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Abstract. Automatically generating one medical imaging modality from
another is known as medical image translation, and has numerous in-
teresting applications. This paper presents an interpretable generative
modelling approach to medical image translation. By allowing a common
model for group-wise normalisation and segmentation of brain scans to
handle missing data, the model allows for predicting entirely missing
modalities from one, or a few, MR contrasts. Furthermore, the model
can be trained on a fairly small number of subjects. The proposed model
is validated on three clinically relevant scenarios. Results appear promis-
ing and show that a principled, probabilistic model of the relationship
between multi-channel signal intensities can be used to infer missing
modalities – both MR contrasts and CT images.

1 Introduction

This paper concerns a relatively simple method of synthesising data of one med-
ical image modality, from data of other modalities. This is known as ‘image
translation’. Applications of medical image translation are numerous, and in-
clude e.g. harmonising data across scanners; synthesising computed tomography
(CT) images from magnetic resonance (MR) images for positron emission to-
mography (PET) attenuation correction [1], or decrease the need for radiating
a patient; simplifying the problem of multi-modal image registration [2]; or gen-
eralising machine learning techniques by transferring out-of-distribution input
data to the domain of the model’s training data [3].

Mapping from the signal intensities of one modality to those of another can
be loosely categorised as either optimisation- or learning-based. Optimisation-
based methods rely only on the data at hand to optimise a mapping between
modalities, and do not use training data. Examples include using non-parametric
joint histograms [4], estimating an intensity transformation during image reg-
istration [5], and biophysical models [6]. Learning-based methods use training
data to learn the mapping, and can be applied to translating an unseen image
from one domain into another. Some examples in this category use clustering
[7], random forests [8], patch-matching [9] and dictionaries [10]. Learning-based
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methods based on various convolutional neural network architectures are cur-
rently the most popular approach for this. Trained end-to-end, on either paired
or unpaired training data [11,12,13], they show promising results at this task,
although they can run the risk of hallucinating unwanted features [14].

This paper presents a more interpretable generative modelling approach to
image translation. It could be classed as an optimisation-based approach, al-
though it does use training data to learn priors that inform the optimisation
of mappings. More specifically, we show how a generative model for group-wise
normalisation and segmentation of neuroimaging data can be extended to handle
missing data. The generative model has a Gaussian mixture model component,
which can naturally handle missing data [15]. In this paper, we extend this miss-
ing data model to a variational Gaussian mixture. Fitting this model to various
populations of medical images allows us to predict, from a few MR contrasts,
entirely missing modalities (e.g., non-acquired MR contrasts or CT images).

2 Methods

The prediction of one modality from another is here cast as a joint intensity
modelling problem. The workhorse of the proposed method is the unified seg-
mentation model [16], which uses mixtures of Gaussians with non-stationary
tissue priors derived from a deformable template. When a large dataset is avail-
able, the optimisation of the template can be interleaved with the mixture model
fit to each individual subject [17]. Furthermore, priors over the intensity param-
eters of the Gaussian mixture – its means and covariances – can be defined and
optimised as well. This type of learning, where subject-specific parameters are
marginalised while population parameters are optimised, is known as parametric
empirical Bayesian methods [18]. Here, exact marginalisation is intractable, so
we resort to a variational approximation.

Fully observed model: Let X ∈ RD×M be a multimodal dataset from one
subject, where M is the number of modalities and D is the number of voxels
in the images. Each voxel is assumed to belong to one of K classes, where the
classification is encoded by the label matrixZ ∈ [0, 1]

D×K
, with zdk = 1 iff. voxel

d belongs to class k. Each tissue class is associated with a multivariate Gaussian
distribution of dimension M , which encodes the intensities’ mean (µk ∈ RM )
and covariance (Σk ∈ RM×M ) over the modalities. The Gaussian mixture model
can then be written as a conditional probability that factorises across voxels:

p (X | Z,µ1...K ,Σ1...K) =

D∏
d=1

K∏
k=1

N (xd | µk,Σk)
zdk . (1)

