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Abstract

The TSC1 and TSC2 gene products interact to form the tuberous sclerosis complex (TSC),

an important negative regulator of the mechanistic target of rapamycin complex 1

(TORC1). Inactivating mutations in TSC1 or TSC2 cause TSC, and the identification of a

pathogenic TSC1 or TSC2 variant helps establish a diagnosis of TSC. However, it is not

always clear whether TSC1 and TSC2 variants are inactivating. To determine whether TSC1

and TSC2 variants of uncertain clinical significance affect TSC complex function and cause

TSC, in vitro assays of TORC1 activity can be employed. Here we combine genetic,

functional, and structural approaches to try and classify a series of 15 TSC2 VUS. We

investigated the effects of the variants on the formation of the TSC complex, on TORC1

activity and on TSC2 pre‐mRNA splicing. In 13 cases (87%), the functional data supported

the hypothesis that the identified TSC2 variant caused TSC. Our results illustrate the

benefits and limitations of functional testing for TSC.
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1 | INTRODUCTION

Tuberous sclerosis complex (TSC) is an autosomal dominant disorder

characterized by the development of hamartomas in a variety of

organs and tissues, including the brain, skin, and kidneys. TSC affects

approximately 1 in 10,000 individuals and is caused by inactivating

mutations in either TSC1 on chromosome 9q34 (MIM# 605284; van

Slegtenhorst et al., 1997), or TSC2 on chromosome 16p13.3 (MIM#

191092; European Chromosome 16 Tuberous Sclerosis Consortium,

1993). The identification of an inactivating TSC1 or TSC2 variant is

sufficient for a diagnosis of TSC, even in the absence of clinical

symptoms (Northrup & Krueger, 2013).

The TSC1 and TSC2 gene products, TSC1 (NP_000359.1) and

TSC2 (NP_000539.2), interact to form a large GTPase activating

protein (GAP) complex (Hoogeveen‐Westerveld et al., 2012; Menon

et al., 2014) that acts on the GTPase RAS homolog expressed in brain

(RHEB) to inhibit RHEB–GTP‐dependent activation of the mechan-

istic target of rapamycin complex 1 (TORC1; Huang & Manning,

2008). Loss or inactivation of the TSC complex results in constitutive

TORC1 activity and increased phosphorylation of the downstream

targets of TORC1, including p70 S6 kinase (S6K), ribosomal protein

S6, and 4E‐BP1 (Huang & Manning, 2008).

The TSC1 and TSC2 Leiden Open Variant Databases (LOVD; http://

www.lovd.nl/TSC1 and http://www.lovd.nl/TSC2) currently list >4,000

variants identified in individuals with TSC, including >1,000 variants in

TSC1 and >3,000 in TSC2. The majority of these variants are clearly

inactivating, resulting in the truncation of the TSC1 or TSC2 open reading

frame (ORF). However, for a significant minority of variants (currently

>500), it is not yet clear whether they are disease‐causing. According to

the guidelines of the American College of Medical Genetics and

Genomics, in vitro functional assays can help establish or exclude

pathogenicity for variants of uncertain clinical significance (VUS; Ghosh,

Harrison, Rehm, Plon, & Biesecker, 2018; Richards et al., 2015), and

assessment of the effects of TSC1 and TSC2 variants on TSC complex

activity has been used to establish pathogenicity (Dunlop et al., 2011;

Hoogeveen‐Westerveld et al., 2011; Northrup & Krueger, 2013; W. Qin

et al., 2010). Here we apply new functional and structural approaches to

investigate the likely pathogenicity of 15 novel TSC2 VUS identified in

individuals suspected of TSC and submitted to the TSC2 LOVD.

2 | MATERIALS AND METHODS

2.1 | Generation of TSC1 and TSC2 knockout cells
using CRISPR/Cas9 genome editing

Guide sequences targeting TSC2 exon 2 (5′‐caccgacggagtttatcatcac
cg‐3′ and 5′‐aaaccggtgatgataaactccgtc‐3′) and intron 38 (5′‐caccggtta
tcgccacgcaccact‐3′ and 5′‐aaacagtggtgcgtggcgataacc‐3′) and TSC1

exon 3 (5′‐caccgtgggccattctctcgctcga‐3′ and 5′‐aaactcgagcgagagaatg
gcccac‐3′) and exon 23 (5′‐cacccagtcggtgggagacgacta‐3′ and 5′‐aaac
tagtcgtctcccaccgactg‐3′) were selected using online CRISPR design

tools (Cong et al., 2013, Stemmer et al., 2015), cloned into the pX458

and pX459 vectors (Ran, Hsu, & Wright, 2013) and transfected into

human embryonic kidney (HEK) 293T cells, following a previously

described protocol (Chantranupong et al., 2014). Cells were cultured

in six‐well plates in Dulbecco’s modified Eagle’s medium (DMEM;

Lonza, Verviers, Belgium) supplemented with 10% fetal bovine

serum, 50 U/ml penicillin and 50 μg/ml streptomycin (DMEM++), in

a 5% carbon dioxide humidified incubator, until 50–70% confluent

and then transfected using lipofectamine 2000 (Invitrogen, Carlsbad,

CA). Twenty‐four hours later the cells were trypsinized, pooled, and

transferred to a single 10‐cm plate. Samples were retained for the

analysis of GFP expression and for DNA isolation. Six hours after

reseeding, 3 μg/ml puromycin was added to the culture medium for

48 hr. After a 24 hr recovery phase in DMEM++, cells expressing GFP

were single‐cell sorted using a FACSARIA III (BD Biosciences, San

Jose, CA) into 96‐well plates precoated with poly‐D‐lysine. The sorted

cells were cultured until colonies became apparent and could be

trypsinized, expanded, and tested for target gene inactivation, and

activation of TORC1 signaling.

