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HIGH-FREQUENCY BOUNDS FOR THE HELMHOLTZ EQUATION
UNDER PARABOLIC TRAPPING AND APPLICATIONS IN

NUMERICAL ANALYSIS∗
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Abstract. This paper is concerned with resolvent estimates on the real axis for the Helmholtz
equation posed in the exterior of a bounded obstacle with Dirichlet boundary conditions when the
obstacle is trapping. There are two resolvent estimates for this situation currently in the literature:
(i) in the case of elliptic trapping the general “worst case” bound of exponential growth applies, and
examples show that this growth can be realized through some sequence of wavenumbers; (ii) in the
prototypical case of hyperbolic trapping where the Helmholtz equation is posed in the exterior of two
strictly convex obstacles (or several obstacles with additional constraints) the nontrapping resolvent
estimate holds with a logarithmic loss. This paper proves the first resolvent estimate for parabolic
trapping by obstacles, studying a class of obstacles the prototypical example of which is the exterior
of two squares (in two dimensions) or two cubes (in three dimensions), whose sides are parallel. We
show, via developments of the vector-field/multiplier argument of Morawetz and the first application
of this methodology to trapping configurations, that a resolvent estimate holds with a polynomial loss
over the nontrapping estimate. We use this bound, along with the other trapping resolvent estimates,
to prove results about integral equation formulations of the boundary value problem in the case of
trapping. Feeding these bounds into existing frameworks for analyzing finite and boundary element
methods, we obtain the first wavenumber-explicit proofs of convergence for numerical methods for
solving the Helmholtz equation in the exterior of a trapping obstacle.
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1. Introduction.

1.1. Context, and informal discussion of the main results. Trapping and
nontrapping are central concepts in scattering theory. In the case of the Helmholtz
equation, ∆u+ k2u = −f , posed in the exterior of a bounded, Dirichlet obstacle Ω−
in two or three dimensions, Ω− is nontrapping if all billiard trajectories starting in an
exterior neighborhood of Ω− escape from that neighborhood after some uniform time,
and Ω− is trapping otherwise (see Definitions 1.3 and 1.12 below for more precise
statements, taking into account subtleties about diffraction from corners).
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846 CHANDLER-WILDE, SPENCE, GIBBS, AND SMYSHLYAEV

This paper is concerned with resolvent estimates (i.e., a priori bounds on the
solution u in terms of the data f) for the exterior Dirichlet problem when k is real.
We can write these in terms of the outgoing cut-off resolvent χ1R(k)χ2 : L2(Ω+) →
L2(Ω+) for k ∈ R \ {0}, where Ω+ := Rd \ Ω−, χ1, χ2 ∈ C∞comp(Ω+) and R(k) :=
(∆+k2)−1, with Dirichlet boundary conditions, is such that R(k) : L2(Ω+)→ L2(Ω+)
for =k > 0. When Ω− is nontrapping, given k0 > 0,

(1.1) ‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) .
1

k
for all k ≥ k0;

this classic result was first obtained by the combination of the results on propagation
of singularities for the wave equation on manifolds with boundary by Melrose and
Sjöstrand [68, 69] with either the parametrix method of Vainberg [88] (see [79]) or
the methods of Lax and Phillips [56] (see [67]), following the proof by Morawetz,
Ralston, and Strauss [72, 74] of the bound under a slightly stronger condition than
nontrapping.

In this situation of scattering by a (Dirichlet) obstacle, there are two resolvent
estimates in the literature when Ω− is trapping. The first is the general result of Burq
[12, Theorem 2] that, given any smooth Ω− and k0 > 0, there exists α > 0 such that

(1.2) ‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . eαk for all k ≥ k0.

If Ω− has an ellipse-shaped cavity (see Figure 1.1(a)) then there exists a sequence of
wavenumbers 0 < k1 < k2 < . . ., with kj →∞, and α > 0 such that

(1.3) ‖χ1R(kj)χ2‖L2(Ω+)→L2(Ω+) & eαkj , j = 1, 2, . . . ,

(see, e.g., [7, section 2.5]), and thus the bound (1.2) is sharp. More generally, if there
exists an elliptic trapped ray (i.e., an elliptic closed broken geodesic), and ∂Ω− is
analytic in neighborhoods of the vertices of the broken geodesic, then the resolvent
can grow at least as fast as exp (αkqj ), through a sequence kj as above and for some
range of q ∈ (0, 1), by the quasimode construction of Cardoso and Popov [17] (note
that Popov proved superalgebraic growth for certain elliptic trapped rays when ∂Ω−
is smooth in [78]).

χ1, χ2 ∈ C∞comp(Ω+) and R(k) := (∆ + k2)−1, with Dirichlet boundary conditions, is such that
R(k) : L2(Ω+)→ L2(Ω+) for =k > 0. When Ω− is nontrapping, given k0 > 0,

‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) .
1

k
for all k ≥ k0; (1.1)

this classic result was first obtained by the combination of the results on propagation of singularities
for the wave equation on manifolds with boundary by Melrose and Sjöstrand [68, 69] with either
the parametrix method of Vainberg [88] (see [79]) or the methods of Lax and Phillips [56] (see
[67]), following the proof by Morawetz, Ralston, and Strauss [72, 74] of the bound under a slightly-
stronger condition than nontrapping.

In this situation of scattering by a (Dirichlet) obstacle, there are two resolvent estimates in the
literature when Ω− is trapping. The first is the general result of Burq [12, Theorem 2] that, given
any smooth Ω− and k0 > 0, there exists α > 0 such that

‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . eαk for all k ≥ k0. (1.2)

If Ω− has an ellipse-shaped cavity (see Figure 1.1(a)) then there exists a sequence of wavenumbers
0 < k1 < k2 < . . ., with kj →∞, and α > 0 such that

‖χ1R(kj)χ2‖L2(Ω+)→L2(Ω+) & eαkj j = 1, 2, . . . , (1.3)

see, e.g., [7, §2.5], and thus the bound (1.2) is sharp. More generally, if there exists an elliptic
trapped ray (i.e. an elliptic closed broken geodesic), and ∂Ω− is analytic in neighbourhoods of the
vertices of the broken geodesic, then the resolvent can grow at least as fast as exp (αkqj ), through
a sequence kj as above and for some range of q ∈ (0, 1), by the quasimode construction of Cardoso
and Popov [17] (note that Popov proved superalgebraic growth for certain elliptic trapped rays
when ∂Ω− is smooth in [78]).

(c)(b)(a)

Figure 1.1: Examples of: (a) elliptic trapping; (b) hyperbolic trapping; (c) parabolic trapping.

The second trapping resolvent estimate in the literature concerns hyperbolic trapping, the
standard example of which is when Ω− equals two disjoint convex obstacles with strictly positive
curvature; see Figure 1.1(b). The work of Ikawa on this problem (and its generalisation to a finite
number of such obstacles satisfying additional conditions – see Definition 4.5 below) implies that
there exists N > 0 such that

‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . kN for all k ≥ k0 (1.4)

[48, Theorem 2.1], [14, Theorem 4.5], and this bound was later improved by Burq [14, Proposition
4.4] to

‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) .
log(2 + k)

k
for all k ≥ k0, (1.5)

i.e. the trapping is so weak there is only a logarithmic loss over the nontrapping estimate (1.1).

Summary of the main results and their novelty. This paper considers the exterior Dirichlet
problem for a certain class of parabolic-trapping obstacles, and the heart of this paper and its main
result is the following theorem, which is subsumed into the more-general Theorem 1.10 below.

Theorem 1.1 For the class of obstacles in Definition 1.4 below, the simplest example of which
is two squares (in 2-d) or two cubes (in 3-d) with their sides parallel (see Figure 1.1(c)), given
k0 > 0,

‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . k for all k ≥ k0. (1.6)

2

Fig. 1.1. Examples of (a) elliptic trapping; (b) hyperbolic trapping; (c) parabolic trapping.

The second trapping resolvent estimate in the literature concerns hyperbolic trap-
ping, the standard example of which is when Ω− equals two disjoint convex obstacles
with strictly positive curvature; see Figure 1.1(b). The work of Ikawa on this prob-
lem (and its generalization to a finite number of such obstacles satisfying additional
conditions—see Definition 4.5 below) implies that there exists N > 0 such that

(1.4) ‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . kN for all k ≥ k0

[48, Theorem 2.1], [14, Theorem 4.5], and this bound was later improved by Burq [14,
Proposition 4.4] to

(1.5) ‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) .
log(2 + k)

k
for all k ≥ k0,
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i.e., the trapping is so weak there is only a logarithmic loss over the nontrapping
estimate (1.1).

Summary of the main results and their novelty. This paper considers the exterior
Dirichlet problem for a certain class of parabolic trapping obstacles, and the heart of
this paper and its main result is the following theorem, which is subsumed into the
more general Theorem 1.10 below.

Theorem 1.1. For the class of obstacles in Definition 1.4 below, the simplest ex-
ample of which is two squares (in two dimensions) or two cubes (in three dimensions)
with their sides parallel (see Figure 1.1(c)), given k0 > 0,

(1.6) ‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . k for all k ≥ k0.

We believe that (1.6) is the first resolvent estimate proved for parabolic trapping
by obstacles. A simple construction involving the eigenfunctions of the Dirichlet
Laplacian on an interval gives an example of a compactly supported f such that
‖χ1R(k)f‖L2(Ω+) & ‖f‖L2(Ω+) (see [25, end of section 3]), so that (1.6) is at most
one power of k away from being sharp. Furthermore, we prove that if either suppχ1

or suppχ2 is sufficiently far away from the “trapping region” (this is defined more
precisely below, but in the example of two squares/cubes one can think of it as the
region between the two obstacles), then ‖χ1R(k)χ2‖L2→L2 . 1, and if both suppχ1

and suppχ2 are sufficiently far away from the trapping region, then the nontrapping
estimate ‖χ1R(k)χ2‖L2→L2 . 1/k holds.

We prove these resolvent estimates by adapting and developing the vector-
field/multiplier argument of Morawetz; this argument famously proves the estimate
(1.1) for the Dirichlet resolvent for star-shaped domains [72, 73] (see also [25]) using
the vector field x, and (in d = 2) for a class of domains slightly more restrictive than
nontrapping [72], [74, section 4]. The present paper represents the first application of
this methodology to trapping by a bounded obstacle. Our argument is based on using
the vector field edxd (with ed the unit vector in the xd direction) in the trapping region
and the vector field x in the far field; see Figure 1.4 below for an example obstacle
along with the corresponding vector field. The main technical challenge is achiev-
ing a transition between these vector fields (and other coefficients in the multiplier)
in a controllable way, and a main source of difficulty in accomplishing this is that
the derivative matrix of edxd is only semidefinite, in contrast to related transition-
ing arguments applied in nontrapping configurations where the derivative matrices
of the vector fields are positive definite (e.g., [72, Lemma 2, Proof of Lemma 5]); a
more detailed outline of the ideas behind the proof is given in section 3.1. We note
that the vector field edxd (on its own) has been used by Chandler-Wilde and Monk
[24] to prove a priori bounds on solutions of scattering by unbounded rough surfaces,
and also by Burq, Hassell, and Wunsch [15] to study spreading of quasimodes in the
Bunimovich stadium.

An advantage of these vector-field arguments in this obstacle setting is that
they avoid the substantial technicalities involved with propagation of singularities
on manifolds with boundary. Indeed, the only other results in the literature that
deal with parabolic and/or degenerate hyperbolic configurations, these proved with
propagation-of-singularities methods, are the results of Christianson and Wunsch
[27, 26] in the setting of scattering by metrics (where there is no boundary); see
the discussion in section 1.3. Moreover, using these propagation-of-singularities tech-
niques to prove resolvent estimates for scattering by nonsmooth obstacles is highly
nontrivial; the only result for nonsmooth obstacles obtained with these methods is
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848 CHANDLER-WILDE, SPENCE, GIBBS, AND SMYSHLYAEV

that of Baskin and Wunsch [5], that the nontrapping resolvent estimate (1.1) holds
in two dimensions for nontrapping polygons (in the sense of Definition 1.12 below).

Additionally, our vector-field arguments lead naturally to the improvements de-
scribed above in the k-dependence of (1.6) if either suppχ1 or suppχ2 is sufficiently
far away from the trapping region. In the case of scattering by smooth obstacles such
improvements have been established by propagation-of-singularities arguments, but
only when suppχ1 ≡ suppχ2 and both are sufficiently far away from the obstacle;
see Burq [13, Theorem 4] and Cardoso and Vodev [18, Theorem 1.1]. Related results
where the cut-off functions are replaced by semiclassical pseudodifferential operators
restricting attention to areas of phase space isolated from the trapped set have been
proved in the setting of scattering by a potential and/or by a metric (but not an
obstacle) by Datchev and Vasy [32, Theorems 1.1, 1.2].

One further advantage of these vector-field arguments is that, for k ≥ k0 for some
explicitly given k0, they enable us to obtain an expression for the omitted constant
in (1.6) that is explicit in all parameters (in particular, parameters describing the
geometries of the domain, and the choice of the cut-off functions; see Lemma 3.5
below); thus our resolvent estimates are “quantitative” in the sense of, e.g., Rodnianski
and Tao [82].

The resolvent estimate (1.6) has immediate implications for boundary integral
equation formulations of the scattering problem, for the numerical analysis of these
integral equation formulations, and for the numerical analysis of the finite element
method (FEM) (based on the standard domain-based variational formulation of the
scattering problem); these implications are outlined in sections 1.4 and 1.5.3 below. In
this sense, this paper follows the theme of [25], [84], and [4] of proving high-frequency
estimates for the Helmholtz equation and then exploring their implications for integral
equations and numerical analysis. Novelties of the present paper with respect to [25],
[84], and [4] include the following:

1. We show how to write down the passage from resolvent estimate, to bound on
the Dirichlet-to-Neumann (DtN) map, to bounds on integral operators, ex-
plicitly as a general black-box “recipe,” and use this recipe—applied implicitly
to C∞ nontrapping scenarios in [4]—to deduce the first bounds for trapping
scenarios. As a consequence, this paper includes the first wavenumber-explicit
proofs of convergence for a numerical method for solving the Helmholtz equa-
tion in a trapping domain (see sections 1.4 and 1.5.3).

2. Whereas [25], [84], and [4] proved bounds on integral operators posed only
on the space L2(Γ), where Γ := ∂Ω−, we prove wavenumber-explicit bounds
for the Sobolev spaces Hs(Γ) and Hs

k(Γ) for −1 ≤ s ≤ 1 (defined in section
2.3). One motivation for this is that, just as there is a large interest in the
L2(Γ)-theory of these integral operators, there is also a large interest in the

theory in the “energy spaces” H±1/2(Γ) and H
±1/2
k (Γ) (see, e.g., [65, Chapter

7], [83, Chapter 3], [87, Chapter 6]).
3. To complement the upper bound on the integral operator under parabolic

trapping proved in Corollary 1.14, we prove a new lower bound in this sce-
nario in Lemma 6.3. The arguments used in the proof of the lower bound
additionally lead to a counterexample to a conjecture on k-uniform coercivity
of integral operators made in [8, Conjecture 6.1]; see section 6.3.2 below.

1.2. Statement of the main resolvent estimate and DtN map results.

1.2.1. Geometric definitions. Let Ω− ⊂ Rd, d = 2, 3, be a bounded Lipschitz
open set such that the open complement Ω+ := Rd \ Ω− is connected, and let Γ :=
∂Ω+ = ∂Ω− and RΓ := maxx∈Γ |x|. Let γ± denote the trace operators from Ω± to Γ,
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let ∂±n denote the normal derivative trace operators (the normal pointing out of Ω−
and into Ω+), and let ∇S denote the surface gradient operator on Γ. Let H1

loc(Ω+)
denote the set of functions, v, such that v is locally integrable on Ω+ and χv ∈ H1(Ω+)
for every χ ∈ C∞comp(Ω+) := {χ|Ω+ : χ ∈ C∞(Rd) is compactly supported}. We
abbreviate r := |x|, and xj and nj(x) denote the jth components of x and n(x),
respectively, so that nj(x) = ej · n(x), where ej is the unit vector in the xj direction.
Let BR(x) := {y ∈ Rd : |x− y| < R} and BR := BR(0). Finally, let ΩR := Ω+ ∩BR.

In discussing resolvent estimates, the following geometric definitions play a central
role.

Definition 1.2 (star-shaped, and star-shaped with respect to a ball). We say
that a bounded open set Ω is

(i) star-shaped with respect to the point x0 ∈ Ω if, whenever x ∈ Ω, the segment
[x0, x] ⊂ Ω;

(ii) star-shaped if there exists an x0 ∈ Ω such that Ω is star-shaped with respect
to x0;

(iii) star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect
to every point in Ba(x0);

(iv) star-shaped with respect to a ball if there exists a > 0 and x0 ∈ Ω such that
Ω is star-shaped with respect to the ball Ba(x0).

Recall that if Ω− is Lipschitz, then it is star-shaped with respect to x0 if and only
if (x − x0) · n(x) ≥ 0 for all x ∈ Γ for which n(x) is defined, and Ω− is star-shaped
with respect to Ba(x0) if and only if (x− x0) · n(x) ≥ a for all x ∈ Γ for which n(x)
is defined; see, e.g., [70, Lemma 5.4.1].

Definition 1.3 (nontrapping). We say that Ω− ⊂ Rd, d = 2, 3, is nontrapping
if Γ is smooth (C∞) and, given R such that Ω− ⊂ BR, there exists a T (R) < ∞
such that all the billiard trajectories (in the sense of Melrose–Sjöstrand [69, Definition
7.20]) that start in ΩR at time zero leave ΩR by time T (R).

We now introduce the classes of Lipschitz obstacles to which our new resolvent
estimates apply (Definitions 1.4 and 1.6). The most general class is the class of
(R0, R1) obstacles (Definition 1.4). The definition of this class is somewhat implicit,
in terms of existence of an appropriate vector field Z that we use when proving
the resolvent estimate (1.6). But it follows from the definition and Remark 1.5 that,
expressed in terms of the geometry of the obstacle, membership of this class is nothing
more than a requirement that, for some concentric circles centred on the origin of radii
R0 and R1 with R1/R0 > e1/4, it holds that xdnd(x) ≥ 0 for almost all x ∈ Γ inside
the smaller circle, that x · n(x) ≥ 0 for almost all x ∈ Γ outside the larger circle, and
that some particular convex combination of xdnd(x) and x · n(x) is nonnegative for
almost all x ∈ Γ in the transition zone between the two circles.

Definition 1.4 ((R0, R1) obstacle). For 0 < R0 < R1 we say that Ω− is an
(R0, R1) obstacle if there exists χ ∈ C3[0,∞) with

(i) χ(r) = 0 for 0 ≤ r ≤ R0, χ(r) = 1, for r ≥ R1, 0 < χ(r) < 1, for
R0 < r < R1; and

(ii) 0 ≤ rχ′(r) < 4, for r > 0;
such that Z(x) · n(x) ≥ 0 for all x ∈ Γ for which the normal n(x) is defined, where

(1.7) Z(x) := edxd
(
1− χ(r)

)
+ xχ(r), x ∈ Rd.

Remark 1.5 (constraint on R1/R0). If Ω− is an (R0, R1) obstacle, then R1/R0 >
e1/4 ≈ 1.284. For, if χ ∈ C3[0,∞) satisfies (i) and (ii), then
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1 =

∫ R1

R0

χ′(r) dr <

∫ R1

R0

4

r
dr = 4 log(R1/R0).