Subject-specific parameters (the label matrix and Gaussian parameters) are
assumed to be drawn from prior distributions that describe their variability at
the population level. Labels are drawn from a categorical distribution whose
probabilities are encoded by a deformable template a ∈ RDa×K . This template



is mapped to the subject’s brain using a non-linear deformation field φ. This
assumption can be written as the conditional likelihood:

p (Z) =

D∏
d=1

Cat (zd | πd) , πd ∈ RK , πdk =
exp(ωk + adk(φ))∑K
j=1 exp(ωj + adj(φ))

, (2)

where ω ∈ RK is a vector of global class proportions, which can be optimised
to account for variable amounts of different classes (an example when modelling
brain images could be atrophy due to ageing). The Gaussian parameters are
drawn from their conjugate Gauss-Wishart distribution:

p
(
µk,Σ

−1
k

)
= NW

(
µk,Σ

−1
k | µ0k, b0k,V 0k, ν0k

)
= N (µk | µ0k,Σk/b0k)W

(
Σ−1k | V 0k, ν0k

)
. (3)

Assuming that all population parameters are fixed, a mean-field approxima-
tion is made so that the posterior distribution over all latent, subject-specific
parameters factorises as:

q
(
Z,µ1...K ,Σ

−1
1...K

)
=

[
D∏

d=1

q (zd)

][
K∏

k=1

q
(
µk,Σ

−1
k

)]
, (4)

with q (zd) = Cat (zd | z̃d) and q
(
µk,Σ

−1
k

)
= NW

(
µk,Σ

−1
k | µ̃k, b̃k, Ṽ k, ν̃k

)
.

The posterior parameters (denoted by a tilde) can be optimised in turn by max-
imising the evidence lower bound (ELBO):

L = E [ln p (X | Z,µ1...K ,Σ1...K)]

−
D∑

d=1

DKL (qzd
‖ pzd

)−
K∑

k=1

DKL (qµk,Σk
‖ pµk,Σk

) . (5)

When multiple subjects {Xn}Nn=1 are processed, the posterior distribution fac-
torises across subjects and a combined ELBO can be written by summing the
individual ELBOs (L =

∑N
n=1 Ln). In this case, empirical population priors can

be obtained by optimising the combined ELBO with respect to the template
(a) and Gauss-Wishart prior hyper-parameters (µ0k, b0k,V 0k, ν0k). The means
and scale matrices have closed form solutions, while the template and degrees of
freedom must be optimised using an iterative scheme. Population prior param-
eters and subject posterior parameters can be optimised in turn, resulting in a
variational Expectation-Maximisation (VEM) algorithm [19].

Missing modalities: Let us assume that some modalities are missing in a
voxel3. We write as o the vector indexing observed modalities and as m the

3 For example, a multi-channel MRI might have three contrasts: T1w, T2w and PDw.
In one voxel, only the T1w intensity is observed. The T2w and PDw intensities are
then assumed missing in that voxel. Note that different voxels can have different
combinations of contrasts/modalities missing.



vector indexing missing modalities. Therefore, the observed channels can be
written as g = xo and the missing channels as h = xm, where the voxel index
d has been temporarily dropped for clarity. For a voxel in class k, the marginal
distribution of the observed channels can then be written as [20]:

p (g | µk,Σk, zk = 1) = N (g | µko,Σkoo) , (6)

and the conditional distribution of the missing channels as:

p (h | g,µk,Σk, zk = 1) =

N
(
h | µkm − (Λkmm)

−1
Λkmo (g − µko) , (Λkmm)

−1
)
, (7)

where the precision matrix Λ = Σ−1 is the inverse of the covariance matrix.
The set of all missing values in an image is written as H = {hd}Dd=1. The

mean field approximation becomes:

q
(
H,Z,µ1...K ,Σ

−1
1...K

)
=

[
D∏

d=1

q (hd | zd) q (zd)

][
K∏

k=1

q
(
µk,Σ

−1
k

)]
, (8)

where q (hd | zd) =
∏K

k=1N
(
hd | h̃dk, S̃dk

)zdk
. The marginal posterior over

missing values is a mixture of Gaussians that can be obtained by marginalising
the labels:

q(hd) =

K∑
k=1

z̃dkN
(
hd | h̃dk, S̃dk

)
. (9)

Its expected value is E [hd] =
∑

k z̃dkh̃dk. This is the expression that we evaluate
to predict missing voxels.