2.2 | In vitro functional assessment of the effects of
TSC2 variants on TSC complex activity

Expression constructs encoding the TSC2 variants were derived by

site‐directed mutagenesis. In each case, the complete ORF of the

mutated construct was verified by sequence analysis. In contrast to

previous studies (Hoogeveen‐Westerveld et al., 2013; Hoogeveen‐
Westerveld et al., 2011), the wild‐type TSC2 expression construct

included codons 1272–1295, corresponding to the alternatively

spliced exon 32 of TSC2 (NM_000548.3, GI:116256351; Ekong et al.,

2016). Other constructs have been described previously (Hoogeveen‐
Westerveld et al., 2011). Both the wild‐type TSC1 (NM_000368.4; GI:

2331280; van Slegtenhorst et al., 1998) and S6K (2B4) expression

constructs encode C‐terminal myc‐epitope tags. Variants were

compared with wild‐type TSC2 (NM_000548.3, GI:116256351; re-

ferred to as TSC2) and to the inactive TSC2 c.1832G>A, p.(R611Q)

variant (referred to as R611Q), one of the most frequently detected

causative TSC2 variants for TSC (http://www.lovd.nl/TSC2).

Antibodies were purchased from Cell Signaling Technology

(Danvers; 1A5, anti‐T389 phospho‐S6K mouse monoclonal; anti‐
myc tag rabbit polyclonal; 9B11, anti‐myc tag mouse monoclonal;

91B2, anti‐S235 phospho‐S6 rabbit monoclonal; and 5G10, anti‐total
S6 rabbit monoclonal), Merck (Haarlem, The Netherlands; MAB374,

anti‐glyceraldehyde phosphate dehydrogenase mouse monoclonal) or

Li‐Cor Biosciences (Lincoln; goat anti‐rabbit 680 nm and goat anti‐
mouse 800 nm conjugates). Rabbit polyclonal antibodies raised

against human TSC2 (1895) and TSC1 (2197) have been described

previously (van Slegtenhorst et al., 1998).

The transfection‐based immunoblot assay for functional assessment

of TSC2 variants was performed as described previously (Hoogeveen‐
Westerveld et al., 2011), except that the variants were expressed in the

TSC2 knockout (KO) and TSC1:TSC2 double knockout (DKO) HEK 293T

subclones. First, 1–2×105 cells were seeded per well into 24‐well culture
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dishes. The following day the cells were transfected with 0.8 µg DNA

(1:2:1 ratio TSC2:TSC1:S6K) and 4 µg polyethyleneimine and harvested

24hr later in lysis buffer (50mM Tris‐HCl, pH 7.6, 100mMNaCl, 50mM

NaF, and 1% Triton X‐100 containing the CompleteTM protease inhibitor

cocktail [Roche Molecular Biochemicals, Woerden, The Netherlands]).

After centrifugation (10,000g, 10min, 4°C), the supernatant fractions

were subjected to immunoblotting.

TSC complex formation was assessed by coimmunoprecipitation.

Briefly, 1.5 × 106 TSC1:TSC2 DKO HEK 293T cells were seeded into

6‐cm dishes and transfected with 10 µg polyethyleneimine and 2 µg

of a 1:1 mix of expression constructs encoding wild‐type myc‐tagged
TSC1 and either wild‐type TSC2, one of the TSC2 variants, or the

pcDNA3 expression vector. Twenty‐four hours after transfection, the
supernatant fractions were divided between (a) EZ Red anti‐myc

affinity beads (Sigma‐Aldrich, Zwijndrecht, The Netherlands) for

immunoprecipitation of exogenous myc‐tagged TSC1, and (b) a rabbit

polyclonal anti‐TSC2 antiserum (van Slegtenhorst et al., 1998),

followed by Protein A‐agarose beads (GE Healthcare, Eindhoven,

The Netherlands), for immunoprecipitation of the exogenous TSC2

variant proteins. After 3–4 hr gentle rotation at 4°C, the beads were

recovered by centrifugation (1,000g, 15 s) and washed three times

with a >20‐fold excess of lysis buffer before immunoblot analysis.

2.3 | Structural assessment of the TSC2 variants

Secondary structure predictions were made using PSIPRED (Buchan,

Minneci, Nugent, Bryson, & Jones, 2013). The X‐ray crystal structures
of the N‐terminal HEAT repeat domain of TSC2 from the fungus

Chaetomium thermophilum (Zech, Kiontke, Mueller, Oeckinghaus, &

Kummel, 2016) and the catalytic domain of RapGAP (Daumke,

Weyland, Chakrabarti, Vetter, & Wittinghofer, 2004; Scrima et al.,

2008), which shares ~25% sequence identity with the GAP domain of

TSC2, were used to model the human structure with SWISS‐MODEL

(Arnold, Bordoli, Kopp, & Schwede, 2006). Structural predictions

were made independently of the functional test results.

2.4 | In vitro assessment of the effects of TSC2
variants on TSC2 pre‐mRNA splicing

TSC2 coding exons and the surrounding intronic sequences were

amplified by polymerase chain reaction (PCR) and cloned into the pSPL3

splicing vector (Halim et al., 2017; Van Der Werf et al., 2012). TSC2 VUS

were introduced by site‐directed mutagenesis and all constructs were

verified by sequence analysis (Table 1). Between 3–5× 105 HEK 293T

cells were seeded per well into six‐well culture dishes and transfected the

following day with 8 µg polyethyleneimine and 1.6 µg of the wild‐type or

variant splicing constructs. RNA was isolated 24hr after transfection

using the RNeasy mini kit (Qiagen, Venlo, The Netherlands). Reverse

transcriptase (RT) PCR was performed using the iScript complementary

DNA synthesis kit (Bio‐Rad, Hercules) and primers specific for pSPL3‐
derived transcripts: SD6_f 5′‐tctgagtcacctggacaacc‐3′ and SA2_r

5′‐gctcacaaataccactgagat‐3′. PCR products were analyzed by agarose

gel electrophoresis and Sanger sequencing.