Conversely (see the proof of Lemma 1.7 below), if R1 > e1/4R0, then χ ∈ C3[0,∞)
can be constructed satisfying the constraints (i) and (ii) of the above definition.

An important subclass of (R0, R1) obstacles is the class of strongly (R0, R1) obsta-
cles (Definition 1.6 and see Figures 1.1(c), 1.2, and 1.3). The difference between these
definitions is precisely that we require that both xdnd(x) and x ·n(x) be non-negative
for almost all x ∈ Γ in the transition zone between the two circles for an obstacle to
be strongly (R0, R1).

Definition 1.6 (strongly (R0, R1) obstacle). For R1 > e1/4R0 > 0 we say
that Ω− is a strongly (R0, R1) obstacle if, for all x ∈ Γ for which n(x) is defined,
xdnd(x) ≥ 0 if |x| ≤ R1, while x · n(x) ≥ 0 if |x| ≥ R0.

Lemma 1.7 (a strongly (R0, R1) obstacle is an (R0, R1) obstacle). If Ω− is a
strongly (R0, R1) obstacle, then Ω− is an (R0, R1) obstacle.

Proof. To show that a strongly (R0, R1) obstacle Ω− is an (R0, R1) obstacle
we just need to construct a χ ∈ C3[0,∞) satisfying the constraints (i) and (ii)
of Definition 1.4. For if we do that and define Z by (1.7), then Z(x) · n(x) =
xdnd(x)(1 − χ(r)) + x · n(x)χ(r) ≥ 0. But, given any 0 < ε < (R1 − R0)/2, we
can construct a p ∈ C2(R) such that p(r) = 0, for r ≤ R0 and r ≥ R1, 0 < p(r) ≤ 1,
for R0 < r < R1, and p(r) = 1 for R0 + ε ≤ r ≤ R1 − ε. Then, if R1/R0 > e1/4, the
function

χ(r) :=

∫ r

R0

p(s)

s
ds

/∫ R1

R0

p(s)

s
ds, r ≥ 0,

is in C3[0,∞) and satisfies the constraints (i) and (ii) provided

(1.8) ε ≤ ε0 :=
R1 −R0e1/4

e1/4 + 1
.

In particular, for r > 0,

0 ≤ rχ′(r) =
p(r)∫ R1

R0
(p(s)/s) ds

<
1∫ R1−ε

R0+ε
s−1 ds

=
1

log((R1 − ε)/(R0 + ε)
,

and this last expression is ≤ 4 if and only if (1.8) holds.

Remark 1.8 (examples of strongly (R0, R1) obstacles). It is clear that Ω− is a
strongly (R0, R1) obstacle (and so an (R0, R1) obstacle) if R1 > e1/4R0 > 0 and
either of the following conditions holds:

(i) R0 ≥ RΓ := maxx∈Γ |x|, and xdnd(x) ≥ 0 for all x ∈ Γ for which n(x) is
defined (e.g., Ω− is the union of two or more balls with centers in the plane xd = 0,
or the union of two or more parallel squares; see Figure 1.2).

(ii) minx∈Γ |x| ≥ R1 and Ω− is star-shaped with respect to the origin.

The second example shows that an (R0, R1) obstacle need not be trapping, and
so it is convenient to define a class of (R0, R1) obstacles that are trapping.

Definition 1.9 ((R0, R1, a) parallel trapping obstacle). For 0 < R0 < R1

and a > 0 we say that Ω− is an (R0, R1, a) parallel trapping obstacle if it is an
(R0, R1) obstacle and there exist y, z ∈ Γ with nd(y) = 0 and n(z) = −n(y) such that
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HIGH-FREQUENCY BOUNDS UNDER PARABOLIC TRAPPING 851

z = y + an(y) and, for some ε > 0, n(x) = n(y) for x ∈ Γ ∩ Bε(y), n(x) = n(z) for
x ∈ Γ ∩Bε(z), and

ΩC :=
{
x+ tn(x) : 0 < t < a and x ∈ Γ ∩Bε(y)

}
⊂ Ω+.

The point of this definition is that Γ ∩ Bε(y) and Γ ∩ Bε(z) are parallel parts
of Γ and that {x + tn(x) : 0 < t < a} is a (trapped) billiard trajectory in Ω+ for
x ∈ Γ ∩Bε(y).

Figures 1.2 and 1.3 are examples of both Definition 1.9 and Definition 1.6. By
Lemma 1.7 they are also examples of Definition 1.4, satisfying Z(x) · n(x) ≥ 0 for
all x ∈ Γ for which n(x) is defined, where Z is given by (1.7), with R1 > e1/4R0 as
indicated in the figures and χ ∈ C3[0,∞) satisfying the conditions of Definition 1.4.
Figure 1.4 illustrates the direction of the vector field Z for the obstacle and choice of
R0 and R1 in Figure 1.3, with χ constructed as in the proof of Lemma 1.7.

a
Γ

n

x1

x2

Fig. 1.2. The obstacle Ω− is the union of two parallel squares. For R1 > e1/4R0 ≥ RΓ :=
maxx∈Γ |x|, it is a two-dimensional example both of a strongly (R0, R1) obstacle and of an (R0, R1, a)
parallel trapping obstacle, since x2n2(x) ≥ 0 for all x ∈ Γ for which n(x) is defined.

R0
a

R1

Γ
n

x1

x2

Fig. 1.3. The gray-shaded obstacle Ω− is a two-dimensional example both of a strongly (R0, R1)
obstacle and of an (R0, R1, a) parallel trapping obstacle, with the values of R0, R1, and a indicated,
since R1 > e1/4R0 and, for x ∈ Γ, x2n2(x) ≥ 0 for |x| ≤ R1 and x · n(x) ≥ 0 for |x| ≥ R0.
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852 CHANDLER-WILDE, SPENCE, GIBBS, AND SMYSHLYAEV

Fig. 1.4. The obstacle Ω− of Figure 1.3 and the same concentric circles centered on the origin
of radii R1 > R0, but with arrows showing the direction of the vector field Z, where Z is defined
by (1.7) with χ constructed as in the proof of Lemma 1.7 (with ε := ε0, where ε0 is given by (1.8)).
Note that Z(x) = x outside the larger circle, that Z(x) = x2e2 inside the smaller circle (so that Z
vanishes and its direction is undefined on the thick green line), and that Z(x) ·n(x) ≥ 0 for all x ∈ Γ
for which n(x) is defined.

One example of a strongly (R0, R1) obstacle supporting parabolic trapping that
is not an (R0, R1, a) parallel trapping obstacle is a three-dimensional cube with a
circular cylinder (of diameter a) taken out of one side; to be specific let us take the
obstacle Ω− := {x : |xj | < a for j = 1, 2, 3}\{x : x2

1 +x2
2 ≤ a2/4 and x3 ≥ 0}. This is

strongly (R0, R1) by Remark 1.8(i) but is not an (R0, R1, a) parallel trapping obstacle
because, although there exist y, z ∈ Γ with nd(y) = 0 and n(z) = −n(y) such that
z = y + an(y) (on the inside of the cylinder), the normal vector is not constant in a
neighborhood of y, z, and so there does not exist an ε > 0 such that n(x) = n(y) for
x ∈ Γ ∩Bε(y) and n(x) = n(z) for x ∈ Γ ∩Bε(z).

There also exist obstacles supporting parabolic trapping that are not (R0, R1)
obstacles, in which case they are also not strongly (R0, R1) obstacles nor (R0, R1, a)
parallel trapping obstacles. For example, let

S1 := {x : |x1| ≤ 1/2, x2 ≥ 0} and S2 := {x : x1 ≥ 1,−3/2 ≤ x2 ≤ −1/2}.

Then the obstacle Ω− := {x : |x1| < 2,−3 < x2 < 1}\S1, a square with a smaller, unit
square removed, is a strongly (R0, R1) obstacle and an (R0, R1, a) parallel trapping
obstacle, if R1 > e1/4R0, R0 ≥

√
5/2, and a = 1. But Ω := Ω− \ S2, a square

with two unit squares removed from sides that point in different directions, supports
parabolic trapping for the same wavenumbers as Ω− but is not an (R0, R1) obstacle
for any choice of R1 > e1/4R0, since, where Z is given by (1.7), it does not hold
that Z(x) · n(x) ≥ 0 for all x ∈ ∂Ω ∩ ∂S2 for which n(x) is defined. Since the sides
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from which the squares are removed point in different directions, the obstacle Ω is,
moreover, not an (R0, R1) obstacle in any coordinate system.1

1.2.2. Resolvent estimates and bounds on the DtN map. In the follow-
ing theorem χ is any function such that Ω− is an (R0, R1) obstacle in the sense of
Definition 1.4 and, for k > 0 and R > RΓ,

‖u‖2H1
k(ΩR) :=

∫
ΩR

(
|∇u|2 + k2|u|2

)
dx and ‖u‖2H1

k(ΩR;χ) :=

∫
ΩR

(
|∇u|2 + k2|u|2

)
χdx.

(1.9)

The notation A . B (or B & A) means that A ≤ CB, where the constant C > 0 does
not depend on k or f (but will depend on Ω+, R, and k0). We write A ∼ B if A . B
and A & B.

Theorem 1.10 (resolvent estimates). Let f ∈ L2(Ω+) have compact support in
Ω+, and let u ∈ H1

loc(Ω+) be a solution to the Helmholtz equation ∆u+ k2u = −f in
Ω+ that satisfies the Sommerfeld radiation condition

(1.10)
∂u

∂r
(x)− iku(x) = o

(
1

r(d−1)/2

)
,

as r →∞, uniformly in x̂ := x/r, and the boundary condition γ+u = 0. If Ω− is an
(R0, R1) obstacle for some R1 > R0 > 0, then, for all R > maxx∈Γ∪supp(f) |x|, given
k0 > 0,

(1.11) k−1‖u‖H1
k(ΩR) + ‖∂du‖L2(ΩR) + ‖u‖H1

k(ΩR;χ) . k‖f‖L2(Ω+)

for all k ≥ k0. If the support of f does not intersect BR0 and

(1.12) ‖f‖L2(Ω+;χ−1) :=

(∫
Ω+

|f |2
χ

dx

)1/2

<∞,

then the bound (1.11) holds with k‖f‖L2(Ω+) replaced by ‖f‖L2(Ω+;χ−1).

This theorem contains the following important special cases:
1. Ω− is star-shaped and R1 ≤ infx∈Γ |x|. In this case, since χ(r) = 1 for r ≥ R1,

the bound recovers the standard bound when Ω− is Lipschitz and star-shaped that is
sharp in its dependence on k (see [25] and the discussion in section 1.3), namely

(1.13) ‖u‖H1
k(ΩR) . ‖f‖L2(Ω+) for k ≥ k0.

2. Ω− is an (R0, R1, a) parallel trapping obstacle, such as those in Figures 1.2 and
1.3. In this case it holds that

(1.14) ‖u‖H1
k(ΩR) + k‖u‖H1

k(ΩR;χ) . k2‖f‖L2(Ω+).

Furthermore, if, for some R′ > R0, the support of f does not intersect BR′ , then

(1.15) ‖u‖H1
k(ΩR) + k‖u‖H1

k(ΩR;χ) . k‖f‖L2(Ω+).

1Thus Theorem 1.1 does not apply to Ω. But we expect that a modified Theorem 1.1 holds for
Ω, based on a more elaborate construction of the vector field Z, since the arguments related to the
construction of the vector field around a trapping region are to a large extent local.
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854 CHANDLER-WILDE, SPENCE, GIBBS, AND SMYSHLYAEV

The simple constructions at the end of [25, section 3] show that, for every (R0, R1)
obstacle, there exists an f supported outside BR1

such that ‖u‖H1
k(ΩR;χ) & ‖f‖L2(Ω+),

so that the power of k in front of ‖u‖H1
k(ΩR;χ) in (1.15) is sharp, and that, for every

(R0, R1, a) parallel trapping obstacle, there exists a compactly supported f such that

(1.16) ‖u‖H1
k(ΩR) & k‖f‖L2(Ω+) for k ∈ {mπ/a : m ∈ N}

(this quantization condition is a requirement that the length a of the billiard orbits
between the parallel sides of the trapping domain is a multiple of half the wavelength).
These lower bounds show that the power of k on the right-hand side of (1.14) can be
reduced at most from k2 to k, and that on the right-hand side of (1.15) cannot be
reduced.

In the following theorem we use the notation ‖ · ‖Hsk(Γ) defined by (2.16)–(2.17)
below.

Theorem 1.11 (bounds on the DtN map). Let u ∈ H1
loc(Ω+) be a solution to

the Helmholtz equation ∆u + k2u = 0 in Ω+ that satisfies the Sommerfeld radiation
condition (1.10) and the boundary condition γ+u = g. If Ω− is an (R0, R1) obstacle
for some R1 > R0 > 0, then, for all R > RΓ, given k0 > 0,

(1.17) ‖u‖H1
k(ΩR) + ‖∂+

n u‖L2(Γ) . k2 ‖g‖H1
k(Γ)

for all k ≥ k0 if g ∈ H1(Γ). Further, uniformly for 0 ≤ s ≤ 1, provided g ∈ Hs(Γ),

‖∂+
n u‖Hs−1

k (Γ) . k2‖g‖Hsk(Γ), and ‖∂+
n u‖Hs−1(Γ) . k3‖g‖Hs(Γ) for k ≥ k0.

(1.18)

If g = −ui|Γ, where ui satisfies ∆ui + k2ui = 0 in a neighborhood G of Ω− ∪BR0
,

then

(1.19) ‖u‖H1
k(ΩR) + ‖∂+

n u‖L2(Γ) . k2 sup
x∈G
|ui(x)|.

We derive the bounds (1.17) and (1.18) from the resolvent estimate in Theorem
1.10 using the method in Baskin, Spence, and Wunsch [4] (a sharpening of previous
arguments in [54, 84]), which we capture below in Lemma 4.2. (This method was
used in [4] to deduce the sharp DtN map bound ‖∂+

n u‖L2(Γ) . ‖g‖H1
k(Γ), when Ω− is

nontrapping, from the resolvent estimate (1.1)/(1.13).)
We also apply Lemma 4.2 to write down DtN bounds for the two other trapping

configurations for which resolvent estimates are known, namely elliptic and hyperbolic
trapping discussed in section 1.1; see Corollaries 4.4 and 4.6 below.

The final bound (1.19) in Theorem 1.11 is derived from (1.15). To illustrate
this result, suppose that u in Theorem 1.11 is the scattered field corresponding to an
incident plane wave ui(x) = exp(ikx·â), for some unit vector â, with γ+u = g = −ui|Γ.
Then ‖g‖H1

k(Γ) ∼ k so that (1.17) implies ‖∂+
n u‖L2(Γ) . k3 for k ≥ k0, while (1.19)

implies the sharper bound ‖∂+
n u‖L2(Γ) . k2.

1.3. Discussion of related results. In section 1.1 we discussed the resolvent
estimate in Theorem 1.10 in the context of the nontrapping resolvent estimate (1.1)
and the resolvent estimates for elliptic trapping (1.2) and hyperbolic trapping (1.5),
all in the obstacle case. In this section we discuss Theorem 1.10 in a slightly wider
context.
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Local energy decay and resonance-free regions. In the paper so far, we have only
been concerned with resolvent estimates on the real axis (i.e., for k real), but estab-
lishing such an estimate is intimately related to (i) meromorphic continuation of the
resolvent and resonance-free regions beneath the real axis, and (ii) local energy decay
of the solution of the wave equation; results about the link between these three prop-
erties can be found in [89, Theorems 1.1 and 1.2], [14, Proposition 4.4 and Lemma
4.7], [9, Theorem 1.3], [31], [90, Theorem 1.5], and [50, Theorem 1], and overviews
of results about resonances in obstacle scattering can be found in [93, p. 24], [34,
Chapter 6]. In particular, the result of Datchev [31] (suitably translated from the set-
ting of scattering from a potential to the setting of scattering by an obstacle) could be
used to prove that the resolvent estimate of Theorem 1.10 holds for k in a prescribed
neighborhood below the real axis, but we do not pursue this here.

Trapping by diffraction from corners. When a ray hits a corner of, say, a polygon,
it produces diffracted rays emanating from the corner, and in particular some that
travel along the sides of the polygon. This means that there exist glancing rays that
travel around the boundary of the polygon (hitting a corner and then either continuing
on the next side or traveling back) and do not escape to infinity; thus the exterior
of a polygon is, in this sense, a trapping domain. At each diffraction from a corner,
however, these rays lose energy, and thus the trapping is in a weaker sense than having
a closed path of rays. Baskin and Wunsch [5] proved that the nontrapping resolvent
estimate (1.1) holds when Ω− is a nontrapping polygon.

Definition 1.12 (nontrapping polygon [5]). Ω− ⊂ R2 is a nontrapping polygon
if Ω− is a finite union of disjoint polygons such that (i) no three vertices are colinear
and (ii) given R > RΓ, there exists a T (R) <∞ such that all the billiard trajectories
that start in ΩR at time zero and miss the vertices leave ΩR by time T (R). (For a
more precise statement of (ii) see [5, section 5].)

Parabolic and degenerate hyperbolic trapping by metrics. In the setting of scatter-
ing by metrics, Christianson and Wunsch [27] exhibited a sequence of metrics, indexed
by m = 1, 2, . . ., where the case m = 1 corresponds to a single trapped hyperbolic
geodesic, but the hyperbolicity degenerates as m increases, and for m ≥ 2 the sharp
bound

(1.20) ‖χ1R(k)χ2‖L2→L2 . k−2/(m+1)

holds (see also the review [91]). Observe that, as m→∞, the right-hand side of the
bound tends to k0, i.e., a constant. This case of infinite-degeneracy was studied by
Christianson [26], who proved the bound

(1.21) ‖χ1R(k)χ2‖L2→L2 . kε

for any ε > 0 (where the omitted constant depends on ε) [26, Theorem 1 and
Proposition 3.8]. The analogue of the situation in [27] in the obstacle setting is
two strictly convex obstacles being flattened (in the neighborhood of the trapped
ray), and the bounds (1.20) and (1.21) are therefore consistent with an expecta-
tion that the sharp bound for an (R0, R1, a) parallel trapping obstacle should be
‖χ1R(k)χ2‖L2(Ω+)→L2(Ω+) . 1.

The situation of two convex obstacles being flattened was investigated by Ikawa in
[47] and [49], with [49, Theorem 3.6.2] bounding a mapping related to the resolvent in
a region below the real axis but excluding neighborhoods of the resonances. Although
this estimate depends on the order of the degeneracy, it is not a resolvent estimate
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per se and does not apply everywhere on the real axis, so it does not appear to lead
to a bound similar to (1.20).

Obstacles rougher than Lipschitz. The vector-field/commutator method of
Morawetz can be used to obtain resolvent estimates for rough domains under the
assumption of star-shapedness. Indeed, essentially this method was used in Chandler-
Wilde and Monk [25] to prove the nontrapping resolvent estimate (1.1), not only for
Lipschitz star-shaped Ω− in two and three dimensions, but also for C0 star-shaped
Ω−; indeed their proof of the resolvent estimate (1.1) assumes only that Rd \ Ω+ is
bounded, that 0 6∈ Ω+, and that if x ∈ Ω+, then sx ∈ Ω+ for every s > 1 [25, Lemma
3.8].