The set of all observed values is written as G = {gd}Dd=1. The ELBO can
then be written in two equivalent forms:

L = E [ln p (G | Z,µ1...K ,Σ1...K)]

−
D∑

d=1

DKL (qzd
‖ pzd

)−
K∑

k=1

DKL (qµk,Σk
‖ pµk,Σk

) (10)

L = E [ln p (X | Z,µ1...K ,Σ1...K)]−
D∑

d=1

Ezd

[
DKL

(
qhd|zd

∥∥ phd|zd

)]
−

D∑
d=1

DKL (qzd
‖ pzd

)−
K∑

k=1

DKL (qµk,Σk
‖ pµk,Σk

) . (11)

The first form is used to optimise the labels’ posterior parameters, while the
second is used to optimise, in turn, the missing values and the Gaussian posterior
parameters.



Model updates: Optimising the ELBOs in (10) and (11) gives the subject-level
update equations as:

z̃dk =
exp (E [lnN (gd | µk,Σk)] + lnπdk)∑K
l=1 exp (E [lnN (gd | µl,Σl)] + lnπdl)

. (12)

b̃k = b0k +

D∑
d=1

z̃dk (13)

µ̃k =
b0kµ0k +

∑D
d=1 E [zdkxd]

b̃k
(14)

ν̃k = ν0k +

D∑
d=1

z̃dk (15)

Ṽ
−1
k = ν0kV

−1
0k +

D∑
d=1

E
[
zdkxdx

T
d

]
+ bk0µk0µ

T
k0 − b̃kµ̃kµ̃

T
k (16)

The update equations for the Gaussian parameters in the missing data case are
very similar to the fully observed case, except that expectations are taken about
the data. These expectations are evaluated as:

E [zdkxd]o = z̃dkgd,

E [zdkxd]m = z̃dkh̃dk,

E
[
zdkxdx

T
d

]
oo

= z̃dkgdg
T
d ,

E
[
zdkxdx

T
d

]
mm

= z̃dk

(
h̃dkh̃

T

dk + S̃dk

)
,

E
[
zdkxdx

T
d

]
om

= z̃dkgdh̃
T

dk,

E
[
zdkxdx

T
d

]
mo

= z̃dkh̃dkg
T
d ,

(17)

where

h̃dk = µ̃km − Λ̃
−1
kmmΛ̃kmo (gd − µ̃ko) , S̃dk = Λ̃

−1
kmm, (18)

and Λ̃k = ν̃kṼ k is the posterior expected precision matrix of a given class.

Finally, we provide the optimal updates of the Gaussian prior parameters,
given a set of individual posterior parameters. All prior parameters have closed-
form updates, except for the degrees of freedom of the Wishart distribution,
which is updated using an iterative Gauss-Newton scheme. The update equations



are:

µ0k =

(
N∑

n=1

ν̃nkṼ nk

)−1( N∑
n=1

ν̃nkṼ nkµ̃nk

)
, (19)

b−10k =
1

NM

N∑
n=1

ν̃nk (µ0k − µ̃nk)
T
Ṽ nk (µ0k − µ̃nk) , (20)

V 0k =
1

Nν0k

N∑
n=1

ν̃nkṼ nk, (21)

∂L
∂ν0k

= − 1

2

(
N
(

ln |V 0k|+ ψM

(ν0k
2

))
−

N∑
n=1

(
ln
∣∣∣Ṽ nk

∣∣∣− ψM

(
ν̃nk
2

)))
,

(22)

∂2L
∂ν20k

= − N

4
ψ′M

(
ν̃0k
2

)
. (23)

We do not provide update rules for the template (a), as they can be found in
[17].

