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Abstract. Let (M, g) be a smooth, compact Riemannian manifold and {φh} an
L2-normalized sequence of Laplace eigenfunctions, −h2∆gφh = φh. Given a smooth
submanifold H ⊂M of codimension k ≥ 1, we find conditions on the pair ({φh}, H)
for which ∣∣∣ ˆ

H

φhdσH

∣∣∣ = o(h
1−k
2 ), h→ 0+.

One such condition is that the set of conormal directions to H that are recurrent has
measure 0. In particular, we show that the upper bound holds for any H if (M, g)
is surface with Anosov geodesic flow or a manifold of constant negative curvature.
The results are obtained by characterizing the behavior of the defect measures of
eigenfunctions with maximal averages.

1. Introduction

On a compact Riemannian manifold (M, g) of dimension n we consider sequences
of normalized Laplace eigenfunctions {φh} with eigenvalue λ = h−2, i.e. solving

(−h2∆g − 1)φh = 0, ‖φh‖L2(M) = 1.

We study the average oscillatory behavior of φh when restricted to a submanifold
H ⊂ M . In particular, our goal is to understand conditions on the pair ({φh}, H)
under which ˆ

H
φhdσH = o

(
h

1−k
2
)
, (1.1)

as h→ 0+, where σH is the volume measure on H induced by the Riemannian metric,
and k is the codimension of H.

We note that the bound ∣∣∣ ˆ
H
φhdσH

∣∣∣ = O(h
1−k

2 ) (1.2)

holds for any pair ({φh}, H) [Zel92, Corollary 3.3], and is sharp in general. Therefore,
we seek conditions under which the average is sub-maximal. Observe also that if
k = n, then (1.2) is a pointwise estimate agreeing with the standard L∞ bounds
of [Ava56, Lev52, Hör68]

‖φh‖L∞ = O(h
1−n

2 ).

As explained below, by considering the case k = n, we include bounds on L∞ norms
in our results. Integrals of the form (1.1), where H is a curve, have a long history.
[Goo83, Hej82] study the case in which H is a periodic geodesic in a compact hyperbolic
manifold, and prove the bound (1.2) in that case. The work [Zel92] in fact shows
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that (1.1) holds for a density one subsequence of eigenvalues. Moreover, one can
give explicit polynomial improvements on the error term in (1.2) for a density one
subsequence of eigenfunctions [JZ16].

These estimates, however, are not generally satisfied for the full sequence of eigen-
functions and the question of when all eigenfunctions satisfy (1.1) has been studied
recently for the case of curves in surfaces [CS15, SXZ17, Wym17b, Wym17a] and for
submanifolds [Wym17c]. Finally, given a hypersurface, the question of which eigen-
functions satisfy (1.1) was studied in [CGT18]. We address both of these questions,
strengthening the results concerning which eigenfunctions can have maximal averages
on a given submanifold H, and giving weaker conditions on the submanifold H that
guarantee (1.1) for all eigenfunctions.

We improve and extend nearly all existing results regarding averages of eigenfunc-
tions over submanifolds. We recover all conditions in the papers [CS15, SXZ17,
Wym17b, Wym17a, Wym17c, GT18, Gal17, CGT18, Bér77, SZ16a, SZ16b] which
guarantee that the improved bound (1.1) holds. As far as the authors are aware, these
papers contain all previously known conditions ensuring improved averages. Moreover,
we give strictly weaker conditions guaranteeing (1.1) when k < n; we replace the condi-
tion that the set of loop directions has measure zero from [Wym17c] with the condition
that the set of recurrent directions has measure zero. This allows us to prove that un-
der conditions on (M, g) including those studied in [Goo83, Hej82, CS15, SXZ17],
the improved bound (1.1) holds unconditionally with respect to the submanifold H.
These improvements are possible because the main estimate, Theorem 6, gives explicit
bounds on averages over submanifolds H which depend only on the microlocalization
of a sequence of eigenfunctions in the conormal directions to H. This gives a new
proof of (1.2) from [Zel92] with explicit control over the constant C for high energies.
In fact, we characterize those defect measures which may support maximal averages.
The estimate requires no assumptions on the geometry of H or M and is purely local.
It is only with this bound in place that we use dynamical arguments to draw conclu-
sions about the pairs ((M, g), H) supporting eigenfunctions with maximal averages.
We note, however, that this paper does not obtain logarithmically improved averages
as in [Bér77, SXZ17, Wym17a].

Recall that all compact, negatively curved Riemannian surfaces have Anosov geo-
desic flow [Ano67]. One consequence of the results in this paper is the following.

Theorem 1. Suppose (M, g) is a compact, Riemannian surface with Anosov geodesic
flow and γ : [a, b]→M is a smooth curve segment with |γ′| > 0. Thenˆ b

a
φh(γ(s))ds = o(1) and

ˆ b

a
h∂νφh(γ(s))ds = o(1)

as h → 0+ for every sequence {φh} of Laplace eigenfunctions. Here ∂ν denotes the
derivative in the normal direction to the curve.

In order to state our more general results we introduce some geometric notation.
Let H ⊂M be a closed smooth submanifold of codimension k. We denote by N∗H the
conormal bundle to H and we write SN∗H for the unit conormal bundle of H, where
the metric is induced from that in N∗H ⊂ T ∗M . We write σ

SN∗H for the measure
on SN∗H induced by the Sasaki metric on TM (see e.g. [Ebe73a]). In particular, if
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An element of RH

H

Figure 1. The figure shows a recurrent point in SN∗H in red together
with its geodesic shown as the dashed line. The intersections of the
geodesic with SN∗H are shown in gray and black arrows.

(x′, x′′) are Fermi coordinates in a tubular neighborhood of H, where H is identified
with {(x′, x′′) : x′′ = 0}, we have

σ
SN∗H (x′, ξ′′) = σH(x′)dVolSk−1(ξ′′), (1.3)

where x = (x′, 0) ∈ H, ξ′′ ∈ SN∗xH, and Sk−1 is the k − 1 dimensional sphere. We
say that H is a closed embedded submanifold of codimension k if H is a manifold of
dimension n − k, possibly with boundary, that is embedded in M and is closed as a
subset of M .

Let Gt(ρ) : T ∗M → T ∗M denote the geodesic flow and TH : SN∗H → R∪{∞} with

TH(ρ) := inf{t > 0 : Gt(ρ) ∈ SN∗H},
be the first return time. Define the loop set

LH := {ρ ∈ SN∗H : TH(ρ) <∞} (1.4)

and first return map η : LH → SN∗H by η(ρ) = GTH(ρ)(ρ). Next, consider the infinite
loop sets

L+∞
H :=

⋂
k≥0

η−k(LH) and L−∞H :=
⋂
k≥0

ηk(LH),

and the recurrent set

RH = R+
H ∩R

−
H

where

R±H :=

ρ ∈ L±∞H : ρ ∈
⋂
N>0

⋃
k≥N

η±k(ρ)

 .

In dynamical systems, the sets⋂
N>0

⋃
k≥N

ηk(ρ) and
⋂
N>0

⋃
k≥N

η−k(ρ)

are known respectively as the ω and α limit sets of the point ρ. The recurrent set
consists of the ρ ∈ SN∗H such that ρ lies in its own α and ω limit sets and should be
thought of as the property that the geodesic through ρ is asymptotically closed as its
length tends to infinity (see Figure 1).
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In what follows we write πH : SN∗H → H for the canonical projection map onto H,
and dimbox(B) for the Minkowski box dimension of a set B.

Theorem 2. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H ⊂ M be a closed embedded submanifold of codimension k, and A ⊂ H be a
subset with boundary ∂A satisfying dimbox(∂A) < n− k − 1

2 . Suppose

σ
SN∗H (RH ∩ π−1

H (A)) = 0.

Then ˆ
A
φhdσH = o(h

1−k
2 )

as h→ 0+ for every sequence {φh} of Laplace eigenfunctions.

Theorem 2 improves on the work of Wyman [Wym17c], replacing the measure of
the loop set LH , by that of the recurrent set RH . Taking H to be a single point (i.e.
k = n) also recovers the results of [STZ11]; see Remark 1.

When H is a hypersurface, i.e. k = 1, we can also study the oscillatory behavior of
the normal derivative h∂νφh along H.

Theorem 3. Suppose (M, g,H,A) satisfy the assumptions of Theorem 2 with k = 1.
Then for every sequence {φh} of Laplace eigenfunctions∣∣∣∣ˆ

A
φhdσH

∣∣∣∣+

∣∣∣∣ˆ
A
h∂νφhdσH

∣∣∣∣ = o(1)

as h→ 0+.

Theorem 2 allows us to derive substantial conclusions about the geometry of sub-
manifolds supporting eigenfunctions with maximal averages. Indeed, if there exists
c > 0 and a sequence of eigenfunctions {φh} for which∣∣∣∣ˆ

A
φhdσH

∣∣∣∣ > ch
1−k

2 ,

then,

σ
SN∗H (RH ∩ π−1

H (A)) > 0.

Next, we present different geometric conditions on (M, g) which imply σ
SN∗H (RH) =

0. We recall that strictly negative sectional curvature implies Anosov geodesic flow.
Also, both Anosov geodesic flow and non-negative sectional curvature imply that
(M, g) has no conjugate points.

Theorem 4. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H ⊂ M be a closed embedded submanifold of codimension k. Suppose one of the
following assumptions holds:

A. (M, g) has no conjugate points and H has codimension k > n+1
2 .

B. (M, g) has no conjugate points and H is a geodesic sphere.

C. (M, g) has constant negative curvature.

D. (M, g) is a surface with Anosov geodesic flow.
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E. (M, g) has Anosov geodesic flow and non-positive curvature, and H is totally
geodesic.

F. (M, g) has Anosov geodesic flow and H is a subset M that lifts to a horosphere.

Then

σ
SN∗H (RH) = 0.

In addition, condition A implies that σ
SN∗H (LH) = 0.

Combining Theorems 2 and 4 gives the following result on the oscillatory behavior
of eigenfunctions when restricted to H.

Corollary 5. Let (M, g) be a manifold of dimension n and let H ⊂M be a closed em-
bedded submanifold of codimension k satisfying one of the assumptions A-F in Theorem
4. Suppose that A ⊂ H satisfies dimbox(∂A) < n− k − 1

2 . Then
ˆ
A
φhdσH = o(h

1−k
2 )

as h→ 0+ for every sequence {φh} of Laplace eigenfunctions.

We conjecture that the conclusions of Theorem 4, and hence also Corollary 5, hold
in the case that (M, g) is a manifold with Anosov geodesic flow of any dimension.

Conjecture. Let (M, g) be a manifold of dimension n with Anosov geodesic flow and
let H ⊂M be a submanifold of codimension k. Then

σ
SN∗H (RH) = 0.

1.1. Relation with L∞ bounds. We note again that taking k = n and H = {x} for
some x ∈M the estimate in (1.2) reads,

|uh(x)| ≤ Ch
1−n

2 . (1.5)

By Remark 1 the constant C can be chosen independent of x (and indeed, for small h,
depending only on the injectivity radius of (M, g) and dimension of M [Gal17]). Esti-
mates of this form are well known, first appearing in [Ava56, Lev52, Hör68] (see also
[Zwo12, Chapter 7]), and situations which produce sharp examples for (1.5) are ex-
tensively studied. Many works [Bér77, IS95, TZ02, SZ02, STZ11, SZ16a, SZ16b] have
studied connections between growth of L∞ norms of eigenfunctions and the global ge-
ometry of the manifold M . More recently [GT18, Gal17] examine the relation between
defect measures and L∞ norms.

We continue in the spirit of [GT18, Gal17, CGT18]; studying the relation between
between defect measures and averages over submanifolds. Some of our arguments
draw heavily from the ideas in [Gal17] and, in particular, taking k = n in Theorem 6
(together with Remark 1) recovers [Gal17, Theorem 2]. Hence, we also generalize many
of the results of [SZ02, STZ11, SZ16a, SZ16b] to manifolds of lower codimension. For
example taking k = n in Theorem 2 gives the main results of [STZ11] (see also [Gal17,
Corollary 1.2]).
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1.2. Semiclassical operators and a quantitative estimate. This section contains
the key analytic theorem for controlling submanifold averages (Theorem 6) which, in
particular, has Theorems 2 and 3 as corollaries. We control the oscillatory behavior of
quasimodes of semiclassical pseudodifferential operators using a quantitative estimate
relating averages of quasimodes to the behavior of the associated defect measure. As a
consequence, we characterize defect measures for which the corresponding quasimodes
may have maximal averages.

It is convenient to work with general semiclassical pseudodifferential operators, in-
stead of only with the Laplace operator, for several reasons. First, by generalizing
the operators under consideration, we are able to understand the phenomena which
underly estimates for averages. Also, we are able to study many types of operators,
e.g. Schrödinger operators, simultaneously with the Laplacian. For example, by a
simple argument we are able to apply Theorem 6 directly to obtain estimates on nor-
mal derivatives of Laplace eigenfunctions to hypersurfaces (see Theorem 3). Finally,
since we are able to work in compact subsets of phase space, defect measures appear
naturally as a description of the microlocal concentration properties of eigenfunctions.

We say that a sequence of functions {φh} is compactly microlocalized if there exists
χ ∈ C∞c (T ∗M) so that

(1−Oph(χ))φh = OC∞(h∞‖φh‖L2(M)). (1.6)

Also, we say that {φh} is a quasimode for P ∈ Ψ∞h (M) if

Pφh = oL2(h), ‖φh‖L2 = 1. (1.7)

In addition, for p ∈ S∞(T ∗M ;R), we say that a submanifold H ⊂ M of codimension
k is conormally transverse for p if given f1, . . . fk ∈ C∞c (M ;R) such that

H =

k⋂
i=1

{fi = 0}, {dfi} linearly independent on H,

we have

N∗H ⊂ {p 6= 0} ∪
k⋃
i=1

{Hpfi 6= 0}, (1.8)

where Hp is the Hamiltonian vector field associated to p.
Finally, we say the p is Laplace-like if for all x,

T ∗xM ∩ {p = 0}
has positive definite second fundamental form. Let

ΣH,p = {p = 0} ∩N∗H,
and consider the Hamiltonian flow

ϕt := exp(tHp).

