion signals in the hippocampus, F(1, 46) = 9.14, p =
.0041 (Figure 3C), driven by a positive shape prediction
signal in Experiment 1 and a numerically negative orien-
tation prediction signal in Experiment 2.

To interrogate the circuitry of these prediction signals
further, we applied an automated segmentation method
to define ROIs for the anatomical subfields of the hippo-
campus. Specifically, we segmented the hippocampus into
CA1, CA2-CA3-DG, and subiculum. As in the hippocampus
as a whole, representations of predicted shapes and orien-
tations were strikingly different in CA2-CA3-DG (interac-
tion between Cue Validity and Stimulus Type; F(1, 46) =
9.40, p = .0036; no main effects, ps > .1; Figure 4C).
Where Experiment 1 showed a trend toward evoking a
“positive” representation of the predicted shape in this
subregion, t(23) = 2.04, p = .053 (Figure 4A), orientation
predictions were “negatively” represented, t(23) = −2.29,
p = .031 (Figure 4B).

To inspect these results more closely, consider the re-
sponses evoked by valid and invalid predictions in both ex-
periments. In Experiment 1, hippocampal representations
were completely determined by the predicted shape.
That is, when Shape 2 was predicted and presented,

Figure 3. Stimulus reconstructions in hippocampus. (A) Decoder output of a forward model trained on shape-only runs, applied separately to validly
(green) and invalidly (red) predicted shapes in the prediction runs. Collapsed across trials in which Shapes 2 and 4, respectively, were presented (see
Figure 2C). The inset depicts quantified decoding evidence (see Figure 2B) for validly and invalidly predicted shapes. (B) Decoder output of a
forward model trained on grating-only runs, applied separately to validly (green) and invalidly (red) predicted gratings in the prediction runs.
Collapsed across trials in which 45° and 135° oriented gratings, respectively, were presented (see Figure 2F). The inset depicts quantified
decoding evidence (see Figure 2E) for validly and invalidly predicted orientations. (C) Decoding evidence for predicted shapes (outlined bar)
and predicted orientations (filled bar), quantified by averaging (1 − evidence) for the invalidly predicted stimuli with evidence for the
validly predicted stimuli. **p < .01. Shaded bands and error bars indicate SEM.
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hippocampal patterns represented Shape 2, and when
Shape 4 was predicted but Shape 2 was presented, hippo-
campus solely represented Shape 4 (Figures 3A and 4A). In
Experiment 2, when grating orientation predictions were
valid, activity patterns contained no evidence for any orien-
tation, neither the predicted (and presented) orientation,
nor the unpredicted orientation (hippocampus: t(23) =
0.14, p = .89; CA2-CA3-DG: t(23) = 0.13, p = .89;
Figures 3B and 4B). When orientation predictions were
invalid, however, activity patterns reflected the (unexpect-
edly) presented orientation, most clearly in CA2-CA3-DG
(t(23) = 2.18, p = .04; hippocampus: t(23) = 1.57, p =
.13). In other words, only unexpectedly presented grating
orientations were represented in CA2-CA3-DG, reminiscent
of a prediction error type signal.

In the subiculum, predicted shapes and orientations
evoked distinct representations as well (interaction
between Cue Validity and Stimulus Type; F(1, 46) = 5.40,

p = .025; no main effects, ps > .05; Figure 4C). As in hip-
pocampus as a whole, Experiment 1 revealed that shape
representations in subiculum were dominated by the pre-
dicted shape, t(23) = 2.97, p= .0069, but not the presented
shape, t(23)=−0.54, p= .59. In Experiment 2, on the other
hand, neither predicted, t(23) = −0.34, p = .74, nor pre-
sented, t(23) = 0.52, p = .61, orientations were repre-
sented. That is, subiculum activity patterns did not contain
information about grating orientation in any of the condi-
tions. Finally, in CA1, there were no significant effects of pre-
diction on decoding evidence (no main effects of Cue
Validity or Stimulus Type, nor an interaction, all ps > .1).
These subfield results for valid versus invalid predic-

tions were largely mimicked by representations evoked
in omission trials. Predicted-but-omitted shapes affected
activity patterns in CA2-CA3-DG strikingly differently than
predicted-but-omitted orientations, t(46) = 2.57, p =
.013 (Figure 5). This difference was in the same direction

