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If a body enters a viscous-inviscid fluid layer near a wall then significant effects can be

felt from the presence of incident vorticity, viscous forces and nonlinear forces. The focus

here is on the response in the outer edge of such a wall layer. Nonlinear two-dimensional

unsteady behaviour is examined through modelling, computation and analysis applied for

a thin body travelling streamwise upstream or downstream or staying still relative to the

wall. The wall layer with its balance between inviscid and viscous effects interacts freely

with the body movement, causing relatively high magnitudes of pressure on top of the

body and nonlinear responses in the gap between the body and the wall. The study finds

explicit solutions for the motion of the body, separation of the flow arising near the wall

and possible instabilities occurring over the length scale of any short body.
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1 Introduction

Our interest lies in the effects of a small body entering a thin viscous wall layer of fluid

flow at high flow rate. This is motivated by industrial applications, notably concerning

the entry of a comparatively small ice crystal, shard of ice or other small body into the

boundary layer on an aircraft or into an engine intake. Nonlinear effects in the fluid-body

interaction are studied in the present work, with the motion of the body and that of the

surrounding fluid flow influencing each other comparably.

The configuration of interest is near a fixed solid wall. The motivations for the work

concern not only aircraft safety, for ice lumps, shards or other bodies such as debris or

dust in a boundary layer of air flow on a wing (Gent et al. 2000, Schmidt et al. 2010,

Purvis & Smith 2016),but also the transport of debris and dust in wider applications,

and the movement of drugs or thrombi in blood vessel networks or lung airways, for

example. Atmospheric flows are also of relevance here. Studies of fluid and body motions

affecting each other substantially in near-wall shear flow with a single body or many

bodies present are by Hall (1964), Einav & Lee (1973), Petrie et al. (1993), Wang & Levy

(2006), Schmidt & Young (2009), Dehghan & Basirat Tabrizi (2014) for a boundary layer
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and by Portela et al. (2002), Smith & Ellis (2010), Loisel et al. (2013), Smith & Johnson

(2016) for channel flow. Laminar flow theory is addressed in Smith & Ellis (2010), Smith &

Johnson (2016) whereas the works in Hall (1964), Einav & Lee (1973), Petrie et al. (1993),

Schmidt & Young (2009), Loisel et al. (2013) are mostly numerical or experimental on flow

transition and those in Wang & Levy (2006), Dehghan & Basirat Tabrizi (2014), Portela

et al. (2002) are concerned with computations or experiments on turbulent fluid motion.

There is considerable interest in the generation of instabilities by such interactions, in

related effects such as from feathers and other near-wall devices, and in discovering

whether a body is attracted to or repelled from a nearby wall in general when nonlinear

effects are significant: see Gavze & Shapiro (1997), Kishore & Gu (2010), Frank et al.

(2003), Loth & Dorgan (2009), Poesio et al. (2006), Yu et al. (2007). Here Frank et al.

(2003) and Poesio et al. (2006) in particular address the influence of the Reynolds number

and other parameters on attraction and repulsion, finding that either phenomenon can

occur as the flow rate increases.

We mentioned several applications above. In terms of the ice crystal entering a bound-

ary layer, sizes and distributions of particles whether crystals, bodies or debris vary

considerably but typical values can be taken as follows. A cloud of ice crystals may have

an Ice Crystal Content (ICC) of the order of 10−3kgm−3 to 10−2kgm−3 and the volume

ratio (assuming a density of order 1000kgm−3) gives a volume fraction between 10−6

and 10−5. The size of particles is of the order 10−3m to 10−5m, while the spacing be-

tween particles is approximately between 40 particle diameters (for ICC 10−2kgm−3)

and 80 particle diameters (for ICC 10−3kgm−3). So 2× 10−6m particles have an average

spacing of 0.8× 10−3m or 1.6× 10−3m (assuming a cubic configuration). Typically the

particle Reynolds number here is 102 to 103 and the global Reynolds number may be

104 to 106. For further details on icing conditions and the range of physical parameters

see the discussion in Norde (2017). Some caution is necessary however on the theoretical

front regarding an aim to make firm practical predictions. At the current stage, since

the applied-mathematical theory of dynamic fluid-body interaction is still rather in its

infancy, further explorations are required to discover which scenarios are amenable to

rational study. (The present exploration leads on to comparisons with the ice-crystal

application which are discussed at the end of the paper.)

We note a long-term need to address in a rational way the possible impacts and clashes

between a moving body and a wall, cf Smith & Ellis (2010), Smith & Johnson (2016),

Smith & Wilson (2013), and to understand more about separations and eddy formations

in the nearby flows either on the body or on the wall. These aspects also require inclusion

of nonlinear effects. Again, understanding of scales and parametric effects governing the

interactive behaviour is important. The recent findings of Smith & Wilson (2013) and

Smith (2017) suggest certain features in the linear regime as follows. These focus on the

effects on body lift and moment from different lengths and locations of a body, thickness

ratios and time scales, and, broadly, those effects act to destabilise the surrounding

fluid motion, although several stabilising features are found, most notably from sufficient

flexibility of the wall or the body or from slight streamwise movements of the body.

The prime parameters highlighted in these two papers include the density ratio between

the body and the fluid, the characteristic Reynolds number, the fluctuation amplitude
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and the relative dimensions of the body compared with the typical flow thickness of the

boundary layer or channel.

The above comments on flow separations, stability and instability raise interest in

the nonlinear effects of a body moving upstream or downstream relative to a nearby

fixed wall. The body of concern in the present work is a thin body, subjected to both

viscous influences and nonlinear inertial influences from the surrounding fluid flow. We

have found no previous work on a small finite body in a viscous-inviscid wall layer. The

present paper deals with fluid-body coupling in a boundary layer or channel flow for a

relatively short body moving freely inside a viscous wall layer such that the thicknesses

of the body and the wall layer are comparable. The interactions are considered for two

spatial dimensions. The effective Stokes number of these interactions is assumed to be of

order unity in the sense that overall the body neither follows the fluid streamlines closely

as for a perfect tracer nor continues along its initial trajectory with ballistic behaviour,

in general. The typical Reynolds number is large however and so the near-wall behaviour

is very sensitive within the viscous wall layer. The representative Froude number is large

and hence gravity is nominally negligible. The interplay of body movement and fluid

dynamics here thus has significant inertial and viscous components present along with

fully nonlinear effects, which can provoke flow separations. The unsteadiness is another

substantial component in the sense of the combined evolution of the fluid flow and the

body position with time starting from an initial-value state.

The major spatial scales involved are those of the viscous wall layer, but supplemented

by those of a smaller adjustment zone which surrounds the leading edge of the thin

body and adjusts the behaviour there in response to conditions downstream, while the

major temporal scale is that of the body movement. Here the basic setting has fluid-body

interaction in the presence of an incident uniform shear flow close to a fixed wall.