We fix t0 > 0 and define for a Borel measure µ on {p = 0}, the measure µH,p on ΣH,p
by setting

µH,p(A) :=
1

2t0
µ
( ⋃
|t|≤t0

ϕt(A)
)
, for all Borel A ⊂ ΣH,p .
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Remark 2 in [CGT18] shows that if µ is a defect measure associated to a quasimode
{φh} and H is conormally transverse for p, then µH,p(A) is independent of the choice
of t0. It is then natural to replace the fixed choice of t0 with limt0→0. In particular,
for µ a defect measure associated to {φh},

µH,p(A) = lim
t0→0

1

2t0
µ
( ⋃
|t|≤t0

ϕt(A)
)
, (1.9)

for all Borel sets A ⊂ ΣH,p .
Next, let rH : M → R be the geodesic distance to H. Then, define |HprH | : ΣH,p → R

by

|HprH |(ρ) := lim
t→0
|HprH(ϕt(ρ))|.

Finally, we write µ ⊥ λ when µ and λ are mutually singular measures and let σΣH,p
be

the volume measure induced on ΣH,p by the Sasaki metric. Note that in Fermi normal
coordinates (x′, x′′), as in (1.3),

σΣH,p
= σH(x′)dVolΣ

H,p
∩T ∗xM (ξ′′), (1.10)

where Vol denotes the volume induced by the Euclidean metric on N∗xH.

Theorem 6. Let (M, g) be a smooth, compact Riemannian manifold of dimension
n and P ∈ Ψ∞(M) have real valued principal symbol p(x, ξ). Suppose that H ⊂ M
is a closed embedded submanifold of codimension k conormally transverse for p, and
that {φh} is a compactly microlocalized quasimode for P with defect measure µ. Let
f ∈ L1(H,σΣH,p

) and λH ⊥ σΣH,p
be such that

µH,p = fdσΣH,p
+ λH . (1.11)

Let w ∈ C∞c (Ho). Then there exists C(n, k) = Cn,k > 0, depending only on n and k,
so that

lim sup
h→0+

h
k−1

2

∣∣∣∣ˆ
H
wφhdσH

∣∣∣∣ ≤ Cn,k ˆ
H
|w|
√
f |HprH |−1dσΣH,p

. (1.12)

If in addition p is Laplace-like, then for w ∈ C∞(H) and A ⊂ H with dimbox(∂A) <
n− k − 1

2 ,

lim sup
h→0+

h
k−1

2

∣∣∣∣ˆ
A
wφhdσH

∣∣∣∣ ≤ Cn,k ˆ
π−1
H (A)

|w|
√
f |HprH |−1dσΣH,p

. (1.13)

In addition to relating the L2 microlocalization of quasimodes to averages on subman-
ifolds, Theorem 6 gives a quantitative version of the bound (1.2) proved in [Zel92,
Corollary 3.3] and generalizes the work of the second author [Gal17, Theorem 2] to
manifolds of any codimension. Note also that the estimate (1.13) is saturated for every
0 < k ≤ n on the round sphere Sn.

Remark 1. Let ε(h) > 0 satisfy e(h) = o(1). We actually prove the stronger statement
that (1.13) can be replaced with

lim sup
h→0+

h
k−1

2 sup
(A1,H1)∈A(A,H,ε(h))

∣∣∣∣ˆ
A1

φhdσH1

∣∣∣∣ ≤ Cn,k ˆ
π−1
H (A)

√
f |HprH |−1dσΣH,p
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where

A(A,H, ε(h)) =

{(A1, H1) | A1 ⊂ H1, dimbox(∂A1) < n−k−1
2 , d(A,A1) = ε(h), ds(ΣH,p ,ΣH1) = ε(h)}

and ds is the distance induced by the Sasaki metric. That is, our estimate is locally
uniform in oC1(1) neighborhoods of H (see Remark 4 for an explanation). This also
implies that all of our other estimates are uniform in oC1(1) neighborhoods.

A direct consequence of Theorem 6 is the following.

Theorem 7. Let (M, g) be a smooth, compact Riemannian manifold of dimension n.
Let H ⊂ M be a closed embedded submanifold of codimension k, and let A ⊂ H be a
subset with boundary ∂A satisfying dimbox(∂A) < n− k − 1

2 . If {φh} is a sequence of
Laplace eigenfunctions with defect measure µ so that µH ⊥ 1A σSN∗H , thenˆ

A
φhdσH = o(h

1−k
2 ).

Theorem 7 strengthens the results of [CGT18]. In particular, in [CGT18], the
measure µ is said to be conormally diffuse if µH (SN∗H) = 0, which implies µH ⊥ σSN∗H .

We note that Theorem 7 is an immediate consequence of Theorem 6. To see this,
first observe that if we take P = −h2∆g − 1, set p(x, ξ) = |ξ|2g(x) − 1 = σ(P ), and let

{φh} satisfy Pφh = 0, then

(1−Oph(χ))φh = OC∞(h∞‖φh‖L2),

for any χ ∈ C∞c (T ∗M) with χ ≡ 1 on |ξ|g ≤ 2 (see e.g. [DZ16, Appendix E] for the
elliptic parametrix construction). Next, note that in this setting we have σΣH,p

= σ
SN∗H .

Hence, if ˆ
π−1
H (A)

√
fdσΣH,p

= 0,

then by Theorem 6, ˆ
A
φhdσH = o(h

1−k
2 ).

To see that any H ⊂ M is conormally transverse (recall the definition (1.8)), observe
that if H = ∩ki=1fi, then N∗H = span{dfi : i = 1, . . . , k}. In particular, given (x, ξ) ∈
N∗H∩{p = 0} there exists i ∈ {1, . . . , k} for which Hpfi(x, ξ) = 2〈dfi(x), ξ〉 6= 0.

1.3. Manifolds with no focal points or Anosov geodesic flow. In order to prove
parts C, D, E and F of Theorem 4, we assume either that (M, g) has no focal points
or that the geodesic flow on (M, g) is Anosov. We show that these structures allow us
to restrict to working on the set of points AH in SN∗H at which the tangent space to
SN∗H splits into a sum of bounded and unbounded directions. To make this sentence
precise we introduce some notation.

If (M, g) has no conjugate points, then for any ρ ∈ S∗M , there exist stable and
unstable subspaces E±(ρ) ⊂ TρS∗M so that

dGt : E±(ρ)→ E±(Gt(ρ))
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and

|dGt(v)| ≤ C|v| for v ∈ E± and t→ ±∞.
We recall that a manifold has no focal points if for every geodesic γ, and every Jacobi
field Y (t) along γ with Y (0) = 0 and Y ′(0) 6= 0, Y (t) satisfies d

dt‖Y (t)‖2 > 0 for t > 0,
where ‖ · ‖ denotes the norm with respect to the Riemannian metric. In particular,
if (M, g) has non-positive curvature, then it has no focal points (see e.g. [Ebe73a,
page 440]). It is also known that if (M, g) has no focal points then (M, g) has no
conjugate points and that E±(ρ) vary continuously with ρ. (See for example [Ebe73a,
Proposition 2.13 and remarks thereafter].) See e.g. [Rug07, Ebe73b, Pes77] for further
discussion of manifolds without focal points.

In what follows we write

N±(ρ) := Tρ(SN
∗H) ∩ E±(ρ). (1.14)

We define the mixed and split subsets of SN∗H respectively by

MH :=
{
ρ ∈ SN∗H : N−(ρ) 6= {0} and N+(ρ) 6= {0}

}
,

SH :=
{
ρ ∈ SN∗H : Tρ(SN

∗H) = N−(ρ) +N+(ρ)
}
.

(1.15)

Then we write

AH :=MH ∩ SH , NH :=MH ∪ SH , (1.16)

where we will use AH when considering manifolds with Anosov geodesic flow and NH
when considering those with no focal points.

Next, we recall that any manifold with no focal points in which every geodesic
encounters a point of negative curvature has Anosov geodesic flow [Ebe73a, Corollary
3.4]. In particular, the class of manifolds with Anosov geodesic flows includes those
with negative curvature. We also recall that a manifold with Anosov geodesic flow
does not have conjugate points [Kli74] and for all ρ ∈ S∗M

Tρ(S
∗M) = E+(ρ)⊕ E−(ρ)⊕ RHp.

where E+, E− are the stable and unstable directions as before. (For other characteri-
zations of manifolds with Anosov geodesic flow, see [Ebe73a, Theorem 3.2], [Ebe73b].)
An equivalent definition of Anosov flow is that there exists C > 0 so that for all
ρ ∈ S∗M ,

|dGt(v)| ≤ Ce∓
t
C |v|, v ∈ E±(ρ), t→ ±∞, (1.17)

and the spaces E±(ρ) are Hölder continuous in ρ [Ano67].

Theorem 8. Let H ⊂M be a closed embedded submanifold.
If (M, g) has no focal points, then

σ
SN∗H (RH ∩NH) = σ

SN∗H (RH).

If (M, g) has Anosov geodesic flow, then

σ
SN∗H (RH ∩ AH) = σ

SN∗H (RH).

Theorem 8 combined with Theorem 2 give the following result.
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Corollary 9. Let H ⊂ M be a closed embedded submanifold of codimension k, and
let A ⊂ H satisfy dimbox(∂A) < n− k − 1

2 . Then if (M, g) has no focal points and

σ
SN∗H (NH ∩ π−1

H (A)) = 0

we have ˆ
A
φhdσH = o(h

1−k
2 ) (1.18)

as h → 0+ for every sequence {φh} of Laplace eigenfunctions. If instead (M, g) has
Ansov geodesic flow then (1.18) holds when

σ
SN∗H (AH ∩ π−1

H (A)) = 0.

Note that if dimM = 2, then NH = AH since dimTρ(SN
∗H) = 1. Indeed, it is

not possible to have both N+(ρ) 6= {0} and N−(ρ) 6= {0} unless N+(ρ) = N−(ρ) =
Tρ(SN

∗H) and henceMH ⊂ SH . In [Wym17b, Wym17a] the author works with (M, g)
non-positively curved (and hence having no focal points), dimM = 2 and H = γ a
curve. He then imposes the condition that for all time t the curvature of γ, κγ(t),
avoids two special values determined by the tangent vector to γ, k±(γ′(t)). He shows
that under this condition ˆ

γ
φhdσγ = o(1).

If κγ(t) = k±(γ′(t)), then the lift of γ to the universal cover of M is tangent to a stable
or unstable horosphere at γ(t) and κγ(t) is equal to the curvature of that horosphere.
Since this implies that T(γ(t),γ′(t)SN

∗γ is stable or unstable, the condition there is that

Nγ = ∅. Thus, the condition σ
SN∗H (NH ∩ π−1

H (A)) = 0 is the generalization to higher
codimensions of that in [Wym17b, Wym17a]. We note that [Wym17a] obtains the

improved upper bound O(| log h|−
1
2 ).

1.4. Organization of the paper. We divide the paper into two major parts. The
first part of the paper contains all of the analysis of solutions to Pu = o(h). The
sections in this part, Section 2 and Section 3, contain the proofs of Theorem 6 and
Theorem 3 respectively. The second part of our paper, consists of an analysis of the
geodesic flow and in particular a study of the recurrent set of SN∗H. Theorem 2 is
proved in Section 4, and Theorems 4 and 8 are proved in Section 5.

Note that as already explained, Corollary 5 is an immediate consequence of com-
bining Theorems 2 and 4. Also, Theorem 7 is a direct consequence of Theorem 6 and
Corollary 9 is a consequence of Theorem 2 and Theorem 8. Finally, Theorem 1 is
exactly part D of Theorem 4.

Acknowledgements. Thanks to Semyon Dyatlov, Patrick Eberlein, Colin Guil-
larmou, and Gabriel Paternain for several discussions on hyperbolic dynamics. The
authors are grateful to the referee for careful reading and many helpful comments
which improved the exposition. J.G. is grateful to the National Science Foundation
for support under the Mathematical Sciences Postdoctoral Research Fellowship DMS-
1502661.
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2. Quantitative estimate: Proof of Theorem 6

In Section 2.1 we present the ground work needed for the proof of Theorem 6. In
particular, we state the main technical result, Proposition 10, on which the proof of
Theorem 6 hinges. We then divide the proof of Theorem 6 in two parts. Assuming
the main technical proposition, we first prove the theorem for the case A = H and
w ∈ C∞c (Ho) in Section 2.2, and then generalize it to any subset A ⊂ H in Section 2.3.
Finally, Section 2.4 is dedicated to the proof of Proposition 10.

Throughout this section we assume that P has principal symbol p and H is conor-
mally transverse for p as defined in (1.8). We also assume throughout this section that
{φh} is a compactly microlocalized quasimode for P (see (1.6) and (1.7)).

2.1. Preliminaries. Let H ⊂ M be a smooth closed submanifold and let UH be an
open neighborhood ofH described in local coordinates as UH = {(x′′, x′) : x ∈ V ⊂ Rd},
where these coordinates are chosen so that H∩UH = {(0, x′) : (0, x′) ∈ V }. The coor-
dinates (x′′, x′) ∈ UH induce coordinates (x′′, x′, ξ′′, ξ′) on Σ∗UHM = {(x, ξ) ∈ {p = 0} :

x ∈ UH} with (ξ′′, ξ′) ∈ {p = 0}∩T ∗(x′′,x′)M . In these coordinates, ξ′ is cotangent to H

while ξ′′ is conormal to H. Since H is conormally transverse see (1.8) for p, we may
assume, without loss of generality, that x′′ = (x1, x̄) with dual coordinates ξ′′ = (ξ1, ξ̄),
where

∂ξ1p(x, ξ) 6= 0 on {p = 0} ∩N∗H.
Consider the cut-off function χα ∈ C∞c (R, [0, 1]) with

χα(t) =

{
0 |t| ≥ α
1 |t| ≤ α

2 ,
(2.1)

with |χ′α(t)| ≤ 3/α for all t ∈ R. For ε > 0 consider the symbol

βε(x
′, ξ′) = χε(|ξ′|gH(x′)) ∈ C∞c (T ∗H), (2.2)

where gH is the Riemannian metric on H induced by g. Let w ∈ C∞c (Ho), where Ho

denotes the interior of H. We start splitting the period integral asˆ
H
wφh dσH =

ˆ
H
Oph(βε)[wφh] dσH +

ˆ
H
Oph(1− βε)[wφh] dσH .

The same proof as [CGT18, Lemma 8] yields that for all u ∈ L2
comp(Ho)∣∣∣∣ˆ

H
Oph(1− βε)u dσH

∣∣∣∣ = Oε(h
∞) ‖u‖L2(H).

(see also Lemma 12).

Choosing u = wφh, and using the restriction bound ‖φh‖L2(H) = O(h−
k
2 ) obtained

from the standard L∞ bounds for compactly microlocalized functions [Zwo12, Lemma
7.10], we have

ˆ
H
wφh dσH =

ˆ
H
Oph(βε)[wφh] dσH +Oε(h

∞). (2.3)
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We control the integral of Oph(βε)wφh using the following lemma. To shorten
notation, we write

ΛH,T :=
⋃
|t|≤T

ϕt(ΣH,p)

where we recall that ΣH,p := N∗H ∩ {p = 0} and continue to write ϕt := exp(tHp).