Figure 4. Stimulus reconstructions in CA2-CA3-DG. (A) Decoder output of a forward model trained on shape-only runs, applied separately to validly
(green) and invalidly (red) predicted shapes in the prediction runs. Collapsed across trials in which Shapes 2 and 4, respectively, were presented (see
Figure 2C). The inset depicts quantified decoding evidence (see Figure 2B) for validly and invalidly predicted shapes. (B) Decoder output of a
forward model trained on grating-only runs, applied separately to validly (green) and invalidly (red) predicted gratings in the prediction runs.
Collapsed across trials in which 45° and 135° oriented gratings, respectively, were presented (see Figure 2F). The inset depicts quantified decoding
evidence (see Figure 2E) for validly and invalidly predicted orientations. (C) Decoding evidence for predicted shapes (outlined bars) and
predicted orientations (filled bars), quantified by averaging (1 − evidence) for the invalidly predicted stimuli with evidence for the validly
predicted stimuli, across hippocampal subfields. *p < .05, **p < .01. Shaded bands and error bars indicate SEM.

Figure 5. Reconstruction of predicted-but-omitted stimuli in CA2-CA3-DG. (A) Decoder output of a forward model trained on shape-only runs and applied
to predicted-but-omitted shapes in the omission runs. Collapsed across trials in which Shapes 2 and 4, respectively, were predicted (see Figure 2C).
(B) Decoder output of a forward model trained on grating-only runs, applied to predicted-but-omitted orientations in the omission runs. Collapsed across
trials in which 45° and 135° oriented gratings, respectively, were predicted (see Figure 2F). (C) Decoding evidence for predicted-but-omitted shapes
(outlined bars) and predicted-but-omitted orientations (filled bars), across hippocampal subfields. *p < .05. Shaded bands and error bars indicate SEM.
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as above, with shape prediction signals being more pos-
itive than orientation prediction signals. Note that the
positive shape prediction signals, t(23) = 1.64, p = .11,
and negative orientation prediction signals, t(23) =
−2.00, p = .058, were not significant in isolation.
Representations of expected but omitted stimuli did
not significantly affect subiculum (shapes: t(23) = 1.73,
p = .097; orientations: t(23) = −0.35, p = .73; differ-
ence: t(46) = 1.47, p = .15) or CA1 (shapes: t(23) =
−0.46, p = .65; orientations: t(23) = −0.67, p = .51; dif-
ference: t(46) = 0.23, p = .82).
Does the prediction error-like response to invalidly

predicted orientations in CA2-CA3-DG depend on the ap-
pearance of an unexpected orientation that actively vio-
lates the prediction? We compared this response with the
negative evidence for the cued orientation on omission
trials in which with the prediction fails to materialize in
time but without a violating stimulus. There was no sig-
nificant difference between these two trial types (hippo-
campus: t(23) = −0.24, p = .81; CA2-CA3-DG: t(23) =
−0.07, p = .95). In summary, the validity of orientation
predictions influences hippocampal responses, because
valid outcomes are cancelled out (Figures 3B and 4B),
but the type of invalid outcome (unpredicted orientation
or omission) does not seem to influence hippocampal
responses.
Overall, the results for omission trials in the hippocam-

pus resembled those for predicted stimuli when com-
paring valid and invalid trials. However, the effects were
weaker statistically, perhaps because of lower signal-to-
noise ratio on trials without any visual stimulus or because
of a qualitative difference between these conditions. An
example of the latter could be that the omission of ex-
pected stimuli may trigger different cognitive processes
than validly and invalidly cued trials. The absence of any
visual stimulus is quite salient and surprising, given the
regularity of their appearance in the rest of the study. In
addition, participants did not perform a task on the omis-
sion trials, eliminating the need for perceptual decision-
making and response selection.

Visual Cortex

In visual cortex ROIs, we applied the decoding analysis in
a time-resolved manner and characterized the time
courses of the decoding signal by fitting a canonical
(double-gamma) HRF and its temporal derivative. The
parameter estimate of the canonical HRF indicates the
peak amplitude of the signal, whereas the temporal deriv-
ative parameter estimate reflects the latency of the signal
(Henson, Price, Rugg, Turner, & Friston, 2002; Friston
et al., 1998).
Interestingly, the temporal evolution of stimulus repre-

sentations in visual cortex was strongly affected by the au-
ditory prediction cues. Valid predictions about complex
shapes and grating orientations led to similar facilitation
in visual cortex, across the cortical hierarchy (Figure 6).