3 | RESULTS

3.1 | Characterization of TSC1 and TSC2 KO and
DKO cells

Previously, we assessed the effect of TSC2 variants on TSC

complex activity by expressing the variants in HEK 293T cells

(Hoogeveen‐Westerveld et al., 2013; Hoogeveen‐Westerveld et al.,

2011). HEK 293T cells express endogenous, active TSC complexes,

resulting in background signals, and reduced TORC1 activity.

Furthermore, interactions between the exogenous variant and

endogenous (wild‐type) TSC complexes might influence variant

activity. To avoid these problems, we used CRISPR/Cas9 genome

editing to delete TSC1 and/or TSC2 from our HEK 293T cells.

Breakpoint PCR and Sanger sequencing confirmed that the CRISPR/

Cas9 targeting was successful in multiple subclones. We verified that

the KO clones did not express TSC2 and/or TSC1 and that TORC1

signaling was constitutively activated (Figure 1a). Next, we compared

the effects of exogenous expression of wild‐type TSC2 and TSC1 in

the KO and DKO subclones with the original HEK 293T cells. TORC1

activity in the KO and DKO cells, as estimated from the S6K‐T389
phosphorylation status (T389/S6K ratio; see below), was sensitive to

exogenous expression of TSC complex components (Figure 1b,c).

Furthermore, consistent with previous results (Nellist et al., 1999),

the expression of TSC2 was required to ensure stable expression of

TSC1 in the cytosolic fraction (Figure 1b).

3.2 | Functional assessment of TSC2 variants

TSC2 variants were identified during the diagnostic screening of a

series of individuals suspected of TSC and were submitted to the

TSC2 LOVD (http://www.lovd.nl/TSC2). At submission, there was no

detailed clinical information available and none of the variants were

present in the ExAC and EVS population datasets, making it difficult

to assess pathogenicity. Therefore the variants were classified as

VUS and considered for in vitro functional analysis. The variants are

listed in Table 2, along with the additional clinical and genetic data

that we were subsequently able to obtain on the individuals carrying

the variants. The available pedigree information for five families

segregating TSC2 VUS is shown in Figure S1. All variants were

assessed using ALAMUT variant prediction software (Interactive

Biosoftware, France). Nucleotide numbering is according to

the human reference transcript NM_000548.3, with +1 correspond-

ing to the A of the ATG translation initiation codon in the reference

sequence (www.hgvs.org/mutnomen). The initiation codon is codon 1.

In total, we derived expression constructs encoding 18 different

TSC2 variants (Table 1). Sequencing of the entire ORF of the mutated

constructs confirmed the presence of the intended nucleotide
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changes and identified a single, additional synonymous change,

c.1473G>A (p.S491S), in the expression construct encoding the TSC2

c.4966G>T (p.D1656Y) variant.

To assess the effects of the TSC2 variants on TORC1 activity, S6K‐
T389 phosphorylation in cells expressing the variants together with

myc‐tagged wild‐type TSC1 and S6K was estimated by immunoblotting

(Figure 2a). Mean values for the TSC2 (Figure 2b), TSC1 (Figure 2c), and

S6K (Figure 2e) signals, and the mean ratios of T389‐phosphorylated
S6K to total S6K (T389/S6K ratio; Figure 2d) were determined for all

the variants tested, relative to the values for wild‐type TSC2.

To investigate their effects on TSC complex formation we

coexpressed the TSC2 variants with myc‐tagged wild‐type TSC1 in

the TSC1:TSC2 DKO HEK 293T cells and isolated TSC complexes by

immunoprecipitation using antibodies specific for either the TSC2

(Figure 3a) or TSC1 (Figure 3d) subunit. The mean signals for

immunoprecipitated and coimmunoprecipitated TSC1 and TSC2

were determined for all the variants tested, relative to the values

for the wild‐type TSC complex. All the TSC2 variants could be

immunoprecipitated effectively (Figure 3b), and the signals for

coimmunoprecipitated TSC1 (Figure 3c) were used to estimate the

ability of the TSC2 variant to form a stable TSC complex with TSC1.

Reduced coimmunoprecipitation of TSC2 and TSC1, using antibodies

specific for the TSC1 subunit (Figure 3d–f), confirmed that specific

TSC2 variants had a reduced ability to form stable TSC complexes.

(a) (c)

(b) (d)

F IGURE 1 TSC1 and TSC2 knockout (KO) clone analysis. CRISPR/Cas9 genome editing was used to inactivate TSC2 and/or TSC1 in HEK
293T cells. The TSC1 knockout (TSC1 KO), TSC2 knockout (TSC2 KO), and TSC1:TSC2 double knockout (TSC1:TSC2 DKO) subclones were
compared to the parental HEK 293T cell‐line (293T). To characterize TORC1 signaling in the different cell‐lines, cells were starved of growth

factors (serum) overnight before harvesting. The cleared cell lysates were analyzed by immunoblotting. (a) TSC1 and/or TSC2 protein signals
were absent from the TSC1 and/or TSC2 KO cells and, in contrast to the parental 293T cells, the KO cells showed robust S6‐S235
phosphorylation (S6‐P (S235)), a marker for TORC1 activity. Total protein content of the lysates was estimated from the total S6 and GAPDH

signals. To investigate the effects of exogenous TSC1 and TSC2 expression the KO cells were transfected with S6K, TSC1, and/or TSC2
expression constructs, as indicated, and analyzed by immunoblotting. (b) The total S6K (S6K) and T389‐phosphorylated S6K (T389) signals were
determined per cell‐line in three independent experiments, and the mean T389/S6K ratios (c) and mean total S6K signals (d), relative to 293T
cells expressing exogenous TSC complexes, were determined. An increased T389/S6K ratio corresponds to increased TORC1 activity. The

T389/S6K ratio was highest in the TSC2 KO and TSC1:TSC2 DKO cells expressing S6K only and was reduced by expression of either TSC2 or
TSC1 and TSC2. Error bars represent the standard error of the mean. GAPDH, glyceraldehyde phosphate dehydrogenase; HEK, human
embryonic kidney; TORC1, target of rapamycin complex 1
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To assess the effects of TSC2 variants on pre‐mRNA splicing we

transfected HEK 293T cells with the corresponding wild‐type and

variant splice assay constructs (Table 3). Canonical and noncanonical

spliced mRNA molecules were amplified by RT‐PCR using the splice

vector‐specific primers and analyzed by agarose gel electrophoresis

followed by Sanger sequencing (see below).