Parallel trapping domains in rough surface scattering. A resolvent estimate with
the same k-dependence as (1.6) was proved for the Helmholtz equation posed above
an unbounded rough surface in [24, Theorem 4.1]. Denoting the domain above the
surface by Ω+, the geometric assumption in [24, Theorem 4.1] is that x ∈ Ω+ implies
that x + sed ∈ Ω+ for all s > 0 and that, for some h ≤ H, UH ⊂ Ω+ ⊂ Uh,
where Ua := {x : xd > a}; these conditions allow square-/cube-shaped cavities in
the surface, and therefore allow the same type of parabolic trapping as present for
(R0, R1, a) parallel trapping obstacles. At the beginning of section 3 we discuss how
the proof of Theorem 1.10 uses ideas from the proof of [24, Theorem 4.1].

1.4. Application to finite element discretizations. A standard reformu-
lation of the problem studied in Theorem 1.10, and the starting point for dis-
cretization by FEMs (e.g., [66]), is the variational problem (5.1) below in which
the unknown is uR := u|ΩR , for some R > RΓ, which lies in the Hilbert space
VR := {w|ΩR : w ∈ H1

loc(Ω+) and γ+w = 0}. The following corollary bounds the
inf-sup constant in this formulation, the upper bound (1.24) taken from [25].

Corollary 1.13 (bound on the inf-sup constant). If Ω− is an (R0, R1) obstacle
for some R1 > R0 > 0, then, for all R > RΓ, given k0 > 0,

(1.22) βR := inf
06=u∈VR

sup
0 6=v∈VR

|a(u, v)|
‖u‖H1

k(ΩR)‖v‖H1
k(ΩR)

& k−3

for all k ≥ k0, where

(1.23) a(u, v) :=

∫
ΩR

(∇u · ∇v − k2uv̄) dx−
∫

ΓR

γv P+
R γuds, for u, v ∈ VR,

is the sesquilinear form in (5.1). Here γ is the trace operator from ΩR to ΓR := ∂BR,
and P+

R is the DtN map in the case that Ω− = BR and Γ = ΓR. Further, if Ω+ is an
(R0, R1, a) parallel trapping obstacle for some a > 0, then

(1.24) βR . k−2 for k ∈ {mπ/a : m ∈ N}.

We point out in Remark 5.2 (and see Table 6.1) that the arguments (derived
from [25]) that we use to derive the lower bound on βR from the resolvent estimates
in Theorem 1.10 apply whenever a resolvent estimate is available. Thus we can also
write down lower bounds on βR for the worst case of elliptic trapping and for the case
of the mild hyperbolic trapping between two smooth strictly convex obstacles: see
Remark 5.2 and Table 6.1 for details.

Our results also prove the missing assumption needed to apply the wavenumber-
explicit hp-finite element analysis of Melenk and Sauter [66] to problems of obstacle
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scattering when Ω+ is trapping. Suppose that Γ is analytic, R > RΓ, and let Th be
a quasi-uniform triangulation of ΩR in the sense of [66, Assumption 5.1], with h :=
maxK∈Th diam(K) the maximum element diameter. Let Sp,10 (Th) := Sp,1(Th) ∩ VR,
where Sp,1(Th) is the space of continuous, piecewise polynomials of degree ≤ p on the
triangulation Th [66, equation (5.1)]. Then a (Galerkin) finite element approximation,
uhp ∈ Sp,10 (Th), to the solution uR of (5.1) is defined by

a(uhp, vhp) = G(vhp) for all vhp ∈ Sp,10 (Th),

where the antilinear functional G is given by (5.2). Melenk and Sauter’s results imply
that if, given k0 > 0, there exists q ≥ 1 such that

(1.25) βR & k−q for k ≥ k0,

then the FEM is quasi-optimal, i.e.,

(1.26) ‖uR − uhp‖H1
k(ΩR) ≤ C inf

vhp∈Sp,10 (Th)
‖uR − vhp‖H1

k(ΩR),

provided that p increases logarithmically with k, and Nhp, the degrees of freedom (the

dimension of the subspace Sp,10 (Th)), increases with k so as to maintain a fixed number
of degrees of freedom per wavelength (so that Nhp ∼ kd). This is a strong result, in
particular the “pollution effect” [3] that arises with standard h-version FEMs, which
implies a requirement to increase Nhp at a faster rate than kd, is avoided, and this
analysis is fully wavenumber-explicit (the constant C in (1.26) is independent of k,
h, and p). However, the result in [66] is established only for the case when Ω− is
star-shaped with respect to a ball. Corollary 1.13 implies that (1.25), and hence
also (1.26), applies also for (R0, R1) obstacles with Γ analytic. This class includes
many domains Ω+ that allow trapped periodic orbits, though not (R0, R1, a) parallel
trapping obstacles for which Γ is not analytic. However, we expect that a version of
(1.26) can be proved for (R0, R1, a) parallel trapping obstacles in two dimensions that
are polygonal, by combining Corollary 1.13 with the wavenumber-explicit hp-FEM
analysis for nonconvex polygonal domains in [36].

1.5. Our main results for boundary integral equations. The results of
Theorem 1.11 can be used to prove results about integral equations. Our main re-
sult concerns the standard boundary integral equation formulations of the Helmholtz
exterior Dirichlet problem.

If u is the solution to the Helmholtz exterior Dirichlet problem, the Neumann
trace of u, ∂+

n u, satisfies the integral equation

(1.27) A′k,η ∂
+
n u = fk,η

on Γ, where the integral operatorA′k,η is the so-called combined-potential or combined-
field integral operator (defined by (6.7) below), the parameter η is a real constant
different from zero, and fk,η is given in terms of the known Dirichlet data γ+u (see
(6.6)). Equation (1.27) also arises in so-called sound soft scattering problems in which
u is interpreted as the scattered field corresponding to an incident field ui, the total
field ut := u + ui satisfies γ+u

t = 0 on Γ, and (1.27) is satisfied by ∂+
n u

t with fk,η
given in terms of Dirichlet and Neumann traces of ui on Γ; see (6.12). The other
standard integral equation for the exterior Dirichlet problem ((6.8) below) takes the
form Ak,ηφ = h, where h = γ+u and Ak,η is the adjoint of A′k,η with respect to the

real inner product on L2(Γ) (as defined below (2.18)).
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1.5.1. Bounds on (A′k,η)−1 and A−1
k,η. The following corollary gives bounds

on (A′k,η)−1; bounds on A−1
k,η follow by duality (see (6.10) and (6.11) below).

Corollary 1.14 (bounds on (A′k,η)−1). Suppose that the (finite number of)
disjoint components of the Lipschitz open set Ω− are each either star-shaped with
respect to a ball or C∞, that Ω− is an (R0, R1) obstacle for some R1 > R0 > 0, and
that η = ck, for some c ∈ R \ {0}. Then, given k0 > 0, for all k ≥ k0,

(1.28) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . k2;

indeed

(1.29) ‖(A′k,η)−1‖Hsk(Γ)→Hsk(Γ) . k2 and ‖(A′k,η)−1‖Hs(Γ)→Hs(Γ) . k2−s

for −1 ≤ s ≤ 0. If Ω− is an (R0, R1, a) parallel trapping obstacle for some a > 0,
then

(1.30) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) & k for k ∈ {mπ/a : m ∈ N}.

Definition 1.15 (piecewise smooth). We say that the bounded Lipschitz open
set Ω− and its boundary Γ are piecewise smooth if Γ can be written as a finite union
Γ = ∪Mj=1Γj where each Γj is relatively open in Γ, the Γj are pairwise disjoint, Γsing :=

Γ \ ∪Mj=1Γj has zero surface measure, and each Γj ⊂ Γ̃j, where Γ̃j is the boundary of
a bounded C∞ open set.

Remark 1.16 (extensions of Corollary 1.14). If the components of Ω− are not all
C∞ or star-shaped with respect to a ball, using the bounds from Theorem 6.1 that
apply in more general cases it follows that (1.28) and (1.29) still hold but with k2 and
k2−s replaced by k9/4 and k9/4−s, respectively, if each component of Ω− is piecewise
smooth or star-shaped with respect to a ball, with k2 and k2−s replaced by k5/2 and
k5/2−s, respectively, in the general case.

Remark 1.17 (How sharp are the bounds in Corollary 1.14?). The numerical com-
putations in [7, section 4.7] and [44, Example 5.2] give an example of an (R0, R1, a)
parallel trapping domain for which, when η = ±k, ‖(A′k,η)−1‖L2(Γ)→L2(Γ) ∼ k (at
least for the range of k considered in the experiments), i.e., they indicate that the
lower bound rate of k in (1.30) is sharp.

Remark 1.18 (previous upper bounds on (A′k,η)−1). There have been three previ-

ous upper bounds for ‖(A′k,η)−1‖L2(Γ)→L2(Γ) proved in the literature, all for nontrap-
ping cases. The first is the bound

(1.31) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . 1 +
k

|η| for k > 0

for the case when Ω− is Lipschitz and star-shaped with respect to a ball [25, Theorem
4.3] ([25] assumes additionally that Γ is piecewise smooth, but this requirement can
be avoided using density results from [30, Lemmas 2 and 3]; see [84, Remark 3.8]).
The second is the bound ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . 1 when Ω+ is nontrapping (in the
sense of Definition 1.3) and |η| ∼ k [4, Theorem 1.13]. The third is the bound, given
k0 > 0, that

(1.32) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . k5/4

(
1 +

k3/4

|η|

)
for k ≥ k0
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when Ω− is a nontrapping polygon [84, Theorem 1.11]. (In section 6.4 below we
improve this bound, when |η| ∼ k, to ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . k1/4 as a corollary of
results in [4].)

The only other known bound on (A′k,η)−1 appears in Gibbs’s thesis [41, Theorem
5.19] and we obtain a sharpened and generalized form of it as (1.36) below.

The upper bounds on ‖(A′k,η)−1‖L2(Γ)→L2(Γ) in Corollary 1.14 and Remark 1.18

use the representation (6.13) below that expresses (A′k,η)−1 in terms of the exterior
DtN map and an interior impedance to Dirichlet map (the use of this representation
in [25] was implicit, and the representation was stated explicitly for the first time as
[20, Theorem 2.33]). We prove the bound (1.28) in the same way, using the DtN map
bound (1.17) along with existing bounds on the solution of the interior impedance
problem; see sections 6.2 and 6.3 below. We extend this methodology to prove the
bounds (1.29) on (A′k,η)−1 also as an operator on Hs(Γ) for −1 ≤ s ≤ 0. These
arguments also show that, when |η| ∼ k,

(1.33) ‖(A′k,η)−1‖Hsk(Γ)→Hsk(Γ) . 1 and ‖(A′k,η)−1‖Hs(Γ)→Hs(Γ) . k−s

for −1 ≤ s ≤ 0 in the cases when Ω− is either Lipschitz and star-shaped with respect
to a ball or nontrapping.

The arguments from [25] and [4] are summarized in Lemma 6.2 as a general
“recipe” where the input is a resolvent estimate for the exterior Dirichlet problem,
and the output is a bound on (A′k,η)−1 and A−1

k,η. We apply this recipe to the two
other existing resolvent estimates for trapping obstacles (1.2) and (1.5), showing that,
when |η| ∼ k,

(1.34) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . log(2 + k)

for the mild (hyperbolic) trapping case of a finite number of smooth convex obstacles
with strictly positive curvature (additionally satisfying the conditions in Definition
4.5). Similarly

(1.35) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . exp(αk),

for some α > 0, for the general C∞ case, this “worst-case” exponential growth
achieved, as observed earlier in two dimensions [7], when the geometry of Γ is
such that there exists a stable (elliptic) periodic orbit. The same bounds hold on
‖(A′k,η)−1‖Hsk(Γ)→Hsk(Γ) for −1 ≤ s ≤ 0, and they apply also to ‖(A′k,η)−1‖Hs(Γ)→Hs(Γ)

with the bounds increased by an additional factor k−s. In particular, in the hyperbolic
trapping case, we have that, when |η| ∼ k, given k0 > 0,

(1.36) ‖(A′k,η)−1‖H−1/2(Γ)→H−1/2(Γ) . k1/2 log(2 + k) for k ≥ k0;

this is an improvement of the bound in [41, Theorem 5.19] by a factor k1/2.
These new bounds on the norm of (A′k,η)−1 in the cases of elliptic and hyper-

bolic trapping are of interest in their own right but also contrast strongly with the
new bounds for (R0, R1, a) parallel trapping obstacles in Corollary 1.14. The bound
(1.34) is only worse than the nontrapping bound (1.31) by a log factor, while in the
worst case of elliptic trapping the norm of (A′k,η)−1 can grow exponentially through
some sequence of wavenumbers [7, Theorem 2.8]. In between, for (R0, R1, a) parallel
trapping obstacles, Corollary 1.14 proves polynomial growth (through a particular
sequence of wavenumbers) at a rate between k and k2.
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1.5.2. Bounds on the condition numbers of A′k,η and Ak,η. Many authors

[53, 52, 1, 19, 7, 4] have studied, in addition to the norm of A′k,η, its L2 condition
number, defined by

(1.37) cond(A′k,η) := ‖A′k,η‖L2(Γ)→L2(Γ) ‖(A′k,η)−1‖L2(Γ)→L2(Γ).

This quantity is of interest because the condition number at a continuous level is
closely related to the condition numbers of the matrices that arise in Galerkin-method
discretizations. Indeed, if orthogonal basis functions are used and Γ is smooth enough,
the condition number of the Galerkin matrix converges to (1.37) as the discretization
is refined [7, §3]. Thus, understanding the dependence of cond(A′k,η) on k and on
the geometry provides quantitative information about condition numbers of matrices
at a discrete level, which in turn is relevant to the stability of numerical methods
and the convergence of iterative solvers (though see the discussion in [4, section 7.2],
[38] regarding related quantities that may be more informative still). In section 6.5
we study cond(A′k,η) for trapping geometries, by combining bounds on (A′k,η)−1 with
known bounds on the norm of A′k,η, notably those in Chandler-Wilde et al. [19] and
those due to Galkowski and Smith [39, 45], proving the first upper bounds on the
condition number for trapping obstacles; see Corollary 6.4.

1.5.3. k-explicit convergence of boundary element methods. Along with
bounding the condition number of A′k,η, our results have another important applica-
tion in the numerical solution of scattering problems by boundary integral equation
methods. Recall that the boundary element method (BEM) is the standard term for
the numerical solution of boundary integral equations by the Galerkin method when
the finite-dimensional subspaces consist of piecewise polynomials. When convergence
is achieved by both increasing the degree p of the polynomials and decreasing the
mesh diameter h the method is called the hp-BEM; when only the mesh diameter h
is decreased the method is called the h-BEM.

hp-BEM. Löhndorf and Melenk [59] provided the first wavenumber-explicit error
analysis for hp-BEMs applied to the integral equations (1.27) and (6.8) under the
assumption that Γ is analytic. Their convergence results, however, require that, for
some k0 > 0 and γ ≥ 0,

(1.38) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . kγ for k ≥ k0,

so that these convergence results have been proved to date only for nontrapping
domains (see [59], [4, section 1.4]). Corollary 1.14 above shows that (1.38) holds for
all (R0, R1) obstacles, and the bound (1.34) shows that (1.38) holds also for an Ikawa-
like union of convex obstacles (in the sense of Definition 4.5). Putting these results
together with [59, Corollary 3.18] we have the following result. In this corollary
we use the notation Sp(T ) for the set of piecewise polynomials of degree p on the
triangulation T in the sense of [59, equation (3.17)].

Corollary 1.19 (quasi-optimality of the hp-BEM). Suppose that Γ is analytic,
that Th is a quasi-uniform triangulation with mesh size h of Γ in the sense of [59,
Definition 3.15], that η = ck, for some nonzero real constant c, and that Ω− is either
nontrapping, or an Ikawa-like union of convex obstacles, or an (R0, R1) obstacle.

Let ∂+
n u be the solution of (1.27) and let vhp ∈ Sp(Th) be its Galerkin-method

approximation, defined by

(1.39) (A′k,ηvhp, v)Γ = (fk,η, v)Γ for all v ∈ Sp(Th),
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where (·, ·)Γ denotes the inner product on L2(Γ). Then, given k0 > 0, there exist
constants C1, C2, C3 (independent of h, p, and k) such that, if k ≥ k0,

(1.40)
kh

p
≤ C1 and p ≥ C2 log(2 + k),

then the quasi-optimal error estimate

(1.41) ‖vhp − ∂+
n u‖L2(Γ) ≤ C3 inf

v∈Sp(Th)
‖v − ∂+

n u‖L2(Γ)

holds.

An attractive feature of this result is that it demonstrates, via the bounds (1.40),
that it is enough to maintain a “fixed number of degrees of freedom per wavelength,”
meaning increasing the dimension Nhp of the approximating subspace Sp(Th) in pro-
portion to kd−1, in order to maintain accuracy as k increases, in agreement with
much computational experience [60] (and the numerical results in [59] show that this
requirement is sharp). This corollary applies to all (R0, R1) obstacles, including ge-
ometries that allow trapped periodic orbits, but does not apply to (R0, R1, a) parallel
trapping obstacles for which Γ is not analytic.

h-BEM. It is commonly believed that, for nontrapping obstacles, the error esti-
mate (1.41) holds (with C3 independent of k) for the h-BEM when hk is sufficiently
small, i.e., that a fixed number of degrees of freedom per wavelength is sufficient to
maintain accuracy; this property can also be described by saying that the h-BEM does
not suffer from the pollution effect [3]. However, the recent numerical experiments of
Marburg [62, 63, 6] give examples of nontrapping situations where pollution appears
to occur, and therefore determining the sharp threshold on h for the error estimate
(1.41) to hold in general is an exciting open question.

The best results so far in this direction are by Galkowski, Müller, and Spence
[38] (building on results in [44]). Indeed [38, Theorem 1.10] proves that (1.41) holds
(with C3 independent of k) if (i) Ω− is smooth with strictly positive curvature2 and
hk4/3 is sufficiently small and (ii) Ω− is nontrapping and hk3/2 is sufficiently small
(two dimensions) and hk3/2 log(2 + k) is sufficiently small (three dimensions).

The arguments and results in [38, 44], combined with the bounds on
‖(A′k,η)−1‖L2(Γ)→L2(Γ) that we obtain in this paper, enable us to prove in the next
corollary the first h-BEM convergence results for trapping obstacles. The bounds
in this corollary are, unsurprisingly, weaker than the best results for nontrapping
obstacles, but only by log factors for Ikawa-like unions of convex obstacles.

Corollary 1.20 (quasi-optimality of the h-BEM). Suppose that Ω− is C2,α for
some α ∈ (0, 1), that η = ck, for some nonzero real constant c, that k0 > 0, that
p ≥ 0, and that Th is a shape-regular triangulation of Γ in the sense of Definition 6.7,
with h > 0 the maximum diameter of the elements K ∈ Th. Let ∂+

n u be the solution of
(1.27), and let vhp ∈ Sp(Th) be the Galerkin-method approximation to ∂+

n u, defined
by (1.39).

(a) If Ω− is an Ikawa-like union of convex obstacles, then there exists C > 0 such
that, provided k ≥ k0 and hk4/3 log(2 + k) ≤ C, it holds that

(1.42) ‖vhp − ∂+
n u‖L2(Γ) . log(2 + k) inf

v∈Sp(Th)
‖v − ∂+

n u‖L2(Γ).