Specifically, when predictions were invalid, there was a
delay in the decoding signal relative to when they were
valid (main effect of validity on temporal derivative, V1:
F(1, 46) = 19.85, p = .000053; V2: F(1, 46) = 13.90, p =
.00053; LO: F(1, 46) = 7.97, p = .0070). This effect did
not vary by stimulus type (no interaction between Va-
lidity and Stimulus Type, V1: F(1, 46) = 0.49, p = .49;
V2: F(1, 46) = 1.02, p = .32; LO: F(1, 46) = 0.04, p =
.84) and was present for both shapes (V1: t(23) = 3.40,
p = .0024; V2: t(23) = 3.06, p= .0056; marginal effect in
LO: t(23) = 1.96, p = .062) and orientations (V1: t(23) =
2.87, p= .0086; V2: t(23) = 2.15, p = .042; marginal effect
in LO: t(23) = 2.06, p = .051). The peak of the decoding
signal was significantly lower for invalidly predicted
stimuli than for validly predicted stimuli in V1 (main ef-
fect of Validity on canonical HRF), F(1, 46) = 7.97, p =
.0070, but not in V2, F(1, 46) = 1.98, p = .17, or LO, F(1,
46) = 0.02, p = .90. This effect in V1 did not depend sig-
nificantly on stimulus type either (no interaction between
Validity and Stimulus Type), F(1, 46) = 1.04, p = .31; how-
ever, in isolation, shapes were significant, t(23) = 2.73, p =
.012, but not orientations, t(23) = 1.27, p = .22. In short,
there were no significant differences in how predictions
affected either the peak or the latency of the decoded
stimulus signals between the two experiments, consistent
with the possibility that shape and orientation expecta-
tions modulate visual cortex similarly.

During the omission runs, the 25% nonvalid trials did
not involve the presentation of the unpredicted stimulus,
but rather no visual stimulus at all. To investigate whether
the BOLD response in visual cortex reflected the predicted-
but-omitted stimuli, we inspected the fit of a canonical HRF
to the decoding time course for these trials. This revealed
that the orientation of expected but omitted gratings was
successfully reconstructed from BOLD patterns in V1,
t(23) = 2.28, p = .032, but not in V2, t(23) = 1.37, p =
.18, or LO, t(23) = 0.59, p = .56, replicating Kok,
Failing, and De Lange (2014). However, expected but
omitted shapes could not be reconstructed from BOLD
patterns in any region (V1: t(23) = 0.64, p = .53;
V2: t(23) = −1.33, p = .20; LO: t(23) = −0.71, p =
.49). Note that there were no reliable differences in
decoding performance between omitted gratings and
omitted shapes (V1: t(46) = 1.06, p = .29; V2: t(46) =
1.91, p = .062; LO: t(46) = 0.92, p = .36).

Searchlight Results

Our primary focus in this study was on the hippocampus,
but to explore which other brain regions are involved in
content-sensitive predictions, we performed searchlight
analyses in the field of view of our functional scans (most
of occipital and temporal and part of parietal and frontal
cortex). This analysis revealed distinct representations of
shape and orientation predictions in bilateral hippocam-
pus, anterior occipital cortex, cerebellum, left inferior
frontal gyrus (IFG), and left middle temporal gyrus, as
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well as a few smaller clusters elsewhere (Table 1).
Separate searchlight analyses for the two experiments re-
vealed positive representations of the predicted shape in
the hippocampus, anterior occipital cortex, and a few
smaller clusters, and negative orientation predictions in
left IFG, anterior occipital cortex, and middle temporal
gyrus (Table 1). The reverse contrasts (i.e., negative
shape predictions and positive orientation predictions)
did not reveal any significant clusters.