We classified the TSC2 variants into three groups (Table 1)

according to the observed effects on (a) TSC complex‐dependent
TORC1 activity, as estimated from the T389/S6K ratio

(Figure 2b), (b) on the formation of TSC complexes, as estimated

by coimmunoprecipitation (Figure 3), and (c) on the effect of the

variant on TSC2 pre‐mRNA splicing, as assessed in an in vitro

splicing assay (Table 3). Variants in Group 1 did not affect TSC

complex formation or activity and did not affect splicing. TORC1

activity in the presence of the Group 1 variants was significantly

reduced compared with TORC1 activity in the absence of TSC2

(p < .025; paired Student’s t test with Bonferroni correction) and

was not significantly increased compared with wild‐type TSC2

(p > .025; paired Student’s t test with Bonferroni correction).

Variants in Group 2 disrupted TSC complex function but did not

inactivate the complex completely and/or resulted in the

production of abnormal splice products. We defined variants

that disrupted TSC complex activity as those with significantly

increased TORC1 activity compared with wild‐type TSC2

(p < .025; paired Student’s t‐test with Bonferroni correction)

and with significantly reduced TORC1 activity compared with the

absence of TSC2 (p < .025; paired Student’s t test with Bonferroni

correction). Variants in Group 3 inactivated the TSC complex

completely: TORC1 activity was significantly increased compared

with wild‐type TSC2 (p < .025; paired Student’s t test with

Bonferroni correction) and was not significantly different to

TORC1 activity in the absence of TSC2 (p > .025; paired Student’s

t test with Bonferroni correction).

3.2.1 | Group 1 variants

The TSC2 c.250G>A p.(A84T) variant was identified in an individual

with intellectual disability and a single hypomelanotic macule.

Structural analysis indicated that the A84 residue is located on the

surface of TSC2 (Figure 4) and that the A84T substitution is unlikely

to affect protein folding or stability. Splice site prediction analysis did

TABLE 2 TSC2 VUS identified in individuals suspected of TSC

cDNA Phenotypic features of individuals with the variant

c.250G>A p.(A84T) Cognitive disability and single HM

c.4225C>G p.(R1409G) HM, FA, UF, retinal hamartoma, and renal AML

c.4966G>T p.(D1656Y) 1.4: AF; 1.3: epilepsy, abnormal brain CT, FA, UF, renal AML, LAM; 1.2: FA, UF (Figure S1a)

c.1477C>G p.(L493V) 2.1: Cortical dysplasia, SEN, HM, epilepsy, behavioral problems; 2.2: epilepsy, cortical dysplasia

c.440C>A p.(T147K) Multiple HM; brain MRI, cardiac US, abdominal US, and eye exams all normal

c.839T>C p.(M280T) 3.3: Epilepsy, CR, cortical dysplasia; 3.2: HM, renal US abnormality

4.1: CR, SEN; 4.2: epilepsy, cortical dysplasia, HM; 4.3: epilepsy, HM, renal cell carcinoma; 4.4: HM;

4.5: normal skin and neurological exam (Figure S1b)

c.922C>T p.(R308W) 5.3: CR; 5.1: HM, cortical dysplasia

6.1: Epilepsy, cortical dysplasia, SEN, HM; 6.2: cortical dysplasia

c.1106T>C p.(L369P) 7.3: Cortical dysplasia, SEN, epilepsy, cognitive disability; 7.2: cortical dysplasia, renal cyst

c.1343T>G p.(L448R) CR, HM, and unspecified brain MRI abnormalities

c.1511T>A p.(V504D) 8.3: CR, Wolff–Parkinson–White syndrome; 8.1: brain MRI, renal and cardiac US, skin and eye exams

all normal (Figure S1c)

9.3: Epilepsy, cognitive disability, cortical dysplasia; 9.2: brain CT, renal US, and eye exams all normal

c.1574_1576del p.(525del) Epilepsy, SEN, and cortical dysplasia

c.3134C>T (p.S1045F) 10.4: Epilepsy, cortical dysplasia, SEN, HM, AML; 10.3: epilepsy, FA, UF, cortical dysplasia; 10.2: FA,

UF (Figure S1d)

c.3589A>T (p.I1197F) 11.3: HM, FA, CR, SEN, renal AML, retinal hamartoma, epilepsy, cognitive disability; 11.1: cardiac and

renal US, brain MRI, skin and eye exams all normal

c.2747T>C p.(L916P) CR, cortical dysplasia, SEN, and epilepsy

c.4709_4714del p.(1570_1571del)

(1570del2)

12.3: FA, HM, cortical dysplasia, epilepsy, cognitive disability; 12.4: FA, HM, UF, shagreen patch,

cortical dysplasia, West syndrome/infantile spasms, cognitive disability

Note: Nucleotide numbering is according to the TSC2 reference transcript NM_000548.3.

Related individuals are indicated according to family number (e.g., family 1: individual 1.1, individual 1.2).