Section 2 describes the coupling that is induced for the laminar two-dimensional (2D)

flow involving unsteady interactions with the body movement. In the wall layer a so-

called condensed flow, where interaction with the flow outside the viscous wall layer is

negligible, is induced which is governed by the nonlinear boundary layer equations. The

main interactions are derived for the boundary layer on an airfoil, to be specific. The

same problem holds for channel flow however and for atmospheric boundary layers for

example. Section 3 addresses the behaviour when the body is initially sited in the outer

reaches of the wall layer, a case which admits much analytical progress as well as being

of practical concern. Sections 4, 5 consider the resulting responses in steady flow and

unsteady flow respectively. Attention is given to the effects of a small velocity uc of

the body being positive, zero or negative relative to the wall, and the unknown scaled

wall pressure, body pressures and scaled wall shear stress are of interest throughout.

Section 6 presents further discussion and conclusions together with an assessment of the

relevance to practical applications (An appendix A describes the background scales and

an appendix B shows the influence of flexibility in the body shape.).

2 The fluid-body coupling

The working below for the flow around a comparatively thin short body moving freely

near the wall is expressed in terms of non-dimensional flow velocities (u, v), corresponding
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Cartesian coordinates (x, y), time t and pressure p, such that the dimensional versions

are U∗(u, v), L∗(x, y), L∗t/U∗ and ρ∗U∗2p respectively. In the boundary-layer scenario,

as shown in the sketch in figure 1, fluid is flowing along an effectively flat surface, or

wall, and far from the wall the free stream is moving with a given constant velocity

parallel to that wall. The figure gives the relatively close-up view of a small thin body

within the boundary layer near an airfoil surface for example. Our aim is to describe

the fluid flow around the body as well as the body movement itself with the change in

the fluid flow due to the presence of the body being largely a local nonlinear change.

Here U∗ is the representative fluid velocity, taken to be the free-stream value, while L∗ is

the airfoil chord, ρ∗ is the uniform density of the incompressible fluid and the temporal

factor L∗/U∗ taken is the typical transport time. The velocity vector (u, v), pressure p

and coordinates x, y are generally of order unity except near the wall which is located

along the axis y = 0. In particular (u, v) is given by (1, 0) in the far field and the leading

edge of the airfoil is taken as the origin. The Reynolds number is given by Re = U∗L∗/ν∗

where ν∗ is the uniform kinematic viscosity of the fluid. The representative length of the

body is l which is l∗/L∗ and the primary concern is with the properties induced for a

short body for which l is small, when the Reynolds number is comparatively large. The

body is generally translating upstream or downstream but only at an assumed slow rate

consistent with the fluid velocities in the wall layer (a feature which implies that only high

incidence angles of the incoming body motion can affect the local fluid-body interaction).

Hence over the time scales of current interest the body is present at an effectively constant

order-unity distance x0 say downstream from the airfoil leading edge.

The thin boundary layer set up along the undisturbed surface ahead of the near-wall

body and also downstream of it is a classical one having x scale of order unity. The

boundary-layer approximation is based upon the assumption that the flow Reynolds

number is large, in which case the y scale is of order Re−1/2, with u, p variations of O(1)

and v being of O(Re−1/2). The time scale there is of order unity. This boundary layer

and its local free stream form the oncoming and surrounding flow field for the body/fluid

interactive motion. See figure 1. The main range of interest is for scaled lengths such that

Re−3/4 � l� Re−3/8, (2.1)

as described in detail in Appendix A. The range of validity in (2.1) (Smith 1976, Smith

& Daniels 1981) is actually quite a large one in terms of the scales covered. The flow

structure at this stage is concentrated primarily in the thin sublayer surrounding the

moving body as in figure 1. The body at an unknown position near the wall occupies the

interval 0 < X < 1 in a frame translating in the positive or negative x-direction slowly

streamwise with the body and the body thickness is comparable with the sublayer height.

There is a lack of overall displacement over these short length scales (Smith 1976, Smith

& Daniels 1981). In the sublayer at leading order

(u, v, p) =
(
l1/3U, l−1/3Re−1/2V, l2/3P

)
, (2.2)

with x − x0 = lX, y = l1/3Re−1/2Y, t = αl2/3T and where the large constant α is to

be determined and the capital-lettered quantities are of order unity. The largeness of α

implies that the fluid flow is quasi-steady. By contrast the body motion is unsteady.
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Figure 1. Sketch of the small body in a viscous wall layer: this is lying in the depths of

a boundary layer of standard O(Re−1/2) thickness, or close to a channel or pipe wall.

The body is subjected to uniform oncoming shear flow at the bottom of the boundary

layer, viscous-inviscid and pressure forces surrounding the body and a small Euler re-

gion (dotted) near the leading edge of the body. The typical angle involved is of order

l−2/3Re−1/2 and l is the body length.

Concerning the body motion, the differential pressure forcing due to the fluid flow at

the top and under surfaces of the body makes the body move in response. The body

motion is controlled by

MhTT =

ˆ 1

0

(
P−(X,T )− P+(X,T )

)
dX, (2.3 a)

IθTT =

ˆ 1

0

(X − β)
(
P−(X,T )− P+(X,T )

)
dX. (2.3 b)

owing to the rates of change in the normal and angular momenta of the body. The centre

of mass of the body is taken at a general position X = β while h(T ), θ(T ) account for the

normal and rotational movement respectively of the centre of mass. Herein the super-

scripts ± refer to properties on top of and underneath the body in turn and P denotes

scaled pressure due to fluid flow. The massM∗ of the body is equal to α2ρ∗L∗2l8/3Re1/2M

with M being of order unity, and likewise the scaled moment of inertia I is O(1). The

overall time scale is based on the body motion. As an estimate M∗ is approximately ρ∗BV
∗

in 2D where ρ∗B is the density of the body and the effective cross-sectional area V ∗ is the

product of the x and y scales in (2.2) multiplied by L∗2 through non-dimensionalisation.

Hence α2 is comparable with l−4/3ρ∗B/ρ
∗. This means that the flow behaviour remains

quasi-steady provided the density ratio ρ∗B/ρ
∗ � l4/3. With regard to the role of the

Re factors in the identification of M∗ and the x and y scales, the influence of Re is

also inherent in α via the term involving l due to the scaling in (2.1). Since l is small

anyway, the theory seems to be valid over a wide range of density ratios. Further in

(2.3a,b) the P± responses are those produced by the fluid flow as described below, thus

provoking fluid-body interaction. In the streamwise direction the body momentum and

the relatively small fluid-flow forces are consistent with the body velocity uc and hence

the relative wall velocity Uw being constant.
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Concerning the fluid flow, the quasi-steady condensed flow interaction (Smith 1976,

Smith & Daniels 1981) follows from the Navier-Stokes equations, subject to (2.2), giving

the governing equations

U = ΨY , V = −ΨX (2.4 a)

UUX + V UY = −PX(X,T ) + UY Y . (2.4 b)

within the gap underneath the body and within the layer above the body. The unknown

scaled pressure P (X,T ) is independent of Y because of the normal-momentum equation

in each layer, such that:

P = P+(X,T ), P = P−(X,T ) above and below the body respectively. (2.4 c)

in keeping with the pressures in (2.3a, b). The relevant boundary conditions are:

U = Uw, V = 0 at Y = 0, (2.5 a)

U = V = 0 at Y = F−(X,T ), (2.5 b)

(U,P ) =

(
λY + Uw + a,

U2
w

2
− (Uw + a)2

2

)
at X = 0+, (2.5 c)

in the gap. The requirements (2.5a, b) stem from the no-slip conditions at the wall and

on the moving under-surface F− of the body. The effective streamwise velocity Uw of the

wall is associated with the translation velocity uc of the body relative to the wall: clearly

if the body is translating upstream relative to the wall then Uw is positive. We should

reiterate that Uw being of O(1) corresponds to high incidence angles of the incoming

body motion. The conditions in (2.5c) are due to an unknown pressure jump, written

P = π2 =
U2
w

2
− (Uw + a)2

2
,

emerging across an Euler region (Smith et al. 2003) which surrounds the leading edge

X = 0; a corresponding jump a is induced in the streamwise velocity U to satisfy the

quasi-steady Bernoulli balance. The positive O(1) factor λ in (2.5c) is the given scaled

incident wall shear stress, namely Re−1/2(∂u/∂y) at y = 0, in the surrounding boundary

layer locally, as in figure 1 but allowing here for the moving frame. The Euler region is

similar to that in (Smith et al. 2003, Smith & Jones 2003), its streamwise extent being

of order l1/3Re−1/2. In the flow on top of the body, by contrast, we have

U = V = 0 at Y = F+(X,T ), (2.6 a)

U ∼ λY + Uw as Y →∞, (2.6 b)

(U,P ) = (λY + Uw, λaW ) at X = 0+. (2.6 c)

The condition (2.6a) is for no slip on the top moving surface of the body. The function

F+ denotes the unknown scaled position of the bodys top surface which is addressed

further just below. The requirement (2.6b) of effectively zero displacement in Y corre-

sponds to the feedback effect from the flow outside the sublayer being relatively small.

Condition (2.6c) again comes from the Euler jump in pressure,

P = π1 = λaW,
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and in velocity, subject to mass conservation at the body surface; conservation of vorticity

is assured because of the local λY variation throughout. The term W is the scaled width

of the gap at, or the height of, the leading edge of the body and is in general an unknown

function W = W (T ) of the scaled time.

The body is translating with a small constant velocity uc which is assumed to be

comparable with the fluid flow velocity in (2.2) and thus gives rise to the scaled wall

velocity Uw in the moving frame, where uc = −l1/3Uw. Hence Uw can be positive or

negative. The incident flow at X = 0− is one of constant shear with a velocity profile

U = λY + Uw for all Y ≥ 0 and is at zero pressure. The different pressures P± induced

above and below the body act to move the body as described earlier. The moving surface

shapes F± are given specifically by

F±(X,T ) = g±(X) + h(T ) + (X − β)θ(T ), (2.7 a)

Here g±(X) are the prescribed solid body shapes, atop and underneath, independent

of T , whereas, to repeat, h(T ), θ(T ) denote the evolving normal height and azimuthal

rotation of the centre of mass of the body. We deal with non-blunt bodies in the sense

that g± are equal at X = 0, and so F± are equal there, leading to the relation

W (T ) = h(T )− βθ(T ), (2.7 b)

between W,h, θ. Further here, given that Ψ is zero at the wall, we note also the value

Ψ = λW 2/2 + (Uw + a)W, (2.7 c)

at the under- and top-surfaces of the body from integration of (2.5c) across the gap. This

value can be used with (2.5c), (2.6c) to set the value of the stream function for all Y

values at X = 0+. Finally the condition

P+ = P− at X = 1. (2.7 d)

holds since there can be no pressure difference across the fluid wake behind the body and

a Kutta condition of smooth departure of the flow from the trailing edge is imposed.

The fluid-body interaction is governed by the central problem of solving (2.3a)-(2.7d).

This is a nonlinear near-wall coupling which involves effects from viscous and inviscid

dynamics. The argument has been presented for a boundary-layer setting. A similar

setting holds for channel flow and yields the same problem (see Appendix A), with scale

ranges different from (2.1). The interaction can also be expressed more broadly in terms

of the local incident shear value (e.g. Bhattacharyya et al. (2004)) alone. We note that the

fluid-flow part of the present coupling is quasi-steady. The problem posed is nevertheless

a difficult numerical one generally for order-unity values of the parameters and length

scales involved. Since our interest here is more in initial entry effects we investigate

analytical features below where the concern is with effects occurring for large values of

W ∗ which is a constant parameter representing a typical value of the scaled height W (T ).

3 Nonlinear effects at large W ∗

Here we seek to gain analytical insight for cases where the typical scaled body height

from the wall is large, so that the gap is enlarged between the lower wall and the body.
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Figure 2. Sketch of the body sited near the outer edge of the viscous layer in scaled

coordinates. The flow structure surrounding the body for large W ∗ is shown along with

the wake downstream.

The flow structure for (2.4a)-(2.7d) is examined next for W ∗ � 1, especially in view

of the interesting behaviour suggested by the trend in the overbody pressure in (2.6c),

while the coupling with the evolving body motion via (2.3a,b) is explored in a subsequent

section. The main X scale remains of O(1). The body inside the viscous wall layer is sited

now at Y = F±(X,T ) = W ∗Y ∗
0 +O(1), where the constant Y ∗

0 could be defined as unity

but is retained in the working to keep track of the height effect.

When W ∗ is large we expect four sublayers I - IV to occur for the interval 0 < X < 1

as depicted in figure 2. Layer I is a viscous sublayer near the wall, layer II is an essentially

inviscid sublayer between the wall and the underbody, while layer III is the quasi-inviscid

sublayer above the body and layer IV represents the comparatively thin viscous sublayers

on the body itself. We can also expect the Euler jump conditions to produce merely a

displacement of the incident velocity profile U = λY +Uw for most positive Y values but

combined with a large over-body pressure π1 that is of order W ∗,

π1 = W ∗π∗
1 , (3.1)

say, to leading order: see (2.6c). In contrast the local gap pressure π2 is expected to

remain O(1). The four sublayers are addressed in turn below.

Sublayer I has flow quantities of order unity throughout, hence being subjected to the

leading order-unity effects from the leading-edge jump directly, such that

(U,Ψ, P ) = (U∗,Ψ∗, P ∗) + ..., Y = O(1), (3.2)

with X ∼ 1. It follows that the boundary-layer equations (2.4a,b) continue to hold in

full for the starred quantities in terms of X,Y . The relevant boundary conditions are

U∗ = Uw, V
∗ = 0 at Y = 0, (3.3 a)

U∗ ∼ λ (Y +A∗
2(X,T )) + Uw as Y →∞, (3.3 b)

U∗(at X = 0+) = U2(Y, T ) for all Y > 0, P ∗(at X = 0+) = π2. (3.3 c)

where vorticity UY is conserved along Euler streamlines, (2.6c) holds and the unknown

initial profile U2(Y, T ) = λY + Uw + a(T ) and pressure π2(T ) are as in section 2. The
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presence of the unknown displacement A∗
2(X,T ), which is equal to a(T )/λ at X = 0+,

is inferred from the large-W response in section 2 and also anticipates the displacement

effect found below in sublayer II lying on top of the present sublayer. If we know π2(T )

we can determine a(T ) and hence U2(Y, T ) for 0 < Y <∞ from the Euler jump.