Control Analyses

Can the differences between shape and orientation ex-
periments be explained by the fact that the two gratings
associated with auditory cues were easier to distinguish
than the two shapes associated with auditory cues (or
vice versa)? A difference in perceptual distance between
the two shapes versus the two gratings may cause a dif-
ferent balance between pattern completion and pattern

separation mechanisms in the hippocampus, thereby
complicating our results. To examine this possibility,
we split the participants in both experiments into two
groups, depending on how well the two gratings or
shapes could be decoded from V1, in the visual stimuli
only runs. We then investigated whether hippocampal ev-
idence for the predicted shape/orientation differed be-
tween high versus low V1 decoders, using a two-way
ANOVA. If the difference between the two experiments
was driven by stimulus discriminability, we would expect
to see a main effect of High versus Low Decoders. How-
ever, we found a strong main effect of Experiment, F(1,
44) = 9.79, p = .0031; no effect of High versus Low
Decoders, F(1, 44) = 1.24, p = .27; and no interaction
between the two, F(1, 44) = 3.62, p = .064. The trend
toward an interaction reflected the fact that the positive
prediction signal for shapes and the negative prediction
signal for orientations tended to be stronger for the par-
ticipants with “worse” V1 stimulus decoding. We are

Figure 6. Time-resolved
stimulus reconstructions in
visual cortex. (A) Decoding
evidence from a forward model
trained on shape-only runs
and applied in a time-resolved
manner to validly (green) and
invalidly (red) predicted shapes,
as well as predicted-but-omitted
shapes (blue). Individual data
points reflect decoding
evidence obtained for each
time point from FIR parameter
estimates; solid lines reflect fit
with canonical HRF and its
temporal derivative. (B)
Decoding evidence from a
forward model trained on
grating-only runs and applied
in a time-resolved manner to
validly (green) and invalidly
(red) predicted orientations, as
well as predicted-but-omitted
orientations (blue). Individual
data points reflect decoding
evidence obtained for each
time point from FIR parameter
estimates; solid lines reflect fit
with canonical HRF and its
temporal derivative. Error bars
indicate SEM.

538 Journal of Cognitive Neuroscience Volume 32, Number 3



hesitant to interpret a marginal effect, but this could po-
tentially reflect the need for stronger prediction in partic-
ipants who had trouble disambiguating the stimuli.
Regardless, this is in the opposite direction than hypoth-
esized above and thus does not provide evidence for an

alternative explanation of content-sensitive hippocampal
effects based on stimulus discriminability. In an addi-
tional control analysis, we compared decoding per-
formance in the hippocampus for shapes and orientation
in the stimulus-only run and found no significance

Table 1. Searchlight Results

Cluster Size (Voxels) Anatomical Region Hemisphere Peak p Coordinates (x y z)

Predicted Shape > Predicted Orientation Decoding

16132 Calcarine sulcus Left .0018 −18 −56 4

Right .0036 12 −80 4

Lingual gyrus Left .0024 −6 −72 −2

Right .0028 24 −64 2

Cuneus Left .0036 −14 −80 18

Right .0024 14 −70 22

Hippocampus Left .0036 −22 −19 −15

Right .0024 26 −20 −18

Parahippocampal gyrus Left .0036 −26 −24 −18

Right .0036 22 −36 −10

Cerebellum Left .0036 −22 −62 −22

Right .0028 8 −68 −12

Pallidum Left .0018 −14 4 8

Thalamus Right .0024 16 −24 0

Inferior frontal gyrus Left .0028 −46 24 16

449 Middle temporal gyrus Left .017 −70 −36 −12

58 Hippocampus Right .018 24 −32 22

17 Insula Left .024 −38 −8 2

10 Superior temporal gyrus Left .023 −42 −14 −4

Predicted Shape Decoding > 0

180 Calcarine sulcus Right .016 14 −70 20

63 Hippocampus Right .026 24 −18 16

27 Middle cingulate Right .028 2 8 40

7 Caudate Left .028 −16 4 8

5 Cerebellum Left .044 −26 −62 22

Predicted Orientation Decoding < 0

393 Inferior frontal gyrus Left .0028 −46 24 16

252 Calcarine sulcus Left .0024 −24 −56 4

30 Middle temporal gyrus Left .020 −66 −36 −6

All p values are corrected for multiple comparisons. Coordinates reflect local maxima of significant clusters in MNI space. Local maxima within the
largest cluster were identified by reducing the critical p value to .005. No clusters were obtained by reversing the sign of the comparisons.
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difference in decodability between stimulus types, t(46) =
1.62, p = .11. This suggests that discriminability per se is
not a sufficient explanation for the dissociation reported
here.