2Here (and elsewhere in the paper), when d = 3 we say that a piecewise-smooth Γ has strictly
positive curvature if there exists c > 0 such that, for almost every x ∈ Γ, the principal curvatures
at x are ≥ c. When d = 2 we say that Γ has strictly positive curvature if the above holds with the
principal curvatures replaced by just the curvature.
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(b) If Ω− is a piecewise smooth (R0, R1) obstacle, then there exists C > 0 such
that, provided k ≥ k0 and hk7/2 log(2 + k) ≤ C, it holds that

(1.43) ‖vhp − ∂+
n u‖L2(Γ) . k2 inf

v∈Sp(Th)
‖v − ∂+

n u‖L2(Γ).

The hidden constants in (1.42) and (1.43) are independent of h, p, and k.

1.6. Outline of paper. In section 2 we establish notation and definitions and
collect a few basic results that are used throughout the paper. In section 3 we prove
Theorem 1.10 (the resolvent estimates for (R0, R1) obstacles). In section 4 we prove
Theorem 1.11 (bounds on the DtN map for (R0, R1) obstacles) and deduce DtN
bounds also for hyperbolic and elliptic trapping. In section 5 we deduce bounds
on the inf-sup constant for trapping confugurations, proving Corollary 1.13. We
consider applications to boundary integral equations in section 6, proving Corollaries
1.14 and 1.20, and discussing the other issues summarized in section 1.5. We also,
as an extension of the proof of the lower bound (1.30), provide in section 6.3.2 a
counterexample to the conjecture of Betcke and Spence [8, Conjecture 6.2] that A′k,η
is coercive uniformly in k for large k whenever Ω− is nontrapping. Table 6.1 provides
a useful summary of the results of this paper and of the existing known sharpest
bounds.

2. Preliminaries.

2.1. Morawetz-/Rellich-type identities and associated results.

Lemma 2.1 (Morawetz-type identity). Let v ∈ C2(D) for some open set D ⊂ Rd,
d ≥ 2. Let Lv := (∆ + k2)v with k ∈ R. Let Z ∈ (C1(D))d, β ∈ C1(D), and
α ∈ C2(D) (i.e., Z is a vector and β and α are scalars) and let all three be real-
valued. Let

(2.1) Zv := Z · ∇v − ikβv + αv.

Then, with the usual summation convention,

2<
(
ZvLv

)
= ∇ ·

[
2<
(
Zv∇v

)
+
(
k2|v|2 − |∇v|2

)
Z −∇α|v|2

]
+
(
2α−∇ · Z

)(
k2|v|2 − |∇v|2

)
− 2<

(
∂iZj∂iv∂jv

)
− 2<

(
ik v∇β · ∇v

)
+ ∆α|v|2.(2.2)

Lemma 2.1 can be proved by expanding the divergence on the right-hand side; see
[86, Proof of Lemma 2.1]. The identity (2.2) was essentially introduced by Morawetz
in [72, section I.2]; see the bibliographic remarks in [86, Remark 2.7]. Identities arising
from the multiplier Z · ∇u are often called Rellich type, due to Rellich’s use of the
multiplier x · ∇v in [80] and the multiplier ed · ∇u in [81] (see, e.g., the discussion in
[20, section 5.3] and [71, section I.4]).

We now prove an integrated form of the identity (2.2); when we use this in the
proof of Theorem 1.10, it turns out that we only need to consider constant β, and so
we restrict attention to this case.

Lemma 2.2 (integrated form of the identity (2.2)). Let D ⊂ Rd be a bounded
Lipschitz domain with outward-pointing unit normal ν, let γ denote the trace operator,
and let ∂ν denote the normal derivative operator. If Z ∈ (C1(D))d and α ∈ C2(D)
are real-valued, β ∈ R, and v ∈ V (D), where

(2.3) V (D) :=
{
v ∈ H1(D) : ∆v ∈ L2(D), γv ∈ H1(∂D), ∂νv ∈ L2(∂D)

}
,
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and if Lv := (∆ + k2)v with k ∈ R, and Zv is defined by (2.1), then∫
D

(
2<
(
ZvLv

)
+ 2<

(
∂iZj∂iv∂jv

)
−
(
2α−∇ · Z

)(
k2|v|2 − |∇v|2

)
−∆α|v|2

)
dx

=

∫
∂D

[
(Z · ν)

(
|∂νv|2 − |∇S(γv)|2 + k2|γv|2

)
+ 2<

((
Z · ∇S(γv) + ikβγv + αγv

)
∂νv
)
− ∂α

∂ν
|γv|2

]
ds.(2.4)

Proof of Lemma 2.2. We first assume that Z, α, and β are as in the statement
of the lemma, but v ∈ D(D) := {U |D : U ∈ C∞(Rd)}. Recall that the divergence
theorem

∫
D
∇ · F =

∫
∂D

γF · ν is valid when F ∈ H1(D) by [65, Theorems 3.29,

3.34, and 3.38]. Recall also that the product of an H1(D) function and a C1(D)
function is in H1(D), and the usual product rule for differentiation holds. Thus
F = 2<

(
Zv∇v

)
+
(
k2|v|2 − |∇v|2

)
Z −∇α|v|2 is in H1(D) and ∇ · F is given by the

integrand on the left-hand side of (2.4). Furthermore,

γF · ν = (Z · ν)

(∣∣∣∣∂v∂ν
∣∣∣∣2 + k2|v|2 − |∇Sv|2

)

+ 2<
((
Z · ∇Sv + ikβv + αv

)∂v
∂ν

)
− ∂α

∂ν
|γv|2

on ∂D, where we have used the fact that ∇v = ν(∂v/∂ν) +∇Sv on ∂D for v ∈ D(D);
the identity (2.4) then follows from the divergence theorem.

The result for v ∈ V (D) then follows from (i) the density of D(D) in V (D) [30,
Lemmas 2 and 3] and (ii) the fact that (2.4) is continuous in v with respect to the
topology of V (D).

Lemma 2.3 (Morawetz–Ludwig identity [73, equation 1.2]). Let v ∈ C2(D) for
some open D ⊂ Rd, d ≥ 2. Let Lv := (∆ + k2)v and let

(2.5) Mαv := r

(
∂v

∂r
− ikv +

α

r
v

)
,

where α ∈ R and ∂v/∂r = x · ∇v/r. Then

2<(MαvLv) =∇ ·
[
2<
(
Mαv∇v

)
+
(
k2|v|2 − |∇v|2

)
x

]
+
(
2α−(d−1)

)(
k2|v|2−|∇v|2

)
−
(
|∇v|2−|∂v/∂r|2

)
−
∣∣∂v/∂r − ikv

∣∣2.(2.6)

The Morawetz–Ludwig identity is a particular example of the identity (2.2) with
Z = x, β = r, and α a constant, and some further manipulation of the nondivergence
terms (using the fact that x = β∇β). For a proof, see [73], [85, Proof of Lemma 2.2],
or [86, Proof of Lemma 2.3].

The Morawetz–Ludwig identity (2.6) has two key properties. With this identity
rearranged and written as ∇ ·Q(v) = P (v), the key properties are as follows:

1. If u is a solution of Lu = 0 in Rd \ BR0
, for some R0 > 0, satisfying the

Sommerfeld radiation condition (1.10), then, where ΓR := ∂BR,

(2.7)

∫
ΓR

Q(u) · x̂ds→ 0 as R→∞
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(independent of the value of α in the multiplier Mαu); see [73, Proof of
Lemma 5], [85, Lemma 2.4].

2. If Lu = 0 and 2α = (d− 1), then

(2.8) P (u) ≥ 0.

The two properties of the Morawetz–Ludwig identity above mean that if the multiplier
that we use on the operator L is equal to M(d−1)/2 outside a large ball, then there
is no contribution from infinity. A convenient way to encode this information is the
following lemma due to Chandler-Wilde and Monk [25, Lemma 2.1].

Lemma 2.4 (inequality on ΓR used to deal with the contribution from infinity).
Let u be a solution of the homogeneous Helmholtz equation in Rd \BR0

, d = 2, 3, for
some R0 > 0, satisfying the Sommerfeld radiation condition (1.10). Let α ∈ R with
2α ≥ d− 1. Then, for R > R0,

R

∫
ΓR

(∣∣∣∣∂u∂r
∣∣∣∣2 − |∇Su|2 + k2|u|2

)
ds− 2kR=

∫
ΓR

u
∂u

∂r
ds+ 2α<

∫
ΓR

u
∂u

∂r
ds ≤ 0,

(2.9)

where ∇S is the surface gradient on ΓR = ∂BR.

We have purposely denoted the constant in (2.9) by α to emphasize the fact that
the left-hand side of (2.9) is

∫
ΓR
Q(u) · x̂ ds with Q(u) arising from the multiplier

Mαu = x · ∇u − ikru + αu. We will see below that the Morawetz–Ludwig identity
proves the inequality (2.9) when 2α = d − 1, but it will be slightly more convenient
to have this result for 2α ≥ d− 1. For the proof of this we need the following, slightly
simpler, inequality on ΓR.

Lemma 2.5. Let u be a solution of the homogeneous Helmholtz equation in Rd \
BR0

, d = 2, 3, for some R0 > 0, satisfying the Sommerfeld radiation condition (1.10).
Then, for R > R0,

(2.10) <
∫

ΓR

ū
∂u

∂r
ds ≤ 0.

Proof of Lemma 2.5. This result is proved in [76, Theorem 2.6.4, p. 97] or [25,
Lemma 2.1] using the explicit expression for the solution of the Helmholtz equation
in the exterior of a ball (i.e., an expansion in either trigonometric polynomials, for
d = 2, or spherical harmonics, for d = 3, with coefficients given in terms of Bessel and
Hankel functions) and then proving bounds on particular combinations of Bessel and
Hankel functions.

Proof of Lemma 2.4. This result is proved in [25, Lemma 2.1] by using the explicit
expression for the solution of the Helmholtz equation in the exterior of a ball, as in
the proof of Lemma 2.5, and proving monotonicity properties of combinations of
Bessel and Hankel functions. We provide here an alternative, shorter, proof via the
Morawetz–Ludwig identity but note that in fact, [25, Lemma 2.1] is a slightly stronger
result than Lemma 2.4 when d = 3, showing that (2.9) holds whenever 2α ≥ 1.

By the inequality (2.10), it is sufficient to prove (2.9) with 2α = d − 1. We now
integrate (2.6) with v = u and 2α = d− 1 over BR1

\BR, use the divergence theorem,
and then let R1 → ∞ (note that using the divergence theorem is allowed since u is
C∞ by elliptic regularity). The first key property of the Morawetz–Ludwig identity
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stated above (as (2.7)) implies that the surface integral on |x| = R1 tends to zero as
R1 → ∞ [85, Lemma 2.4]. Then, using the decomposition ∇v = ∇Sv + x̂∂rv on the
integral over ΓR, we obtain that∫

ΓR

Q(u) · x̂ ds =

∫
ΓR

R

(∣∣∣∣∂u∂r
∣∣∣∣2 − |∇Su|2 + k2|u|2

)
ds

− 2kR=
∫

ΓR

ū
∂u

∂r
ds+ (d− 1)<

∫
ΓR

ū
∂u

∂r
ds

= −
∫
Rd\BR

((
|∇u|2 − |∂u/∂r|2

)
+ |∂u/∂r − iku|2

)
dx ≤ 0

(where this last inequality is the second key property (2.8) above); i.e., we have
established (2.9) with 2α = d− 1 and we are done.

The inequality (2.10) combined with Green’s identity (i.e., pairing Lv with v) has
the following simple consequence, which we use later.

Lemma 2.6. Let f ∈ L2(Ω+) have compact support in Ω+, and let u ∈ H1
loc(Ω+)

be a solution to the Helmholtz equation ∆u + k2u = −f in Ω+ that satisfies the
Sommerfeld radiation condition (1.10) and the boundary condition γ+u = 0. For any
R > RΓ such that suppf ⊂ BR,

(2.11)

∫
ΩR

|∇u|2 dx ≤ k2

∫
ΩR

|u|2 dx+ <
∫

ΩR

fū .

Proof. By multiplying Lu = −f by ū, integrating over ΩR, and applying the
divergence theorem, we have∫

ΩR

|∇u|2 dx− k2

∫
ΩR

|u|2 dx−
∫

ΩR

fūdx =

∫
ΓR

ū
∂u

∂r
ds.

The result then follows by taking the real part and using (2.10).

2.2. A Poincaré–Friedrichs-type inequality. The following Poincaré–
Friedrichs-type inequality will play a key role in the proof of Theorem 1.10 (see Lemma
3.3 below).

Lemma 2.7. For R > 0 and v ∈ H1(Rd) it holds that

(2.12)

∫
B2R

|v|2 dx ≤ 8

∫
B√13R\B2R

|v|2 dx+ 4R2

∫
B√13R

|∂dv|2 dx.

Proof. Suppose that φ ∈ C∞0 (R) and h,H > 0. Then, for 0 ≤ t ≤ h ≤ s ≤ h+H,

φ(t) = φ(s)−
∫ s

t

φ′(r) dr

so that, by the Cauchy–Schwarz inequality and the inequality

(2.13) 2ab ≤ εa2 + b2/ε for all a, b, ε > 0,

we have

|φ(t)|2 ≤ (1 + ε)|φ(s)|2 + (1 + ε−1)(s− t)
∫ s

t

|φ′(r)|2 dr.
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Hence, for 0 ≤ h ≤ s ≤ h+H,∫ h

0

|φ(t)|2 dt ≤ (1 + ε)h|φ(s)|2 + (1 + ε−1)

∫ h

0

{
(s− t)

∫ h+H

0

|φ′(r)|2 dr

}
dt

= (1 + ε)h|φ(s)|2 +
1

2
(1 + ε−1)h(2s− h)

∫ h+H

0

|φ′(r)|2 dr,

so that, integrating with respect to s from h to h+H and dividing by H,

∫ h

0

|φ(t)|2 dt ≤ (1 + ε)h

H

∫ h+H

h

|φ(s)|2 ds+
(1 + ε−1)h(h+H)

2

∫ h+H

0

|φ′(r)|2 dr.

(2.14)

For h1 < h2 and A > 0 let U(h1, h2, A) := {x = (x̃, xd) ∈ Rd : h1 < xd <
h2, |x̃| < A}. Then, for v ∈ C∞0 (Rd) in the first instance, and then by density for all
v ∈ H1(Rd), it follows from (2.14) with ε = 3 that, for h,H,A > 0,∫

U(0,h,A)

|v|2 dx ≤ 4h

H

∫
U(h,h+H,A)

|v|2 dx+
2h(h+H)

3

∫
U(0,h+H,A)

|∂dv|2 dx.

Similarly,∫
U(−h,0,A)

|v|2 dx ≤ 4h

H

∫
U(−h−H,−h,A)

|v|2 dx+
2h(h+H)

3

∫
U(−h−H,0,A)

|∂dv|2 dx

for v ∈ H1(Rd). Thus, for v ∈ H1(Rd) it holds for h > 0 that∫
Bh

|v|2 dx ≤
∫
U(−h,h,h)

|v|2 dx

≤ 4h

H

{∫
U(−h−H,−h,h)

|v|2 dx+

∫
U(h,h+H,h)

|v|2 dx

}

+
2h(h+H)

3

∫
U(−h−H,h+H,h)

|∂dv|2 dx

≤ 4h

H

∫
B(h,
√
h2+(h+H)2)

|v|2 dx+
2h(h+H)

3

∫
B(0,
√
h2+(h+H)2)

|∂dv|2 dx,

where for 0 ≤ h1 ≤ h2, B(h1, h2) := Bh2 \ Bh1 . Applying this bound with h = 2R
and H = R we obtain the required result.

Corollary 2.8. If v ∈ H1(ΩR) with γ+v = 0 on Γ, and R ≥
√

13R0, then

(2.15)

∫
Ω2R0

|v|2 dx ≤ 8

∫
ΩR\Ω2R0

|v|2 dx+ 4R2
0

∫
ΩR

|∂dv|2 dx.

Proof. This follows from Lemma 2.7 since, given v ∈ H1(ΩR) with γ+v = 0 on Γ,
we can extend the definition of v to Rd so that v ∈ H1(Rd) and v = 0 in Ω−.

2.3. Boundary Sobolev spaces and interpolation. We use boundary
Sobolev spaces Hs(Γ) defined in the usual way (see, e.g., [65, pp. 98, 99]), and denote
by Hs

k(Γ) the space Hs(Γ) equipped with a wavenumber dependent norm ‖ · ‖Hsk(Γ).
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HIGH-FREQUENCY BOUNDS UNDER PARABOLIC TRAPPING 867

Precisely, we equip H0(Γ) = H0
k(Γ) = L2(Γ) with the L2(Γ) norm. We define ‖·‖Hs(Γ)

and ‖ · ‖Hsk(Γ) for s = 1 by

‖φ‖2H1(Γ) = ‖∇Sφ‖2L2(Γ) + ‖φ‖2L2(Γ) and ‖φ‖2H1
k(Γ) = ‖∇Sφ‖2L2(Γ) + k2‖φ‖2L2(Γ)

(2.16)

and for 0 < s < 1 by interpolation, choosing the specific norm given by the complex
interpolation method (equivalently, by real methods of interpolation appropriately
defined and normalized; see [64], [23, Remark 3.6]). We then define the norms on
Hs(Γ) and Hs

k(Γ) for −1 ≤ s < 0 by duality,

‖φ‖Hs(Γ) := sup
06=ψ∈H−s(Γ)

|〈φ, ψ〉Γ|
‖ψ‖H−s(Γ)

and ‖φ‖Hsk(Γ) := sup
0 6=ψ∈H−s(Γ)

|〈φ, ψ〉Γ|
‖ψ‖H−sk (Γ)

,

(2.17)

for φ ∈ Hs(Γ), where 〈φ, ψ〉Γ denotes the standard duality pairing that reduces to
(φ, ψ)Γ, the inner product on L2(Γ), when φ ∈ L2(Γ). In the terminology of [23,
Remark 3.8], with the norms we have selected, {Hs(Γ) : −1 ≤ s ≤ 1} and {Hs

k(Γ) :

−1 ≤ s ≤ 1} are exact interpolation scales, so that if B : H
sj
k (Γ) → H

tj
k (Γ) is a

bounded linear operator and

‖B‖
H
sj
k (Γ)→Htjk (Γ)

≤ Cj , for j = 1, 2,

with sj , tj ∈ [−1, 1], then B : Hs
k(Γ)→ Ht

k(Γ) and

‖B‖Hsk(Γ)→Htk(Γ) ≤ C1−θ
1 Cθ2 for s = θs1+(1−θ)s2 and t = θt1+(1−θ)t2 with 0<θ<1.

(2.18)

Moreover (by definition) H−s(Γ) is an isometric realisation of (Hs(Γ))′, the dual space
of Hs(Γ), for −1 ≤ s ≤ 1, so that if A : Hs

k(Γ) → Ht
k(Γ) is bounded and B is the

adjoint of A with respect to the L2(Γ) inner product, or with respect to the real inner
product (·, ·)rΓ, defined by (φ, ψ)rΓ =

∫
Γ
φψds, then B : H−tk (Γ)→ H−sk (Γ) is bounded

and

(2.19) ‖B‖H−tk (Γ)→H−sk (Γ) = ‖A‖Hsk(Γ)→Htk(Γ).

Combining these observations, if A : Hs
k(Γ)→ Ht

k(Γ) is bounded and self-adjoint, or is
self-adjoint with respect to the real inner product, meaning that (Aφ,ψ)rΓ = (φ,Aψ)rΓ,
for φ, ψ ∈ H1(Γ), then

(2.20) ‖A‖Hσk (Γ)→Hτk (Γ) ≤ ‖A‖Hsk(Γ)→Htk(Γ)

for σ = θs− (1− θ)t, τ = θt− (1− θ)s, and 0 ≤ θ ≤ 1.