Sublayer II is relatively thick, occupying the gap between the underside of the body

and the top of sublayer I. In sublayer II we have Y = W ∗Y ∗ with Y ∗ of order unity. The

dominant displacement effect here follows from properties of the Euler zone solution as

explained in section 2. Here 0 < Y ∗ < Y ∗
0 and

(U,Ψ, P ) = (λW ∗Y ∗ + U∗
2 , λW

∗2Y ∗2/2 +W ∗Ψ∗
2, P

∗
2 ) + ..., (3.4)

where the governing equations (2.4a,b) together with matching conditions yield the so-

lutions

U∗
2 = λA∗

2(X,T ) + Uw, (3.5 a)

Ψ∗
2 = (λA∗

2(X,T ) + Uw)Y ∗, (3.5 b)

P ∗
2 = P ∗(X,T ). (3.5 c)

The match with the velocity response in sublayer I as Y ∗0+ is as displayed earlier in

(3.3b), and tangential flow on approach to the underbody as Y ∗ → Y ∗
0 requires

A∗
2(X,T ) + Uw/λ = −f−(X,T )−K−(T ). (3.5 d)

Here f− is the scaled underbody shape such that F±(X,T ) = W ∗Y ∗
0 + f±(X,T ) and

K− is a function of time to be found representing the unknown change in mass flux into

the gap. We take the finite body shape as closed such that f+(0, T ) = f−(0, T ) at the

leading edge and similarly f+(1, T ) = f−(1, T ) at the trailing edge.

Sublayer III lies above the body, again with X of O(1). The expansion now has the

form

(U,Ψ, P ) = (λW ∗Y ∗ + U∗
1 , λW

∗2Y ∗2/2 +W ∗Ψ∗
1, W

∗P ∗
1 ) + ..., (3.6)

which holds for order-unity values of Y ∗ > Y ∗
0 . We notice that the displacement is O(1) in

III, namely −A∗
1 as described below, whereas the pressure has been raised (to combat the

displacement over the present enlarged gap in effect, given that the overall displacement

must be zero from (2.6b)) to order W ∗ in keeping with the trend (3.1). The controlling

equations here are

U∗
1 =

∂Ψ∗
1

∂Y ∗ , (3.7 a)

λY ∗(
∂U∗

1

∂X )− (
∂Ψ∗

1

∂X )λ = −∂P
∗
1

∂X (3.7 b)

from substitution into (2.4a,b). The presence of the pressure gradient in the streamwise

momentum balance at leading order is noteworthy as it contrasts with the balance holding

in the sublayer II between the underbody and the wall. The solution in III is

U∗
1 = λA∗

1(X,T ) + Uw, (3.8 a)

Ψ∗
1 = (λA∗

1(X,T ) + Uw)Y ∗ + P ∗
1 /λ. (3.8 b)

The absence of an additional constant in (3.8b) is due to matching with (2.6c) as X tends

to 0+, given the surface value in (2.7c). The boundary condition (2.6b) however requires
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zero displacement, and the condition (2.6a) on the overbody leads to a constraint on the

pressure, leaving us with

A∗
1(X,T ) = 0, (3.8 c)

P ∗
1 (X,T ) = λ2Y ∗

0 (f+(0+, T )− f+(X,T )) + π∗
1(T ), (3.8 d)

bearing in mind that we expect the starting value P ∗
1 (0+, T ) = π∗

1(T ) because of the

jump conditions. The original displacement function expands in the form A∗
1 + ... over

the present length scale, thus giving the result (3.8c). Despite the negligible displacement

a significant normal velocity is induced above the body because of the presence of the

pressure gradient.

Sublayer IV consists of attached Blasius layers, one on each side of the body. Their

thickness is much less than that of the body and their influence on the current interactions

is negligible.

The results above hold throughout 0 < X < 1. Also the O(W ∗) pressure in sublayer

III is significantly greater than the pressure in sublayer II. Combining the results of

sublayers II, III and equating the values of the stream function Ψ on the underbody and

the overbody to conserve mass produces the following expression for the displacement

effect acting on the lowest sublayer I,

A∗
2(X,T ) = (f−(0+, T )− f−(X,T )) + π∗

1(T )/(λ2Y ∗
0 ). (3.9)

The result (3.9) determines the displacement that helps to drive the flow in the low-

ermost viscous layer I by means of the condition (3.3b) but subject to a guessed value

of π∗
1 and the prescribed Y ∗

0 value for the leading-edge height. The result (3.9) when

applied at X = 0+ also confirms that, in (3.1), the coefficient

π∗
1(T ) = λ2A∗

2(0+, T ), (3.10)

with Y ∗
0 = 1. Since λA∗

2(0+, T ) = a, the earlier behaviour in (2.6c) ties in with this

coefficient. At the present stage there is in effect only one unknown, π∗
1(T ). The required

single condition to determine it stems from the trailing-edge condition (2.7d). This now

takes the form

π∗
1(T ) = λ2Y ∗

0 (f+(1, T )− f+(0+, T )), (3.11)

in order to make P ∗
1 (1, T ) be zero, since the pressure on the overbody greatly exceeds

that on the underbody in view of (3.4), (3.6). Hence the overbody pressure in (3.8d)

becomes

P ∗
1 (X,T ) = λ2Y ∗

0 (f+(1, T )− f+(X,T )), (3.12)

and the displacement is simply given by

A∗
2(X,T ) = f−(1, T )− f−(X,T ). (3.13)

The implications are examined in the following sections for steady flow and then for

unsteady flow.
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4 Implications in steady flow.

We divide the description of steady flows, where the body shape and orientation are as-

sumed given, into broader-scale properties and near-wall properties. These are addressed

in subsections 4.1, 4.2 respectively below. The scaled time derivatives in T may be omit-

ted for convenience.

4.1 Solutions for overbody pressure and underbody displacement.

Here we may use the results (3.12), (3.13) directly. The finding (3.12) is a remarkably

simple and explicit finding, showing the scaled pressure which acts on top of the body to

be directly proportional to the prescribed shape function of the top surface of the body

(the overbody). The reason for this lies in the outer boundary condition on the viscous

wall layer flow which requires an overall displacement effect of zero there and hence leads

to a severe confinement and acceleration or deceleration of the fluid flow above the body

in a quasi-inviscid fashion (this result is equivalent to having one-dimensional inviscid

flow present). The underbody shape has no impact here. The resultant expressions for

the lift force CL and moment CM acting on the body are, respectively:

CL = a1

ˆ 1

0

(
f+(X)− f+(1)

)
dX, (4.1 a)

CM = a1

ˆ 1

0

(X − β)
(
f+(X)− f+(1)

)
dX. (4.1 b)

in scaled terms, where a1 = W ∗λ2Y ∗
0 is a positive constant. It is notable that these

expressions are dominated by the contribution from the top pressure and they form the

right-hand sides of the body-motion equations (2.3a, b). Despite the simplicity mentioned

above however general rules are not so simple to deduce as regards the lift and moment.