Can the differences between hippocampal representa-
tions of shape and orientation predictions be explained
by orientation being a circular space, while the shapes
were sampled from a noncircular space? Specifically, it
may be hypothesized that the two orientations presented
in the prediction runs evoke opposing (i.e., negatively
correlated) patterns of activity in hippocampus because
they are at opposite points of a circular space, whereas
the two shapes are encoded in orthogonal (i.e., noncor-
related) patterns. Such a qualitative difference in the way
the two stimulus spaces are encoded might affect how
predictions about these stimuli are encoded as well. We
investigated this by correlating the hippocampal patterns
evoked by these stimuli in different stimulus-only runs,
both for the same stimuli (e.g., Shape 2 in the first run with
Shape 2 in the last run) and for different stimuli (e.g., Shape
2 in the first run with Shape 4 in the last run). These cor-
relations were calculated within participants and assessed
for reliability versus 0 at the group level. First, we found,
as expected, a modest positive correlation for stimuli that
were the same, both for shapes (Shape 2 with Shape 2,
and Shape 4 with Shape 4; mean r = .0269, t(23) =
2.22, p = .037) and orientations (45° with 45° and 135°
with 135°; mean r = .0266, t(23) = 1.94, p = .065).
There was no reliable correlation for stimuli that were
different, either for shapes (Shape 2 with Shape 4; mean
r = −.0041, t(23) = −0.31, p = .76) or orientations (45°
with 135°; mean r = .0172, t(23) = 1.31, p = .20). These
results do not support the notion that the dissociation we
report was caused by the two orientations, but not the
shapes, evoking opposing patterns.

Can the difference between the shape and orientation
experiments be explained by a difference in behavioral
task performance/difficulty? Following the same logic as
above, we split the participants in both experiments into
two subgroups based on their behavioral accuracy. Spe-
cifically, we performed a median split on percentage cor-
rect responses, yielding high (n = 12) and low (n = 12)
performers for both experiments. We investigated whether
evidence for the predicted shape/orientation in the hip-
pocampus differed between high versus low performers
using a two-way ANOVA. This analysis revealed a main ef-
fect of experiment, F(1, 44) = 9.00, p = .0044; no main
effect of task performance, F(1, 44) = 0.03, p = .87; and
no interaction between the two, F(1, 44) = 0.87, p = .36.
This fails to provide evidence that our main content-
sensitive hippocampal effects can be attributed to differ-
ences in task difficulty.

Can the difference between the shape and orientation
experiments be explained by a difference in patterns of
eye movements? Another potential concern could be that
the differential hippocampal effects could reflect predic-
tive cues inducing different eye movements for shapes

and gratings. In both experiments, participants were in-
structed to fixate on the bull’s-eye in the center of the
screen throughout the experiment and to not move their
eyes toward the stimuli. Still, to examine potential influ-
ences of involuntary eye movements, we collected high-
quality eye-tracking data for 9 of 24 participants in
Experiment 1 and 15 of 24 in Experiment 2. We investi-
gated influences of the stimulus (i.e., Shape 2 vs. Shape 4
in Experiment 1; 45° vs. 135° grating in Experiment 2),
predicted stimulus, and the interaction of the two, on pu-
pil position both poststimulus (250–750 msec) and dur-
ing the cue–stimulus interval (–250 to 0 msec).
We found no evidence of the presented shape on pupil

position in Experiment 1, either prestimulus (x-coordinate:
t(8) = −0.14, p = .89; y-coordinate: t(8) = 0.73, p =
.49) or poststimulus (x-coordinate: t(8) = −1.44, p =
.19; y-coordinate: t(8) = −1.10, p = .30). In Experiment 2,
there was a small difference in horizontal pupil position
between 45° and 135° gratings poststimulus (mean
x-coordinate = 0.01° vs. −0.05°, respectively; t(14) =
2.21, p= .044). This could reflect small involuntary eyemove-
ments along the orientation axes of the gratings (Mostert
et al., 2018). There were no effects on prestimulus pupil
position (x-coordinate: t(14) = 1.95, p = .071; y-coordinate:
t(14)=−1.32, p= .21) or vertical poststimulus pupil position
( y-coordinate: t(14) = −1.21, p= .25). However, crucial for
the interpretation of our results is whether eye movements
were influenced by the predictive cues. There were no effects
of predicted shape, nor an interaction between predicted
and presented shape, on pupil position in either pre- or post-
stimulus intervals (all ps> .10, both for horizontal and vertical
pupil coordinates). Similarly, there were no effects of pre-
dicted orientation, nor an interaction between predicted
and presented orientation, on pupil position in either pre-
or poststimulus intervals (all ps > .10, both for horizontal
and vertical pupil coordinates). That is, we found no evidence
for differences in eye movements that could explain the
fMRI effects of the predictive cues. In addition to specifying
pre- and poststimulus time windows, we also conducted
exploratory cluster-based permutation tests (Maris &
Oostenveld, 2007) on the full-time window (−850 to
1000 msec). This analysis did not reveal any significant ef-
fects of presented or predicted stimulus, nor their inter-
action, for either Experiment 1 or 2 (no clusters p < .05).
It should be noted that these control analyses relied on