Abbreviations: AML, angiomyolipoma; cDNA, complementary DNA; CR, cardiac rhabdomyoma; CT, computed tomography; FA, facial angiofibroma; HM,

hypomelanotic macule; LAM, lymphangioleiomyomatosis; MRI, magnetic resonance imaging; SEN, subependymal nodule; TSC, tuberous sclerosis complex;

UF, ungual fibroma; US, ultrasound; VUS, variants of uncertain clinical significance.
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(a)

(b)

(c)

F IGURE 2 Functional assessment of the TSC2 variants. The signals for TSC2, TSC1, total S6K (S6K), and T389‐phosphorylated S6K (T389)

were determined per variant, relative to the wild‐type control (TSC2) in at least four independent transfection experiments. An example of an

immunoblot is shown in (a). The mean TSC2 (b), TSC1 (c), and S6K (e) signals and mean T389/S6K ratio (d) are shown for each variant. In each

case, the dotted line indicates the signal/ratio for wild‐type TSC2 (=1.0). Error bars represent the standard error of the mean. Mean signals for

the p.L448R and p.482_493delinsV (482del11) variants are shown separately as they were not included on the blot shown in (a). Amino acid

changes are given according to the TSC2 Leiden Open Variation Database (TSC2 reference transcript sequence NM_000548.3; http://www.lovd.

nl/TSC2; see main text for variant abbreviations). Variants classified in Group 1 (no effect on TSC complex function) are shown in black, Group 2

variants (disrupt TSC complex activity) are in gray, and Group 3 variants (inactivate TSC complex) are in white (see main text for details). (b)

Mean signals for the TSC2 variants, relative to wild‐type TSC1–TSC2 (TSC2; TSC2 signal = 1). Values that were significantly different from the

wild‐type control (TSC2) are indicated with an asterisk (p< .025; Student’s t test). (c) Mean TSC1 signals in the presence of the TSC2 variants,

relative to wild‐type TSC1–TSC2 (TSC2; TSC1 signal = 1). Values that were significantly different from the wild‐type control (TSC2) are

indicated with an asterisk (p< .025; Student’s t test). (d) Mean T389/S6K ratios for the TSC2 variants, relative to wild‐type TSC1–TSC2 (TSC2;

T389/S6K ratio = 1). Ratios that were significantly increased compared to the wild‐type control (TSC2) are indicated with an asterisk (p< .025;

Student’s t test). (e) Mean total S6K signals in the presence of the TSC2 variants, relative to wild‐type TSC2 (TSC2; S6K signal = 1). Values that

were significantly different from the wild‐type control (TSC2) are indicated with an asterisk (p< .025; Student’s t test)
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not suggest that the c.250G>A substitution would affect splicing and

only the canonical exon 4 splice product was detected in the in vitro

splice assay (Table 3).

The TSC2 c.4225C>G p.(R1409G) variant was identified in an

individual who fulfilled the clinical criteria for TSC. R1409 maps to a

region of TSC2 (amino acids 1,207–1,479) that is predicted to be

intrinsically disordered and it is unlikely that the R1409G substitu-

tion causes a structural defect. Only the canonical exon 34 splice

product was detected in the in vitro splice assay (Table 3).

3.2.2 | Group 2 variants

The TSC2 c.1477C>G, p.(L493V) variant was identified in a parent

and child, both fulfilling the diagnostic criteria for TSC, and the same

variant has been described in other individuals with TSC

(Hoogeveen‐Westerveld et al., 2013, Langkau et al., 2002). The

TSC2 p.L493V variant was associated with a significantly reduced

TSC1 signal (Figure 2c), consistent with previous findings

(Hoogeveen‐Westerveld et al., 2013) and suggestive of an effect on

the TSC1–TSC2 interaction. Nonetheless, a robust interaction

between TSC1 and the TSC2 p.L493V variant was detected by

coimmunoprecipitation (Figure 3), and the variant was able to inhibit

TORC1 activity as effectively as wild‐type TSC2 (Figure 2d). Splice

site analysis predicted that a noncanonical 3′ acceptor site, 33

nucleotides downstream of the canonical exon 15 acceptor site,

would be strengthened by the TSC2 c.1477C>G substitution

(Figure S2a). In the in vitro splicing assay, the TSC2 c.1477C>G

substitution resulted in utilization of this noncanonical site, leading to

the production of an abnormal TSC2 mRNA transcript, TSC2

r.1444_1477delinsG, p.482_493delinsV (Figure 5). This was the

major splice product: Sequence corresponding to the canonically

spliced exon 14 was detectable, but was clearly the minor product in

the presence of the TSC2 c.1477C>G variant (Figure 5b).

The p.482_493delinsV variant (abbreviated to 482del11 in

Figures 2 and 3) did not interact with TSC1 (Figure 3), and was

unable to inhibit TORC1. The T389/S6K ratio was not significantly

different from the T389/S6K ratio in the absence of TSC2

(Figure 2d). Therefore, although functional assessment did not

strongly support the pathogenicity of the p.L493V amino acid

substitution, our analysis indicates that the c.1477C>G nucleotide

substitution is likely to inactivate TSC2 due to a splicing defect,

resulting in the production of inactive TSC2 p.482_493delinsV

protein. Nonetheless, because we could not exclude the possibility

that the canonically spliced TSC2 c.1477C>G p.L493V variant is

produced in vivo, we classified the TSC2 c.1477C>G p.(L493V)

variant in group 2 (Table 1).

The p.T147K, p.M280T, p.R308W, p.L369P, p.L448R, p.V504D,

p.525del, p.S1045F, and p.I1197F variants were all associated with a

significant reduction in the ability of the TSC complex to inhibit S6K‐
T389 phosphorylation (p < .025; paired Student’s t test vs. wild‐type
TSC2, with Bonferroni correction). However, in each case, the variant
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retained some activity: The T389/S6K ratio was significantly reduced

compared with cells not expressing TSC2 (p < .025; paired Student’s t

test, with Bonferroni correction; Figure 2b). The p.T147K, p.M280T,

p.R308W, p.L369P, p.L448R, p.V504D, and p.525del variants were

associated with reduced TSC1 signals (Figure 2c) and TSC complexes

could not be coimmunoprecipitated efficiently (Figure 3), indicating

that these amino acid changes affect the TSC1–TSC2 interaction. The

T147K, M280T, and L369P substitutions are predicted to either

cause a packing defect or disrupt helix formation of the TSC2 NT

domain that is required for the interaction with TSC1 (Zech et al.,

2016). The R308W substitution is not predicted to disrupt protein

folding, but R308 is part of a surface loop that might directly bind

TSC1 (Figure 4). Structural data on the region of TSC2 encompassing

residues L448, V504, and N525 is not yet available, making

predictions of the likely effects of these variants on the structure

of the TSC complex difficult.