3. Proof of Theorem 1.10 on resolvent estimates.

3.1. The ideas behind the proof. The proof is based on the Morawetz-type
identity (2.2). Recall that in [72], [74, section 4], Morawetz and coworkers showed
that if there exists a vector field Z(x), R > RΓ = maxx∈Γ |x|, and c1 > 0 such that

(3.1) Z(x) = x in a neighborhood of ΓR = ∂BR,

(3.2)
<
(
∂iZj(x)ξiξj

)
≥ 0 for all ξ ∈ Cd and x ∈ ΩR, and Z(x)·n(x) ≥ c1 for all x ∈ Γ,
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then (2.2) can be used to prove the resolvent estimate (1.1) ([74, section 4] then con-
structed such a Z for a class of obstacles slightly more restrictive than nontrapping).
Implicit in [72] is the fact that one can replace the two conditions (3.2) with

<
(
∂iZj(x)ξiξj

)
≥ c2|ξ|2 for all ξ ∈ Cd and x ∈ ΩR, and Z(x) · n(x) ≥ 0 for all x ∈ Γ,

(3.3)

for some c2 > 0; i.e., one needs strict positivity either in ΩR or on Γ. Note that
Z(x) = x satisfies this second set of conditions, implying that the resolvent estimate
holds for Ω− that are star-shaped (see also [73, 25]).

We cannot expect to satisfy one of these sets of conditions on Z (either (3.1) and
(3.2) or (3.1) and (3.3)) for every (R0, R1) obstacle, since we know the nontrapping
resolvent estimate (1.1) does not hold for (R0, R1, a) parallel trapping obstacles. The
Z that we use in our arguments is the one in the definition of (R0, R1) obstacles,
namely (1.7). By the definition of (R0, R1) obstacles, we have Z(x) · n(x) ≥ 0 for all
x ∈ Γ, but now, for r < R0 at least, <

(
∂iZj(x)ξiξj

)
= |ξd|2, which is only positive

semidefinite. (Note that the vector field edxd is often used in arguments involving
Rellich-/Morawetz-type identities in rough surface scattering; see [81, 92, 24, 57], [20,
section 5.3], [71, section I.4], and the references therein.)

We apply the Morawetz-type identity (2.2) in ΩR with Z given by (1.7) in terms
of a function χ that satisfies the constraints of Definition 1.4, β = R, and α defined
by (3.7) below (the rationale for this choice of α is explained below (3.11)). Using
Lemma 2.4 to deal with the contribution at infinity, we find in Lemma 3.1 below that∫

ΩR

(
2|∂du|2

(
1− χ(r)

)
+ |∇u|2(2− q)χ(r) + qk2|u|2χ(r) + 2r|∂ru|2χ′(r)

)
dx

− 2<
∫

ΩR

xd∂dū∂ruχ
′(r) dx

≤ − 2kR=
∫

ΩR

fūdx+ <
∫

ΩR

f
(

2xd∂dū
(
1− χ(r)

)
+ 2r∂rūχ(r) + 2αū

)
dx

+

∫
ΩR

∆α|u|2 dx(3.4)

for any q ∈ [0, 1]. We see that in the “trapping region,” namely when χ = 0, we only
have control of |∂du|2, but in the “nontrapping region” (in supp(χ)) we have control
of |∇u|2 + k2|u|2 (as expected, since here Z = x).

We then proceed via a series of lemmas. In Lemma 3.2 we get rid of the sign-
indefinite “cross” term on the second line of (3.4). In Lemma 3.3 we use the Poincaré–
Friedrichs-type inequality of Corollary 2.8, and then Lemma 2.6, to put first |u|2
and then |∇u|2 back in the trapping region—here is the place where we lose powers
of k compared to the nontrapping estimate, since, in the Poincaré–Friedrichs-type
inequality, |∂du|2 is bounded below by |u|2 without a corresponding factor of k.

Finally, in Lemmas 3.4 and 3.5 we obtain bounds that imply the resolvent estimate
(1.11). In particular, in Lemma 3.5 we bound the term involving the Laplacian of
α, using that, by our assumptions on χ back in Definition 1.4, ∆α is continuous and
vanishes for r ≤ R0.

As discussed in section 1.3, the analogue of the resolvent estimate (1.11) in the
case of rough surface scattering was proved in [24, Theorem 4.1]; the proof of this
estimate uses Z(x) = edxd, along with the analogue of Lemma 2.4 in this case [24,
Lemma 2.2], avoiding the subtleties of transitioning between the vector fields edxd
and x that we encounter here.
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After Theorem 1.10 we discussed how quasimodes can be constructed that indicate
that the power on the right-hand side of the bound (1.14) should be reduced from k2

to k to obtain a sharp bound. Choosing β in the multiplier Z (2.1) to be zero when
χ = 0 has the potential to produce this new bound, but β cannot then be brought up
to equal R on ΓR (so that one can use Lemma 2.4 to deal with the contribution from
infinity) while keeping the resulting cross term involving ∇β in (2.2) under control.

3.2. Lemmas 3.1–3.5, their proofs, and the proof of Theorem 1.10.
Throughout this subsection χ will be any function such that Ω− is an (R0, R1) obstacle
in the sense of Definition 1.4, so that, in particular,

(3.5) cχ := sup
r>0

(rχ′(r)) < 4.

The vector field Z will be defined in terms of χ by (1.7), and we will take

(3.6) R > max(RΓ, R1,
√

13R0)

so that, respectively, Ω− ⊂ ΩR, χ = 1 in a neighborhood of ∂BR, and Corollary 2.8
applies.

Lemma 3.1. Let Ω− be an (R0, R1) obstacle, and let

(3.7) 2α := ∇ · Z − q χ(r)

for some q ∈ [0, 1]. If u is the solution of the exterior Dirichlet problem described in
Theorem 1.10 and R is large enough so that supp(f) ⊂ ΩR, then (3.4) holds.

Proof. The regularity result of Nečas [75, section 5.1.2], [65, Theorem 4.24(ii)]
(stated for u the solution of the exterior Dirichlet problem in [84, Lemma 3.5]) implies
that u ∈ V (ΩR) defined by (2.3). We use the integrated Morawetz identity (2.4) with
D = ΩR, Z the vector field in (1.7) (observe that Z ∈ (C3(Rd))d by Definition 1.4),
β = R, and α ∈ C2(ΩR). We fix α as given in (3.7) later, but assume at this stage
that α is constant in a neighborhood of ΓR and 2α ≥ d− 1 on ΓR := ∂BR. Using the
fact that γ+u = 0 on Γ and Z = x on ΓR, we obtain∫

ΩR

[
− 2<

(
Zu f

)
+ 2<

(
∂iZj∂iu∂ju

)
−
(
2α−∇ · Z

)(
k2|u|2 − |∇u|2

)
−∆α|u|2

]
dx

+

∫
Γ

(Z · n) |∂nu|2 ds =

∫
ΓR

R

(∣∣∣∣∂u∂r
∣∣∣∣2 − |∇Su|2 + k2|u|2

)
ds

+ 2<
∫

ΓR

((
ikRu+ αu

)∂u
∂r

)
ds.(3.8)

Since 2α ≥ d − 1 on ΓR, the right-hand side of (3.8) is nonpositive by Lemma 2.4.
Then, since Z · n ≥ 0 almost everywhere on Γ from the definition of an (R0, R1)
obstacle (Definition 1.4), we have∫

ΩR

[
2<
(
∂iZj∂iu∂ju

)
−
(
2α−∇ · Z

)(
k2|u|2 − |∇u|2

)
−∆α|u|2

]
dx

≤ 2<
∫

ΩR

(
Z · ∇u+ ikRu+ αu

)
f dx.(3.9)

Simple calculations imply that (with the summation convention for the indices i and
j but not d)

Z · ∇u = xd∂du
(
1− χ(r)

)
+ r∂ruχ(r)(3.10)
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870 CHANDLER-WILDE, SPENCE, GIBBS, AND SMYSHLYAEV

and

∂iZj∂iu∂ju = |∂du|2
(
1− χ(r)

)
+ |∇u|2χ(r) +

(
r|∂ru|2 − xd∂dū∂ru

)
χ′(r).(3.11)

We now choose α ∈ C2(ΩR) as in (3.7), the rationale behind this choice being that
(i) we want 2α to be constant in a neighborhood of ΓR and indeed satisfy 2α ≥ d− 1
there, allowing the application above of Lemma 2.4, and (ii) we want 2α = ∇ · Z in
the trapping region to kill the sign-indefinite combination k2|u|2 − |∇u|2 in (3.9) and
leave 2<(∂iZj∂iu∂ju) as the only volume term in this region. Using (3.10) and (3.11)
in (3.9), we find

2<
∫

ΩR

(
|∂du|2

(
1− χ(r)

)
+ |∇u|2χ(r) +

(
r|∂ru|2 − xd∂dū∂ru

)
χ′(r) −∆α|u|2

)
dx

− q
∫

ΩR

χ(r)(|∇u|2 − k2|u|2) dx

≤ − 2kR=
∫

ΩR

fūdx+ <
∫

ΩR

f
(

2xd∂dū
(
1− χ(r)

)
+ 2r∂rūχ(r) + 2αū

)
dx

which rearranges to the result (3.4).

Lemma 3.2. Let Ω− be an (R0, R1) obstacle. If v ∈ H1(ΩR), then∫
ΩR

[
2|∂dv|2

(
1− χ(r)

)
+ |∇v|2(2− q)χ(r) + 2r|∂rv|2χ′(r)

]
dx

− 2<
∫

ΩR

xd∂dv̄∂rvχ
′(r) dx

≥
(

2− q − µ− cχ
2

)∫
ΩR

|∂dv|2 dx+ µ

∫
ΩR

|∇v|2χ(r) dx(3.12)

for all q, µ > 0 with 0 < q + µ ≤ 2.

Proof. By the inequality (2.13), it follows that∣∣∣∣2< ∫
ΩR

xd∂dv̄∂rvχ
′(r)dx

∣∣∣∣ ≤ ε−1

∫
ΩR

r|∂dv|2χ′(r) dx+ ε

∫
ΩR

r|∂rv|2χ′(r) dx

for all ε > 0. Using this last inequality with ε = 2, along with the definition of cχ
(3.5), we have that the left-hand side of (3.12) is

≥
∫

ΩR

[ (
2(1− χ(r))− cχ

2

)
|∂dv|2 + |∇v|2(2− q)χ(r)

]
dx.

Further, since 2− q − µ ≥ 0 and |∇v|2 ≥ |∂dv|2,

2|∂dv|2(1− χ) + (2− q)|∇v|2χ = 2|∂dv|2(1− χ) + (2− q − µ)|∇v|2χ+ µ|∇v|2χ
≥ (2− q − µ)|∂dv|2 + µ|∇v|2χ,

and the result (3.12) follows.

Lemma 3.3. Let Ω− be an (R0, R1) obstacle and p, q > 0. If v ∈ H1(ΩR) with
γ+v = 0, then

p

∫
ΩR

|∂dv|2 dx+
qk2

2

∫
ΩR

|v|2χ(r) dx ≥ p

4R2
0

∫
ΩR

|v|2 dx
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if k is large enough so that

(3.13) k2R2
0 ≥

9p

2q χ(2R0)
.

Proof. Since χ satisfies the constraints (i) and (ii) of Definition 1.4, χ(r) ≥ χ(2R0)
for r ≥ 2R0, so that

qk2

18

∫
ΩR

|v|2χ(r) dx ≥ qk2 χ(2R0)

18

∫
ΩR\Ω2R0

|v|2 dx.

Using Corollary 2.8 (which applies since R ≥
√

13R0 by our assumption (3.6)), and
provided that (3.13) holds, we have

p

∫
ΩR

|∂dv|2 dx+
8qk2

18

∫
ΩR

|v|2χ(r) dx

≥ p

4R2
0

(
4R2

0

∫
ΩR

|∂dv|2 dx+ 8

∫
ΩR\Ω2R0

|v|2 dx

)
≥ p

4R2
0

∫
Ω2R0

|v|2 dx,

so that

p

∫
ΩR

|∂dv|2 dx+
qk2

2

∫
ΩR

|v|2χ(r) dx

≥ p

4R2
0

∫
Ω2R0

|v|2 dx+
qk2

18

∫
ΩR

|v|2χ(r) dx

≥ p

4R2
0

∫
Ω2R0

|v|2 dx+
qk2 χ(2R0)

18

∫
ΩR\Ω2R0

|v|2 dx ≥ p

4R2
0

∫
ΩR

|v|2 dx.

Lemma 3.4. Let Ω− be an (R0, R1) obstacle and α be defined by (3.7) for some
q ∈ (0, 1]. If u is the solution of the exterior Dirichlet problem described in Theorem
1.10, p > 0, R is large enough so that supp(f) ⊂ ΩR, and k is large enough so that
(3.13) holds, then

p

8k2R2
0

∫
ΩR

(
|∇u|2 + k2|u|2

)
dx+

(
2− 3q

2
− p− cχ

2

)∫
ΩR

|∂du|2 dx

+
q

2

∫
ΩR

(
|∇u|2 + k2|u|2

)
χ(r) dx

≤ p

8k2R2
0

<
∫

ΩR

fūdx− 2kR=
∫

ΩR

fūdx+

∫
ΩR

∆α|u|2 dx

+<
∫

ΩR

f
(

2xd∂dū(1− χ(r)) + 2r∂rūχ(r) + 2αū
)

dx.(3.14)

Proof. By Lemmas 3.1 and 3.2, for all q, µ > 0 with q ≤ 1 and q + µ ≤ 2,(
2− q − µ− cχ

2

)∫
ΩR

|∂du|2 dx+ µ

∫
ΩR

|∇u|2χ(r) dx+ qk2

∫
ΩR

|u|2χ(r) dx

≤ −2kR=
∫

ΩR

fūdx

+ <
∫

ΩR

f
(

2xd∂dū(1− χ(r)) + 2r∂rūχ(r) + 2αū
)

dx+

∫
ΩR

∆α|u|2 dx.
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If also p > 0 and (3.13) holds, then it follows from Lemmas 3.3 and 2.6 that

p

∫
ΩR

|∂du|2 dx+
qk2

2

∫
ΩR

|u|2χ(r) dx

≥ p

8k2R2
0

∫
ΩR

(
|∇u|2 + k2|u|2

)
dx− p

8k2R2
0

<
∫

ΩR

fūdx.

Combining these two inequalities and choosing µ = q/2 gives the required result.

In the following lemma α is defined by (3.7) (with Z given by (1.7)), so that

(3.15) 2α(x) = 1 + (d− q − 1)χ(r) + (r2 − x2
d)χ
′(r)/r

and

2∆α(x) = χ′(r)

[
(d− 1)(d− q)− 2

r
+

(d+ 1)

r

x2
d

r2

]
+χ′′(r)

[
2d− q − x2

d

r2
(d+ 1)

]
+ χ′′′(r)

(r2 − x2
d)

r
.(3.16)

Moreover, we use the notation

(3.17) mα(r) := sup
x∈Br

∆α(x), for r > 0, and Mα := mα(R).

It is clear from (3.16) and since χ ∈ C3[0,∞) and χ(r) = 0 for 0 ≤ r ≤ R0 that
mα ∈ C(0,∞) with mα(r) = 0 for 0 < r ≤ R0.

Lemma 3.5. Let Ω− be an (R0, R1) obstacle and α be defined by (3.7) with

(3.18) q =
1

8
(4− cχ),

where cχ is given by (3.5). Suppose that u is the solution of the exterior Dirichlet
problem described in Theorem 1.10, that R is large enough so that supp(f) ⊂ ΩR, that
R0 < R∗ < R1 and R∗ is chosen small enough so that

(3.19) mα(R∗) ≤
q

128R2
0

,

and that k is chosen large enough so that

(3.20) k2 ≥ max

(
4Mα

qχ(R∗)
,

9

4R2
0χ(2R0)

)
.

Then (where the k-dependent norms are as defined in (1.9))

q2

32k2R2
0

‖u‖2H1
k(ΩR) + q2‖∂du‖2L2(ΩR) +

q2

4
‖u‖2H1

k(ΩR;χ)

≤
(

2q2R2
0

81
+ 128R2

0

(
k2R2 + ‖α‖2L∞(ΩR)

)
+ 4R2 +R2

1

)
‖f‖2L2(Ω+).(3.21)

If the support of f does not intersect ΩR0
and (1.12) holds, then also

5q2

128k2R2
0

‖u‖2H1
k(ΩR) + q2‖∂du‖2L2(ΩR) +

q2

8
‖u‖2H1

k(ΩR;χ)

≤
(

2q2R2
0

81
+ 128R2

0‖α‖2L∞(ΩR) + 4R2 +R2
1

)
‖f‖2L2(Ω+) + 8R2‖f‖2L2(Ω+;χ−1).(3.22)
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Proof. The assumption (3.20) ensures that (3.13) holds with p = q/2, so that
(3.14) holds with p = q/2 and q given by (3.18), which implies that

q

16k2R2
0

‖u‖2H1
k(ΩR) + 2q‖∂du‖2L2(ΩR) +

q

2
‖u‖2H1

k(ΩR;χ)

≤ q

16k2R2
0

<
∫

ΩR

fūdx− 2kR=
∫

ΩR

fūdx+

∫
ΩR

∆α|u|2 dx

+<
∫

ΩR

f
(

2xd∂dū(1− χ(r)) + 2r∂rūχ(r) + 2αū
)

dx.(3.23)

We proceed by bounding, in terms of the left-hand side, the various terms on the
right-hand side of this last inequality. First, we note that∫

ΩR

∆α|u|2 dx ≤ mα(R∗)
∫

ΩR∗

|u|2 dx+Mα

∫
ΩR\ΩR∗

|u|2 dx

≤ mα(R∗)‖u‖2L2(ΩR) +
Mα

χ(R∗)

∫
ΩR

|u|2χ(r) dx

≤ q

128R2
0

‖u‖2L2(ΩR) +
k2q

4

∫
ΩR

|u|2χ(r) dx,(3.24)

since (3.19) and (3.20) hold. Second, using (2.13), we see that, for ε1, ε2 > 0,

<
∫

ΩR

f
(

2xd∂dū(1− χ(r)) + 2r∂rūχ(r)
)

dx

≤ ε−1
1 R2

1‖f‖2L2(Ω+) + ε1‖∂du‖2L2(ΩR) +R2ε−1
2 ‖f‖2L2(Ω+) + ε2

∫
ΩR

|∇u|2χ(r) dx

=
R2

1

q
‖f‖2L2(Ω+) + q‖∂du‖2L2(ΩR) +

4R2

q
‖f‖2L2(Ω+) +

q

4

∫
ΩR

|∇u|2χ(r) dx(3.25)

if ε1 = q and ε2 = q/4. Similarly, for ε3, ε4 > 0, since k2R2
0 ≥ 9/4 by (3.20),

q

16k2R2
0

<
∫

ΩR

fūdx+ 2<
∫

ΩR

fαūdx

≤ q

36

∣∣∣∣∫
ΩR

fūdx

∣∣∣∣+ 2

∣∣∣∣∫
ΩR

fαūdx

∣∣∣∣
≤ q2

5184
ε−1
3 ‖f‖2L2(Ω+) + ε3‖u‖2L2(ΩR) + ε−1

4 ‖α‖2L∞(ΩR)‖f‖2L2(Ω+) + ε4‖u‖2L2(ΩR)

=
2qR2

0

81
‖f‖2L2(Ω+) +

128R2
0

q
‖α‖2L∞(ΩR)‖f‖2L2(Ω+) +

q

64R2
0

‖u‖2L2(ΩR)(3.26)

if ε3 = ε4 = q/(128R2
0). Finally, for ε > 0,

−2kR=
∫

ΩR

fūdx ≤ k2R2ε−1‖f‖2L2(Ω+) + ε‖u‖2L2(ΩR)

=
128k2R2R2

0

q
‖f‖2L2(Ω+) +

q

128R2
0

‖u‖2L2(ΩR)(3.27)

if ε = q/(128R2
0). Combining (3.23), (3.24), (3.26), and (3.27) we obtain (3.21).
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If the support of f does not intersect ΩR0
and (1.12) holds, then we can replace

(3.27) by

−2kR=
∫

ΩR

fūdx ≤ R2ε−1‖f‖2L2(Ω+;χ−1) + εk2

∫
ΩR

|u|2χ(r) dx

=
8R2

q
‖f‖2L2(Ω+;χ−1) +

qk2

8

∫
ΩR

|u|2χ(r) dx(3.28)

if we choose ε = q/8. Combining (3.23), (3.24), (3.26), and (3.28) we obtain
(3.22).