splitting the participants into subgroups (n = 12 per
group) or, in the case of the eye movement analysis,
could only be performed on a subset of the participants
(n= 9 and n= 15 for Experiments 1 and 2, respectively).
Therefore, we cannot rule out the possibility that these
analyses did not have sufficient power to detect some
confounding effects.

DISCUSSION

Recent theories of the hippocampus suggest that it per-
forms general-purpose computations independent of
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stimulus contents (Buzsáki & Tingley, 2018). Alter-
natively, it has been suggested that the nature of stimuli,
especially their complexity, is a crucial factor in deter-
mining whether hippocampus and MTL are involved in
a given perceptual task (Dalton, Zeidman, McCormick,
& Maguire, 2018; Murray et al., 2007). The current study
addresses these hypotheses by revealing that predictions
about complex shapes and simple grating orientations
evoked qualitatively different representations in the hip-
pocampus. This suggests that the hippocampus can play
distinct computational roles in perception depending on
the content of perceptual predictions, rather than execut-
ing a general-purpose process independent of stimulus
content. This finding is especially noteworthy given that
the experimental paradigms, fMRI scan sequences, and
neural decoding methods were virtually identical in the
two experiments. Furthermore, the effects of the predic-
tions on processing in visual cortex were highly similar
for complex shapes and oriented gratings, suggesting
that the hippocampal differences were not due to
simple differences in the extent to which the predictions
were learned or used to guide perception.
Could our results have been caused by something

other than the nature of the stimuli per se? First, shape
and orientation predictions were measured in separate
experiments, involving different participants and MR
scanners. These factors were matched as well as possible
by recruiting both participant populations from similar
university campuses and by using the same type of MR
scanner in both experiments. Second, the tasks were nec-
essarily different in the two studies: detecting subtle
shape warps (Experiment 1) versus subtle grating phase
shifts (Experiment 2). These tasks were designed to be as
similar as possible: Both involved detecting a subtle
change in a feature that was orthogonal to the predicted
feature. Future research is needed to address this limita-
tion, for instance, by having participants perform the
same distracting task at fixation across stimulus types.
Third, could the dissociation be caused by the fact that
orientation is not represented in hippocampus, whereas
complex shapes are? A control analysis revealed no signif-
icant difference in decoding performance for shapes and
orientation in hippocampus in the stimulus-only runs.
Moreover, we report significant decoding of invalidly pre-
dicted orientations in CA2-CA3-DG, demonstrating that
orientations are in fact decodable in hippocampus.
Fourth, the shapes were sampled from a linear, noncircu-
lar space, whereas orientation is a circular feature space.
Although control analyses suggest that this did not cause
a qualitative difference in the patterns evoked in hip-
pocampus by the two types of stimuli (e.g., opposing
patterns for orientations, but orthogonal patterns for
shapes), future work should address whether the circu-
larity of the feature space affects the hippocampus’s role
in prediction. Finally, we performed several control anal-
yses to investigate potential differences between the ex-
periments in task difficulty, stimulus discriminability, or

eye movements, none of which was able to explain our
results.