(b)

(a)

(c)

F IGURE 3 Immunoprecipitation of variant TSC complexes. TSC1:TSC2 double knockout cells were cotransfected with expression

constructs encoding C‐terminal myc‐tagged TSC1 and either TSC2 or a TSC2 variant. TSC complexes were immunoprecipitated from

the cleared cell lysates using either antibodies specific for the (TSC1) myc‐epitope tag (anti‐myc IP) or for an epitope close to the TSC2

C‐terminus (TSC2 IP). Immunoprecipitated TSC complexes were detected by immunoblotting (a and d) and the TSC2 and TSC1 signals

were determined per variant relative to the wild‐type control (TSC2) in two independent transfection experiments. (b) The mean signals

are shown for immunoprecipitated TSC2 (TSC2 IP) and (c) coimmunoprecipitated TSC1 (TSC1 coIP (TSC2 IP), (e) immunoprecipitated

TSC1 (TSC1 IP), and (f) coimmunoprecipitated TSC2 (TSC2 co IP (TSC1 IP). In each case, the dotted line indicates the signal

corresponding to wild‐type TSC2 (=1.0). Error bars represent the standard error of the mean. Mean signals for the p.482_493delinsV

(482del11) variant are shown separately as it was not included on the blots shown in (a) and (d). Amino acid changes are given

according to the TSC2 Leiden Open Variation Database (TSC2 reference transcript sequence NM_000548.3; http://www.lovd.nl/TSC2;

see main text for variant abbreviations). Variants classified in Group 1 (no effect on TSC complex function) are shown in black, Group 2

variants (disrupt TSC complex activity) are in gray and Group 3 variants (inactivate TSC complex) are in white (see main text for details)
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TABLE 3 Overview of the in vitro splicing assay results

Variant Splice construct(s) (exon) r. Conclusion

c.250G>A, p.(A84T) c.226‐127_c.336+97 c.250G>A

(exon 4)

r.250G>A No evidence for an effect on splicing

c.1477C>G,

p.(L493V)

c.1444‐146_c.1599+188
c.1477C>G (exon 15)

r.1444_1477delinsG,

p.(482_493delinsV)

In‐frame deletion due to utilization of a

noncanonical 3′acceptor site at c.1477 (see

Figure S2a)

c.3134C>T,

p.(S1045F)

c.2967‐73_c.3397+86 c.3134C>T

(exons 27–29)

r.3132_3284del p.1044_1094del In‐frame deletion due to skipping of exon 27

(see Figure S2d)

c.4225C>G,

p.(R1409G)

c.4006‐101_c.4493+68
c.4225C>G (exon 34)

r.4225C>G No evidence for an effect on splicing

c.4966G>T

p.(D1656Y)

c.4850‐95_4989+113 c.4966G>T

(exon 38)

r.4961_4989del, p.(E1655Pfs*40) Frameshift due to utilization of a noncanonical

5′ donor site at c.4960 (see Figure S2c)

c.4966G>A

p.(D1656N)

c.4850‐95_4989+113 c.4966G>A

(exon 38)

r.4966G>A No evidence for an effect on splicing (see

Figure S2b)

Note: Nucleotide numbering is according to the TSC2 reference transcript NM_000548.3.
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Functional assessment of the p.L369P, p.L448R, and p.525del

variants was consistent with the clinical and genetic findings, and

with the hypothesis that these variants cause TSC. The p.T147K,

p.M280T, p.R308W, and p.V504D variants were less straightforward

to interpret. The functional results suggested that these variants

disrupt TSC complex activity. However, the individual with the

p.T147K variant did not fulfill the clinical criteria for definite TSC

(Northrup & Krueger, 2013), the p.M280T and p.V504D variants

were identified in individuals without any clinical signs of TSC

(see Table 2 and Figure S1) and the p.R308W variant has been

reported in three individuals in the updated ExAC dataset (Genome

Aggregation Database; MAFs of 0.005% and 0.002% in the East

Asian and European populations, respectively).

In contrast to the p.T147K, p.M280T, p.R308W, p.L369P,

p.L448R, p.V504D, and p.525del variants, the p.S1045F and

p.I1197F substitutions did not significantly affect TSC1 signals

(Figure 2d), and did not disrupt TSC complex formation (Figure 3).

However, both variants affected the TSC complex function, resulting

in significantly increased TORC1 activity (Figure 2d).

The TSC2 c.3134C>T p.(S1045F) variant was identified in three

affected individuals of a three generation family with TSC (Figure

S1d). Although splice site analysis did not predict an effect of the

c.3134C>T substitution on TSC2 splicing (Figure S2d), an abnormal

TSC2 mRNA transcript lacking exon 28 and resulting in an in‐frame

deletion of 50 amino acids (p.1044_1094del) was reported in an

affected carrier (data not available) and confirmed in the in vitro

splicing assay (Figure 5; Table 3). The resulting TSC2 r.3132_3284del

p.1044_1094del variant (abbreviated to 1044del50 in Figures 2

and 3) did not significantly affect TSC1 signals (Figure 2c) but

completely prevented the TSC complex‐dependent inhibition of

TORC1 (Figure 2d). Although the TSC2 p.1044_1094del variant

was inactive (Group 3), we classified the TSC2 c.3134C>T variant in

Group 2 because we could not exclude the possibility that canonically

spliced TSC2 mRNA would still be expressed in vivo.