The lift CL is proportional to the area under the curve formed by the overbody shape

function but with that curve moved normally to give zero at the trailing edge X = 1.

Hence referring to (2.7a) the height factor h has no influence on the lift in the present

regime, while a positive/negative angle θ contributes a negative/positive lift. We can

see also that an overbody shape which is nose-up (meaning f+(0) is positive) and of

convex shape yields positive lift and the same is true if the overbody is straight or

not especially concave. Conversely a nose-down concave shape yields negative lift, i.e.

positive downwash, as does a straight or not especially convex shape if nose-down. On

the other hand more involved shapes could reverse those lift values. Similar trends apply

to the moment CM : here again h has no influence whereas the contribution from θ is

a1θ(3β − 1)/6 which may be of either sign.

Apart from those observations the clearest way to gain some further insight seems to

be through specific examples. Figure 3 presents results for the parabolic overbody shape

f+ = b1X + b2X(1−X). (4.2)

Here CL, CM are plotted against b1 for given values of b2, β. The results show that CL, CM
can both be negative for a range of b1 values but at sufficiently large positive b2 both

become positive, thereby yielding trends towards upthrust and anticlockwise rotation for
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Figure 3. Dependence of scaled lift and moment CL, CM on shape factors b1, b2 for dif-

ferent β values, in the case of a parabolic shape of overbody (note: CL is independent of

β).

the body at increased negative incidence (the nose-down attitude). Figure 4 gives plots

of CL, CM for the elliptical shape

f+ = b3X + b4X
1/2(1−X)1/2, (4.3)

with b4 being varied for prescribed b3, β values. Again we see interesting trends including

positive and negative lift and moment as the parameters are varied. Solutions for a

flexible body whose shape is coupled with the flow pressure are discussed in appendix B.

The predictions for lift and moment are used in section 5 to determine the motion of the

body. The predicted underbody displacement (3.13), which is likewise quite simple and

explicit in terms of the given underbody shape rather than the overbody shape, is used

in the next subsection to determine the wall-layer response and the gap pressure.

4.2 Underbody and wall pressure, wall shear stress, separation.

The near-wall properties of interest are governed by the features of the sublayer I of sec-

tion 3, concerning nonlinear interaction associated with the wall-layer equations (2.4a,b)

with (U,Ψ, P ) replaced by (U∗,Ψ∗, P ∗) subject to the boundary conditions in (3.3a-c).

Here the given displacement A∗
2 is prescribed by (3.13) whereas the scaled pressure P ∗ is

to be found, giving the underbody pressure and the wall pressure since P ∗ is independent
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Figure 4. As in figure 3 for an elliptic shape (note: CL is independent of β).

of the normal coordinate. It is interesting that, in contrast with the problems addressed

by (Smith & Johnson 2016, Smith 2017), the current wall-layer problem requires only a

single march forward in the streamwise direction subject to the prescribed displacement

of (3.13). The resulting pressure P ∗ produced at the trailing edge acts merely to afford

a slight correction to the trailing-edge condition of (3.11).

A numerical treatment is necessary in general for the wall-layer calculation. We used

finite differencing based on a semi-implicit scheme whereby at each X station the scheme

iterates for the P ∗ value in order to satisfy all the boundary conditions in the normal

direction. As in (Smith & Timoshin 1996) a double-stepping procedure is adopted to

achieve second order accuracy. Since analysis for small positive X indicates that locally

a Blasius-like thin layer arises at the wall, a transformation X → X1/2 was applied to

render the relevant local normal coordinate linear in the transformed X coordinate and

then a sufficiently fine normal discrete step δY was taken to capture the Blasius-like local

forms. Streamwise marching forward in X then followed successively: here and above we

assumed forward flow initially but the scheme was able to cope with comparatively small

flow reversals by means of a Flare approximation (Anderson et al. 2016). The scheme

sets the small spatial steps δX, δY such that typically 401 points were used in the

streamwise direction and 401 normally. Finite grid effects were tested by varying these

steps and examining the changes to the solutions obtained, indicating that the results

shown here are accurate to within a 1% error in pressure typically.

The results shown in figures 5-7 are focussed on cases highlighting the main influences
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Figure 5. (a, Left) Plots of wall shear stress and wall pressure P ∗ under the body versus

X for cases (UW , c1, c2) = (0, c1, 0) with c1 = 0.5, 6, 11, 16. The thick downward arrow

indicates the limiting position of the separation point for large c1, based on figure 8 below.

(b, Right) As (a) but for c1 = 0.1, 0.5 (solid curves) together with linearised-theory results

(dashed) for comparison.

of body orientation, body thickness and relative streamwise velocity of the wall. The

specific underbody body shape considered is given by

f− = c1X + c2X(1−X), (4.4)

with A∗
2 then following from (3.13). Here c1, c2 are prescribed constants. The c1 term

corresponds broadly to the scaled angle θ whereas the curvature term c2 provides an

influence from body thickness. Taking c1 negative would make A∗
2 be negative at X = 0+,

indicating a considerable flow reversal ahead of the body, and so we keep c1 non-negative.

Adding a constant to the right-hand side of (4.4) to represent a uniform shift in gap width

or height would have no effect on A∗
2. The incident wall shear λ can be normalised to unity

without loss of generality. We thus have a three-parameter set (Uw, c1, c2) to consider.

Figures 5(a, b) show solutions for four cases (0, c1, 0) as the effective angle c1 is varied

from 0.1 to 16. As c1 is increased the typical magnitude of both the induced pressure P ∗

and the wall shear stress ∂U∗/∂Y at Y = 0 increases substantially. Figure 5(b) provides

a close-up view for small c1 which is discussed more in the next paragraph. In figure 5(a)

the pressure gradient is sufficiently adverse for the larger c1 angles that flow separation

in the sense of flow reversal (beginning when the wall shear stress becomes negative) is

encountered, with the separation point moving upstream. The limiting separation point

shown by a thick arrow in the figure is implied by the analysis presented in the next-

but-one paragraph. Figure 6 gives results for (1, 1, c2) cases with the thickness parameter

c2 being varied from −4 to 4. Here no significant flow reversal occurs: the wall shear

stress becomes negative in some instances but the downstream moving wall continues to

draw all the fluid forward. When c2 becomes more negative, which is associated with the

underbody being increasingly convex relative to the wall (hence the gap narrows), the



European Journal of Applied Mathematics 15

variation in pressure and wall shear stress increases notably. Figure 7 presents results

for (Uw, 1, 0) cases. As Uw is increased from zero the magnitude of the pressure and wall

shear stress variations again increases and in particular a significant adverse pressure

gradient appears.