3 Experiments and Results

In this section we aim to explore the translation (or inference) capability of the
proposed model by conducting three experiments on publicly available data. We
investigate: (1) inferring missing voxels of MRIs with differing field of views; (2)
inferring entirely missing MRI contrasts; and (3), inferring CT scans from MRIs.
The findings are quantified by computing the peak-signal-to-noise-ratio (PSNR)
for an image channel c as:

PSNR = 10 log10

maxval2

MSE
, (24)

where the mean-squared error is defined as MSE = 1
D

∑D
d=1(x̂cd − (E [hd])c)

2,

maxval is the maximum channel intensity in the reference image X̂, and E [hd]
from (9) is evaluated to predict missing voxels. The PSNR is a metric that is
commonly used in the medical image synthesis literature [11,13,12]. Note that
no voxels are excluded when computing the PSNR.

3.1 MRI Contrast Translation

This section evaluates translating between MR contrasts. The model is trained
on 50 subjects from the publicly available IXI dataset4, which was acquired on

4 http://brain-development.org/ixi-dataset/

http://brain-development.org/ixi-dataset/


Template Joint density (T1,PD) Joint density (T2,PD)

Fig. 1: Template and expectations of the Gaussians drawn from the Gauss-
Wishart priors, learnt from 50 IXI subjects. Densities are plotted using their
3σ isocontours. This model is fit to a new subject, which allows for inferring
missing voxels.

three different MR scanners5. Each IXI subject has three MR images: a T1-
, T2- and PD-weighted scan (T1w, T2w and PDw). Furthermore, the images
have approximately 1 mm isotropic voxels and all subjects are healthy. K = 12
mixture components are used, resulting in the model shown in Fig. 1. Note that
the template learned by the algorithm does not need to represent real tissues.
Here, the model has been treated as a method of representing a probability
density function, rather than as a way to do clustering. Any ‘meaningful’ clusters
are incidental.

Inferring MRIs with Differing Fields of View: Doctors often acquire rou-
tine clinical MR scans of multiple contrasts. Commonly, these contrasts have
differing fields of view, meaning the brain coverage varies (cf. observed T1w and
T2w images in Fig. 2). This can be problematic for image segmentation routines
as voxels with non-observed contrasts need to be discarded. The model should
prevent this issue by inferring the values of these missing voxels. To test this,
T1w, T2w and PDw scans of 50 unseen IXI subjects are used6. All of the voxels
are retained in the PDw image, while an increasing amount of voxels are re-
moved from the T1w and T2w images (25%, 50%, 75% and 100%). The missing
voxels are then inferred with the trained model. An example can be seen in Fig.
2. The mean PSNR computed between the known references and the inferred
images are shown in Table 2. For routine clinical MRI, it is rare that more than
50% of the field of view is missing. The results therefore suggest that the model
does a good job at filling in missing fields of view, which could be of value in
segmenting hospital data.

5 This scenario is more realistic in a clinical context. The results would improve if
data from only one scanners was used.

6 The model is trained on IXI subjects IXI[064-118], and tested on IXI[002-063].



References

T1w

Observed

PDw

T1w  (50%) T2w  (50%)

Reference

Reference

PSNR=34.3T2w PSNR=36.6

InferredInferred

T1w T2w

Inferred

Fig. 2: Example of inferring MRIs with differing field of views. An MR image
with three channels (PDw, T1w and T2w) is observed. The PDw scan has full
brain coverage, while the T1w and T2w scans have partial brain coverage (50%
of voxels removed in each channel). From the observed data the values of the
missing T1w and T2w voxels are inferred. The reference T1w and T2w scans are
shown for comparison, as well as PSNR values.

Table 1: Results for inferring MR images with different fields of view (for 50
subjects). The PSNR is computed between known T2w and PDw references and
inferred images, where an increasing percentage of the field of view has been
removed. Results are shown as mean±std.