Proof of Theorem 1.10 from Lemma 3.5. The bound (3.21) implies that there ex-
ists a constant C > 0, depending only on the function χ in Definition 1.4, such that

1

kR0
‖u‖H1

k(ΩR) + ‖∂du‖L2(ΩR) + ‖u‖H1
k(ΩR;1−χ) ≤ CR(1 + kR0)‖f‖L2(Ω+)(3.29)

for k ≥ k1 and R > max(R1,
√

13R0), where k1 > 0 is given by (3.20). Clearly,
(3.29) implies that the same bound holds also for RΓ < R ≤ max(R1,

√
13R0), with

C replaced by max(R1,
√

13R0)C/RΓ. Thus (1.11) holds for k ≥ k1. Given k0 > 0,
that the bound (1.11) holds for k ∈ (k0, k1) follows by standard arguments; see the
text after Definition 4.1.

Arguing similarly, if the support of f does not intersect ΩR0 and (1.12) holds, then
(3.22) implies that there exists a constant C ′ > 0, depending only on the function χ
in Definition 1.4, such that

1

kR0
‖u‖H1

k(ΩR) + ‖∂du‖L2(ΩR) + ‖u‖H1
k(ΩR;1−χ) ≤ C ′R‖f‖L2(Ω+;χ−1)(3.30)

for k ≥ k1 and R > max(R1,
√

13R0), and it follows that the bound (1.11) holds with
k‖f‖L2(Ω+) replaced by ‖f‖L2(Ω+;χ−1).

4. Proof of Theorem 1.11 on the exterior DtN map.

Definition 4.1 (K resolvent estimate). For K ∈ C[0,∞), with K(k) ≥ 1 for
k > 0, we say that Ω+ satisfies a K resolvent estimate if, whenever u ∈ H1

loc(Ω+)
satisfies the radiation condition (1.10), the boundary condition γ+u = 0, and the
Helmholtz equation ∆u+ k2u = −f in Ω+, with f ∈ L2(Ω+) compactly supported, it
holds for all R > maxx∈Γ∪supp(f) |x| that

(4.1) ‖u‖H1
k(ΩR) . K(k)‖f‖L2(Ω+) for k > 0,

where the omitted constant depends on R.

To show that Ω+ satisfies a K resolvent estimate it is enough to show that (4.1)
holds for all sufficiently large k. For, as observed at the end of section 5 below in (5.7)
and Lemma 5.1, the bound (4.1) holds for every Ω+ for all sufficiently small k > 0.
Further, for every k0 > 0, it then follows, by continuity arguments and well-posedness
at every fixed k > 0, that (4.1) holds for 0 < k ≤ k0. (Concretely, one route to
carrying out these latter arguments is to note that the inf-sup constant βR, given
by (5.4) below, is positive for each fixed k and depends continuously on k, and then
apply Lemma 5.1.)

The bounds (1.17) and (1.18) in Theorem 1.11 follow from Theorem 1.10 combined
with the following lemma; this lemma encapsulates the method laid out in [4, section
3] for deriving wavenumber-explicit bounds on the exterior DtN map from resolvent
estimates in the exterior domain.
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Lemma 4.2 (from resolvent estimates to DtN map bounds). Suppose that Ω+

satisfies a K resolvent estimate for some K ∈ C[0,∞) with K(k) ≥ 1 for k > 0. Then,
whenever u ∈ H1

loc(Ω+) satisfies the radiation condition (1.10) and ∆u+ k2u = 0 in
Ω+, it holds for all R > RΓ that, given k0 > 0,

(4.2) ‖u‖H1
k(ΩR) + ‖∂+

n u‖L2(Γ) . K(k) ‖g‖H1
k(Γ) for k ≥ k0,

provided g := γ+u ∈ H1(Γ). Moreover, for k ≥ k0,

(4.3) ‖∂+
n u‖Hs−1

k (Γ) . K(k)‖g‖Hsk(Γ) and ‖∂+
n u‖Hs−1(Γ) . kK(k)‖g‖Hs(Γ),

uniformly for 0 ≤ s ≤ 1, assuming, in the case s > 1/2, that g ∈ Hs(Γ).

Proof. We sketch the proof, which is essentially contained in [4, section 3]. Sup-
pose that Ω+ satisfies a K resolvent estimate, with the given conditions on K, and
that u ∈ H1

loc(Ω+) satisfies (1.10), ∆u+ k2u = 0 in Ω+, and g := γ+u ∈ H1(Γ). Let
w ∈ H1(Ω+) satisfy ∆w+(k2 +ik)w = 0 in Ω+ and the boundary condition γ+w = g.
Green’s identity can then be used to show that, given k0 > 0,

(4.4) ‖w‖H1
k(Ω+) . ‖g‖H1

k(Γ) for k ≥ k0

[4, Lemma 3.3]. Choose ψ ∈ C∞0 (Rd) that is equal to one on Ω−, and define v :=
u − ψw. Then v ∈ H1

loc(Ω+) satisfies (1.10), γ+v = 0, and ∆v + k2v = h := ikψw −
w∆ψ − 2∇w · ∇ψ ∈ L2(Γ), and h is compactly supported. Thus, for all R > RΓ,

(4.5) ‖v‖H1
k(ΩR) . K(k)‖h‖L2(Ω+) . K(k)‖w‖H1

k(Ω+)

for k ≥ k0. Combining (4.4) and (4.5) we see that, for all R > RΓ,

‖u‖H1
k(ΩR) . K(k)‖g‖H1

k(Γ) for k ≥ k0.

That ‖∂+
n u‖L2(Γ) is also bounded by the right-hand side of this last equation follows

from [4, Lemma 2.3] (essentially Nečas’ regularity result [75, section 5.1.2], [65, Theo-
rem 4.24(ii)], proved using a Rellich identity). Using the notation P+

DtN : H1/2(Γ)→
H−1/2(Γ) to denote the DtN map for the exterior domain Ω+, we see (4.2) implies
that

‖P+
DtN‖H1

k(Γ)→L2(Γ) . K(k) so ‖P+
DtN‖H1(Γ)→L2(Γ) . kK(k)

for k ≥ k0. It is well known (e.g., [20, Theorem 2.31]) that P+
DtN can be extended

uniquely to a bounded mapping from Hs+1/2(Γ) → Hs−1/2(Γ) for |s| ≤ 1/2. Since
P+
DtN is self-adjoint with respect to the real inner product (·, ·)rΓ (see [20, section 2.7]),

(4.3) follows from (2.20) (cf. [84, Lemma 2.3]).

Remark 4.3 (previous uses of the arguments in Lemma 4.2). The method in
Lemma 4.2 is a sharpening of arguments used to obtain bounds on the DtN map
from resolvent estimates in [54, 84], with this type of argument going back at least to
[55, section 5]. Indeed, in [54, 84] the equation ∆w + (k2 + ik)w = 0 in the proof of
Lemma 4.2 below is replaced by ∆w−k2w = 0, losing a factor k in the final estimates.

To prove the last part of Theorem 1.11, namely the bound (1.19), we use the
interior elliptic regularity estimate that if, for some x ∈ Rd and ε > 0, v ∈ C2(Bε(x)),
∆v = f in Bε(x) and v, f ∈ L∞(Bε(x)), then [43, Theorem 3.9], for some constant
Cd > 0 that depends only on d,

|∇v(x)| ≤ Cd
ε

(
‖v‖L∞(Bε(x)) + ε2‖f‖L∞(Bε(x))

)
.
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In the particular case that f = −k2v, so that ∆v + k2v = 0, this estimate is

(4.6) |∇v(x)| ≤ Cd
(1 + k2ε2)

ε
‖v‖L∞(Bε(x)).

Proof of Theorem 1.11. The bounds (1.17) and (1.18) follow immediately from
Lemma 4.2 and Theorem 1.10, which shows (under the conditions on Ω+, R1, and R0,
and taking into account the text after Definition 4.1) that Ω+ satisfies a K resolvent
estimate with K(k) = 1 + k2. The bound (1.17) and (4.6) imply a version of (1.19),
but with k2 replaced by k3. To show the sharper bound (1.19), choose ψ ∈ C∞0 (Rd)
supported in G that is equal to one on Ω− ∪ BR′ , for some R′ > R0, and let w :=
u+ψui. Then w satisfies (1.10), γ+w = 0, and ∆w+k2w = h := 2∇ui ·∇ψ+ui∆ψ in
Ω+. Further, h ∈ L2(Ω+) is compactly supported, h = 0 in BR′ ∩ Ω+, and, applying
(4.6) with ε = min(ε, k−1) for some sufficiently small ε, we see that

‖h‖L2(Ω+) . (1 + k) max
x∈G
|ui(x)| for k > 0.

It follows from Theorem 1.10 (see (1.15)) that, given k0 > 0 and R > RΓ,

‖w‖H1
k(ΩR) . k‖h‖L2(Ω+)

for k ≥ k0. Applying [4, Lemma 2.3] we deduce that also ‖∂+
n w‖L2(Γ) . k‖h‖L2(Ω+).

Applying (4.6) again, with the same choice of ε, we obtain also that

‖ψui‖H1
k(Ω+) + ‖∂+

n u
i‖L2(Ω+) . (1 + k) max

x∈G
|ui(x)| for k > 0.

Combining these inequalities it follows that (1.19) holds.

Using Lemma 4.2 we can derive other bounds on the exterior DtN map that apply
to classes of trapping domains, using the two other trapping resolvent estimates in
the literature, which we discussed in section 1.1.

Corollary 4.4 (worst case bounds on the DtN map). Let u ∈ H1
loc(Ω+) be

a solution to the Helmholtz equation ∆u + k2u = 0 in Ω+ that satisfies (1.10) and
γ+u = g. If Ω− is C∞ there exists α > 0 such that, given k0 > 0,

(4.7) ‖∂+
n u‖L2(Γ) . exp(αk) ‖g‖H1

k(Γ)

for all k ≥ k0 if g ∈ H1(Γ). In fact, for k ≥ k0,

(4.8) ‖∂+
n u‖Hs−1

k (Γ) . exp(αk)‖g‖Hsk(Γ) and ‖∂+
n u‖Hs−1(Γ) . k exp(αk)‖g‖Hs(Γ),

uniformly for 0 ≤ s ≤ 1, assuming, in the case s > 1/2, that g ∈ Hs(Γ).

The second resolvent estimate, developed by Ikawa [46, 48] and Burq [14], is for
mild, hyperbolic trapping, where Ω− is an Ikawa-like union of convex obstacles in the
following sense.

Definition 4.5 (Ikawa-like union of convex obstacles [48, 14]). We say that Ω−
is an Ikawa-like union of convex obstacles if

(i) for some M ∈ N, Ω− = ∪Ni=1Θi, where Θ1, . . . ,ΘN ⊂ Rd are disjoint compact
C∞ strictly convex sets with κ > 0, where κ is the infimum of the principal
curvatures of the boundaries of the obstacles Θi;
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(ii) for 1 ≤ i, j, ` ≤ N , i 6= j, j 6= `, ` 6= i,

Convex hull(Θi ∪Θj) ∩Θ` = ∅;

(iii) if N > 2, κL > N , where L denotes the minimum of the distances between
pairs of obstacles.

Corollary 4.6 (DtN map for Ikawa-like union of convex obstacles). Let u ∈
H1

loc(Ω+) be a solution to the Helmholtz equation ∆u + k2u = 0 in Ω+ that satisfies
(1.10) and γ+u = g. If Ω− is an Ikawa-like union of convex obstacles then, given
k0 > 0,

(4.9) ‖∂+
n u‖L2(Γ) . log(2 + k) ‖g‖H1

k(Γ)

for all k ≥ k0 if g ∈ H1(Γ). In fact, for k ≥ k0,

‖∂+
n u‖Hs−1

k (Γ) . log(2 + k)‖g‖Hsk(Γ) and ‖∂+
n u‖Hs−1(Γ) . k log(2 + k)‖g‖Hs(Γ),

(4.10)

uniformly for 0 ≤ s ≤ 1, assuming, in the case s > 1/2, that g ∈ Hs(Γ).

5. Proof of Corollary 1.13 on the inf-sup constant. Since Ω+ is unbounded,
standard FEMs cannot be applied directly to the exterior Dirichlet problem. A stan-
dard fix is to reformulate the exterior Dirichlet problem as a variational problem in
the truncated domain ΩR for some R > RΓ. The effect of the rest of Ω+, i.e., of
Ω+
R := Ω+ \ ΩR, is replaced by the exact DtN map on ΓR for Ω+

R, abbreviated as
P+
R (our notation as in Corollary 1.13). As Ω+

R is a geometry in which the Helmholtz
equation separates, the action of P+

R can be computed analytically (e.g., [25, equations
(3.5)–(3.6)]).

Given f ∈ L2(Ω+) with compact support in Ω+, consider the problem of finding
u ∈ H1

loc(Ω+) such that u satisfies the radiation condition (1.10), the Helmholtz
equation ∆u+k2u = −f in Ω+, and γ+u = 0 on Γ. It is well-known that a variational
formulation in ΩR can be obtained by multiplying the Helmholtz equation by a test
function vR ∈ VR, integrating by parts, and applying the boundary condition γ+u = 0.
In particular (e.g., [76]), if the support of f lies in ΩR, u satisfies this BVP in Ω+ if
and only if uR := u|ΩR ∈ VR and

a(uR, vR) = G(vR) for all vR ∈ VR,(5.1)

where a(·, ·) is defined in (1.23), VR is defined immediately before Corollary 1.13, and

G(v) :=

∫
ΩR

v̄fdx for v ∈ VR.(5.2)

The following lemma is proved as [25, Lemmas 3.3, 3.4].

Lemma 5.1 (link between resolvent estimates and bounds on the inf-sup con-
stant). Suppose that R > RΓ, L > 0, k > 0, and that

(5.3) ‖u‖H1
k(ΩR) ≤ L‖f‖L2(Ω+)

for all f ∈ L2(Ω+) supported in ΩR, where u ∈ H1
loc(Ω+) is the solution of ∆u+k2u =

−f in Ω+ that satisfies (1.10) and γ+u = 0. Then

(5.4) βR := inf
06=u∈VR

sup
06=v∈VR

|a(u, v)|
‖u‖H1

k(ΩR)‖v‖H1
k(ΩR)

≥ α,
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where α = (1 + 2kL)−1. Conversely, if (5.4) holds for some α > 0, then (5.3) holds
for all f ∈ L2(Ω+) supported in ΩR, with L = α−1 min(k−1, cR), where

(5.5) cR := sup
06=v∈VR

‖v‖L2(ΩR)

‖∇v‖L2(ΩR)
.

Corollary 1.13 follows immediately from Theorem 1.10 and Lemma 5.1.
We remark also that (see [76] or [25, Lemma 2.1])

(5.6) βR ≥ inf
06=v∈VR

<(a(u, v))

‖v‖2
H1
k(ΩR)

≥ inf
0 6=v∈VR

∫
ΩR

(|∇v|2 − k2|v|2)dx∫
ΩR

(|∇v|2 + k2|v|2)dx
≥ 1− k2c2R

1 + k2c2R
.

This, combined with Lemma 5.1, shows that, if kcR < 1, (5.3) holds for all f ∈ L2(Ω+)
supported in ΩR, with

(5.7) L = cR
1 + k2c2R
1− k2c2R

.

Remark 5.2 (bound on β−1
R from a K resolvent estimate). In the language of

Definition 4.1, Lemma 5.1 tells us that Ω+ satisfies a K resolvent estimate (with K
satisfying the conditions of Definition 4.1) if and only if the inf-sup constant satisfies

(5.8) β−1
R . (1 + k)K(k), for k > 0,

for all R > RΓ. Table 6.1 lists the known resolvent estimates for scattering by an
obstacle, as well as the bounds β−1

R that follows from these.

Remark 5.3 (upper bound on βR). The simple constructions in [25, Lemma 3.10]
(see also [84, Lemma 4.12]) show that for every Ω+ and every R > RΓ,

(5.9) βR . (1 + k)−1 for k > 0,

and the nontrapping resolvent estimate combined with (5.8) shows that this is sharp.

6. Combined-potential integral equation formulations and the proof of
Corollary 1.14. Integral equation methods are widely used for both the theoretical
analysis and the numerical solution of direct and inverse acoustic scattering problems
(e.g., [28, 29, 20]). In this section we recall the standard integral equation formulations
for the exterior Dirichlet problem and derive new wavenumber-explicit bounds in the
case when Ω− is trapping, combining the resolvent and DtN estimates in Theorems
1.10 and 1.11 (proved in sections 3 and 4) with the sharp bounds for the interior
impedance problem recently obtained in [4].

6.1. Integral equations for the exterior Dirichlet problem. If u is a solu-
tion of ∆u+ k2u = 0 in Ω+ that satisfies the radiation condition (1.10), then Green’s
representation theorem (see, e.g., [20, Theorem 2.21]) gives

(6.1) u(x) = −
∫

Γ

Φk(x, y)∂+
n u(y) ds(y) +

∫
Γ

∂Φk(x, y)

∂n(y)
γ+u(y) ds(y), x ∈ Ω+,

where Φk(x, y) is the fundamental solution of the Helmholtz equation given by

Φk(x, y) :=
i

4

(
k

2π|x− y|

)(d−2)/2

H
(1)
(d−2)/2

(
k|x− y|

)
=


i

4
H

(1)
0

(
k|x− y|

)
, d = 2,

eik|x−y|

4π|x− y| , d = 3,

(6.2)
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where H
(1)
ν denotes the Hankel function of the first kind of order ν. Taking the

exterior Dirichlet and Neumann traces of (6.1) on Γ and using the jump relations for
the single- and double-layer potentials (e.g., [20, equation 2.41]) we obtain the integral
equations

(6.3) Sk∂
+
n u =

(
−1

2
I +Dk

)
γ+u and

(
1

2
I +D′k

)
∂+
n u = Hkγ+u,

where Sk, Dk are the single- and double-layer operators, D′k is the adjoint double-
layer operator, and Hk is the hypersingular operator. These four integral operators
are defined for φ ∈ L2(Γ), ψ ∈ H1(Γ), and almost all x ∈ Γ by

Skφ(x) :=

∫
Γ

Φk(x, y)φ(y) ds(y), Dkφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(y)
φ(y) ds(y),

(6.4)

D′kφ(x) :=

∫
Γ

∂Φk(x, y)

∂n(x)
φ(y) ds(y), Hkψ(x) :=

∂

∂n(x)

∫
Γ

∂Φk(x, y)

∂n(y)
ψ(y) ds(y).