Certain extremes of interest can now be investigated analytically. First, if f− is small

(corresponding to c1, c2 being small in the case of (4.4)) then A∗
2 is small from (3.13)

and so a linearised solution of the sublayer problem applies. For zero Uw this yields the

explicit relation

P ∗(X) = −γ
ˆ X

0

(
f−(1)− f−(S)

)
(X − S)−2/3dS, (4.5)

determining (Pruessner & Smith 2015) the induced wall pressure for a given underbody

shape f−(X). The constant γ = 0.289838λ5/3 is positive. Comparisons between the

prediction (4.5) and the earlier numerical predictions are given in figure 5(b) for the case

of zero Uw, c2: the analytical prediction and the numerical prediction are much closer to

each other for c1 of 0.1 than for c1 of 0.5 and indicate fair agreement.

Second, suppose for generality that all of Uw, c1, c2 are large and the streamwise scale

X remains of O(1). Then A∗
2 is large, say of order α, and so we expect U∗ also to be O(α)

in view of (3.3b). The momentum balance in (2.4b) therefore suggests that P ∗ is O(α2)

and that Y becomes of order α−1/2 in order to preserve the viscous-inviscid balance.

Thus the expansion

(U∗, A∗
2, f

−, Uw) = α(Ū∗, Ā∗
2, f̄

−, Ūw) + ...,

P ∗ = α2P̄ ∗ + ..., X = O(1), Y = α−1/2Ȳ ,
(4.6)

is suggested. Substituting into (2.4a,b) yields the wall-layer equations for Ū∗, Ψ̄∗,

namely

Ū∗ = Ψ̄∗
Ȳ
, (4.7 a)

V̄ ∗ = −Ψ̄∗
X , (4.7 b)

Ū∗Ū∗
X + V̄ ∗Ū∗

Ȳ
= −P̄ ∗

X(X) + Ū∗
Ȳ Ȳ

. (4.7 c)

but subject to the boundary conditions, from (3.3a-c) with (3.13),

Ū∗ → λĀ∗
2(X) + Ūw as Ȳ →∞, (4.7 d)

Ā∗
2(X) = f̄−(1)− f̄−(X), (4.7 e)

Ū∗ = Ūw, Ψ̄
∗ = 0 at Ȳ = 0, (4.7 f)

Ū∗ = λĀ∗
2(0) + Ūw at X = 0+. (4.7 g)

Here the outstanding point Smith & Daniels (1981) is that the wall layer becomes a

classical boundary layer because of the loss of the shear contribution λY in (3.3b). The

pressure is known in advance of the wall-layer calculation since from (4.7c) at large Ȳ

coupled with (4.7d) and followed by an integration in X we obtain the result

P ∗ = Ū2
w/2− (Ūw + λĀ∗

2(X))2/2. (4.7 h)

The solution of the classical problem (4.7a-h) is presented in figure 8 for the example
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Figure 6. Wall shear stress and wall pressure P ∗ for cases (UW , c1, c2) = (1, 1, c2) with

c2 = −4,−2, 2, 4.

corresponding to (4.4) with c̄1 = 6 while c̄2 takes the values −6, 0, 6 to indicate the

influence of thickness and Ūw is zero. When c̄2 is −6 the relatively narrowed gap leads

to enhanced through-flow and hence enhanced wall shear stress, while in the example of

c̄2 equal to 6 the opposite holds with the gap becoming wider and the wall shear stress

being reduced, forcing a comparatively early separation to take place. In the example of

zero c̄2 the value of c̄1 could be normalised to unity but we kept it at 6 for the sake of

comparison. The problem here is similar to that in (Smith & Daniels 1981) except for the

jump start in (4.7g). The classical form produces a Goldstein singularity in the wall shear

stress at a finite value X = Xsep (approximately Xsep = 0.128 for the above example

where c̄2 is zero) but local analysis then smooths out the singularity and leads on into

an open separation persisting for O(1) values of X downstream of Xsep. The separation

point Xsep predicted for large α lies reasonably close to those in the original numerical

results as shown in figure 5(a) for the cases (Uw, c1, c2) = (0, c1, 0) as c1 increases. The

limiting analysis also confirms via figure 8 the solution trends for increasing c2 seen

earlier. Figure 9 shows solutions (Ūw, 6, 6) for increasing Ūw: the Ūw value of 3 delays

the onset of reversed flow compared with the earlier zero value whereas 6 produces fully

forward flow all the way from the leading to the trailing edge. The solutions are again

in keeping with the earlier results (see figure 7). Moreover larger Ūw leads to a jet-like

velocity profile in the sublayer.
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Figure 7. Wall shear stress and wall pressure P ∗ for (UW , c1, c2) = (UW , 1, 0) with UW =

0, 1, 5.

5 Implications in unsteady fluid-body interaction.

Here we use the results (3.12), (3.13) together with (2.3a) and (2.3b), with unsteadiness

re-admitted. Since the overbody pressure is far greater than the underbody and since a

constant shift W ∗Y ∗
0 can be absorbed into h, we obtain the ordinary differential equation

MhTT = −
ˆ 1

0

λ2Y ∗
0

[
g+(1)− g+(X) + (1−X)θ(T )

]
dX, (5.1)

from (2.3a) with (4.1a). Similarly (2.3b) with (4.1b) leads to the differential equation

IθTT = −
ˆ 1

0

λ2Y ∗
0 (X − β)

[
g+(1)− g+(X) + (1−X)θ(T )

]
dX. (5.2)

Thus (5.2) acts to determine θ(T ), while (5.1) then determines h(T ) subsequently. We

examine next two particular overbody shapes g+(X) akin to those in (4.2), (4.3).

The first overbody shape considered is the parabola

g+(X) = C1X + C2X(1−X), (5.3 a)

where C1, C2 are given constants. This gives:

θTT = −λ
2Y ∗

0

6I
(C1(β − 1/2) + C2(1− 3β))− λ2Y ∗

0

6I
[1− 3β]θ(T ). (5.3 b)

Letting B1 = −λ
2Y ∗

0

6I (C1(β − 1/2) + C2(1 − 3β)), B2 = |λ
2Y ∗

0

6I [1 − 3β]|, we see that if
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Figure 8. Scaled wall shear stress for large α. Here ŪW = 0, c̄1 = 6, c̄2 = −6, 0, 6.

Figure 9. As figure 8 but ŪW = 0, 3, 6, c̄1 = 6, c̄2 = 6.
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β > 1/3 then the exponential form

θ(T ) = −B1

B2
+ k1 exp(T

√
B2) + k2 exp(−T

√
B2), (5.3 c)

holds, where the constants k1, k2 are dependent on the initial conditions. Hence from

(4.3) the h(T ) solution is

h(T ) =

(
B4/2−

B1B3

2B2

)
T 2 +B3

B2

(
k1 exp(T

√
B2)

+k2 exp(−T
√
B2)

)
+ k3T + k4, (5.3 d)

where B3, B4 are known constants whereas the constants k3, k4 are determined by

initialisation. Otherwise, if β < 1/3 the form of θ(T ), h(T ) becomes

θ(T ) = B1

B2
+ k1 sin(T

√
B2) + k2 cos(T

√
B2), (5.3 e)

h(T ) = B4

2 + B1B3

2B2
T 2 − B3

B2
(k1 sin(T

√
B2) + k2 cos(T

√
B2) + k3T + k4. (5.3 f)

Here the constants k1, k2, k3, k4 are again dependent on the initialisation.