Proposition 10. Let χ ∈ C∞c (T ∗M) so that Hpχ ≡ 0 on ΛH,T for some T > 0. Let
w ∈ C∞c (Ho). There exists Cn,k = C(n, k) > 0 depending only on n and k so that

lim
ε→0

lim sup
h→0+

hk−1

∣∣∣∣ˆ
H
Oph(βεw)

[
Oph(χ)φh

]
dσH

∣∣∣∣2
≤ Cn,k σΣH,p

(
supp(χ1Σ

H,p
)
) ˆ

Σ
H,p

w2χ2|HprH |−1dµH .

The proof of Proposition 10 is given in Section 2.4. The purpose of this proposition
is to allow us to use χ to localize quasimodes to the support of λH and its complement.
Recall that λH is defined by (1.11). Since λH and σΣH,p

are mutually singular, it is not

difficult to see that Proposition 10 gives the bound

lim sup
h→0+

h
k−1

2

∣∣∣∣ˆ
H
wφhdσH

∣∣∣∣ ≤ C
(ˆ

Σ
H,p

w2fdσΣH,p

)1/2

.

By further restricting χ to shrinking balls inside ΣH,p an application of the Lebesgue

differentiation theorem allows us to obtain a bound of the form C
´

Σ
H,p
|w|
√
fdσΣH,p

as claimed. This improvement will be needed when passing to subsets A ⊂ H. The
factor |HprH |−1 measures the cost of restricting to a hypersurface containing H which
is microlocally transversal to Hp. In particular, we choose coordinates so that H ⊂
{x1 = 0} and |HprH | = ∂ξ1p 6= 0 at a point ρ ∈ ΣH,p . This is possible since H is
conormally transverse see (1.8) for p.

To apply Proposition 10 it is key to work with cut-off functions χ ∈ C∞c (T ∗M) so
that Hpχ ≡ 0 on ΛH,T for some T > 0. Therefore, the following lemma is dedicated
to extending cut-off functions on ΣH,p to cut-off functions on T ∗M that are invariant
under the Hamiltonian flow inside ΛH,T . Let TΣ

H,p
> 0 be such that

ϕ : [−2T, 2T ]× ΣH,p → ΛH,2T

is a diffeomorphism for all 0 ≤ T ≤ TΣ
H,p

. Such a TΣ
H,p

exists since H is compact

and conormally transverse for p. Moreover, for T < TΣ
H,p

, ΛH,2T is a closed embedded

submanifold in T ∗M .

Lemma 11. For all χ̃ ∈ C∞c (ΣH,p ; [0, 1]) and 0 ≤ T ≤ TΣ
H,p

there exists

χ ∈ C∞c (T ∗M ; [0, 1]) so that

χ(ϕt(x, ξ)) = χ̃(x, ξ)

for all |t| ≤ T and (x, ξ) ∈ ΣH,p. In particular, Hpχ ≡ 0 on ΛH,T .
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Proof. Let ψ ∈ C∞c (R; [0, 1]) be a fixed function supported on (−2T, 2T ) with ψ ≡ 1
on [−T, T ]. Then, using that ϕ : [−2T, 2T ]×ΣH,p → ΛH,2T is a diffeomorphism, define
the smooth cut-off χ : ΛH,2T → [0, 1] by the relation

χ(ϕt(x, ξ)) = ψ(t)χ̃(x, ξ).

Finally, extend χ to all of T ∗M so that χ ∈ C∞c (T ∗M ; [0, 1]). We can make such an
extension since ΛH,T is a closed embedded submanifold in T ∗M . �

2.2. Proof of Theorem 6 for A = H and w ∈ C∞c (Ho). Fix δ > 0. Recall that
λH is defined by (1.11). Since σΣH,p

and λH are two Radon measures on ΣH,p that are

mutually singular, there exist Kδ ⊂ ΣH,p compact and Uδ ⊂ ΣH,p with Kδ ⊂ Uδ and so
that

σΣH,p
(Uδ) ≤ δ and λH (ΣH,p\Kδ) ≤ δ.

Indeed, by definition of mutual singularity, there exist V,W ⊂ ΣH,p so that λH (W ) =
σΣH,p

(V ) = 0 and V ∪ W = ΣH,p . Hence, by outer regularity of σΣH,p
, there exists

Uδ ⊃ V open with σΣH,p
(Uδ) ≤ δ. Next, by inner regularity, of λH , there exists Kδ ⊂ Uδ

compact with λH (σΣH,p
\Kδ) = λH (Uδ \Kδ) ≤ δ. Let κ̃δ ∈ C∞c (ΣH,p ; [0, 1]) be a cut-off

function with

κ̃δ ≡ 1 on Kδ and supp κ̃δ ⊂ Uδ.
Let κδ ∈ C∞c (T ∗M ; [0, 1]) be the cut-off extension of κ̃δ given in Lemma 11 with

Hpκδ ≡ 0 on ΛH,T ,

where we have fixed T > 0 so that 2T ≤ TΣ
H,p

. We use (2.3) and split the period

integral asˆ
H
wφh dσH =

ˆ
H
Oph(βεw)[Oph(κδ)φh] dσH

+

ˆ
H
Oph(βεw)[Oph(1− κδ)φh] dσH +Oε(h

∞).

Applying Proposition 10 with χ = κδ, we have that

lim
ε→0

lim sup
h→0

hk−1

∣∣∣∣ˆ
H
Oph(βεw)[Oph(κδ)φh] dσH

∣∣∣∣2
≤ C σΣH,p

(
suppκδ1Σ

H,p

) ˆ
Σ
H,p

κ2
δw

2dµH,p ≤ C δ.
(2.4)

Here we have used that σΣH,p
(Uδ) ≤ δ and that by construction suppκδ1Σ

H,p
=

supp κ̃δ ⊂ Uδ.
We dedicate the rest of the proof to showing that

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(1− κδ)φh]dσH

∣∣∣∣ ≤ Cn,k ˆ
Σ
H,p

|w|
√
f1 dσΣH,p

+ Cδ
1
2 .

(2.5)
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where f1 := f |HprH |−1. Putting (2.4) together with (2.5) would conclude the proof of
the theorem.

We start by splitting the left hand side in (2.5) into an integral over small balls.
Note that since dimM = n, dim ΣH,p = n − 1 regardless of the codimension k. By
the Besicovitch–Federer Covering Lemma [Hei01, Theorem 1.14, Example (c)], there
exists a constant cn > 0 depending only on n and r0 = r0(H) so that for all 0 < r < r0,
there exist open balls {B1, . . . , BN(r)} ⊂ ΣH,p of radius r with

N(r) ≤ cnr1−n and σΣH,p
(Bj) ≤ cnrn−1, (2.6)

so that

ΣH,p ⊂
N(r)⋃
j=1

Bj

and each point in ΣH,p lies in at most cn balls. Let {ψ̃j} with ψ̃j ∈ C∞c (ΣH,p ; [0, 1])
be a partition of unity associated to {Bj}, and write ψj for the extensions ψj ∈
C∞c (T ∗M ; [0, 1]) given in Lemma 11 so that ψj(ϕt(x, ξ)) = ψ̃j(x, ξ) for all |t| ≤ 2T and
(x, ξ) ∈ ΣH,p . With this construction, Hpψj ≡ 0 on ΛH,2T ,

N(r)∑
j=1

ψj ≡ 1 on ΛH,2T , and supp(ψj1Σ
H,p

) ⊂ Bj . (2.7)

Let Ψ :=
∑N(r)

j=1 ψj . Setting χ = (1 − Ψ)(1 − κδ) we have Hpχ = 0 on ΛH,T and

supp(χ1Σ
H,p

) = ∅ (since 1−Ψ ≡ 0 on ΛH,2T ). We then apply Lemma 10 to χ, to obtain

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph((1−Ψ)(1− κδ))φh]dσH

∣∣∣∣ = 0.

On the other hand, by the triangle inequality we have∣∣∣∣ˆ
H
Oph(βεw)[Oph(Ψ(1− κδ))φh]dσH

∣∣∣∣ ≤ N(r)∑
j=1

∣∣∣∣ˆ
H
Oph(βεw)[Oph(ψj(1− κδ))φh] dσH

∣∣∣∣ .
By construction we have that Hp[ψj(1 − κδ)] ≡ 0 on ΛH,T . We may therefore apply
Proposition 10 with χ = ψj(1− κδ) to find that there exist ε0, Cn,k > 0 so that

lim
ε→0

lim sup
h→0

hk−1

∣∣∣∣ˆ
H
Oph(βεw)[Oph(ψj(1− κδ))φh] dσH

∣∣∣∣2
≤ Cn,k rn−1

ˆ
Σ
H,p

ψ2
jw

2(1− κδ)2|HprH |−1dµH,p .

Here we have used that supp(ψj1Σ
H,p

) ⊂ Bj and for rj > 0 small enough σΣH,p
(Bj) ≤

cnr
n−1 for all j = 1, . . . , N(r), and some cn > 0 depending only on n. It follows that

there is Cn,k > 0 for which
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lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(Ψ(1− κδ))φh]dσH

∣∣∣∣ ≤
≤ Cn,k r

n−1
2

N(r)∑
j=1

(ˆ
Σ
H,p

ψ2
jw

2(1− κδ)2 |HprH |−1dµH,p

) 1
2

.

Decomposing µH,p = fσΣH,p
+ λH , and using that

supp((1− κδ)1Σ
H,p

) ⊂ ΣH,p\Kδ

while λH (ΣH,p\Kδ) ≤ δ, we conclude that there exists C > 0 so that

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(1− κδ)φh]dσH

∣∣∣∣ ≤ Cn,kFrf1 + Cδ1/2 (2.8)

where

Frf1 := r
n−1

2

N(r)∑
j=1

(ˆ
Σ
H,p

ψ2
jw

2f1 dσΣH,p

) 1
2

.

Indeed, applying the triangle inequality,

Cn,kr
n−1

2

N(r)∑
j=1

(ˆ
Σ
H,p

ψ2
jw

2(1− κδ)2|HprH |−1 dµH,p

) 1
2

≤

Cn,kF (r) + Cr
n−1

2

N(r)∑
j=1

(ˆ
Σ
H,p

ψ2
jw

2(1− κδ)2dλH

) 1
2

.

By Cauchy-Schwarz,

r
n−1

2

N(r)∑
j=1

(ˆ
Σ
H,p

ψ2
j (1− κδ)2w2dλH

) 1
2

≤ r
n−1

2 (N(r))1/2

ˆ
Σ
H,p

N(r)∑
j=1

ψ2
jw

2(1− κδ)2dλH

 1
2

≤ CλH (supp(1− κδ)1Σ
H,p

)
1
2

≤ Cδ1/2,

and this proves (2.8).
We dedicate the rest of the proof to proving that there exists Cn > 0 such that

lim sup
r→0

Frf1 ≤ Cn
ˆ
|w|
√
f1dσΣH,p

. (2.9)

Inserting (2.9) into (2.8) proves (2.5). Putting (2.4) together with (2.5) concludes the
proof of the theorem. Note that for any positive function θ ∈ L1(ΣH,p , σΣH,p

)

Frθ =

N(r)∑
j=1

(
rn−1

ˆ
Σ
H,p

ψ2
jw

2θ dσΣH,p

) 1
2

.
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By (2.7) and (2.6)

|Frθ| ≤ CnN(r)
1
2 r

n−1
2

ˆ
Σ
H,p

N(r)∑
j=1

ψ2
jw

2θ dσΣH,p

 1
2

≤ C‖θ‖
1
2

L1 (2.10)

where C is independent of r.
Next, suppose that θ ≥ 0 is a continuous function. Let ξj ∈ ΣH,p be so that

Bj = B(ξj , r) and note that for r small enough, C−1
n rn−1 ≤ σΣH,p

(B(ξj , r)) ≤ Cnrn−1,

where Cn depends only on n. Using this, and that supp(ψj1Σ
H,p

) ⊂ Bj , the definition

of Frθ yields

Frθ ≤ Cn
ˆ

Σ
H,p

N(r)∑
j=1

1Bj

(
1

σΣH,p
(Bj)

ˆ
Bj

w2θdσΣH,p

)1/2

dσΣH,p

Now, since φh is compactly microlocalized (see (1.6)), we may assume ΣH,p is compact.
Then, since w and θ are continuous, they are uniformly continuous. In particular, for
any ε0 > 0 there exists r small enough so that for all ξ ∈ ΣH,p and ρ ∈ B(ξ, r),(

1

σΣH,p
(B(ξ, r))

ˆ
B(ξ,r)

w2θdσΣH,p

)1/2

≤ |w|(ρ)
√
θ(ρ) +

ε0

vol(ΣH,p)
.

Thus,

Frθ ≤ Cn
ˆ

Σ
H,p

|w|
√
θdσΣH,p

+ Cnε0.

Next, let {θm}m be a sequence of continuous positive functions with θm → f1 in
L1. We may assume by taking a subsequence that θm → f1 a.e. Fix ε0 > 0 and let

M0 > 0 be so that ‖f1 − θm‖1/2L1 ≤ ε0 for all m ≥ M0. Since
√
a+ b ≤

√
a +
√
b, for

all m ≥M0

|Frf1| ≤ Fr|f1 − θm|+ Frθm ≤ C‖f1 − θm‖1/2L1 + Frθm≤ Cε0 + Frθm. (2.11)

Now,ˆ
Σ
H,p

|w|
√
θmdσΣH,p

=

ˆ
Σ
H,p

|w|
√

max(θm, 1)dσΣH,p
+

ˆ
Σ
H,p

1{θm≥1} |w|(
√
θm − 1)dσΣH,p

.

Observe next that max(θm, 1) → max(f1, 1) a.e. and by the dominated convergence
theorem, ˆ

Σ
H,p

|w|
√

max(θm, 1)dσΣH,p
→
ˆ

Σ
H,p

|w|
√

max(f1, 1)dσΣH,p
.

Also,∣∣∣ˆ
Σ
H,p

1{θm≥1}|w|(
√
θm −

√
f1)dσΣH,p

∣∣∣= ∣∣∣ˆ
Σ
H,p

1{θm≥1}|w|
θm − f1√
θm +

√
f1
dσΣH,p

∣∣∣≤C‖θm − f1‖L1 .
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This proves that
´

Σ
H,p
|w|
√
θmdσΣH,p

→
´

Σ
H,p
|w|
√
f1dσΣH,p

. Therefore, there exists

M1 > 0 so that for m ≥M1,
ˆ

Σ
H,p

|w|
√
θmdσΣH,p

≤
ˆ

Σ
H,p

|w|
√
f1dσΣH,p

+ ε0.