(6.5)

When Γ is Lipschitz, the integrals defining Dk and D′k must be understood as Cauchy
principal value integrals and even when Γ is smooth there are subtleties in defining
Hkψ for ψ ∈ H1(Γ) which we ignore here (see, e.g., [20, section 2.3]).

For the exterior Dirichlet problem, the integral equations (6.3) are both equations
for the unknown Neumann trace ∂+

n u. However, the first of these equations is not
uniquely solvable when −k2 is a Dirichlet eigenvalue of the Laplacian in Ω−, and the
second is not uniquely solvable when −k2 is a Neumann eigenvalue of the Laplacian
in Ω−; see, e.g., [20, Theorem 2.25].

One standard way to resolve this difficulty (going back to the work of [16]) is to
take a linear combination of the two equations, which yields the integral equation

(6.6) A′k,η∂
+
n u = Bk,ηγ+u,

where

(6.7) A′k,η :=
1

2
I +D′k − iηSk and Bk,η := Hk + iη

(
1

2
I −Dk

)
.

If η ∈ R \ {0}, then the integral operator A′k,η is invertible (on appropriate Sobolev
spaces) and so (6.6) can be used to solve the exterior Dirichlet problem for all k > 0.
Indeed, if η ∈ R \ {0}, then A′k,η is a bounded invertible operator from Hs(Γ) to itself
for −1 ≤ s ≤ 0 [20, Theorem 2.27].

An alternative resolution (proposed essentially simultaneously by [10, 58, 77]) is
to work with a so-called indirect formulation, looking for a solution to the exterior
Dirichlet problem as the combined double- and single-layer potential

u(x) =

∫
Γ

∂Φk(x, y)

∂n(y)
φ(y) ds(y)− iη

∫
Γ

Φk(x, y)φ(y) ds(y), x ∈ Ω+,

for some φ ∈ H1/2(Γ) and η ∈ R \ {0}. It follows from the jump relations [20,
equation 2.41] that this ansatz satisfies the exterior Dirichlet problem with Dirchlet
data h = γ+u ∈ H1/2(Γ) if and only if

(6.8) Ak,ηφ = h,
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where

(6.9) Ak,η :=
1

2
I +Dk − iηSk.

If η ∈ R \ {0}, then Ak,η is a bounded invertible operator from Hs(Γ) to itself for
0 ≤ s ≤ 1 [20, Theorem 2.27]. The operators A′k,η and Ak,η are closely related in

that A′k,η is the adjoint of Ak,η with respect to the real L2 inner product on Γ, i.e.,

(Ak,ηφ, ψ)rΓ = (φ,A′k,ηψ)rΓ for all φ, ψ ∈ L2(Γ). Thus, by (2.19),

‖(A′k,η)−1‖H−sk (Γ)→H−sk (Γ) = ‖A−1
k,η‖Hsk(Γ)→Hsk(Γ) and(6.10)

‖(A′k,η)−1‖H−s(Γ)→H−s(Γ) = ‖A−1
k,η‖Hs(Γ)→Hs(Γ) for 0 ≤ s ≤ 1.(6.11)

For the general exterior Dirichlet problem it is natural to pose Dirichlet data in
H1/2(Γ) (since γ+u ∈ H1/2(Γ)). The mapping properties of Hk and Dk (see [20,
Theorems 2.17, 2.18]) imply that Bk,η : Hs+1(Γ)→ Hs(Γ) for −1 ≤ s ≤ 0, and thus
Bk,ηγ+u ∈ H−1/2(Γ). Thus, for Dirichlet data in H1/2(Γ), the invertibility of A′k,η
on H−1/2(Γ) is particularly relevant and, for the solution of (6.8), the invertibility
of Ak,η on H1/2(Γ). The major application of (6.6), however, is the solution of
problems of sound soft acoustic scattering (see [20, Definition 2.11, Theorem 2.46]),
in which u is interpreted as the scattered field corresponding to an incident field ui

that satisfies ∆ui + k2ui = 0 in some neighborhood G of Ω−, and here the Dirichlet
data γ+u = −ui|Γ ∈ H1(Γ) is smoother, so that Bk,ηγ+u ∈ L2(Γ). Indeed, in this
case [20, Theorem 2.46], the unknown ∂+

n u
t satisfies the integral equation,

(6.12) A′k,η∂
+
n u

t = fk,η := ∂+
n u

i − iηγ+u
i ∈ L2(Γ).

where ut := u + ui is the so-called total field satisfying γ+u
t = 0. Therefore, in

applications to acoustic scattering, the invertibility of A′k,η on L2(Γ) is also important.

Indeed, L2(Γ) is a natural function space setting for implementation and analysis of
Galerkin numerical methods for the solution of the direct equations (6.6) and (6.12)
and the indirect equation (6.8) (e.g., [59, 22, 44, 35, 38] and recall the discussion in
section 1.5.3).

6.2. Inverses of the combined-field operators in terms of the exterior
DtN and the interior impedance to Dirichlet maps. We introduced in the
proof of Lemma 4.2 the notation P+

DtN for the exterior DtN map. Similarly, for the

Lipschitz open set Ω−, let P−,ηItD : H−1/2(Γ)→ H1/2(Γ) denote the interior impedance
to Dirichlet map that takes impedance data g ∈ H−1/2(Γ) to γ−u ∈ H1/2(Γ), where u
is the solution of ∆u+k2u = 0 in Ω− that satisfies the impedance boundary condition
(6.16) below. P−,ηItD extends uniquely to a bounded mapping from Hs(Γ)→ Hs+1(Γ)
for −1 ≤ s ≤ 0 (see [20, Theorem 2.32]).

The inverse of A′k,η can be written in terms of P+
DtN and P−,ηItD as

(6.13) (A′k,η)−1 = I − P+
DtNP

−,η
ItD + iηP−,ηItD

[20, Theorem 2.33]. The fact that P−,ηItD , as well as P+
DtN , appears in this formula is

because a boundary integral equation formulation of the interior impedance problem
leads to the same operator A′k,η; see [20, Theorem 2.38]. To use (6.13) to bound

(A′k,η)−1 one therefore needs bounds on the exterior DtN map, provided for (R0, R1)
obstacles in Theorem 1.11, but also bounds on the interior impedance to Dirichlet
map given by the following theorem.
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Theorem 6.1. If Ω− is either star-shaped with respect to a ball or C∞, then

(6.14) ‖P−,ηItD‖Hsk(Γ)→Hs+1
k (Γ) . 1 for k > 0,

uniformly for −1 ≤ s ≤ 0, and

(6.15) ‖P−,ηItD‖Hsk(Γ)→Hsk(Γ) . k−1 for k > 0,

uniformly for −1 ≤ s ≤ 1. If Ω− is only piecewise smooth, the bounds (6.14) and
(6.15) hold with 1 and k−1 replaced by k1/4 and k−3/4. If Ω− is only Lipschitz, the
bounds (6.14) and (6.15) hold with 1 and k−1 replaced by k1/2 and k−1/2.

Proof. We first show that (6.14) holds for s = 0. Given g ∈ L2(Γ) let u ∈ H1(Ω−)
denote the solution to ∆u+ k2u = 0 in Ω− that satisfies

(6.16) ∂−n u− iηγ−u = g on Γ,

with η = ck, for some c ∈ R \ {0}. Then, for k > 0,

(6.17) ‖∂−n u‖L2(Γ) + k‖γ−u‖L2(Γ) . ‖g‖L2(Γ)

by Green’s theorem; see, e.g., [84, Lemma 4.2]. If Ω− is either star-shaped with
respect to a ball or C∞, then

(6.18) ‖∇S(γ−u)‖L2(Γ) . ‖g‖L2(Γ)

by [71, equation 3.12] and [4, Corollary 1.9], respectively. Combining (6.17) and (6.18)
then gives (6.14) for s = 0.

Since P−,ηItD is self-adjoint with respect to the real inner product (·, ·)rΓ [20, p. 130],
it follows from (2.20) that (6.14) holds for −1 ≤ s ≤ 0, uniformly in s. Further, it
is immediate from the definition of the norm on Hs

k(Γ) that the embedding operator
from Hs

k(Γ) to Hs−1
k (Γ) has norm ≤ k−1 for k > 0 and s = 0, 1, and hence for

0 ≤ s ≤ 1 by interpolation (see (2.18)). Thus (6.15) follows from (6.14).
If Ω− is piecewise smooth, then, given k0 > 0, the bound (6.18) holds for k ≥ k0,

but with ‖g‖L2(Γ) replaced by k1/4‖g‖L2(Γ) and in the general Lipschitz case (6.18)

holds for k ≥ k0 with ‖g‖L2(Γ) replaced by k1/2‖g‖L2(Γ); see [84, Lemma 4.6]. The
adjustments to (6.14) and (6.15) then follow.

6.3. From resolvent estimates to Corollary 1.14. The following lemma
captures arguments made in [4] for the nontrapping case (where K(k) = 1 for k ≥
0) and provides a general recipe for bounding (A′k,η)−1 as a corollary of resolvent

estimates in Ω+. Bounds on A−1
k,η (as opposed to (A′k,η)−1 ) then follow immediately

from (6.10) and (6.11).

Lemma 6.2. Suppose that Ω+ satisfies a K resolvent estimate for some K ∈
C[0,∞) with K(k) ≥ 1 for k > 0, and that η = ck for some c ∈ R \ {0}. Then, given
k0 > 0, provided each component of Ω− is either star-shaped with respect to a ball or
C∞,

‖(A′k,η)−1‖Hsk(Γ)→Hsk(Γ) . K(k) and ‖(A′k,η)−1‖Hs(Γ)→Hs(Γ) . k−sK(k) for k ≥ k0,

(6.19)

uniformly for −1 ≤ s ≤ 0. The bounds (6.19) hold with K(k) and k−sK(k) replaced by
k1/4K(k) and k1/4−sK(k), respectively, if each component of Ω− is either star-shaped
with respect to a ball (and Lipschitz) or piecewise smooth. They hold with K(k) and
k−sK(k) replaced by k1/2K(k) and k1/2−sK(k), respectively, in the general Lipschitz
case.
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Proof. The first bound in (6.19) follows by combining Lemma 4.2, (6.13), and
Theorem 6.1. The second bound in (6.19) when s = 0 and s = −1 follows from
the first and the fact that ‖ψ‖H−1

k (Γ) . ‖ψ‖H−1(Γ) . k‖ψ‖H−1
k (Γ) for ψ ∈ H−1(Γ)

and k ≥ k0. The second bound in (6.19) when −1 < s < 0 then follows by the
interpolation bound (2.18).

The upper bounds (1.28) and (1.29) in Corollary 1.14 and the comments in Re-
mark 1.16 follow immediately from combining Lemma 6.2 and Theorem 1.10. The
following lemma proves the lower bound (1.30) and so completes the proof of Corol-
lary 1.14. In this lemma, for x = (x1, . . . , xd) ∈ Rd we write x̃ := (x2, . . . , xd) ∈ Rd−1,
so that x = (x1, x̃).

Lemma 6.3. Suppose that ε > 0, a2 > a1, and that Γ1 ∪ Γ2 ⊂ Γ and ΩC ⊂ Ω+,
where Γj := {x = (aj , x̃) : |x̃| < ε}, for j = 1, 2, and ΩC := {x = (x1, x̃) : |x̃| <
ε and a1 < x1 < a2}. Then, where a := a2 − a1, provided |η| . k,

(6.20) ‖(A′k,η)−1‖L2(Γ)→L2(Γ) & k for k ∈ Q := {mπ/a : m ∈ N}.

Observe that the geometric assumptions in Lemma 6.3 include every (R0, R1, a)
parallel trapping obstacle, if necessary after an appropriate change of coordinate
system.

Proof of Lemma 6.3. Let S := {x̃ ∈ Rd−1 : |x̃| < ε/2}. Choose a nonzero χ ∈
C∞0 (Rd−1) supported in S. For some cj ∈ C with |c1| = |c2| = 1, let φj((aj , x̃)) :=
cjχ(x̃), x̃ ∈ Rd−1, for j = 1, 2. Let φ ∈ C1(Γ) be defined by φ(x) = φj(x), x ∈ Γj , for
j = 1, 2, φ(x) = 0 otherwise, and define u ∈ H1

loc(Rd) ∩C(Rd) ∩C2(Rd \ supp(φ)) by

(6.21) u(x) :=

∫
Γ

Φk(x, y)φ(y) ds(y) for x ∈ Rd.

Using the standard jump relations [20, p. 115], we see that

(6.22) A′k,ηφ = fk,η := ∂−n u− iηγ−u.

Clearly, ‖φ‖L2(Γ) & 1. We prove the lemma by showing that ‖fk,η‖L2(Γ) . k−1 if
k ∈ Q and |η| . k, provided we choose the phase of c2/c1 correctly.

Let χ̂ denote the Fourier transform of χ, given by

χ̂(ξ) :=

∫
Rd−1

χ(x̃)e−ix̃·ξ dx̃, ξ ∈ Rd−1.

Clearly u = u(1) + u(2), where

u(j)(x) :=

∫
Γj

Φk(x, y)φj(y) ds(y)(6.23)

=
icj

2(2π)d−1

∫
Rd−1

χ̂(ξ)√
k2 − |ξ|2

exp
(

i
(
x̃ · ξ + |x1 − aj |

√
k2 − |ξ|2

))
dξ(6.24)

for j = 1, 2 and x ∈ Rd, with
√
k2 − |ξ|2 = i

√
|ξ|2 − k2 for |ξ| > k. The fact

that (6.23) and (6.24) are equivalent follows from Fourier representations for layer
potentials and boundary integral operators; see, e.g., [21, Theorem 3.1].

For x ∈ Rd,
u(j)(x) =

icj
2k

χ(x̃) eik|x1−aj | + v(j)(x),
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where

v(j)(x) =
icj

2(2π)d−1

∫
Rd−1

χ̂(ξ) eix̃·ξ
(

exp(i|x1 − aj |
√
k2 − |ξ|2 )√

k2 − |ξ|2
− eik|x1−aj |

k

)
dξ.

The point of this decomposition is that v(j)(x) = O(k−2) as k → ∞, uniformly on
every bounded subset of Rd, and, provided k ∈ Q, one can choose c1 and c2 such that

(6.25)
ic1
2k

χ(x̃) eik|x1−a1| +
ic2
2k

χ(x̃) eik|x1−a2|

is zero for x ∈ Γ (indeed for all x 6∈ ΩC); these observations will lead to the required
estimate ‖fk,η‖L2(Γ) = O(k−1).

To obtain the bound on v(j)(x) we observe that, for x ∈ Rd,

|v(j)(x)| ≤ 1

2(2π)d−1

∫
Rd−1

|χ̂(ξ)|
(∣∣∣∣∣exp(i|x1 − aj |(

√
k2 − |ξ|2 − k))− 1√

k2 − |ξ|2

∣∣∣∣∣
+
|k −

√
k2 − |ξ|2|

k|
√
k2 − |ξ|2|

)
dξ

≤ k|x1 − aj |+ 3

2(2π)d−1k2

∫
Rd−1

|χ̂(ξ)||ξ|2
|
√
k2 − |ξ|2|

dξ,

since |eit − 1| ≤ |t| for t ∈ R,

(6.26) |
√
k2 − |ξ|2 − k| = |ξ|2/|

√
k2 − |ξ|2 + k| ≤ |ξ|2/k for ξ ∈ Rd−1,

and, for |ξ| > k and b ≥ 0,

(6.27)
∣∣∣exp(ib(

√
k2 − |ξ|2 − k))− 1

∣∣∣ ≤ 2 ≤ 2|ξ|2/k2.

Moreover, since χ̂ is in the Schwartz space S(Rd−1), it vanishes rapidly at infinity,
and thus for some C > 0 we have |χ̂(ξ)| ≤ C(1 + |ξ|)−2−d for ξ ∈ Rd−1, so that, for
some C ′, C ′′ > 0,∫
Rd−1

|χ̂(ξ)||ξ|2
|
√
k2 − |ξ|2|

dξ ≤ C ′
∫ ∞

0

dr

|
√
k2 − r2|(1 + r)2

≤ C ′′
(

1

k2

∫ 3k/2

k/2

dr

|
√
k2 − r2|

+
1

k

∫ ∞
0

(1 + r)−2 dr

)
= O(k−1).

Thus v(j)(x) = O(k−2) as k →∞ for j = 1, 2, uniformly in x in every bounded subset
of Rd.

Since ΩC ⊂ Ω+, we have Γ ⊂ Ω∗ and Γ \ (Γ1 ∪ Γ2) ⊂ Ω∗, where Ω∗ := {x ∈ Rd :
x1 < a1 or x1 > a2 or |x̃| > ε/2}. Choosing c1 = 1 and c2 = −eika, we see that (6.25)
equals zero for x ∈ Ω∗ and k ∈ Q, and thus

(6.28) u(x) = u(1)(x) + u(2)(x) = v(1)(x) + v(2)(x), so that u(x) = O(k−2)

for k ∈ Q, uniformly on bounded subsets of Ω∗, in particular uniformly on Γ. Since
∆u+ k2u = 0 in Ω∗, it follows using (4.6) that ∇u(x) = O(k−1) for k ∈ Q, uniformly
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for x ∈ Γ \ (Γ1 ∪ Γ2). Finally, from (6.24) we have that, with this choice of c1 and c2
and k ∈ Q, for x ∈ Γ1 ∪ Γ2,

|∂−n u(x)| = 1

2(2π)d−1

∣∣∣∣∫
Rd−1

χ̂(ξ)eix̃·ξ
(

exp(ia(
√
k2 − |ξ|2 − k))− 1

)
dξ

∣∣∣∣
≤ a

2(2π)d−1k

∫
Rd−1

|χ̂(ξ)||ξ|2 dξ,(6.29)

using (6.26), (6.27), and that π ≤ ka for k ∈ Q. Putting these bounds together in
(6.22), we have shown that fk,η(x) = O(k−1) as k → ∞ with k ∈ Q and |η| . k,
uniformly on Γ.

The proof of Lemma 6.3 was inspired by the billiard-type arguments used to
construct high-frequency quasimodes, going back to Keller and Rubinow [51]; see,
e.g., [2] and the references therein. We also expect that lower bounds on ‖(A′k,η)−1‖
similar to that in Lemma 6.3 can be obtained when Ω+ supports arbitrary closed
finite billiards and Γ is flat in the neighborhood of each reflection.

6.3.1. Comparison between Lemma 6.3 and the results of [19]. In the
proof of Lemma 6.3, fk,η is bounded via its representation (6.22) as boundary data for
an interior impedance problem satisfied by u. In [19] a less-sharp bound is obtained
in two dimensions that ‖(A′k,η)−1‖L2(Γ)→L2(Γ) & k9/10 for k ∈ Q, via an alternative
formula for fk,η. Precisely, with φ and fk,η as in the above proof, it is shown that
φ = ∂+

n u
t is the normal derivative of the total field for sound soft scattering when the

incident field is

(6.30) ui(x) =

∫
Ω+

Φk(x, y)f(y) ds(y), x ∈ Rd,

with f supported in ΩC ⊂ Ω+ given by f(x) := k−1 sin(kx1)∆̃χ(x̃), for x ∈ ΩC , where

∆̃ is the Laplacian in Rd−1. It follows from (6.12) that fk,η = ∂+
n u

i − iηγ+u
i. This,

together with (6.30), is a formula for fk,η as an oscillatory integral over supp(f) ⊂
ΩC . Estimating this integral (suboptimally) in [19, Theorem 5.1] led to the bound
‖fk,η‖L2(Γ) . k−9/10.