In summary, the differential responses of the hippo-
campus in the two experiments seem best explained by
the difference in the nature of the predicted stimuli:
complex objects versus simple features. This is in line
with theories on hierarchical message passing in the
brain (Friston, 2005; Lee & Mumford, 2003; Rao &
Ballard, 1999). Complex objects are known to be repre-
sented in the MTL, such as in perirhinal cortex (Martin
et al., 2018; Murray et al., 2007), areas known to have
direct reciprocal connections with the hippocampus
(Henke, 2010; Lavenex & Amaral, 2000). Therefore, the
hippocampus is ideally positioned to supply complex
shape predictions to its immediate cortical neighbors.
Specifically, upon reception of a predictive cue (rising
or falling tones), pattern completion mechanisms in hip-
pocampus, especially in the CA3 subfield (Schapiro et al.,
2017; Hindy et al., 2016; Treves & Rolls, 1994), may lead
to retrieval of the predicted associate, which can then be
sent back to MTL cortex as a prediction of upcoming in-
puts. In contrast, for the low-level feature of orientation,
hippocampus does not seem to represent the predicted
feature. This may be explained by the fact that the nearby
cortical recipients of hippocampal feedback in the MTL
do not preferentially represent such low-level features.
Rather, as reviewed above, these areas represent com-
plex objects abstracted away from their simple features
(i.e., invariant over location, size, etc.) and are thus not
ideal targets for predictions about such features.

In fact, for oriented gratings, the hippocampus and es-
pecially its CA3 subfield (combined with CA2 and dentate
gyrus) seemed to represent prediction “errors” rather
than predictions (Duncan, Ketz, Inati, & Davachi, 2012;
Chen, Olsen, Preston, Glover, & Wagner, 2011; Lisman
& Grace, 2005): Validly cued orientations were cancelled
out, whereas invalidly cued orientations were not. In
other words, the hippocampus seemed to represent an
“antiprediction” that inhibited representation of ex-
pected stimuli. This is consistent with the observed neg-
ative evidence for expected but omitted orientations.
Such coding for stimulus prediction errors may allow
the hippocampus to refine learning and predictions else-
where in the brain. Note that we observed these effects
in CA2-CA3-DG, whereas most theories propose that pre-
diction errors or at least a comparison between retrieved
and experienced information should occur in CA1 (Chen
et al., 2011; Lisman & Grace, 2005). It is possible that we
did not observe such CA1 effects because we scanned af-
ter associative learning of the cues and outcomes was
complete and that they may be more apparent if we
had examined responses during the learning process, a
possibility that awaits future studies.

Note that, in the current experimental design, when
one stimulus is predicted (e.g., Shape 2 in Experiment 1
or 45° grating in Experiment 2), the other (Shape 4 or
135° grating, respectively) is always the unpredicted
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stimulus. Therefore, positive (negative) decoding evi-
dence for the predicted stimulus could also reflect nega-
tive (positive) evidence for the unpredicted. Future
research will be able to distinguish these two possibilities
by increasing the number of cues and possible stimuli,
such that the predicted and unpredicted stimuli can be
dissociated.

Interestingly, shape prediction signals were strongly
present in the subiculum, but orientation signals were
fully absent there. The subiculum is a major output
hub of hippocampus back to MTL cortex (Roy et al.,
2017; Lavenex & Amaral, 2000). Therefore, this pattern
of results is in line with the suggestion that hippocampus
may be a top–down source for high-level object predic-
tions in visual cortex, but not for low-level feature predic-
tions. This proposal leads to distinct hypotheses about
the direction of signal flow through the hippocampal
and MTL system during processing of complex shape
and feature predictions, respectively. That is, shape pre-
dictions are proposed to flow from the hippocampus
(CA3 through subiculum) back to cortex via entorhinal
cortex (EC), whereas orientation predictions are not
(and prediction errors may flow forward from EC to
CA1/CA3). These hypotheses can be tested in future re-
search using layer-specific fMRI of EC (Koster et al., 2018;
Maass et al., 2014), because signals flowing into hippo-
campus arise from superficial layers, whereas signals
flowing from hippocampus back to cortex arrive in the
deep layers (Lavenex & Amaral, 2000). Additionally, this
can be addressed using simultaneous electrophysio-
logical measurements in hippocampus and cortex, for in-
stance, in human epilepsy patients, which offer superior
temporal resolution.