Letm ≥ max(M0,M1) and choose r small enough so that Frθm ≤ Cn
´

Σ
H,p
|w|
√
θmdσΣH,p

+

ε0. Then, (2.11) yields that for some Cn > 0

Frf1 ≤ Cε0 + Frθm ≤ Cn
ˆ

Σ
H,p

|w|
√
f1dσΣH,p

+ Cnε0.

This proves (2.9) as claimed, and hence concludes the proof of the theorem. �

2.3. Proof of Theorem 6 for any A ⊂ H. We first sketch the steps necessary to
pass to A ⊂ H. We break the integral into two pieces. First, in an h-independent
neigborhood of the conormal bundle N∗H, we approximate 1A by an (h-independent)
smooth function and apply the theorem on all of H. Then, to estimate the piece
bounded away from N∗H, we approximate 1A by a smooth function depending badly
on h. We are then able to perform integration by parts to estimate contributions away
from ∂A and a simple volume bound near ∂A. In order to handle the boundary of H
itself, we extend H to a larger closed embedded submanifold H̃ ⊂M so that Ho b H̃o

is an open subset.
Let A ⊂ H be a subset with dimbox(∂A) < n − k − 1

2 and indicator function 1A.

Extend H to H̃ another closed, embedded submanifold of codimension k so that Ho is
compactly contained in the interior H̃o. We will actually apply Theorem 6 to H̃ and
w ∈ C∞c (H̃o). Since C∞c (H̃o) is dense in L2(H̃o), for any δ > 0, we can find a positive

function ψA ∈ C∞c (H̃o) with

‖ψA − 1A‖L2(H̃) ≤ δ.

For any ε > 0 and w ∈ C∞c (H̃o),∣∣∣ˆ
H̃

1AwφhdσH̃

∣∣∣ ≤ ∣∣∣ ˆ
H̃

1AOph(βε)(wφh)dσH̃

∣∣∣+
∣∣∣〈(1−Oph(βε))(wφh), 1A〉H̃

∣∣∣.
We claim that if A ⊂ H has boundary satisfying dimbox(∂A) < n− k− 1

2 Then, for
all δ > 0 and ε > 0,

‖(1−Oph(βε))
∗1A‖L2(H̃) = Oε,δ(h

1
4

+δ). (2.12)

We postpone the proof of (2.12) until the end. Assuming that (2.12) holds, the upper

bound for eigenfunctions of Laplace-like operators ‖φh‖L2(H̃) ≤ Ch−
k−1

2
− 1

4 [BGT07,

Theorem 3], [Tac10, Theorem 1.7] together with Cauchy-Schwarz give
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h
k−1

2

∣∣∣ˆ
H

1AwφhdσH

∣∣∣ ≤
≤ h

k−1
2

∣∣∣ ˆ
H̃

1AOph(βε)(wφh)dσH

∣∣∣+ h
k−1

2 ‖wφh‖L2(H̃)‖Oph(1− βε)∗1A‖L2(H̃)

≤ h
k−1

2

∣∣∣ ˆ
H̃

(1A − ψA)Oph(βε)(wφh)dσH̃

∣∣∣+ h
k−1

2

∣∣∣ ˆ
H̃
ψAOph(βε)(wφh)dσH̃

∣∣∣+ oε(1)

=: T1,h + T2,h + oε(1). (2.13)

Remark 2. Note that in fact, when k > 1, the estimates from [BGT07, Tac10] show

that ‖φh‖L2(H̃) ≤ Ch−
k−1

2
− 1

4 can be improved to ‖φh‖L2(H̃) ≤ Ch−
k−1

2 if k > 2 and

‖φh‖L2(H̃) ≤ Ch−
k−1

2 (log h−1)1/2 if k = 2. Therefore, when k > 1, we may allow A

with boundary having higher box dimension than the upper bound requested.

Next, note that ‖Oph(βε)(wφh)‖L2(H̃) = O(h
1−k

2 ) and apply Cauchy–Schwarz to

obtain
T1,h ≤ ‖1A − ψA‖L2(H̃)h

k−1
2 ‖Oph(βε)(wφh)‖L2(H̃) ≤ Cδ,

for some C > 0. Finally, to bound the second term in (2.13) we note that

T2,h = h
k−1

2

∣∣∣∣ˆ
H̃
Oph(βε)(ψAwφh)dσH̃

∣∣∣∣+ o(1) = h
k−1

2

∣∣∣∣ˆ
H̃
ψAwφh dσH̃

∣∣∣∣+ o(1),

and that by Theorem 6 with A = H̃ and w ∈ C∞c (H̃o) there exists Cn,k > 0 for which

lim sup
h→0

T2,h ≤ Cn,k
ˆ

ΣH̃

ψA |w|
√
f |HprH |−1 dσ

SN∗H̃
≤

Cn,k

ˆ
π−1
H (A)

|w|
√
f |HprH |−1 dσΣH,p

+ Cδ‖f‖L1(H̃)‖w‖L∞(H̃).

The last equality follows from Cauchy-Schwarz and the bound ‖ψA − 1A‖L2(H̃) ≤ δ.

This gives the stated result provided (2.12) holds. We proceed to prove (2.12).

To prove (2.12) we first introduce a cut-off function χh ∈ C∞c (H̃o) so that (1−χh)1A
is smooth and close to 1A and χh is 1 in a neighborhood of ∂A. For this, fix 0 < δ < 1
and cover ∂A by (n − k)-dimensional cubes Qi,h ⊂ H̃o, with 1 ≤ i ≤ N(h), and side

length hδ with disjoint interiors. This can by done so that

lim sup
h→0+

logN(h)

δ log h−1
= dimbox(∂A).

We decompose

‖(1−Oph(βε))
∗1A‖L2(H̃) = ‖(1−Oph(βε))

∗(1− χh)1A‖L2(H̃)

+ ‖(1−Oph(βε))
∗χh1A‖L2(H̃). (2.14)

We bound ‖(1−Oph(βε))
∗χh1A‖L2(H̃) using that 1−Oph(βε) is L2-bounded and that

χh1A has compact support. We proceed to bound ‖χh1A‖L2(H̃). Cover each cube
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Qi,h by 2n−k open balls Bi,h of radius hδ. Let χi,h ∈ C∞c (Bi,h; [0, 1]) be a partition of

unity near ∂A subordinate to Bi,h and define χh =
∑N(h)

i=1 χi,h. Then,

χh ≡ 1 in a neighborhood of ∂A, suppχh ⊂ {x ∈ H : d(x, ∂A) ≤ 2hδ},

|∂αxχh| = Oα(h−|α|δ). (2.15)

Moreover, since the volume of each cube Qi,h is hδ(n−k), there is C > 0 so that

‖χh‖2L2(H̃)
≤ CN(h)hδ(n−k) ≤ Chδ(n−k−dimbox(∂A)).

It follows that

‖(1−Oph(βε))
∗χh1A‖L2(H̃) = O

(
h
δ
2

(n−k−dimbox(∂A))
)
. (2.16)

On the other hand, the function (1− χh)1A = (1− χh) satisfies the bounds (2.15).
In particular, putting ψh = 1− χh in Lemma 12 below, for δ < 1,

‖(1−Oph(βε))
∗(1− χh)1A‖L∞(H̃) = Oε(h

∞). (2.17)

Combining (2.16) and (2.17) into (2.14), and taking 0 < δ < 1 sufficiently close to 1,
proves (2.12) as claimed.

�

Lemma 12. Suppose that ψh ∈ C∞c (H̃o) satisfies (2.15) for some 0 < δ < 1. Then,

‖(1−Oph(βε))
∗ψh‖L∞(H̃) = Oε,δ(h

∞).

Proof. We work in Fermi normal coordinates (x′, x′′) so that x′ is a coordinate on H̃.
Integrating by parts with

Lx′ :=
1

|y′ − x′|2 + |ξ′|2

 n∑
j=1

ξ′jhDy′j
+

n∑
j=1

(x′j − y′j)hDξ′j

 ,

relation (2.15) gives

[(1−Oph(βε))
∗ψh](x′) =

=
1

(2πh)n−k

¨
e
i
h
〈x′−y′,ξ′〉(1− βε(y′, ξ′))(ψh(y′))dy′dξ′

=
1

(2πh)n−k

¨
e
i
h
〈x′−y′,ξ′〉(L∗x′)

N
[
(1− βε(y′, ξ′))ψh(y′)

]
dy′dξ′

= Oε,N
(
hk−n+N(1−δ))

�
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2.4. Localizing near bicharacteristics: Proof of Proposition 10. Throughout
the proof of Proposition 10 we will need the following lemma. Since it is a local result,
we state it for functions and operators acting on Rn. We write (x1, x̃) ∈ R×Rn−1 for

coordinates in Rn and (ξ1, ξ̃) for the dual coordinates.

Lemma 13. Let κ = κ(x1, x̃, ξ̃) be a smooth function with compact support and fix
ρ0 ∈ T ∗Rn with

p(ρ0) 6= 0 or ∂ξ1p(ρ0) 6= 0.

Then, there exists C0, T0 > 0 and a neighborhood V of ρ0 so that for all 0 < T < T0

the following holds. Let U be a neighborhood of suppκ and b ∈ C∞c (T ∗Rn) with⋃
|t|<T

ϕt({p = 0} ∩ U) ⊂ {b ≡ 1}. (2.18)

Let χ ∈ C∞c (V ), χ̃ ∈ C∞c (T ∗Rn) with χ̃ ≡ 1 in a neighborhood of suppχ, and q =
q(x1) ∈ C∞(R;S∞(T ∗Rn−1)). Then, there exists C > 0 so that the following hold.
If p(ρ0) 6= 0, then

‖Oph(q)Oph(κ)Oph(χ)φh‖L∞x1
L2
x̃
≤ C‖Oph(χ̃)Pφh‖L2

x
+O(h∞)‖φh‖L2

x
.

If p(ρ0) = 0, then

sup
|x1|<T

3
|∂ξ1p(ρ0)|

‖Oph(q)Oph(κ)Oph(χ)φh(x1, ·)‖L2
x̃
≤

≤ 4T−
1
2 |∂ξ1p(ρ0)|−

1
2 ‖Oph(b)Oph(χ)Oph(q)φh‖L2

x

+ C0T
1
2h−1‖Oph(b)Oph(p)Oph(χ)Oph(q)φh‖L2

x
+ Ch−1‖Oph(χ̃)Pφh‖

+ Ch1/2‖Oph(χ̃)φh‖L2
x

+O(h∞)‖φh‖L2
x
.

The proof of Lemma 13 is very similar to that of [Gal17, Lemma 4.3], although some
alterations are needed. For the sake of completeness we include the proof.

Proof. First, suppose ρ0 ∈ T ∗M is so that p(ρ0) 6= 0. Then, there exists a neighborhood
U ⊂ T ∗Rn of ρ0 with U ⊂ {p 6= 0}. One can then carry an elliptic parametrix
construction so that

Oph(q κχ)φh = Oph(ẽ)Oph(χ̃)Oph(p)φh+OΨ−∞(h∞)φh, (2.19)

for all χ supported in U and some suitable ẽ. Therefore,

‖Oph(q κχ)φh(0, x′)‖L2
x̃
≤ C‖Oph(χ̃)Pφh‖L2

x
+O(h∞)‖φh‖L2

x
,

as claimed. We may assume from now on that

ρ0 ∈ {∂ξ1p 6= 0} ∩ {p = 0}.
By the implicit function theorem, for χ̃ supported sufficiently close to ρ0, and suppχ ⊂
{χ̃ ≡ 1}

p(x, ξ)χ̃(x, ξ) = e(x, ξ)(ξ1 − a(x, ξ̃))

with e(x, ξ) elliptic on suppχ and ξ = (ξ1, ξ̃). In particular,

Oph(p)Oph(χ) = Oph(e)(hDx1 −Oph(a)))Oph(χ) + hOph(R)Oph(χ).
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Therefore,

(hDx1 −Oph(a))w = f,

where we have set

w := Oph(χ)Oph(q)φh,

f := [Oph(e)−1Oph(p)Oph(χ)Oph(q) + hOph(R1)Oph(χ)Oph(q)]φh +O(h∞)

and Oph(e)−1 denotes a microlocal parametrix for Oph(e) near suppχ. Defining

A(t, s, x̃, hDx̃) := −
ˆ t

s
a(x1, x̃, hDx̃)dx1,

we obtain that for all s, t ∈ R

w(s, x̃) = e−
i
h
A(t,s,x̃,hDx̃)w(t, x̃)− i

h

ˆ t

s
e−

i
h
A(x1,s,x̃,hDx̃)f(x1, x̃)dx1.

Let δ > 0 be such that

δ ≤ T

3
|∂ξ1p(ρ0)| ≤ T

2
inf
{
|∂ξ1p(x, ξ)| : (x, ξ) ∈ suppχ

}
(2.20)

and Φ ∈ C∞c (R; [0, 2δ−1]) with supp Φ ⊂ [0, δ] and
´
R Φ = 1. Then, integrating in t,

w(s, x̃) =

ˆ
R

Φ(t)e−
i
h
A(t,s,x̃,hDx̃)w(t, x̃)dt− i

h

ˆ
R

Φ(t)

ˆ t

s
e−

i
h
A(x1,s,x̃,hDx̃)f(x1, x̃)dx1dt.