The p.I1197F variant was identified in an individual fulfilling the

clinical criteria for TSC as well as in a parent without any clinical features

of the disease. The I1197 residue is unlikely to be involved in the

interaction with TSC1 (Zech et al., 2016) but maps close to a region that

is important for TSC complex function (Wentink et al., 2012; Živčić‐Ćosić
et al., 2017). Indeed, as estimated from the T389/S6K ratio (Figure 2d),

TORC1 activity in the presence of the p.I1197F variant was increased

approximately twofold relative to wild‐type TSC2. TSC1 signals

(Figure 2c) and TSC complex formation (Figure 3) were not affected.

The TSC2 c.4966G>T p.(D1656Y) substitution cosegregated with

TSC in a 3 generation family. One individual was mosaic for the variant,

and the clinical and genetic findings were strongly suggestive that the

TSC2 c.4966G>T p.(D1656Y) variant causes TSC (Table 2; Figure S1b).

However, the functional assessment did not support the pathogenicity

of either the p.D1656Y substitution or the p.D1656N substitution that

is reported in a single individual in the gnomAD database (TSC2

c.4966G>A p.(D1656N), rs773255614; population frequency <5 × 10−6

at https://gnomad.broadinstitute.org/). Both variants inhibited TORC1

activity as effectively as wild‐type TSC2 (Figure 2d) and neither affected

the TSC1–TSC2 interaction (Figure 3). The D1656 residue is located

within the TSC2 GAP domain (amino acids 1,538–1,729) but is most

likely exposed on the exterior surface of TSC2, facing away from the

RHEB binding site (Figure 4). It is therefore unlikely that either the

D1656Y or D1656N substitution causes a major structural defect.

Splice site analysis predicted that the TSC2 c.4966G>T substitution, but

not the TSC2 c.4966G>A substitution strengthened a noncanonical 5′
donor site 29 base pair upstream of the canonical exon 38 donor site

(Figure S2b,c). In the in vitro splice assay, the TSC2 c.4966G>A

substitution did not affect splicing: The canonical exon 38 splice product

(TSC2 nucleotides 4850_4989) was detected, similar to the wild‐type
(Figure 5c). In contrast, the TSC2 c.4966G>T substitution resulted in the

utilization of the noncanonical donor site and premature truncation of

the TSC2 ORF (r.4961_4989del and p.E1655Pfs*41). However, because

we could not exclude the possibility that canonically spliced TSC2

mRNA encoding the p.D1656Y variant is expressed in vivo, we classified

the variant in Group 2.

3.2.3 | Group 3 variants

The p.L916P and p.1570_1571del (abbreviated to 1570del2 in

Figures 2 and 3) variants completely prevented the TSC complex‐

F IGURE 4 Structural predictions for TSC2 variants. Models for the human TSC2 N‐terminal domain (left) and GTPase activating protein
(GAP) domain (right) were generated with SWISS‐MODEL based on PDBID:5HIU (Zech et al., 2016) and PDBID:1SRQ (Daumke et al., 2004),
respectively. Amino acid changes are given according to the TSC2 Leiden Open Variation Database (TSC2 reference transcript sequence
NM_000548.3; http://www.lovd.nl/TSC2); changes to the residues shown in green are predicted to be structurally tolerated; changes to the

residues shown in red are likely to disrupt protein structure
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dependent inhibition of TORC1 in our assay: The T389/S6K ratio

in the presence of these variants was not significantly different

from the T389/S6K ratio in the absence of TSC2 (p > .025; paired

Student’s t test vs. TSC1/S6K only, with Bonferroni correction;

Figure 2d). Both variants map outside the TSC2 NT domain that is

required for the interaction with TSC1 (Zech et al., 2016) and

neither variant affected TSC1 signals (Figure 2c) or immunopre-

cipitation of the TSC complex (Figure 3). Structural information

(a)

(c)

(b)

(d)

F IGURE 5 In vitro analysis of TSC2 pre‐mRNA splicing. RT‐PCR was performed on RNA isolated from cells transfected with constructs encoding
either wild‐type (wt) or variant TSC2 exons 15 (ex15), 27–29 (ex27–29) or 38 (ex38); the pSPL3 splicing vector without an insert was included as a

control (pSPL3). (a) Agarose gel of the RT‐PCR amplification products. Sanger sequencing results are shown in (b–d). A constitutive ~230bp splice
product of the vector donor and acceptor sites is indicated with an asterisk and is the primary cause of the background peaks visible in the
electropherograms shown in (b–d). Multiple RT‐PCR products were obtained from both the wild‐type and c.3134C>T p.(S1045F) variant constructs

containing TSC2 exons 27–29. The arrow indicates the major product derived from the c.3134C>T p.(S1045F) variant construct. This product was
excised from the gel before sequencing (see (d), below). (b) Noncanonical TSC2 splicing caused by the c.1477C>G p.(L493V) substitution. Exonic DNA
sequences are indicated in bold and the corresponding amino acid sequence is shown below the sequence of the pSPL3–TSC2 exon 15 splice product;
codon 493 is highlighted in red. The first 11 codons of exon 15 are missing from the sequence derived from the c.1477C>G p.(L493V) variant (lower

panel). (c) Noncanonical TSC2 splicing caused by the c.4966G>T p.(D1656Y) substitution (bottom panel), but not the c.4966G>A p.(D1656N) substitution
(middle panel). Exonic sequences are indicated in bold; sequences corresponding to the pSPL3 acceptor site are underlined; codon 1656 is highlighted in
red. The c.4966G>T p.(D1656Y) substitution results in the utilization of a noncanonical donor site at c.4960 (see Figure S2c). (d) TSC2 exon 28 skipping

associated with the c.3134C>T p.(S1045F) substitution. The sequence obtained from the RT‐PCR product indicated with an arrow in (a) is shown.
Sequences corresponding to exon 28 were absent from the electropherogram. bp, base pair; mRNA, messenger RNA; RT‐PCR, reverse
transcriptase‐polymerase chain reaction
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on the region encompassing the p.L916P variant is limited,

making structural predictions difficult. The deletion of R1570 and

Y1571 is predicted to disrupt the folding of the TSC2 GAP

domain, consistent with the functional data (Figure 4).