The second overbody shape considered is that of an ellipse, with prescribed constants

C3, C4, such that

g+(X) = C3X + C4(X(1−X))1/2, (5.4 a)

which leads to the relation

θTT = −πλ
2Y ∗

0

I

(
C3

6
(1− 3β) +

C4π

8

(
β − 1

2

))
− λ2Y ∗

0

6I
[1− 3β] θ(T ). (5.4 b)

The results then follow in basically the same manner as in (5.3b-f). Solutions are pre-

sented in figures 10-13. They show the evolution of h(T ), θ(T ) for the quadratic overbody

at β values of 0.8, 0.2, in figures 10, 11 respectively, and then for the elliptical overbody in

figures 12, 13 for the same two β values in turn. The main finding here is that if β > 1/3

then exponential growth (instability) arises in θ and hence in h from (5.1), whereas if

β < 1/3, so that the centre of mass lies ahead of the midpoint of the body, then periodic

oscillations occur in θ, while h grows only linearly with time. Clearly when instability

exists it is dictated by the θTT and θ terms in (5.2). This feature implies that for the

calculation of growth rates for any shape of body it is sufficient to address the case of

the flat-plate shape, as in (Smith & Johnson 2016). Also the change from instability

to potential stability suggested by displacing the centre of mass upstream sufficiently is

notable. Stability which is possible for β < 1/3 is associated with the body remaining

in oscillatory motion for a considerable amount of time, departing from such a state

only gradually as h(T ) increases or decreases linearly in time. Instability for β > 1/3

corresponds to a much swifter departure from equilibrium, with the body either being

ejected away from the wall towards the central parts of the surrounding boundary layer

flow or being attracted towards the wall and entering the strongly nonlinear stage of

(2.3a)-(2.7d) in full.



20 R. A. Palmer & F. T. Smith

Figure 10. Plots of (a) θ, (b) h against scaled time for a parabolic shape when β = 0.8

with C1 = 1, varying the coefficient C2.

Figure 11. Plots of (a) θ, (b) h against scaled time for a parabolic shape when β = 0.2

with C1 = 1, varying the coefficient C2.
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Figure 12. Plots of (a) θ, (b) h against scaled time for a elliptic shape when β = 0.8 with

C1 = 1, varying the coefficient C2.

Figure 13. Plots of (a) θ, (b) h against scaled time for a elliptic shape when β = 0.2 with

C1 = 1, varying the coefficient C2.
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6 Conclusions.

Inserting a freely moving body of small but finite size into the outer edge of a viscous wall

layer has been found to change the structure of the flow solution considerably, including

the whole of the area between the body and the wall. In our case this has led to a region

of comparatively strong pressure being set up above the body which is controlled by

linear dynamics whereas the region below the body, in the gap between the undersurface

and the wall, involves nonlinear inertial forces generally despite the lower amplitude of

the pressure in the gap. The dominance of the upper pressure acting over the body yields

a remarkably simple linear form for the evolution of the body position and its rotation

and this leads to interesting phenomena. The unsteady movement of the body can be

summarised as yielding either an exponential departure from the outer edge layer as

time increases or a continued oscillation within that layer (accompanied usually by a

slow departure), depending on the location of the centre of mass of the body.

The body motion also determines the flow-displacement effect explicitly below the

body, which acts on the wall vorticity to induce the wall pressure response in a nonlinear

fashion. The wall pressure acts across the gap only as a slight correction in terms of the

body movement itself. The interaction near the wall is through the nonlinear viscous-

inviscid wall layer coupled with the trailing edge condition which forces the effective

displacement to be nonzero at the leading edge, giving a jump effect there. Increasing

body thickness, orientation or streamwise movement is found to lead to an enhanced

pressure response as well as an enhancement of the wall shear stress over a significant

portion of the gap length. Beyond that portion however flow separation may occur,

depending on the scaled parameter values involved.

Thus the main findings are that explicit solutions are obtainable for the movements of

the body, separation of the fluid flow near the wall is possible and instabilities can occur

over any short length scale of the body. In addition we have viscous and inertial effects

applying at leading order throughout much of the fluid-body interaction. Lubrication

effects could still matter however if the body is situated closer to the wall. The wall

considered lies at the bottom of a boundary layer or forms one of the walls in a channel

or pipe.

Addressing the issue of practical relevance we may comment as follows. Given the

many motivations described in the introduction it may be rather surprising that little

modelling of an applied-mathematical nature has been done previously in the subject of

fluid-body interactions. It was felt by us to be desirable to try starting to fill that gap

despite any apparent complexity in the subject. Our intent has been to make a beginning,

then, to tackle basic problems and to seek analytical guidance above all. We have found

that complexity or at least delicacy does indeed arise in the study: in the present case

of a detached body entering a viscous-inviscid wall layer several important subregions

come into play. On the other hand concise analytical solutions have been derived for the

combined fluid-body motion, including influences of body position, thickness and length,

and these findings can guide further study. In terms of practical examples we still need to

be cautious, we cannot be sure yet if practical use will ensue and we should not pretend

that all regimes mentioned or not mentioned here are likely to be of practical relevance.

Nevertheless let us address a range of Reynolds numbers Re, say 104 to 106 depending
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on the specific airfoil application in mind here, and apply the theoretical scalings. Take

W ∗ to be 2 for example. Then the boundary-layer thickness is about 10−3 to 3 × 10−2

and the body length considered is formally about 10−3 to 10−2 (from the range (2.1))

relative to the chord width of unity, while the body thickness is in the approximate

range 10−3 to 10−4 (from the scales in (2.2)), as is the wall-layer thickness. Laterally

the body placement on entry to the viscous-inviscid wall layer is at a distance lying

between 2× 10−4 and 2× 103 from the wall. Overall this theoretical configuration seems

reasonably close to some of those described in the introduction relevant to an ice crystal,

shard or other thin particle in airfoil and aeroengine dynamics. Similar considerations

and estimates apply in a channel flow as described by Smith & Servini (2019).

Concerning further details on parameters, it has been found that an increase in the

underbody shaping through increased underbody thickness and/or orientation angle pa-

rameters produces a considerable rise in the amplitude of the pressure response under the

body, as shown in section 4. This raised underbody pressure could eventually counteract

the high-amplitude upper pressure, although the body then would be quite unusual in

shape by having more bulk underneath than on top. The present study has generally

kept the scaled orientation parameter c1 of order unity and positive and, similarly, the

scaled wall velocity (relative to the body) positive or zero as regards the underbody

flow. This feature has also avoided Euler-flow reversal on a shorter length scale, i.e. sep-

aration ahead of the leading edge of the body. The presence of negative orientation or

negative wall velocity is not expected to disturb the main findings of the study substan-

tially. The paper Smith & Palmer (2019) considers the implications of such reversal in

a quasi-inviscid context and it would be beneficial to build on this within the present

viscous-inviscid context. Parameters of special note overall in the fluid-body coupling

here are the Reynolds number Re, the density ratio, the typical scaled offset width W ∗

of the body from the wall, the effective body thickness c2 and orientation c1; the broad

features of their influence are described in the original theory of sections 2, 3 and in the

numerical and analytical solutions of sections 4, 5. Flexible bodies are also addressed

briefly in appendix B. The flexibility represents a simple model in terms of the original

motivation concerning non-firm ice crystals as well as droplets and melting bodies.