Next, applying propagation of singularities, we claim that

Oph(κ)w(x1, x̃) =

ˆ
R

Φ(t)Oph(κ)e−
i
h
A(t,x1,x̃,hDx̃)Oph(b)w(t, x̃)dt

− i

h

ˆ
R

Φ(t)

ˆ t

x1

Oph(κ)e−
i
h
A(s,t,x̃,hDx̃)Oph(b)f(s, x̃)dsdt

+Rh(x1, x̃) +O(h∞)‖φh‖L2 ,

(2.21)

with ‖Rh(x1, x̃)‖L∞x1
L2
x̃

= O(h−1‖Oph(χ̃)Pφh‖L2
x
). Indeed, (2.21) follows once we show

that for any v ∈ S0(T ∗M) supported on χ̃ ≡ 1 and x1 ∈ [0, δ]

‖Oph(κ)e−
i
h
A(x1,t,x̃,hDx̃)(1−Oph(b))Oph(v)φh‖L2

x
≤

C‖Oph(χ̃)Pφh‖L2
x

+O(h∞)‖φh‖L2
x
. (2.22)

Let χε ∈ C∞c (R; [0, 1]) be as in (2.1). By the same construction carried in (2.19) (which
gives that φh is microlocalized on {p = 0}) we conclude

‖Oph(κ)e−
i
h
A(x1,t,x̃,hDx̃)(1−Oph(b))Oph(v)(1−Oph(χε(p))φh‖L2

x
≤

Cε‖Oph(χ̃)Pφh‖L2
x

+O(h∞)‖φh‖L2
x
. (2.23)

Therefore, to prove (2.22) we need to estimate

‖Oph(κ)e−
i
h
A(x1,t,x̃,hDx̃)(1−Oph(b))Oph(v)Oph(χε(p))φh‖L2

x
.
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Let ϕ̃t denote the Hamiltonian flow of p̃(x, ξ) = ξ1−a(x, ξ̃). Then, for (x, ξ) ∈ {(x, ξ) :
|p(x, ξ)| ≤ Cε2} and |t| ≤ 1, we have d(ϕt(x, ξ), ϕ̃t(x, ξ)) ≤ Cε2. By (2.18), b is
identically 1 in a neighborhood of⋃

|t|≤T

ϕt({suppκ} ∩ {p = 0})

and thus for ε > 0 small enough on⋃
|t|≤2T

ϕ̃t({suppκ} ∩ {|p| ≤ Cε2}).

In particular, since we assume that supp Φ ⊂ [0, δ] and δ satisfies (2.20), we have

‖Φ(t)Oph(κ)e−
i
h
A(t,s,x̃,hDx̃)(1−Oph(b))Oph(a)Oph(χε(p))φh‖L2

x
= Oε(h

∞)‖φh‖L2
x
.

(2.24)
Together (2.23) and (2.24) give (2.22). In particular, we obtain (2.21) which, since

|Φ(t)| ≤ 2δ−1, and hence ‖Φ‖L2 ≤ 2δ−
1
2 ,

implies that for |x1| ≤ δ,

‖Oph(κ)w(x1, ·)‖L2
x̃
≤ 2δ−1/2‖Oph(b)w‖L2

x
+ C0δ

1/2h−1‖Oph(b)f‖L2
x

+ Ch−1‖Oph(χ̃)Pφh‖L2
x

+O(h∞)‖φh‖L2
x
.

To see this, we start by applying Cauchy-Schwarz to the first term in (2.21) and use

that e−
i
h
A(t,x1,x̃,hDx̃) is a unitary operator to get∥∥∥∥ˆ

R
Φ(t)Oph(κ)e−

i
h
A(t,x1,x̃,hDx̃)Oph(b0)w(t, x̃)dt

∥∥∥∥
L∞x1

L2
x̃

≤ ‖Φ‖2 ‖Oph(κ)‖‖Oph(b0)w‖L2
t,x̃
.

To bound the second term in (2.21) we apply Minkowski’s integral inequality, use that
the support of Φ is contained in [0, δ], and that |x1| < δ to get∥∥∥∥ˆ

R
Φ(t)

ˆ t

x1

Oph(κ)e−
i
h
A(s,t,x̃,hDx̃)Oph(b0)f(s, x̃)dsdt

∥∥∥∥
L∞x1

L2
x̃

≤

∥∥∥∥∥∥
ˆ
R

Φ(t)

(ˆ
Rn−1

(ˆ
R

1[−δ,δ](s)Oph(κ)e−
i
h
A(s,t,x̃,hDx̃)Oph(b0)f(s, x̃)ds

)2

dx̃

) 1
2

dt

∥∥∥∥∥∥
L∞x1

≤ ‖1[−δ,δ](s)‖L2
s
‖Oph(κ)‖‖Oph(b0)f‖L2

s,x̃
.

Now,

Oph(q)Oph(κ)Oph(χ) = Oph(κ)Oph(χ)Oph(q) + [Oph(q), Oph(κ)Oph(χ)].

Therefore, since

‖[Oph(q), Oph(κ)Oph(χ)]φh(x1, ·)‖L2
x̃
≤ Ch

1
2 ‖Oph(χ̃)φh‖L2

x
+O(h∞)‖φh‖L2

x
,
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we have the following L2 bound for |x1| ≤ δ = T
3 |∂ξ1p(ρ0)|

‖Oph(κ)Oph(χ)Oph(q)φh(x1, ·)‖L2
x̃
≤ 2δ−1/2‖Oph(b)w‖L2

x
+ C0δ

1/2h−1‖Oph(b)f‖L2
x

+Ch−1‖Oph(χ̃)Pφh‖L2
x

+ Ch
1
2 ‖Oph(χ̃)φh‖L2

x
+O(h∞)‖φh‖L2

x
(2.25)

finishing the proof. �

The proof of Proposition 10 hinges on Lemma 14 below. This lemma is dedicated to
obtaining a gain in the bound for ‖Oph(βε)Oph(χ)φh‖L2(H) by localizing in phase space
near bicharacteristics emanating from ΣH,p . The key idea is that microlocalization near

a family of bicharacteristics parametrized byH implies a quantitative gain in the L2(H)
norm. By decomposing φh into many pieces microlocalized along well-chosen families
of bicharacteristics, we are able to extract Proposition 10.

Let Ξ : H → ΣH,p be a smooth section (i.e. Ξ ∈ C∞ and Ξ(x) ∈ T ∗xM); where we
continue to write ΣH,p = {p = 0}∩N∗H. Let χ ∈ C∞c (T ∗M) supported near ρ0 ∈ ΣH,p .

ΣH,p

Figure 2. We show a schematic of Ξ(x), ΣH,p , and TT (Ξ, R) for H a
curve and d = 3.

We choose Fermi coordinates with respect to H, (x1, x̄, x
′), so that H = {(x1, x̄) = 0}

and, making additional rotation in (x1, x̄) if necessary, so that

|HprH(ρ0)| = ∂ξ1p(ρ0) 6= 0.

Moreover, note that for u supported near x0 we have ‖u‖L2
x
≤ 2‖u‖L2(M).

For each (0, x′) ∈ H in the projection of suppχ onto H define a vector-valued func-
tion a(x1;x′)∈ C∞(Rn−k+1;Rn) so that ξ − a(x1;x′) vanishes on the bicharacteristic



24 YAIZA CANZANI AND JEFFREY GALKOWSKI

emanating from ((0, x′),Ξ((0, x′)))). This is possible since we have chosen coordinates
so that

∂ξ1p(ρ0) 6= 0,

and hence the bicharacteristic emanating from ((0, x′),Ξ((0, x′)))) may be written lo-
cally as

γx′ : (−Tχ, Tχ)→ T ∗M, γx′(x1) = (x(x1;x′), a(x1;x′)) (2.26)

where Tχ > 0 is small enough, and x, a are smooth functions depending on χ. Indeed,

if we write γx′(t) = (x(t), ξ(t)), we have that d
dtx1(t) = ∂ξ1p(γx′(t)) which allows us to

use the inverse function theorem to locally write t = t(x1) as a function of x1.
To exploit the construction of the function a we further localize in phase space on

tubes of small radius R that cover supp(χ1Σ
H,p

). We define the tubes

TT (Ξ, R) :=
⋃
|t|≤2T

ϕt({(x, ξ) ∈ ΣH,p : d((x, ξ), (x,Ξ(x))) < R}), (2.27)

where d((x, ξ), (x,Ξ(x))) describes the distance in ΣH,p∩T ∗xM between the points (x, ξ)
and (x,Ξ(x)) (see Figure 2 for a schematic picture of these objects).

The spirit of the following result is similar to that of [Gal17, Lemma 5.2]. Lemma
14 is dedicated to showing that microlocalizing with χ supported on TT (Ξ, R) gives an
Rk−1 gain in the bound for ‖Oph(βεw)Oph(χ)φh‖L2(H).

Lemma 14. There exist Cn,k > 0 depending only on n and k and c > 0 depending
only on (M, g,H) so that the following holds. Let χ ∈ C∞c (T ∗M) supported sufficiently
close to ρ0 ∈ ΣH,p satisfy

Hpχ ≡ 0, on ΛH,T ,

where 0 < T ≤ Tχ and Tχ is defined in (2.26). Let Ξ : H → ΣH,p be a smooth section.
Then for all 0 < R < c and w ∈ C∞c (Ho) if

supp(χ1Λ
H,T

) ⊂ TT (Ξ, R), (2.28)

then

lim
ε→0

lim sup
h→0

hk−1‖Oph(βεw)Oph(χ)φh‖2L2(H) ≤ Cn,k
Rk−1

T |HprH(ρ0)|

ˆ
Λ
H,T

χ2w̃2dµ,

(2.29)
where w̃ ∈ C∞c (T ∗M) is any extension of w for which Hpw̃ ≡ 0 on ΛH,T . In addition,
if the assumption in (2.28) is not enforced, then (2.29) holds with R = 1 and Cn,k
replaced by a constant depending on (M, g,H, p).

Proof. In what follows we write x̄ for the normal coordinates to H that are not x1.
With this notation x = (x1, x̄, x

′). As before, let ιw,ε ∈ C∞c (H) with

ιw,ε(x
′) ≡ 1 for x′ ∈ suppw, lim

ε→0
ιw,ε = 1suppw.

Define also
κε(x, ξ) = βε(x

′, ξ′)χε(|(x1, x̄)|)ιw,ε(x′).
and w̃ ∈ C∞c (T ∗M) with

Hpw̃ = 0, on ΛH,T , w̃|Σ
H,p

= w.
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Since φh is compactly microlocalized (see (1.6)), we have ‖φh‖L2(H) ≤ Ch−
k
2 , we bound

‖Oph(βεw)Oph(χ)φh‖L2(H) ≤ ‖Oph(κεw̃χ)φh‖L2(H)+Oε(h
2−k

2 ) = ‖vh‖L2(H)+Oε(h
2−k

2 ).

for

vh := e−
i
h
〈x̄ , ā(x1;x′)〉Oph(κεw̃χ)φh,

where ā(x1;x′) = (a2(x1, x
′), . . . , ak(x1, x

′)) and a is defined in (2.26). The reason for

working with this function vh is that

e−
i
h
〈x̄ , ā(x1;x′)〉(hDxi)

`vh = (hDxi − ai)`(Oph(κεw̃χ)φh),

for i = 2, . . . , k, and this will allow to obtain a gain in the L2-norm bound, since, as we
will see below, supTδ(Ξ,R)∩Λ

H,T
maxi |ξi − ai(x1, x

′)| ≤ 3R. We bound ‖vh‖L2(H) using

the version of the Sobolev Embedding Theorem given in [Gal17, Lemma 5.1] which
states that if ` > (k − 1)/2, there exists C`,k > 0 depending only on ` and k so that
for all α > 0

‖vh(x1, ·, x′)‖L∞x̄ ≤C`,kh
1−k

(
αk−1‖vh(x1, ·, x′)‖2L2

x̄
+ αk−1−2`

k∑
i=2

‖(hDxi)
`vh(x1, ·, x′)‖2L2

x̄

)
,

for all x1, x′. Now, for all x1, x̄, integrate in x′ to get

‖vh(x1, x̄, ·)‖2L2
x′
≤ C`,kh1−k

(
αk−1‖vh(x1, ·)‖2L2

x̄,x′
+ αk−1−2`

k∑
i=2

‖(hDxi)
`vh(x1, ·)‖2L2

x̄,x′

)
.

In particular, setting (x1, x̄) = (0, 0) on the left hand side we get

‖vh‖2L2(H) ≤ C`,kh
1−k

(
αk−1‖vh(0, ·)‖2L2

x̄,x′
+ αk−1−2`

k∑
i=2

‖(hDxi)
`vh(0, ·)‖2L2

x̄,x′

)
.

(2.30)
We will end up choosing α = R and ` = k.

Remark 3. Note that when k = 1 (i.e. in the case of H is a hypersurface), estimates
on the derivatives are not necessary. In particular, since H acts as a single space-like
hypersurface in the energy estimates of Lemma 13, we cannot hope to gain additional
powers of R in the L2(H) norm from better control on derivatives along H.

By (1.8) we may assume, without loss of generality, that ∂ξ1p 6= 0 on suppκε ∩{p =
0}. We choose Fermi coordinates with respect to H so that

|HprH(ρ0)| = ∂ξ1p(ρ0) 6= 0 or p(ρ0) 6=0.

Moreover, in these coordinates ‖u‖L2
x
≤ 2‖u‖L2(M). Hence, we will apply Lemma 13

with κ = κε and χ (here we shrink the support of χ if necessary). In order to apply
the lemma, we note that

suppκε ∩ {p = 0} ⊂ {(x, ξ) : |x1| ≤ 3ε, |ξ′| ≤ 3ε, p = 0},
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and define bε ∈ C∞c (T ∗M ; [0, 1]) so that

• bε ≡ 1 on
⋃
|t|≤T/3

ϕt({(x, ξ) : |(x1, x̄)| ≤ 3ε, |ξ′| ≤ 3ε, p = 0}),

• supp bε ⊂
⋃
|t|≤T/2

ϕt({(x, ξ) : |(x1, x̄)| ≤ 4ε, |ξ′| ≤ 4ε, |p| ≤ 2ε}).
(2.31)

We apply Lemma 13 with κ = κε and χ (here we shrink the support of χ if necessary).
Next, let ι̃w,ε be an extension of ιw,ε off of ΣH,p so that Hpιw,ε ≡ 0 in a neighborhood
of bε ≡ 1. We do this as in Lemma 11 using that Hp is transverse to ΣH,p to solve the
initial value problem.

Next, we choose q to obtain a gain in the L2(H) restriction norm related to R. Let

Tρ0 := T |∂ξ1p(ρ0)|.

Applying Lemma 13 with κ = κε, χ, b = ι̃w,εbε, and q = 1, we have

‖vh(0, ·)‖L2
x̄,x′
≤ 8T

− 1
2

ρ0 ‖Oph(ι̃w,εbεw̃χ)φh‖L2(M)

+ C0T
1
2h−1‖Oph(ι̃w,εbε)POph(w̃χ)φh‖L2(M) + oε,T (1)

with C0 > 0 independent of T . Here we have used that in our coordinates ‖u‖L2
x
≤

2‖u‖L2(M).
Let ` with 2` > k − 1 and define

Qi = (hDxi − ai)` and Qi = Oph(qi).