6.3.2. Counterexample to a conjecture on coercivity. Under the assump-
tions that Ω− is C3, is piecewise analytic, and has strictly positive curvature, [86]
shows that there exists an η0 > 0 (equal to one when Ω− is a ball) and k0 > 0 such
that if η ≥ η0k, then A′k,η is coercive uniformly in k for k ≥ k0, meaning that

(6.31)
∣∣∣(A′k,ηφ, φ)Γ∣∣∣ ≥ ck‖φ‖2L2(Γ) for all k ≥ k0 and φ ∈ L2(Γ), with ck & 1;

this is shown via a novel use of Morawetz identities in [86], generalizing an earlier
result for the case of a circle/sphere obtained via Fourier analysis [33]. This result
implies that ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . 1, but this bound on the inverse does not imply
the stronger (6.31).

The advantage of coercivity, as opposed to just boundedness of the inverse, for the
numerical analysis of Galerkin methods is discussed in [86]; for example, the coercivity
result in [86] completes the numerical analysis of high frequency numerical-asymptotic
BEMs for scattering by convex obstacles [33, 35].

Based on computations of the numerical range (an operator is coercive if and
only if zero is not in the closure of its numerical range), [8] conjectured that, if Ω−
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Γ1 Γ2a

Fig. 6.1. The obstacle Ω− shaded gray is nontrapping, so that ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . 1

if η = ck, for some constant c ∈ R \ {0}. However, section 6.3.2 shows that A′k,η is not coercive

uniformly in k.

is nontrapping, then (6.31) holds with η = k (i.e., A′k,k is coercive uniformly in k)

[8, Conjecture 6.2]. This conjecture implies that ‖(A′k,k)−1‖L2(Γ)→L2(Γ) . 1 for non-
trapping domains, and this result was recently proved in [4, Theorem 1.13]. The
calculations in Lemma 6.3, however, show that this conjecture is false.

Suppose that Ω+ satisfies the conditions of Lemma 6.3, except that we no longer
require that ΩC ⊂ Ω+, and instead we require that Ω− is nontrapping (which implies
that Γ passes through ΩC), and we require that n(x) = e1 on Γ1, n(x) = −e1 on Γ2.
An example is Figure 6.1. Define φ ∈ L2(Γ) as in the proof of Lemma 6.3, so that the
value of ‖φ‖L2(Γ) 6= 0 is independent of k. Equations (6.21), (6.22), (6.28), and (6.29)
still hold and still imply that fk,η(x) = O(k−1) for k ∈ Q = {mπ/a : m ∈ N} with
|η| . k, uniformly on Γ1 ∪Γ2 (but now not on all of Γ since Γ 6⊂ Ω∗). Thus, provided
|η| . k, since supp(φ) ⊂ Γ1 ∪ Γ2,(

A′k,ηφ, φ
)

Γ
=

∫
Γ1∪Γ2

fk,ηφ ds = O(k−1),

as k →∞ through the sequence Q, so that (6.31) is false in this case. It may still hold
that A′k,η is coercive, but if this is the case, then the coercivity constant ck = O(k−1)
as k →∞ through the sequence Q.

6.4. Summary of wavenumber-explicit bounds on (A′k,η)−1. Table 6.1
summarizes (i) the (sharpest) known resolvent estimates for scattering by obstacles,
discussed in section 1; (ii) the sharpest known bounds on the DtN map, taken from
[4] for the nontrapping cases, proved as corollaries in section 4 for the trapping cases;
(iii) the bounds on the inf-sup constant obtained from the resolvent estimates (as
discussed in Remark 5.2); and (iv) the upper bounds on ‖(A′k,η)−1‖L2(Γ)→L2(Γ) that
follow from the resolvent estimates by the general Lemma 6.2. (The bounds that
were already known have been discussed earlier in section 1.5.1; the other bounds
are stated here for the first time as corollaries of the resolvent estimates and Lemma
6.2.) The upper bounds in the last column, by Lemma 6.2, are also upper bounds for
‖(A′k,η)−1‖Hsk(Γ)→Hsk(Γ), uniformly for −1 ≤ s ≤ 0, and the same bounds, multiplied

by a factor k−s, are upper bounds for ‖(A′k,η)−1‖Hs(Γ)→Hs(Γ). Further, bounds on

A−1
k,η follow immediately from (6.10) and (6.11).

In the last column of Table 6.1 and in row 6 we include lower as well as upper
bounds. Each lower bound holds for at least one example in the class indicated
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Table 6.1
Summarizing the known wavenumber-explicit upper bounds that hold for k ≥ k0 > 0; in the

last column and in row 6 we also show the known lower bounds. Rows 1–4 apply in nontrapping
cases. Rows 5–7 apply to trapping geometries, row 6 in particular to (R0, R1, a) parallel trapping
obstacles. In the last column we assume that η = ck for some nonzero real constant c, and β = 0
if each component of Ω− is C∞ or star-shaped with respect to a ball, β = 1/4 if each component
is merely piecewise smooth or star-shaped with respect to a ball, β = 1/2 for general Lipschitz Ω−.
The bounds without citations are stated explicitly for the first time in this paper.

Geometry of Ω− K(k) ‖P+
DtN‖H1→L2 β−1

R ‖(A′k,η)−1‖L2(Γ)→L2(Γ)

1. C∞ and nontrap-
ping

. 1 [88, 69] . 1 [4] . k [84] . 1 [4] (& 1 [19])

2. Nontrapping poly-
gon

. 1 [5] . 1 [4] . k [84] . k1/4 (& 1 [19])

3. Star-shaped and
Lipschitz

. 1 [72, 25] . 1 [4] . k [25] . kβ (& 1 [19])

4. Star-shaped with
respect to a ball and
Lipschitz

. 1 [72, 25] . 1 [4] . k [25] . 1 [25, 84] (& 1 [19])

5. Ikawa-like union of
convex obstacles

. log(2 + k) [14] . log(2 + k) . k log(2 + k) . log(2 + k) (& 1 [19])

6. (R0, R1) obstacle . k2 (& k [25]) . k2 . k3 (& k2 [25]) . k2+β (& k)

7. Arbitrary C∞ . eαk [12] . eαk . keαk . eαk (& eαk (2-d) [7],
& eαk

q
)

and for at least some unbounded sequence of wavenumbers. (The particular bound
‖(A′k,η)−1‖L2(Γ)→L2(Γ) & 1 [19, Lemma 4.1] holds for k ≥ k0 whenever part of Γ is

C1.) The lower bounds in the last row and column of the table, and their relationship
to the upper bound, should be interpreted as follows. First, in two dimensions there
exists an Ω+ that is C∞ ([7] gives specific elliptic-cavity trapping examples of which
Figure 1.1(a) is typical) and positive constants α2 ≥ α1 such that, with η = ck for
some c ∈ R \ {0},

exp(α1k) . ‖(A′k,η)−1‖L2(Γ)→L2(Γ) . exp(α2k)

as k → ∞ through some positive, unbounded sequence of wavenumbers. Second,
in both two and three dimensions, whenever Ω− permits elliptic trapping, allowing
an elliptic closed broken geodesic γ, provided Γ is analytic in neighborhoods of the
vertices of γ and the local Poincaré map near γ satisfies the additional conditions of
[17, (H1)], it holds for every q < 2/11 (d = 2), q < 1/7 (d = 3), that there exists
α3 > 0 such that

(6.32) exp(α3k
q) . ‖(A′k,η)−1‖L2(Γ)→L2(Γ)

as k → ∞ through some positive, unbounded sequence of wavenumbers. The lower
bound (6.32) follows immediately from Theorem 1 in Cardoso and Popov [17], which
shows the existence, under these assumptions, of exponentially small quasimodes,
which moreoever can be constructed to be localized arbitrarily close to γ, and [20,
equation (5.39)], which converts exponentially small quasimodes into lower bounds
on ‖(A′k,η)−1‖L2(Γ)→L2(Γ).

6.5. Bounds on cond(A′k,η). There has been sustained interest in the con-

dition number cond(A′k,η), defined by (1.37), of A′k,η as an operator on L2(Γ); see
Remark 6.5 below and the references therein. We therefore put the bounds in the last
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column of Table 6.1 together with existing bounds on the norm of A′k,η to produce the
following result giving upper and lower bounds on cond(A′k,η) and how this depends
on the geometry of Ω−. The bounds in parts (iii), (iv), and (v) and the upper bound
and most of the lower bounds in (vi) are given here for the first time, with the bounds
in (i) and (ii) given in [19, section 6] and [4, section 7.1] and the lower bound (6.39)
in (vi) for a two-dimensional elliptic cavity given in [7, Theorem 2.8].

Theorem 6.4 (bounds on the condition number). Suppose that η = ck, for some
nonzero real constant c, and that k0 > 0.

(i) Let Ω− be C∞ and nontrapping, or star-shaped with respect to a ball and
piecewise smooth, and suppose that Γ has strictly positive curvature. Then,
for k ≥ k0,

(6.33) k1/3 . cond(A′k,η) . k1/3 log(2 + k); indeed cond(A′k,η) ∼ k1/3

if Ω− is a ball in two or three dimensions (i.e., a circle or sphere).
(ii) Let Ω− be C∞ and nontrapping, or star-shaped with respect to a ball and

piecewise smooth. Then, for k ≥ k0,

k1/3 . cond(A′k,η). k1/2 log(2+k); indeed k1/2 . cond(A′k,η). k1/2 log(2+k)

(6.34)

if Γ contains a line segment. Moreover these bounds hold without the log
factors in two dimensions; in particular cond(A′k,η) ∼ k1/2 in two dimensions
if Ω− is C∞ and nontrapping and Γ contains a line segment.

(iii) Let Ω− be a nontrapping polygon. Then, for k ≥ k0,

(6.35) k1/2 . cond(A′k,η) . k3/4; indeed cond(A′k,η) ∼ k1/2

if Ω− is star-shaped with respect to a ball.
(iv) Let Ω− be an Ikawa-like union of convex obstacles. Then, for k ≥ k0,

(6.36) k1/3 . cond(A′k,η) . k1/3[log(2 + k)]2.

(v) Let Ω− be an (R0, R1, a) parallel trapping obstacle. Then, where the upper
bounds hold for all k ≥ k0 while the lower bounds apply specifically for k ∈
Q := {mπ/a : m ∈ N}, it holds that

k3/2 . cond(A′k,η) . k2+d/2; indeed k3/2 . cond(A′k,η) . k5/2+β log(2 + k)

(6.37)

if Γ is piecewise smooth, with β = 0 if each component of Ω− is either C∞

or star-shaped with respect to a ball, β = 1/4 otherwise. For all k ≥ k0 the
weaker lower bound holds that cond(A′k,η) & k1/2.

(vi) Let Ω− be C∞. Then there exists α > 0 such that, for k ≥ k0,

(6.38) k1/3 . cond(A′k,η) . exp(αk).

Further, whenever Ω− permits elliptic trapping, allowing an elliptic closed
broken geodesic γ, provided Γ is analytic in neighborhoods of the vertices of γ
and the local Poincaré map near γ satisfies the additional conditions of [17,
(H1)], it holds for every q < 2/11 (d = 2), q < 1/7 (d = 3), that there exists
α′ > 0 such that

(6.39) cond(A′k,η) & exp(α′kq)
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for some unbounded sequence of positive wavenumbers k. Moreover, (6.39)
holds with q = 1 in the two-dimensional case of an elliptic cavity in the sense
of [7, Theorem 2.8] (an example is Figure 1.1(a)).

Proof of Theorem 6.4. To bound A′k,η it is sufficient, by (6.7), to obtain bounds
on the operators Sk and D′k (and note that D′k has the same norm as Dk as an
operator on L2(Γ) as D′k is the adjoint of Dk with respect to the real inner product
on L2(Γ); see, e.g., [20, equation 2.37]). Given k0 > 0, for k ≥ k0, if Γ is Lipschitz,
then

(6.40) ‖Sk‖L2(Γ)→L2(Γ) . k(d−3)/2 and ‖D′k‖L2(Γ)→L2(Γ) . k(d−1)/2

[19, Theorems 3.3, 3.5]. Furthermore, if Γ is piecewise smooth, then

k−1/2 . ‖Sk‖L2(Γ)→L2(Γ) . k−1/2 log(2 + k) and(6.41)

k1/4 . ‖D′k‖L2(Γ)→L2(Γ) . k1/4 log(2 + k),

and if Γ is piecewise smooth and has strictly positive curvature, then

k−2/3 . ‖Sk‖L2(Γ)→L2(Γ) . k−2/3 log(2 + k) and(6.42)

k1/6 . ‖D′k‖L2(Γ)→L2(Γ) . k1/6 log(2 + k)

[45, Appendix A] (with the upper bounds on Sk first given in [39, Theorem 1.2]). The
lower bound ‖Sk‖L2(Γ)→L2(Γ) & k−1/2 holds when Γ contains a line segment and is C2

in a neighborhood thereof by [19, Theorem 4.2] in two dimensions and [40, Lemma
3.1] in three dimensions.

These bounds imply that with η = ck, ‖A′k,η‖L2(Γ)→L2(Γ) . k1/3 log(2 + k) if Γ is

piecewise smooth with each piece having strictly positive curvature; is . k1/2 log(2+k)
if Γ is piecewise smooth; and is . k(d−1)/2 in general. These same results imply
that ‖A′k,η‖L2(Γ)→L2(Γ) & k1/3 if Γ is piecewise smooth; is & k1/2 if Γ contains a line

segment and is C2 in a neighborhood thereof. Furthermore, ‖A′k,η‖L2(Γ)→L2(Γ) ∼ k1/3

for a ball (in two and three dimensions) by [42, 33], and, because of the compactness of
D′k (and Sk) on L2(Γ) when Γ is C1 [37], if a part of Γ is C1, then ‖A′k,η‖L2(Γ)→L2(Γ) ≥
1/2 and ‖(A′k,η)−1‖L2(Γ)→L2(Γ) ≥ 2 for k > 0 [19, Lemma 4.1].

The corollary follows by combining these estimates with the bounds on
‖(A′k,η)−1‖L2(Γ)→L2(Γ) summarized in Table 6.1 (recalling the discussion of case (vi)
in section 6.4).

The theorem makes clear that the conditioning of A′k,η (with η proportional to k)
depends strongly on the type of trapping. When Ω− is a ball the conditioning grows
precisely as k1/3. The conditioning is worse than this for the mild hyperbolic trapping
of an Ikawa-like union of convex obstacles, but at most by logarithmic factors. A C∞

nontrapping obstacle has slightly higher growth in condition number (proportional to
k1/2) if Γ contains a line segment.

By contrast, (R0, R1, a) parallel trapping obstacles (the main focus of this paper)
have only polynomial growth in condition number, but at a faster rate than all the
nontrapping cases considered in the above corollary, at least as fast as k3/2 as k
increases through a particular unbounded sequence. Finally, if the obstacle allows a
stable (elliptic) periodic orbit, then the condition number grows exponentially as k
increases through some unbounded sequence.

Remark 6.5 (the history of studies of the conditioning of A′k,η). The study of the
conditioning of A′k,η, and its dependence on the choice of the coupling parameter η,
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and latterly also on the geometry of Γ, has a long history, dating back to the original
studies by Kress and Spassov [53, 52] for the case where Ω− is a circle or sphere; these
studies focused on the low-wavenumber limit. The first rigorous (and sharp) high-
frequency bounds on cond(A′k,η), specifically for a circle/sphere and carried out using
the Fourier analysis framework of [53], were obtained in [33], and rigorous results for
high frequency for more general geometries were obtained in [19], [7], and [4].

Remark 6.6 (other choices of coupling parameter η). Corollary 6.4 focused on
the case when the coupling parameter η is chosen proportional to k as this is the
recommendation from various computational and theoretical studies [52, 1, 11, 19, 38].
For discussions of conditioning for other choices of η, and of the effect of choices of η
on the condition number and other aspects of the effectiveness of numerical solution
methods, see [52, 1, 11, 19, 7, 61, 4, 38].

6.6. Proof of Corollary 1.20 (convergence of the h-BEM).

Definition 6.7 (shape-regular triangulation). Suppose T is a triangulation of
Γ in the sense, e.g., of [59], so that each element K ∈ T (with K ⊂ Γ) is the image

of a reference element K̂ = {ξ ∈ Rd−1 : 0 < ξi < 1,
∑d−1
i=1 ξi < 1} under a C1-

diffeomorphism FK : K̂ → K, with Jacobian JK := DFK . Then T is shape-regular
if there exists a constant cS > 0 such that, for every K ∈ T ,

(6.43)
supξ∈K λ

max
K (ξ)

infξ∈K λmin
K (ξ)

≤ cS ,

where λmax
K and λmin

K denote the maximum and minimum eigenvalues of JTKJK .

Proof of Corollary 1.20. With p ≥ 0, define the boundary element space Sp(Th)
as in section 1.5.3, and let Php : L2(Γ)→ Sp(Th) be orthogonal projection. The heart
of the proof is the fact that if, for some δ > 0,

(6.44) ‖I−Php‖H1(Γ)→L2(Γ)‖D′k− iηSk‖L2(Γ)→H1(Γ)‖(A′k,η)−1‖L2(Γ)→L2(Γ) ≤
δ

1 + δ
,

then the Galerkin solution vhp of the variational problem (1.39) is well-defined and
the quasi-optimal error estimate (1.41) holds with

(6.45) C3 =
1

2
(1 + δ)‖(A′k,η)−1‖L2(Γ)→L2(Γ);

see [44, Lemma 4.1], [38, Lemma 3.3].
Since Sp(Th) ⊂ S0(Th) it is clear that ‖I − Php‖H1(Γ)→L2(Γ) ≤ ‖I −

Ph0‖H1(Γ)→L2(Γ). The approximation result

(6.46) ‖I − Ph0‖H1(Γ)→L2(Γ) ≤ Ch,

with C > 0 dependent only on the constant cS in (6.43), is proved in [87, Theorem
1.4] for the case when Γ is piecewise smooth and each element K ∈ Th is flat, and the
argument extends to the case when Γ is piecewise C1.

Part (a) of Corollary 1.20 follows from combining (6.44), (6.46), the bound on
‖(A′k,η)−1‖L2(Γ)→L2(Γ) in (1.34), and the bound

‖D′k − iηSk‖L2(Γ)→H1(Γ) . k4/3 log(2 + k)
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when |η| ∼ k, Ω− is C2,α for some α ∈ (0, 1), and Γ additionally has strictly positive
curvature; this last bound is proved in [40, Theorem 1.5].

Part (b) of Corollary 1.20 follows from combining (6.44), (6.46), the bound on
‖(A′k,η)−1‖L2(Γ)→L2(Γ) in (1.28), and the bound

‖D′k − iηSk‖L2(Γ)→H1(Γ) . k3/2 log(2 + k),

when |η| ∼ k, Ω− is C2,α for some α ∈ (0, 1), and Γ is additionally piecewise smooth;
this last bound is also proved in [40, Theorem 1.5].
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