Future investigations should tackle the effects of spatial three-dimensionality and time

scales other than that considered in this paper. Further, the original nonlinear problem

of section 2 which is very challenging merits a numerical treatment, given that it does

not appear to yield rationally to an analytical treatment for O(1) values of the width

parameter W ∗ and streamwise distance X. Although we may now understand entry prop-

erties somewhat in the sense of what happens when the body is in the upper reaches of a

viscous-inviscid layer close to a solid surface, the challenge is to move on to considering

a body that lies in the midst of such a layer. (Here the present analysis may provide

useful test cases for comparison.) The interactions then may force the body to impact on

the wall. Alternatively the body could fly away relatively far from the wall; the present

study may have relevance in the latter scenario.
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Appendix A The scalings.

The reasoning below confirms that for the boundary-layer setting the main range of

interest is for scaled lengths such that

Re−3/4 � l� Re−3/8, (A 1)

based on estimates of the orders of magnitude present. We suppose that the typical body

thickness Re−1/2δ say is comparable with the thickness of the fluid-filled gap between

the underbody and the wall and is significantly less than the boundary layer thickness,

which is of order Re−1/2 since x0 is of order unity. So δ is small. It is supposed further

that the major ow response occurs over the same height O(Re−1/2δ) by virtue of invoking

a nonlinear response and the possibility of significant local alterations to the wall shear

stress for instance. The oncoming velocity profile which is linear near the wall indicates

that the characteristic velocity u involved near the body is small and comparable with

δ because of the dominant wall-shear effect. The typical streamwise length scale l1 of

physical importance in the sublayer flow around the body can then be estimated from

balancing the order of magnitude of the inertial forces uux ∼ δ2/l1 against that of the

prominent viscous force Re−1uyy ∼ Re−1δ/(Re−1/2δ)2, bearing in mind that y is of

scale Re−1/2δ. The balance thus imposes l1 as being of order δ3. One would expect l1, l

to be comparable as the first central interactive case and so obtain a simple relationship

between the fraction δ and the critical length scale with the accompanying scales

δ ∼ l1/3, u ∼ l1/3, p ∼ l2/3, y ∼ l1/3Re−1/2, t� l2/3 (A 2)

See Smith (1976), Rothmayer & Smith (1998), Lagrée (1993, 2007), Sobey (2000) for

related discussions of scalings. We have taken the time scale to not respond mainly

to the flow inertial force. The main response is slower, yielding quasi-steady behaviour

owing to fluid-body interaction. The lower limitation in (A1) corresponds to the sub-layer

height |y| becoming comparable with the streamwise scale l and producing a quite tiny

region governed by the full Navier-Stokes system. In contrast the upper limitation in

(A1) is associated with the triple deck stage where the thin sub-layer around the body

experiences a substantial feedback of pressure which arises from interaction with the ow

outside the surrounding boundary layer. In between, where the range (A1) applies, the

sublayer is controlled by thin-layer dynamics alone.

For channel flows the corresponding range of validity of the current problem (2.3a)-

(2.7b) is

R−1/2 � l� R1/7. (A 3)
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Here the representative length L∗ is the channel width a∗, such that the dimensional

length of the body is a∗l, and likewise R is the Reynolds number U∗a∗/ν∗ based on a∗.

See (Smith 1976, 2017).

Appendix B If the body is flexible.

The model we use for the influence of an elastic upper surface of the body has the form

e2
∂2g+

∂X2
= P ∗

1 − π0 (B 1)

where the positive constant e2 is a scaled longitudinal tension of the overbody surface

and the constant π0 is the scaled base pressure within the body relative to the incident

pressure. Here the boundary conditions on the unknown shape function g+ are, without

loss of generality,

g+ = 0 at X = 0, 1. (B 2)

The physical sense of the relation (B1) combined with (B2) can be seen in the property

that a positive pressure difference P ∗
1 − π0 promotes a positive curvature and hence an

overall decrease in the overbody shape, as we might expect. The equations (B1), (B2)

are coupled with the body-motion equations

MhTT = −
ˆ 1

0

P ∗
1 dX, (B 3)

IθTT = −
ˆ 1

0

(X − β)P ∗
1 dX, (B 4)

from (2.3a, b) but bearing in mind the comparatively high-pressure magnitudes P ∗
1 acting

on top of the body, and with (3.12) requiring

P ∗
1 (X,T ) = λ2Y ∗

0 (f+(1, T )− f+(X,T )), (B 5)

subject now to

f+(X,T ) = g+(X,T ) + h(T ) + (X − β)θ(T ). (B 6)

The system of interest is thus (B1)-(B6) where in particular h(T ), θ(T ) are to be found.

Combining (B1), (B5), (B6) leads in effect to a spatial problem for f+, namely to solve

e2
∂2f+

∂X2
= λ2Y ∗

0 (f+(1, T )− f+(X,T ))− π0, (B 7)

subject to f+ = h−βθ at X = 0 and f+ = h+ (1−β)θ at X = 1 in view of (B2). Hence

the shape solution is

f+ = A sinαX +B cosαX + C (B 8)

where the constants are given by A = {θ cosα+ (1−cosα)π0

λ2Y ∗
0
} 1

sinα , B = −θ + π0

λ2Y ∗
0
, C =

h+(1−β)θ− π0

λ2Y ∗
0

and the effective wave number α = ((λ2Y ∗
0 )e2)1/2. The pressure solution

then follows from (B5), following which substitution into (B3), (B4) yields evolution

equations for h(T ), θ(T ).
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Figure B 1. Plots of D against α for a body with flexible shape with β = 0.25, 0.5 and

0.75.

The latter equation is found to take the form, after a constant is added to the θ value,

IθTT
λ2Y ∗

0

= −Dθ, (B 9)

with

D =
1− β + β cosα

α sinα
− 1

α2
. (B 10)

The evolution of θ therefore depends on the constant coefficient D. A plot of D as

α, β vary is presented in figure B1. There is seen to be a wide range of values of the

wavenumber α for which D is positive, corresponding to relative stability as the scaled

angle θ then oscillates in time, and also a wide range where D is negative, meaning

that instability occurs since θ grows exponentially in time. The associated h(T ) grows

algebraically in time in the quasi-stable case in general but exponentially in the unstable

case. The location β also plays a role in determining the sign of D as illustrated in figure

B1. α is well-defined away from any positive multiple of π with D notably becoming

increasingly independent of β as α approaches values of 2nπ, n = 1, 2, 3, ....
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