4 | DISCUSSION

We performed a functional assessment of 15 TSC2 VUS identified in

individuals suspected of TSC. In total, we characterized the effects of

18 different changes to the TSC2 protein. Our findings are

summarized in Figure 6 and in Table 1, and have been submitted

to the TSC2 LOVD (http://www.lovd.nl/TSC2).

We identified four TSC2 variant isoforms that completely inacti-

vated the TSC complex: p.482_493delinsV, p.L916P, p.1044_1094del,

and p.1570_1571del. We consider the corresponding TSC2 c.1477C>G,

c.2747T>C, c.3134C>T, and c.4709_4714del variants as likely to be

pathogenic, consistent with the clinical and genetic data.

TSC complex activity was significantly reduced by nine of the

variants tested. In four cases, p.M280T, p.R308W, p.V504D, and

p.I1197F the variant was identified in individuals without reported

signs of TSC. It is possible that the differences we detected in our in

vitro assays are not significant in vivo. However, no other candidate

pathogenic TSC1 or TSC2 variants were identified in any of the

affected individuals carrying the above variants. One possibility

suggested by our functional data is that TSC2 variants that do not

completely inactivate the TSC complex might not be fully penetrant

and therefore less likely to cause clinical TSC.

In three of our cases, p.A84T, p.R1409G, and p.D1656Y, we did

not obtain evidence for an effect of the amino acid substitution on

TSC complex function. The TSC2 c.4966G>T p.(D1656Y) variant was

identified in three affected individuals from a single family with TSC,

one of whom was mosaic for the variant (Figure S1a) and the in vitro

splice assay indicated that the variant affects TSC2 pre‐mRNA

splicing, resulting in premature truncation of the TSC2 ORF. We did

not obtain evidence for a splicing effect of either the TSC2 c.250G>A

p.(A84T) or c.4225C>G p.(R1409G) variants (Table 3).

For diseases like TSC that are associated with considerable

phenotypic variation, it can be challenging to classify individuals based

on the clinical signs only (Northrup & Krueger, 2013). We were able to

distinguish variants that completely inactivated the TSC complex from

those that had a partial effect and it would be interesting to establish

whether these differences reflect differences in vivo. It is possible that

we both under‐ and over‐estimated activity, depending on the particular

variant being tested. We classified the variants based on comparisons to

(a) wild‐type TSC2, (b) the inactive TSC2 p.R611Q variant, and (c) cells

not expressing TSC2. However, it is not clear how much TSC complex

activity is required to prevent TSC, and what the threshold TORC1

activity is, above which TSC lesions are likely to develop. For example, in

the absence of TSC2, TORC1 activity (as estimated from the T389/S6K

ratio) increased almost 10‐fold. However, in the presence of the

p.R308W and p.I1197F variants, we detected only a twofold increase in

TORC1 activity, compared with wild‐type TSC2. Although this

represented a significant decrease in TSC complex activity, it is possible

that both variants retain sufficient activity in vivo to restrain the

TORC1 activity below a critical, pathological threshold.

So far, our functional data correlates well with the known

structural features of the TSC complex. In the eight cases where

comparisons were possible, the functional data were consistent with

the structural predictions. More detailed insight into the three‐
dimensional structure of the TSC complex and the exact nature of the

intra‐ and intermolecular interactions that are critical for TSC complex

integrity and activity might be one way to improve TSC2 variant

classification. In addition, more accurate assays of TSC complex

activity would allow a more confident prediction of the likely

pathogenicity of specific TSC1 and TSC2 variants. One shortcoming

of our assay is that it relies on overexpression of the specific TSC2

variants. It would be useful to compare TSC1 and TSC2 variants in their

original genomic context and at endogenous expression levels. These

approaches will be helpful because, as our study demonstrates, current

functional tests are not always able to unequivocally establish or

exclude pathogenicity. In two cases (13%), c.250G>A p.(A84T) and

c.4225C>G p.(R1409G), the functional data supported the hypothesis

that the variant did not cause TSC, but we could not exclude

F IGURE 6 Schematic overview of the TSC2 variants investigated as part of this study. The approximate positions of the variants, relative to

the coding exons according to genomic reference sequence NG_005895.1, are indicated. Variants are colored according to their classification
group, as shown in Figures 2 and 3: Group 1, black; Group 2, gray; Group 3, white (on black background); see main text for details. Alternatively
spliced exons and regions of known structure and/or function are indicated with shading
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pathogenicity. In 13/15 cases (87%), the functional assessment

supported the hypothesis that the identified variant was likely to

cause TSC. However, in four cases, c.839T>C p.(M280T), c.922C>T

p.(R308W), c.1511T>A p.(V504D), and c.3589A>T p.(I1197F), this was

not consistent with all the clinical and genetic data. In three cases,

c.1477C>G p.(L493V), c.3134C>T p.(S1045F), and c.4966G>T

p.(D1656Y), analysis of TSC2 pre‐mRNA splicing was essential for

helping establish the likely pathogenicity of the variant. Our results

demonstrate that the failure to show an effect on protein function is

not sufficient to exclude pathogenicity and highlight some of the

difficulties in classifying TSC2 VUS and in assigning pathogenicity. It is

clear that new functional assays that would enable a more accurate

assessment of variant pathogenicity in TSC would be very useful.

Nonetheless, despite the shortcomings highlighted above, our study

confirms the utility of functional testing for TSC2 VUS.
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