PSNR
Contrast 25% 50% 75% 100%

T1w 42.1±1.6 36.3± 1.3 31.1± 1.3 28.9± 1.2
T2w 40.7±2.1 34.4± 2.0 30.4± 1.8 27.6± 1.6

Inferring MR Contrasts: Could the proposed model be used to infer an
entirely missing MR contrast? An interesting application for this type of MRI
translation could be for segmentation methods based on deep learning. A deep
learning model that has been trained on MR images of a specific contrast can
overfit to its training data [21]. If images could be simulated as to match the
training data of the deep learning model, it might generalise better.

To test how well the model predict a missing contrast the same IXI subjects
as in the previous experiment are used. For each subject, all combinations of
contrasts are permuted over, set as either observed or missing. For example, we
observe just the T1w image and infer the T2w and PDw scans, or we observe
the T2w and PDw scans and infer the T1w (see Fig. 3). The results from this
experiment are shown in Table 2. These results imply that the T1w image is the
most predictive, as the lowest PSNR is obtained when this contrast is missing.
The example inferred PDw image in Fig. 3 looks realistic when compared to
the known reference, although more noisy. The results in Table 2 are close to
those previously reported in the literature [11] (for the same task but a different
dataset).



Observed

T1w T2w
Inferred Reference

PDw

Inferred

Reference

Observed

PSNR=28.7

Fig. 3: Example of inferring non-acquired MR contrasts. An MR image with two
channels (T1w and T2w) is observed. The PDw scan is missing, but inferred
from the observed T1w and T2w scans. The reference PDw scan is shown for
comparison, as well as the PSNR value.

Table 2: Results for inferring MR image contrasts (for 50 subjects). PSNR is
computed for all different permutations of observed and missing contrasts. Re-
sults are shown as mean±std.

Contrasts PSNR
Observed Missing T1w T2w PDw

T1w T2w, PDw - 28.9± 1.5 28.5± 1.1
T2w T1w, PDw 28.2± 1.0 - 28.3± 1.5
PDw T1w, T2w 28.0± 1.2 27.6± 1.6 -

T1w,T2w PDw - - 28.8± 0.9
T2w,PDw T1w 29.2± 1.4 - -
T1w,PDw T2w - 28.1± 1.5 -

3.2 MRI to CT Translation

Accurately translating MRIs to CTs is interesting for numerous reasons, e.g., for
removing the exposure to radiation that CT imaging involves, or for attenuation
correction in MR-PET imaging. The proposed model should allow for this type
of translation, by training it on subjects who have both MR and CT imaging.
We therefore retrain the intensity distribution hyper-parameters of the model –
retaining the template learnt from the IXI dataset – on eight patients from the
RIRE dataset7 [22]. Each patient in this dataset contains a number of imaging
modalities. Here, only the patients with T1w and T2w MR scans (non-rectified),
and CT images, are used. Note that the RIRE dataset is challenging to use
due to the images having thick-slices, sometimes pathology, as well as requiring
an initial co-registration (the dataset is part of a registration challenge and
therefore purposefully misaligned). Each subject’s scans are registered using the
co-registration routine of the SPM12 software.

7 https://www.insight-journal.org/rire/

https://www.insight-journal.org/rire/


Observed

T2w T1w

1500-1000 1000

Reference

CT

Inferred

CT
1500-1000 1000

Inferred

Reference
PSNR=24.3

Fig. 4: Example of MRI to CT translation. An MR image with two channels
(T1w and T2w) is observed. A CT scan is then inferred from the observed T1w
and T2w scans. The reference CT scan is shown for comparison, as well as the
PSNR value.

To test the models ability to translate MRIs to CTs, eight unseen RIRE
patients are used8. The trained model is fit to each subject’s T1w and T2w scans.
The expected marginal posterior distribution over the missing CT image can then
be computed. An example is shown in Fig. 4. The mean±std PSNR between
the inferred CT images and the known references is 25.5 ± 1.2. Considered the
intensity hyper-parameters were trained on only eight subjects, the results are
satisfactory, although not on pair with deep learning based techniques [13]. The
examples images in Fig. 4 suggests that the model does not capture a detailed
enough distribution of bone. Additionally, the meninges does not appear in the
inferred image, but is instead modelled as cerebrospinal fluid. Fitting not only
the intensity hyper-parameters to the CT data, but also the template, could
resolve these issues. More training data would also help.