In particular, qi = (ξi − ai)` +O(h). Then, Lemma 13 gives that there exists C0 > 0
independent of T so that

‖(hDxi)
`vh(0, ·)‖L2

x̄,x′
≤ 128T

− 1
2

ρ0 ‖Op(ι̃w,εbε)Oph(w̃χ)Qiφh‖L2(M)

+ C0T
1
2h−1‖Oph(ι̃w,εbε)POp(w̃χ)Qiφh‖L2(M) + oε,T (1).

Applying (2.30) gives that for any α > 0

hk−1‖Oph(βεw)Oph(χ)φh‖2L2(H)

≤ C`,kαk−1
(
T−1
ρ0
‖Oph(ι̃w,εbεw̃χ)φh‖2L2(M) + h−2C2

0T‖Oph(ι̃w,εbε)POph(w̃χ)φh‖2L2(M)

)
+ C`,kα

k−2`−1
k∑
i=2

T−1
ρ0
‖Oph(ι̃w,εbε)Oph(w̃χ)Qiφh‖2L2(M)

+ C`,kα
k−2`−1h−2

k∑
i=2

C2
0T‖Oph(ι̃w,εbε)POph(w̃χ)Qiφh‖2L2(M) + oε,T (1). (2.32)

Now, we use that Hp(w̃χ) = 0, Pφh = o(h), and

POph(w̃χ)φh = Oph(w̃χ)Pφh +
h

i
Oph(Hp(w̃χ))φh +OL2(h2).
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In particular, since µ is the defect measure associated to {φh}, we obtain

lim sup
h→0

hk−1‖Oph(βε)Oph(χw)φh‖2L2(H) ≤

C`,kα
k−1

ˆ
T ∗M

ι̃2w,εb
2
ε(T
−1
ρ0
χ2 + C2

0T |Hp(w̃χ)|2)dµ

+ C`,kα
k−2`−1

k∑
i=2

ˆ
T ∗M

ι̃2w,εb
2
ε(T
−1
ρ0
χ2q2

i + C2
0T |Hp(w̃χqi)|2)dµ.

Next, we observe that by (2.31) and the fact that 0 ≤ b2ε ≤ 1, we have

lim
ε→0

ι̃2w,εb
2
ε ≤ w̃21supp w̃.

Sending ε → 0 and using Hp(w̃χ) = 0 on ΛH,T (together with µ(T ∗M) = 1 to apply
the dominated convergence theorem) we have

lim
ε→0

lim sup
h→0

hk−1‖Oph(βεw)Oph(χ)φh‖2L2(H) ≤ C`,kα
k−1T−1

ρ0

ˆ
Λ
H,T

χ2w̃2dµ

+ C`,kα
k−2`−1

k∑
i=2

ˆ
Λ
H,T

χ2w̃2(T−1
ρ0
q2
i + C2

0T |Hpqi|2)dµ.

(2.33)
Next, assume that supp(χ1Λ

H,T
) ⊂ TT (Ξ, R). By [Gal17, Lemma 3.1], where Gt is

used to denote exp(tHp) = ϕt,

sup
TT (Ξ,R)∩Λ

H,T

max
i
|ξi − ai(x1, x

′)| ≤ 3R. (2.34)

Hence, since Hp(ξi − ai(x1, x
′)) = 0 on γx′ ,

sup
TT (Ξ,R)∩Λ

H,T

|Hpqi| ≤ CR`.

Furthermore,

sup
TT (Ξ,R)∩Λ

H,T

|qi| ≤ (1 + Cδ)R` +O(R2l)

Thus, taking T small enough, we obtain from (2.33) that

lim
ε→0

lim sup
h→0

hk−1‖Oph(βεw)Oph(χ)φh‖2L2(H)

≤ C`,kT−1
ρ0

ˆ
Λ
H,T

χ2w̃2(αk−1 + αk−2`−1R2`)dµ.

Choosing α = R and fixing ` = k gives (2.29). �

Remark 4. To see that the conclusion in Remark 1 holds, observe that the estimate
in (2.33) holds for H1 = H1(h) as long as ΣH1,p

and ΣH,p are o(1) close. That is, as
long as

sup{ds(ρ, ρ1) : ρ ∈ ΣH,p , ρ1 ∈ ΣH1,p
} = o(1),
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where we continue to write ds for the distance induced by the Sasaki metric. In
particular, it is enough that H and H1 are o(1) close in the C1 topology. That is, if in
local coordinates H = {(x′, 0)}, then H1(h) = {(x′, fh(x′)} with

‖fh‖L∞ + ‖∇fh‖L∞ = o(1).

Indeed, the same arguments apply to H1 with ιw,ε and w̃ε adapted to H1. Then, when
evaluating the limits in (2.33), the fact that ΣH1,p

and ΣH,p are o(1) close implies that
the right hand side converges as claimed to an integral over ΛH,T .

We now present the proof of Proposition 10.

2.4.1. Proof of Proposition 10. Let χ ∈ C∞c (T ∗M) so that Hpχ ≡ 0 on ΛH,T for
some T > 0. Also, fix w ∈ C∞c (H).

For all δ > 0, we can find (xj , rj) and (Ξj , Rj) with j = 1, . . .K(δ) so that if we set

Uj := {(x, ξ) : x ∈ B(xj , rj), ξ ∈ B(Ξj(x), Rj)} ⊂ ΣH,p and U =
K⋃
j=1

Uj ,

where B(xj , rj) ⊂ H and B(Ξj(x), Rj) ⊂ {ξ ∈ N∗xH : p(x, ξ) = 0} are balls of radius
rj and Rj respectively, then

supp(χ1Σ
H,p

) ⊂ U ,

and
K∑
j=1

σΣH,p
(Uj) ≤ σΣH,p

(
supp(χ1Σ

H,p
)
)

+ δ. (2.35)

Let χ̃j be a partition of unity for U subordinate to {Uj}. Apply Lemma 11 to obtain
the flow invariant extensions

χj ∈ C∞c (T ∗M ; [0, 1])

so that

(1) Hpχj ≡ 0 on ΛH,T ,
(2) (suppχj1Λ

H,T
) ⊂

⋃
|t|<T ϕt(Uj) ⊂ TT (Ξj , Rj),

(3) {x : (x, ξ) ∈ (suppχj1T ∗HM )} ⊂ B(xj , rj),

(4)
∑K

j=1 χj ≡ 1 on
⋃
|t|<T ϕt(U),

(5) 0 ≤
∑K

j=1 χj ≤ 1 on ΛH,T .

Note that, since Hpχ ≡ 0 on ΛH,T , we have

supp(χ1Λ
H,T

) =
⋃
|t|<T

Gt(suppχ1Σ
H,p

) ⊂
⋃
|t|<T

Gt(U).

Therefore,

supp
(

1−
K∑
j=1

χj

)
∩ supp(χ1Λ

H,T
) = ∅.
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By Lemma 14, we conclude

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣∣∣
ˆ
H
Oph(βεw)

[
Oph

(
1−

K∑
j=1

χj

)
Oph(χ)φh

]
dσH

∣∣∣∣∣∣ = 0.

We then have

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(χ)φh]dσH

∣∣∣∣ =

= lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣∣∣
ˆ
H
Oph(βεw)

[
Oph

( K∑
j=1

χj

)
Oph(χ)φh

]
dσH

∣∣∣∣∣∣ .
Now, to recover the spatial localization we introduce ψj ∈ C∞c (H) with suppψj ⊂
B(xj , 2rj) and

ψj(x
′)χj(0, x

′, ξ) = χj(0, x
′, ξ), (x′, ξ) ∈ T ∗HM.

Then,

‖Oph(χj)φh‖L2(H) = ‖ψjOph(χj)φh‖L2(H) +O(h
2−k

2 ).

In fact, on Rd with the standard quantization, we have [(1 − ψj)Oph(χj)φh]|H = 0.
Hence, the above estimate follows from the fact that quantizations differ by OL2→L2(h)
together with the standard restriction estimate for compactly microlocalized func-
tions [Zwo12, Lemma 7.10].

In what follows we bound ‖Oph(βε)[Oph(χjχ)φh]‖L2(H) using Lemma 14 applied to
χjχ. This can be done since Hp(χχj) ≡ 0 on ΛH,T . Lemma 14 yields that there exists
Cn,k > 0 depending only on k and ρj ∈ (B(xj , 3rj)×B(Ξ(xj), 3Rj))∩ΣH,p so that, for
any w̃ ∈ C∞c (T ∗M) extension of w with Hpw̃ ≡ 0 on ΛH,T , and Tρj := T |∂ξ1p(ρj)|,

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(χ)φh]dσH

∣∣∣∣
≤ lim

ε→0
lim sup
h→0

h
k−1

2

K∑
j=1

‖1suppψj‖L2(H)‖Oph(βεw)[Oph(χjχ)φh]‖L2(H)

≤ Cn,k
K∑
j=1

‖1suppψj‖L2(H)

(
T−1
ρj R

k−1
j

ˆ
Λ
H,T

χ2
jχ

2w̃2dµ

)1/2

≤ Cn,k
K∑
j=1

r
n−k

2
j R

k−1
2

j

(
T−1
ρj

ˆ
Λ
H,T

χ2
jχ

2w̃2dµ

)1/2

≤ Cn,k

 K∑
j=1

rn−kj Rk−1
j

1/2T−1
ρj

ˆ
Λ
H,T

K∑
j=1

χ2
jχ

2w̃2dµ

1/2

. (2.36)

Now, note that

σΣH,p
(Uj) = ckcnr

n−k
j Rk−1

j +O(rn−k+1
j Rk−1

j + rn−kj Rkj )
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Thus, for rj , Rj small enough

K∑
j=1

rn−kj Rk−1
j ≤ cn,k

K∑
j=1

σΣH,p
(Uj) ≤ cn,k

[
σΣH,p

(
suppχ1Σ

H,p

)
+ δ
]

(2.37)

where we use (2.35) in the last inequality.
Next, observe that by continuity of |HprH |−1 on ΣH,p , as rj , Rj → 0,

K∑
j=1

χ2χ2
j1Uj sup

Uj

|HprH |−1 → χ2|HprH |−1

pointwise and the dominated convergence theorem implies

T−1
ρj

ˆ
Λ
H,T

K∑
j=1

χ2
jχ

2w̃2dµ→
ˆ

Σ
H,p

χ2w2|HprH |−1dµH . (2.38)

Using (2.37) and (2.38) in (2.36), yields

lim
ε→0

lim sup
h→0

h
k−1

2

∣∣∣∣ˆ
H
Oph(βεw)[Oph(χ)φh]dσH

∣∣∣∣
≤ Cn,kc

1/2
n,k

[
σΣH,p

(
suppχ1Σ

H,p

)
+ δ
]1/2

(ˆ
Σ
H,p

χ2w2|HprH |−1dµH + δ

)1/2

.

Since δ > 0 is arbitrary, this completes the proof of the proposition.
�

3. Proof of Theorem 3

While Theorem 3 is only stated for Laplace eigenfunctions, in this proof we work
with operators P as in Theorem 7 and φh compactly microlocalized quasimodes (see
(1.6) and (1.7)). When the codimension of H is equal to 1 and ΣH,p is compact we can
include an estimate on the normal derivate in all of our results. In particular, for ν a
unit normal to H, we may replace all instances of

´
A φhdσH with∣∣∣ˆ

A
φhdσH

∣∣∣+
∣∣∣ˆ

A
hDνφhdσH

∣∣∣.
To see this, observe that if φh is a quasimode for P∈ Ψ∞(M) with real p so that H

is conormally transverse for p and {φh} is compactly microlocalized, then letting Dν

denote a vector field which agrees with the normal derivative on H and is extended
smoothly to M we obtain

hDνPφh = oL2(h‖φh‖L2).

In particular,
PhDνφh + [hDν , P ]φh = oL2(h‖φh‖L2). (3.1)

Let χ ∈ S0(T ∗M) have χ ≡ 1 in a neighborhood of N∗H and

suppχ ⊂
{

(x, ξ) ∈ T ∗M : |〈ν(x), ξ〉| > |ξ|
2

}
.
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Then, there exists E ∈ Ψ∞(M) so that

Oph(χ)[hDν , P ] = hEhDν

and in particular, applying Op(χ) to (3.1) we find

(Oph(χ)P + hE)hDνφh = oL2(h‖φh‖L2).

Now, σ(Oph(χ)P+hE) = χp. Therefore, since χ ≡ 1 in a neighborhood of N∗H and H
is conormally transverse (see (1.8)) for p, H is conormally transverse for χ(x, ξ)p(x, ξ).
Thus, Theorem 6 applies and gives

lim sup
h→0+

∣∣∣∣ˆ
A
whDνφhdσH

∣∣∣∣ ≤ Cn,k ˆ
π−1
H (A)

|w|
√
f̃ |HprH |−1dσΣH,p

,

where

µ̃H,χp = f̃dσΣH,p
+ λ̃H

with λ̃H ⊥ σΣH,p
and µ̃ is the defect measure for hDνφh. It is straightforward to see

that

µ̃ = |〈ν(x), ξ〉|2 µ,
and hence (for t0 > 0 chosen small enough)

µ̃H,χp = |〈ν(x), ξ〉|2µH,p = |〈ν(x), ξ〉|2(fdσΣH,p
+ λH ).

In particular,

lim sup
h→0+

∣∣∣∣ˆ
A
whDνφhdσH

∣∣∣∣ ≤ Cn,k ˆ
π−1
H (A)

|w|
√
f |HprH |−1|〈ν(x), ξ〉|dσΣH,p

≤ C̃
ˆ
π−1
H (A)

|w|
√
f |HprH |−1dσΣH,p

,

since ΣH,p is compact and f is supported on ΣH,p .

Remark 5. Note that the constant C̃ now depends on supΣ
H,p
|〈ν(x), ξ〉|.

This proves that the analog of Theorem 6 holds for hDνφh. One can then obtain
an analog of Theorem 7 for hDνφh, which in turn implies Theorem 3.

4. Proof of Theorem 2

We prove Theorem 2 by contradiction. Suppose that there exists a sequence {φhm}
and c > 0 such that ∣∣∣ˆ

A
φhmdσH

∣∣∣ ≥ ch 1−k
2

m . (4.1)

Then, we may extract a subsequence (still writing it as φhm) with defect measure
µ. Let µH be the induced measure on SN∗H and λH be the measure on SN∗H with
λH ⊥ σSN∗H and so that

µH = f σ
SN∗H + λH ,
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for f ∈ L1(SN∗H,σ
SN∗H ). Then,ˆ

π−1
H (A)

√
f dσ

SN∗H =

ˆ
RH∩π−1

H (A)

√
f dσ

SN∗H +

ˆ
RcH∩π

−1
H (A)

√
f dσ

SN∗H

=

ˆ
RcH∩π

−1
H (A)

√
f dσ

SN∗H , (4.2)

where the last equality follows from the fact that σ
SN∗H (RH ∩ π−1

H (A)) = 0. Also,
since λH ⊥ σ

SN∗H , there exist V,W ⊂ SN∗H so that λH (W ) = σ
SN∗H (V ) = 0 and

SN∗H = V ∪W . Next, we use that Lemma 15 below gives µH (RcH) = 0. It follows
that

ˆ
RcH∩π

−1
H (A)

√
f dσ

SN∗H ≤

(ˆ
RcH∩π

−1
H (A)

f dσ
SN∗H

) 1
2

= µH (RcH ∩ π−1
H (A) ∩W )

1
2 = 0.