When oriented gratings were expected but omitted,
the pattern of activity in V1 reflected the expected orien-
tation, suggesting that such expectations can evoke a
template of the predicted feature in sensory cortex, in
line with previous findings (Kok et al., 2014, 2017). In
contrast, this did not occur for expected but omitted
shapes. Together with the differential hippocampal rep-
resentations, these findings suggest that expectations
about low-level features and higher-level objects may in-
volve distinct neural mechanisms. In this context, it is in-
teresting that valid (vs. invalid) orientation predictions
slightly improved participants’ phase discrimination per-
formance, in line with previous findings of improved ori-
entation discrimination for validly predicted gratings
(Kok et al., 2017; Kok, Jehee, et al., 2012), whereas we
did not find such an improvement for the shape discrim-
ination task. It should be noted that behavioral benefits
are expected to be minor (or absent) in the current
study, because participant’s task (discriminating the two
stimuli on a given trial) was orthogonal to the cue (which
predicted the identity of the first stimulus on a trial).

As revealed by a searchlight analysis, this dissociation is
not restricted to visual cortex and hippocampus but also
occurs in anterior occipital cortex, cerebellum, left IFG,

and left middle temporal gyrus (see Table 1). The exact
role of these other regions in generating predictions and
prediction errors is unknown, though it is interesting to
note that the anterior occipital cortex (St John-Saaltink,
Utzerath, Kok, Lau, & De Lange, 2015), cerebellum
(Roth, Synofzik, & Lindner, 2013), and left IFG (Turk-
Browne, Scholl, Chun, & Johnson, 2009) have previously
been implicated in perceptual prediction and statistical
learning. Further work is required to establish the hierar-
chy of regions involved in generating expectations. For
instance, the left IFG is a high-level region with the ap-
propriate connectivity for sending top–down signals to
sensory cortex, and it would be of great interest to know
whether the negative orientation prediction signals there
originate in the hippocampus, or whether instead the
hippocampus receives these signals from left IFG.
The effects of the orientation predictions on grating-

evoked signals in visual cortex, as reported here, differ
from those reported previously using a similar paradigm
(Kok, Jehee, et al., 2012). Whereas invalid grating orien-
tation predictions in that study led to both an increased
peak BOLD amplitude and a reduced orientation repre-
sentation in V1 (Kok, Jehee, et al., 2012), the current
study found that invalid orientation predictions lead to
“delayed” signals, both in terms of BOLD amplitude
and orientation representations. Although the cause of
this difference is currently unclear, there were a couple
of potentially important differences between these stud-
ies. First, the two studies employed different behavioral
tasks: Participants performed orientation and contrast
discrimination in Kok, Jehee, et al. (2012), whereas in
the current study they discriminated grating phase. Al-
though we do not have a clear hypothesis for how this
would lead to differences in V1, previous work has shown
that task demands influence expectation effects in visual
cortex (Auksztulewicz, Friston, & Nobre, 2017; St John-
Saaltink et al., 2015; Kok, Rahnev, Jehee, Lau, & De
Lange, 2012; Larsson & Smith, 2012). Additionally, there
were differences in the grating presentations between
the two studies. In Kok, Jehee, et al. (2012), the individ-
ual gratings were presented for a longer duration (500 vs.
250 msec) but with a shorter ISI (100 vs. 500 msec), and
the two gratings in a given trial were in antiphase with
different spatial frequencies. Whether and how these pa-
rameters could explain the differential effects of expecta-
tion cues on V1 processing is unclear, but one possibility
is that they might affect the degree of repetition suppres-
sion between the two gratings in each trial, which could
in turn interact with prediction signals (Henson, 2016;
Kok, Jehee, et al., 2012; Todorovic & De Lange, 2012;
Summerfield, Trittschuh, Monti, Mesulam, & Egner,
2008).
In summary, the current study revealed that predic-

tions about complex shapes and simple orientations
evoke distinct representations in hippocampus. These
findings are in line with the hippocampus generating
perceptual predictions for high-level objects, but not
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for low-level features. This fits well with hierarchical
Bayesian inference theories of sensory processing (Friston,
2005; Lee & Mumford, 2003; Rao & Ballard, 1999), which
suggest that each brain region provides predictions to those
regions with which it has direct feedback connections and
formats those predictions in the currency that the receiving
region “understands” (Bastos et al., 2012; Lee & Mumford,
2003). Finally, these findings suggest that stimulus com-
plexity is a crucial factor in determining whether and in
what role the hippocampus is involved in perceptual in-
ference (Murray et al., 2007).
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