4 Conclusion

This paper showed how a popular model for segmenting brain scans – a proba-
bilistic forward model with a Gaussian mixture part – can be extended to infer
missing data. For multi-channel segmentation, this extension circumvents the
need to model only voxels that are observed in all channels. It furthermore en-
ables predicting one MR contrast from another, or CTs from MRIs. The model
gives reasonable results if trained on a small number of subjects, but we would
expect further improvements with access to more training data. Interestingly,
image translation is just a ‘by-product’ of learning the parameters of a joint

8 The model is trained on RIRE patients patient[102-109], and tested on
patient[001-007,101].



probability distribution that models missing voxels. The same model can also
be used to segment, bias correct and spatially normalise brain scans.

The model requires setting the number of Gaussian mixture components
(K) at the start of the training. If this number is set too low, then the simulated
images will look unrealistic. Here, this issue was resolved by using a fairly large
number of components, which was found empirically capturing a detailed enough
model distribution. Uninformative mixture components can then be drived to
zero, due to the Bayesian setting of the Gaussian mixture model, by making
point estimates of the values of the global tissue proportions (ω). This is known
as automatic relevance determination [20].

Generative modelling approaches integrating multi-channel images, like the
one presented here, should involve a component that relates signal across the
various channels. The approach presented in this paper involves a probabilistic
model of the relationship between signal intensities over channels. An alternative
approach would be to use a multi-channel total variation (MTV) prior, which
ensures that ‘edges’ appear in similar locations across channels. The MTV prior
can be used to achieve super-resolution or denoising of medical images [23]. An
avenue of future work could therefore be to incorporate both of these components
into a super-resolution method, to improve resolution of thick-sliced, hospital-
grade MR scans. By combining, for example, axial thick-sliced T2-weighted im-
ages and sagittal thick-sliced T1w images of the same subjects. In this example,
the T2w image could provide some of the missing T1w signal in the left-right
direction, whereas the T1w image could fill in some of the missing T2w signal
in the inferior-posterior direction. Of course, this strategy would need to be for-
mulated properly, but this work aimed to show a proof of the concept that one
of those components, a probabilistic model between channels, does a good job
at filling in missing data in MR images.

Acknowledgements: MB was funded by the EPSRC-funded UCL Centre for
Doctoral Training in Medical Imaging (EP/L016478/1) and the Department of
Healths NIHR-funded Biomedical Research Centre at University College London
Hospitals. MB and JA was funded by the EU Human Brain Project’s Grant
Agreement No 785907 (SGA2). YB was funded by the MRC and Spinal Research
Charity through the ERA-NET Neuron joint call (MR/R000050/1).

References

1. N. Burgos, M. J. Cardoso, M. Modat, S. Pedemonte, J. Dickson, A. Barnes, J. S.
Duncan, D. Atkinson, S. R. Arridge, B. F. Hutton, et al., “Attenuation correction
synthesis for hybrid PET-MR scanners,” in MICCAI, pp. 147–154, Springer, 2013.

2. T. Cao, C. Zach, S. Modla, D. Powell, K. Czymmek, and M. Niethammer, “Regis-
tration for correlative microscopy using image analogies,” in WBIR, pp. 296–306,
Springer, 2012.

3. S. Roy, A. Carass, N. Shiee, D. L. Pham, and J. L. Prince, “MR contrast synthesis
for lesion segmentation,” in ISBI, pp. 932–935, IEEE, 2010.



4. D.-J. Kroon and C. H. Slump, “MRI modalitiy transformation in demon registra-
tion,” in ISBI, pp. 963–966, IEEE, 2009.