(4.3)
Combining (4.2) and (4.3) gives

´
π−1
H (A)

√
f dσ

SN∗H = 0, and so Theorem 7 gives a

contradiction to (4.1).
�

Lemma 15. Let H ⊂ M and suppose that {φh} is a sequence of eigenfunctions with
defect measure µ. Then,

µH (RH) = µH (SN∗H).

Proof. Let B ⊂ SN∗H be an open set and for δ > 0 define

B2δ :=
⋃

−2δ<t<2δ

Gt(B).

Observe that the triple (S∗M,µ,Gt) forms a measure preserving dynamical system.
The Poincaré Recurrence Theorem [BS02, Lemma 4.2.1, 4.2.2] implies that for µ-a.e.

ρ ∈ B2δ there exist t±n → ±∞ so that Gt
±
n (ρ) ∈ B2δ. By the definition of B2δ, there

exists s±n with |s±n − t±n | < 2δ such that Gs
±
n (ρ) ∈ B. In particular, for µ-a.e. ρ ∈ B2δ,⋂

T>0

⋃
t≥T

Gt(ρ) ∩B 6= ∅, and
⋂
T>0

⋃
t≥T

G−t(ρ) ∩B 6= ∅. (4.4)

We have used that the sets ∪t≥TG±t(ρ) ∩B are non-empty, compact, and nested as T
grows.

We next show that (4.4) holds for µH -a.e. point in B. To do so, suppose the opposite.
Then, there exists A ⊂ B with µH (A) > 0 so that for each ρ ∈ A, there exists T > 0
with ⋃

t≥T
Gt(ρ) ∩B = ∅ or

⋃
t≥T

G−t(ρ) ∩B = ∅. (4.5)

We relate µ and µH using [CGT18, Lemma 6] which gives

µ|B2δ
= µHdt.

Then, if we let

Aδ :=
⋃

−δ<t<δ
Gt(A),
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we have

µ(Aδ) = 2δ · µH (A) > 0.

Then Aδ ⊂ B2δ, and for all ρ ∈ Aδ there exists T > 0 so that (4.5) holds. Since this
implies that (4.4) does not hold for a subset of B2δ of positive µ measure, we have
arrived at a contradiction. Thus (4.4) holds for µH a.e. point in B.

To finish the argument, let {Bk} be a countable basis for the topology on SN∗H.

Then for each k there is a subset B̃k ⊂ Bk of full µH measure so that for every ρ ∈ B̃k
relation (4.4) holds with B = Bk.

Let Xk := B̃k ∪ (SN∗H \ Bk). Next, note that ∩kXk ⊂ RH . Indeed, if ρ ∈ ∩kXk

and U ⊂ SN∗H is an open neighborhood of ρ, then there exists ` so that ρ ∈ B` ⊂ U .
In particular, since ρ ∈ X`, we know that ρ ∈ B̃` and so

⋂
T>0

⋃
t≥T G

t(ρ) ∩B` 6= ∅.
We conclude that ρ returns infinitely oftern to U .

Noting that Xk = B̃k ∪ (SN∗H \Bk) has full µH measure, we conclude that ∩kXk ⊂
RH has full measure and thus µH (RH ∩ SN∗H) = µH (SN∗H) as claimed. �

5. Recurrence: Proof of Theorem 4

This section is dedicated to the proof of Theorem 4. Recall that LH is defined
in (1.4) and denotes the loop set. In Section 5.1 we prove the theorem for assumptions
A, showing that σ

SN∗H (LH) = 0. We then use the fact that for H = {x} a point,
σ
SN∗H (LH) = 0 to prove case B, In Section 5.2 we present a tool for proving that
σ
SN∗H (RH ∩A) = 0 for A ⊂ SN∗H. In particular, we prove that it suffices to show that
t 7→ vol(Gt(A)) is integrable either for positive times or for negative ones. In Section 5.3
we show that for manifolds with Anosov flow we have σ

SN∗H (RH) = σ
SN∗H (RH ∩ AH),

where AH is the set of points in SN∗H at which the tangent space to SN∗H splits
into a direct sum of stable and unbounded directions. A similar statement is proved
for (M, g) with no focal points, but with NH instead of AH . In Section 5.4 we prove
Theorem 4 for assumptions C, D, E and F, by taking advantage of the fact when (M, g)
has Anosov flow we have some control on the structure of AH and, in some cases, on
the integrability of t 7→ vol(Gt(AH)).

5.1. Proof of parts A and B. In this section we prove that σ
SN∗H (RH) = 0 for

(M, g) and H satisfying the assumptions in parts A and B in Theorem 4.

Proof of part A. For this part we assume that (M, g) has no conjugate points
and H has codimension k > n+1

2 . The strategy of the proof is to show that the
set {ρ ∈ SN∗H : ∃t > 0 s.t. Gt(ρ) ∈ SN∗H} has dimension strictly smaller than
n − 1 = dimSN∗H, and hence has measure zero. We prove this using the implicit
function theorem together with the fact that, since (M, g) has no conjugate points, we
can control the rank of the exponential map.

Note that, since (M, g) has no conjugate points, for each point x ∈ M the expo-
nential map expx : TxM → M has no critical points. In particular, if we define the
map

ψx : R× SN∗xH →M, ψx(t, ξ) = πGt(x, ξ),
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with π : T ∗M →M the canonical projection we have for all (t, ξ) ∈ R× SN∗xH
rank (dψx)(t,ξ) = n− dimH.

Remark 6. Indeed, note that the fact that expx : TxM → M has no critical points
implies that T ∗xM \ {0} 3 (x, ξ) 7→ πG1(x, ξ) = πG|ξ|(x, ξ/|ξ|) has no critical points.

This implies that if we define

ψ : R× SN∗H →M, ψ(t, ρ) = πGt(ρ),

then its differential

(dψ)(t,ρ) : T(t,ρ)(R× SN∗H)→ TπGt(ρ)M

has
rank(dψ)(t,ρ) ≥ n− dimH = k,

for all (t, ρ) ∈ R× SN∗H. Note that ψ−1(H) = {(t, ρ) ∈ R× SN∗H : Gt(ρ) ∈ S∗HM}.
Let

fi ∈ C∞(M ;R), F = (f1, . . . , fk) : M → Rk,

F−1(0) = H, {dfi}ki=1 linearly independent on H.
(5.1)

The composition F ◦ ψ : R× SN∗H → Rk satisfies (F ◦ ψ)−1(0) = ψ−1(H). Note that
since rank(dψ)(t,ρ) ≥ k, we have

rank(d(F ◦ ψ)(t,ρ)) ≥ rank(dF )ψ(t,ρ) + rank(dψ)(t,ρ) − dimM ≥ 2k − n

for (t, ρ) ∈ (F ◦ ψ)−1(0). Since by assumption k > n+1
2 , we have

rank(d(F ◦ ψ)(t,ρ)) ≥ 2.

Moreover, since the geodesic flow is transverse to H along N∗H, d(F ◦ ψ)(t,ρ)∂t 6= 0

whenever Gt(ρ) ∈ SN∗H. Indeed, suppose that Gt(ρ) ∈ SN∗H and d(F ◦ ψ)(t,ρ)∂t = 0.

Observe that dψ(t,ρ)(∂t) = dπHp(G
t(ρ)), so that d(F ◦ ψ)(t,ρ)(∂t) = dπHp(G

t(ρ))(F )
and, lifting F to a function on T ∗M independent of the fiber variable, d(F ◦ψ)(t,ρ)(∂t) =

Hp(G
tt(ρ))F 6= 0 by the assumption that {(dfj)x : j = 1, . . . k} define H and Gt(ρ) ∈

SN∗H.
Applying the implicit function theorem, we see that given (t0, ρ0) ∈ ψ−1(H) with

Gt0(ρ0) ∈ SN∗H, there exists a neighborhood U of (t0, ρ0), an open neighborhood
V ⊂ R` of 0 for some ` ≤ n− 2, and smooth functions s : SN∗H → R, f : V → SN∗H
with s(ρ0) = t0, f(0) = ρ0, so that

U ∩ ψ−1(H) = {
(
s(f(q)), f(q)

)
: q ∈ V }.

In particular, since dimV < n− 1 = dim(SN∗H),

σ
SN∗H

(
ρ ∈ SN∗H : there exists t such that (t, ρ) ∈ U and Gt(ρ) ∈ SN∗H

)
= 0.

In particular, by compactness of [0, j], for any j > 0,

σ
SN∗H

(
ρ ∈ SN∗H : there exists t ∈ [0, j] such that Gt(ρ) ∈ SN∗H

)
= 0.

Taking the union over j > 0 we find

σ
SN∗H (LH) = 0.



EIGENFUNCTION AVERAGES 35

In particular, since LH ⊃ RH , this implies that σ
SN∗H (RH) = 0. �

Proof of part B. Now, suppose that (M, g) has no conjugate points and K ⊂ M is
a geodesic sphere. Then there exists p ∈ M and t ∈ R so that K = Ht:= πGt(SN∗H)
for H = {p}. Applying the result in Part A gives that σ

SN∗H (RH) = 0. In particular,
by Lemma 16 below we conclude σ

SN∗Ht
(RHt) = 0 as claimed.

�

Lemma 16. Suppose that H ⊂ M is a submanifold and for t ∈ R define Ht :=
πGt(SN∗H). Then, for any t ∈ R so that Ht is a smooth submanifold of M having
codimension 1

σΣH,p
(RH) = 0 if and only if σSN∗Ht(RHt) = 0.

Proof. First, observe that if H ⊂ M is a submanifold, then for t ∈ R and Ht :=
πGt(SN∗H), we have

SN∗Ht = Gt(SN∗H) tG−t(SN∗H)

whenever Ht is a smooth submanifold of M . To see this, observe that since Ht has
codimension 1, for each x0 ∈ Ht, there are exactly two elements in SN∗x0

Ht and hence
these elements are given by

Gt(x, ξ) and G−t(x,−ξ)

for some (x, ξ) ∈ SN∗H. Note that RHt = Gt(RH) ∪ G−t(RH). Therefore, since
G±t : SN∗H → SN∗Ht is a diffeomorphism onto its image, σ

SN∗H (RH) = 0 if and only
if σSN∗Ht(RHt) = 0. �

5.2. A tool for proving that σ
SN∗H (RH) = 0.

Given X ⊂ S∗M submanifold, we write vol(X) for the volume induced by the Sasaki
metric on X (see (1.3)). This section is dedicated to showing that σ

SN∗H (RH ∩A) = 0
whenever the map t 7→ vol(Gt(A)) is integrable either on (0,∞) or on (−∞, 0). We
will later use that the integrability of this function can always be established if (M, g)
has Anosov flow and A is a set of points in SN∗H at which the tangent to SN∗H space
is either stable or unstable.

We start with a lemma where we prove that for any ρ ∈ SN∗H the tangent space
Tρ(SN

∗H) has no component in the direction of RHp with p = |ξ|g(x).

Proposition 17. Let (M, g) be a Riemannian manifold, and let H ⊂M be a subman-
ifold. For all ρ ∈ SN∗H let πHp : Tρ(S

∗M) → RHp be the orthogonal projection map,
where Hp is the Hamiltonian vector field associated to p(x, ξ) = |ξ|g(x). Then,

πHp(Tρ(SN
∗H)) = {0}.

Proof. Let (x′, x′′) be Fermi coordinates near H where we identify H with {(x′, x′′) :
x′′ = 0}. Writing (ξ′, ξ′′) for the associated cotangent coordinates,

N∗H =
{

(x′, 0, 0, ξ′′) : x′ ∈ H, ξ′′ ∈ Rk
}
.
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This implies that, if ρ = (x′, 0, 0, ξ′′) ∈ N∗H, then

Tρ(N
∗H) = {〈v, ∂x′〉+ 〈w, ∂ξ′′〉 : v ∈ Rn−k, w ∈ Rk},

while, for (x, ξ) ∈ SN∗H, p(x, ξ) = |ξ|g(x) = |ξ′′| and hence

(Hp)(x,ξ) = 〈ξ′′, ∂x′′〉 (x, ξ) ∈ SN∗H.

Now, ∂x′′ is orthogonal to ∂x′ . Thus, since ∂ξ′′ is vertical and Hp is horizontal RHp is
orthogonal to TSN∗H. �

Lemma 18. Let A ⊂ SN∗H.

If

ˆ ∞
0

vol(Gt(A))dt <∞, then σ
SN∗H (L−∞H ∩A) = 0. (5.2)

If

ˆ 0

−∞
vol(Gt(A))dt <∞, then σ

SN∗H (L+∞
H ∩A) = 0. (5.3)

In particular, either assumption implies that σ
SN∗H (RH ∩A) = 0.

Proof. Suppose (5.2) holds. From now on, given ρ ∈ SN∗H and t ∈ R, we adopt the
notation

Jt(ρ) := dGt|Tρ(SN∗H) : Tρ(SN
∗H)→ dGt(Tρ(SN

∗H)). (5.4)

Note that ˆ
A
| det Jt(ρ)| dσ

SN∗H (ρ) = vol(Gt(A)). (5.5)

We claim that there exist constants C, δ > 0 so that for any Borel set A ⊂ SN∗H
and T ∈ R,

σ
SN∗H

(
T+δ⋃
t=T

Gt(A) ∩ SN∗H

)
≤ C

ˆ
A
| det JT (ρ)| dσ

SN∗H (ρ)= C vol(GT (A)). (5.6)

We postpone the proof of claim (5.6) until the end. Assuming (5.6) for now, we
note that since t 7→ Gt is a smooth group, for δ > 0 small enough and t ∈ [T, T + δ],

|det Jt(ρ)| ≤ 2| det JT (ρ)|. (5.7)

Hence, ∑
n>0

σ
SN∗H

(
ρ ∈ A : G−t(ρ) ∈ SN∗H, for some t ∈ [nδ, (n+ 1)δ]

)
≤

≤ C
∑
n>0

ˆ
A
| det Jnδ(ρ)| dσ

SN∗H (ρ)

≤ 2Cδ−1

ˆ ∞
0

ˆ
A
|det Jt(ρ)| dσ

SN∗H (ρ)dt <∞.