5. A. Guimond, A. Roche, N. Ayache, and J. Meunier, “Three-dimensional multi-
modal brain warping using the demons algorithm and adaptive intensity correc-
tions,” IEEE T. Med. Imaging, vol. 20, no. 1, pp. 58–69, 2001.

6. W. Wein, S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab, “Automatic
CT-ultrasound registration for diagnostic imaging and image-guided intervention,”
Med. Image Anal., vol. 12, no. 5, pp. 577–585, 2008.

7. S.-H. Hsu, Y. Cao, K. Huang, M. Feng, and J. M. Balter, “Investigation of a
method for generating synthetic CT models from MRI scans of the head and neck
for radiation therapy,” Phys. Med. Biol., vol. 58, no. 23, p. 8419, 2013.

8. T. Huynh, Y. Gao, J. Kang, L. Wang, P. Zhang, J. Lian, and D. Shen, “Estimating
CT image from MRI data using structured random forest and auto-context model,”
IEEE T. Med. Imaging, vol. 35, no. 1, pp. 174–183, 2015.

9. J. E. Iglesias, E. Konukoglu, D. Zikic, B. Glocker, K. Van Leemput, and B. Fischl,
“Is synthesizing MRI contrast useful for inter-modality analysis?,” in MICCAI,
pp. 631–638, Springer, 2013.

10. S. Roy, A. Carass, and J. Prince, “A compressed sensing approach for MR tissue
contrast synthesis,” in IPMI, pp. 371–383, Springer, 2011.

11. A. Chartsias, T. Joyce, M. V. Giuffrida, and S. A. Tsaftaris, “Multimodal mr syn-
thesis via modality-invariant latent representation,” IEEE transactions on medical
imaging, vol. 37, no. 3, pp. 803–814, 2017.

12. D. Nie, R. Trullo, J. Lian, C. Petitjean, and M. Ruan, “Medical image synthesis
with context-aware generative adversarial networks,” pp. 417–425, Springer, 2017.

13. J. M. Wolterink, A. M. Dinkla, M. H. Savenije, P. R. Seevinck, C. A. van den
Berg, and I. Išgum, “Deep MR to CT synthesis using unpaired data,” in SASHIMI,
pp. 14–23, Springer, 2017.

14. J. P. Cohen, M. Luck, and S. Honari, “Distribution matching losses can hallucinate
features in medical image translation,” in MICCAI, pp. 529–536, Springer, 2018.

15. Z. Ghahramani and M. I. Jordan, “Supervised learning from incomplete data via
an EM approach,” in NeurIPS, pp. 120–127, 1994.

16. J. Ashburner and K. J. Friston, “Unified segmentation,” NeuroImage, vol. 26, no. 3,
pp. 839–851, 2005.

17. C. Blaiotta, P. Freund, M. J. Cardoso, and J. Ashburner, “Generative diffeomor-
phic modelling of large MRI data sets for probabilistic template construction,”
NeuroImage, vol. 166, pp. 117–134, 2018.

18. B. P. Carlin and T. A. Louis, “Empirical Bayes: Past, present and future,” J. Am.
Stat. Assoc., vol. 95, no. 452, pp. 1286–1289, 2000.

19. C. Blaiotta, M. J. Cardoso, and J. Ashburner, “Variational inference for medical
image segmentation,” Comput. Vis. Image Und., vol. 151, pp. 14–28, 2016.

20. C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.
21. M. Brudfors, Y. Balbastre, and J. Ashburner, “Nonlinear markov random fields

learned via backpropagation,” in IPMI, pp. 805–817, Springer, 2019.
22. J. B. West, . . . , and R. P. Woods, “Comparison and evaluation of retrospective

intermodality image registration techniques,” in Medical Imaging 1996: Image Pro-
cessing, vol. 2710, pp. 332–348, SPIE, 1996.

23. M. Brudfors, Y. Balbastre, P. Nachev, and J. Ashburner, “MRI super-resolution
using multi-channel total variation,” in MIUA, pp. 217–228, Springer, 2018.


	Empirical Bayesian Mixture Models for Medical Image Translation