Therefore, by the Borel–Cantelli Lemma,

σ
SN∗H

(
ρ ∈ A : G−t(ρ) ∈ SN∗H for infinitely many t ∈ [0,∞)

)
= 0

and in particular, σ
SN∗H (L−∞H ∩A) = 0. The case of (5.3) is identical.
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In order to finish the proof of the lemma we need to establish the claim in (5.6). We

proceed to do this. Fix ε > 0. Let {Ai,ε}N(ε)
i=1 be a partition of A ⊂ SN∗H into sets of

radius less than ε.
Fix coordinates, y on Ai,ε. Then there exists ρi ∈ Ai,ε so that for all ρ ∈ Ai,ε,

Gt(ρ) = Gt(ρi)) + dGt(y(ρ)− yi(ρ)) +O(ε2)

= Gt(ρi) + dGt(πi(y(ρ)− yi(ρ))) +O(ε2)

where πi : Tρi(T
∗M)→ Tρi(SN

∗H) is the projection operator. In the last line, we use
that since y, yi ∈ SN∗H, y − yi = vd(ρ, ρi) +O(d(ρ, ρi)

2) where v ∈ TρiSN∗H.
Therefore, using (5.5)

σ
SN∗H

( T+δ⋃
t=T

Gt(Ai,ε)
)
≤

sup
t∈[T,T+δ]

|det Jt(ρi)| · σSN∗H (Ai,ε)(1 +O(ε)) sup
ρ∈Ai,ε

#{t ∈ [T, T + δ] : Gt(ρ) ∈ SN∗H}.

Now, Proposition 17 together with the compactness of SN∗H give that for δ > 0 small
enough and all ρ ∈ A,

#{t ∈ [T, T + δ] : Gt(ρ) ∈ SN∗H} ≤ 1.

In particular,

σ
SN∗H

( ⋃
t∈[T,T+δ]

Gt(A)
)
≤
∑
i

σ
SN∗H

( ⋃
t∈[T,T+δ]

Gt(Ai,ε)
)

≤
∑
i,j

sup
t∈[T,T+δ]

|det Jt(ρi)| · σSN∗H (Ai,ε)(1 +O(ε))

≤
∑
i,j

2|det JT (ρi)| · σSN∗H (Ai,ε)(1 +O(ε))

where in the last line we use (5.7).
Sending ε→ 0, since dGt is continuous, the Dominated Convergence Theorem shows

that

σ
SN∗H

( T+δ⋃
t=T

Gt(A)
)
≤
ˆ
A

2|det JT (ρ)| dσ
SN∗H . (5.8)

as desired. �

5.3. Manifolds with no focal points or Anosov flow. This section is dedicated
to the proof of Theorem 8. We need a preliminary lemma.

Lemma 19. Suppose that ρ0 ∈ SN∗H with Gt0(ρ0) ∈ SN∗H for some t0 > 0. If there
exists w ∈ Tρ0SN

∗H with dGt0w /∈ TGt0ρ0
SN∗H ⊕ RHp, then there exists Ut0,ρ0 ⊂

R× SN∗H a neighborhood of (t0, ρ0) such that

σ
SN∗H

(
ρ ∈ SN∗H : there exists t with (t, ρ) ∈ Ut0,ρ0 and Gt(ρ) ∈ SN∗H

)
= 0.
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Proof. Define
ψ : R× SN∗H → S∗M, ψ(t, ρ) = Gt(ρ),

so that
dψ(t,ρ)(τ, w) = τHp(G

t(ρ)) + dGtρw.

and let f1, . . . fn ∈ C∞(S∗M ;R) be defining functions for SN∗H near Gt0(ρ0). In
particular,

SN∗H =

n⋂
i=1

{fi = 0}, {dfi} are linearly independent on SN∗H.

Finally, let F ∈ C∞(S∗M ;Rn) be given by

F = (f1, . . . , fn).

Note that Gt(ρ) ∈ SN∗H if and only if (t, ρ) ∈ (F ◦ ψ)−1(0). Now, since dGt0w /∈
TGt0ρ0

(SN∗H)⊕ RHp, Proposition 17 gives that the vectors

d(F ◦ ψ)(t0,ρ0)(0,w) = dFGt0 (ρ0)

(
dψ(t0,ρ0)(0,w)

)
and

d(F ◦ ψ)(t0,ρ0)(τ, 0) = dFGt0 (ρ0)

(
dψ(t0,ρ0)(τ, 0)

)
are linearly independent. We then have that

rank(d(F ◦ ψ)(t0,ρ0)) ≥ 2.

By the implicit function theorem, there is a neighborhood U of (t0, ρ0), a neigh-
borhood V ⊂ R` of 0 for some ` ≤ n − 2, and smooth functions s : SN∗H → R,
α : V → SN∗H with s(0) = t0, α(0) = ρ0, so that

U ∩ ψ−1(SN∗H) = {(s(α(q)), α(q)) : q ∈ V }.
In particular, since dimV < n− 1 = dim(SN∗H),

σ
SN∗H

(
ρ ∈ SN∗H : there exists t such that (t, ρ) ∈ U, Gt(ρ) ∈ SN∗H

)
= 0,

as claimed. �

Remark 7. In fact Lemma 19 shows that the points ρ ∈ SN∗H near ρ0 which loop at
times near t0 are contained in a smooth submanifold of dimension < n− 1.

Since it will be used frequently in this section, we recall the definition (1.17) of an
Anosov flow: For all ρ ∈ S∗M ,

Tρ(S
∗M) = E+(ρ)⊕ E−(ρ)⊕ RHp.

where E−, E+ are stable and unstable directions as before. Moreover, there exists
C > 0 so that for all ρ ∈ S∗M ,

|dGt(v)| ≤ Ce−t/C |v| for v ∈ E+ and t→ +∞,

|dGt(v)| ≤ C et/C |v| for v ∈ E− and t→ −∞.

Recall also the notation N+(ρ), N−(ρ) from (1.14), SH , MH from (1.15) and
NH , AH from (1.16). Next we present a proposition in which we show that if (M, g)
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has Anosov geodesic flow, then for any compact subset K ⊂ SN∗H\SH there is a
decomposition of K, K = K+ ∪ K− and T sufficiently large such that if ρ0 ∈ K±

and Gt0(ρ0) ∈ SN∗H with either ∓t0 > T , then there exists w ∈ Tρ0SN
∗H with

dGt0w /∈ TGt0ρ0
SN∗H ⊕ RHp. This will allow us to later use Lemma 19 to prove

Theorem 8. We define the following functions m,m± : SN∗H → {0, . . . , n− 1}
m(ρ) := dim(N+(ρ) +N−(ρ)), m±(ρ) := dimN±(ρ) (5.9)

We first show that continuity of E±(ρ) implies that m, m± are upper semicontinuous.

Lemma 20. Let m,m± be as in (5.9). Then m, m± are upper semicontinuous.

Proof. We prove this for m+(ρ) = dim(TρSN
∗H ∩E+(ρ)). Let ρ ∈ SN∗H and ρj → ρ.

Suppose that lim supjm+(ρj) > m+(ρ). Then, without loss, we may assume that

dim(TρjSN
∗H ∩ E+(ρj)) > dim(TρSN

∗H ∩ E+(ρ))

for all j. In particular, there exist {v1,j , . . . vm+(ρ)+1,j} ∈ E+(ρj) ∩ TρjSN∗H with

{vi,j}m+(ρ)+1
i=1 orthonormal. Extracting a subsequence so that vi,j −→

j→∞
vi ∈ TρT

∗M ,

we have, by continuity of E+(ρ) and TρSN
∗H, that vi ∈ E+(ρ) and vi ∈ TρSN∗H. In

particular, vi ∈ TρSN∗H ∩ E+(ρ) and {vi}m+(ρ)+1
i=1 are orthonormal, contradicting the

definition of m+(ρ). �

Proposition 21. Suppose (M, g) has Anosov geodesic flow and let K ⊂ SN∗H\SH be
a compact set. There exist positive constants T, ε > 0 so that if ρ0 ∈ K, |t0| ≥ T , and

Gt0(ρ0) ∈ B(ρ0, ε) ∩ SN∗H,
then there is w ∈ Tρ0(SN∗H) with

dGt0(w) /∈ TGt0 (ρ0)(SN
∗H)⊕ RHp. (5.10)

Proof. Throughout the proof of this proposition we will use the norm induced by the
Sasaki metric on TT ∗M . Note, however, that any inner product norm suffices. Let
ρ0 ∈ K. Since Tρ0(SN∗H) 6= N+(ρ0)⊕N−(ρ0), we may choose

u ∈ Tρ0(SN∗H) \ (N+(ρ0)⊕N−(ρ0)), ‖u‖ = 1.

Now, let u+ ∈ E+(ρ0) and u− ∈ E−(ρ0) be such that

u = u+ + u−.

Without loss of generality, we assume that u− is orthogonal to N−(ρ0) and, since ρ0

varies in a compact subset of SN∗H\AH , we may assume uniformly for ρ0 ∈ K that

M−1‖u+‖ ≤ ‖u−‖ ≤M‖u+‖.
Since dGt : E−(ρ0)→ E−(Gt(ρ0)) is an isomorphism,

dim
(
RdGt(u−)⊕dGt(N−(ρ0))

)
= 1 + dimN−(ρ0).

Note that for m− as in (5.9), m− is upper semicontinuous and we may choose ε > 0
uniform in ρ0 ∈ SN∗H, so that dimN−(Gt(ρ0)) ≤ dimN−(ρ0) for all t such that
Gt(ρ0) ∈ B(ρ0, ε). For such values of t we then have

dim
(
RdGt(u−)⊕dGt(N−(ρ0))

)
≥ 1 + dimN−(Gt(ρ0)). (5.11)
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Next, we note that span
(
dGt(u−), dGt(N−(ρ0))

)
⊂ E−(Gt(ρ0)). Also, note that

if dGt(w) ∈ E−(Gt(ρ0))\N−(Gt(ρ0)), then dGt(w) /∈ TGt(ρ0)(SN
∗H). In particular,

relation (5.11) gives that there exists a linear combination

wt = at u− + e−(t),

with e−(t) ∈ N−(ρ0), so that∥∥πt,ρ0(dGtwt)
∥∥ = 1 =

∥∥dGtwt

∥∥ ,
where πt,ρ0 : TGt(ρ0)(S

∗M) → Vt,ρ0 is the orthogonal projection map onto a subspace
Vt,ρ0 of TGt(ρ0)(S

∗M) chosen so that TGt(ρ0)(S
∗M) = Vt,ρ0 ⊕ TGt(ρ0)(SN

∗H) is an or-
thogonal decomposition. If we had that wt was a tangent vector in TGt(ρ0)(S

∗M),
then we would be done. However, since u− is not necessarily in TGt(ρ0)(S

∗M) we have
to modify wt a bit. Consider the vector

w̃t = at u + e−(t),

and note that w̃t ∈ Tρ0(SN∗H). Then,

dGt(w̃t) = dGt(wt) + at dG
t(u+).

By the definition of Anosov geodesic flow (see (1.17)), for all δ > 0, there exists
T = T (δ) > 0 so that

‖(dGt|E−)−1‖ ≤ δ, t ≥ T.
Thus, since wt ∈ E−(ρ0) and ‖wt‖ ≤ δ, we have

|at| ≤ δ‖u−‖−1, t ≥ T .

Observe next, [Ebe73a, Corollary 2.14] that there exists B > 0 uniform in TS∗M
so that for v ∈ E+(ρ), and t ≥ 0 ‖dGtv‖ ≤ B‖v‖. In particular, choosing δ <
1

2B‖u−‖‖u+‖−1, for t > T (δ,K),

‖πt,ρ0(dGtw̃t)‖ ≥ ‖πt,ρ0(dGtwt)‖ − ‖at πt,ρ0(dGtu+)‖ > 1

2
.

Hence, there exists ε > 0 and T > 0 (uniform for ρ0 ∈ K) so that if Gt0(ρ0) ∈
SN∗H ∩B(ρ0, ε) for some t0 with |t0| > T , then there is w = w̃t0 ∈ Tρ0(SN∗H) so that

dGt0(w) /∈ TGt0 (ρ0)(SN
∗H)⊕ RHp. (5.12)

�

We now show that for manifolds with Anosov geodesic flow the set of points in
RH∩[SH \MH ] has measure zero.

Lemma 22. Suppose that (M, g) has Anosov geodesic flow. Then

σ
SN∗H

(
L−∞H ∩ {ρ ∈ SN∗H : Tρ(SN

∗H) ⊂ E+(ρ)}
)

= 0

and

σ
SN∗H

(
L+∞
H ∩ {ρ ∈ SN∗H : Tρ(SN

∗H) ⊂ E−(ρ)}
)

= 0.

In particular, σ
SN∗H

(
RH ∩ [SH \MH]

)
= 0.
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Proof. Observe that setting

A := {ρ ∈ SN∗H : Tρ(SN
∗H) ⊂ E+(ρ)},

we have, using the definition of Anosov flow (1.17)),

| det Jt(ρ)| ≤ Cn−1e−(n−1)t/C , t ≥ 0,

fot Jt(ρ) defined in (5.4). It follows that

vol(Gt(A)) ≤ Cn−1e−(n−1)t/Cσ
SN∗H (A),

and so ˆ ∞
0

vol(Gt(A))dt <∞.

Therefore, the proof is complete by Lemma 18. The E− case is identical where we
integrate backwards in time rather than forwards. �

In what follows we write

M±H :=
{
ρ ∈ SN∗H : N±(ρ) 6= {0}

}
,

and note that

NH = SH ∪ (M+
H ∩M

−
H),

and

SN∗H \ NH =
[
SN∗H \ (SH ∪M+

H)
]⋃[

SN∗H \ (SH ∪M−H)
]
.

We now prove the analog of Proposition 21 for manifolds with no focal points.

Proposition 23. Suppose (M, g) has no focal points and let K ⊂ SN∗H \ (SH ∪M±H)
be a compact set. There exist positive constants T, ε > 0 so that if ρ0 ∈ K, ∓t0 ≥ T ,
and

Gt0(ρ0) ∈ B(ρ0, ε) ∩ SN∗H,
then there is w ∈ Tρ0(SN∗H) with

dGt0(w) /∈ TGt0 (ρ0)(SN
∗H)⊕ RHp. (5.13)

Proof. We prove the lemma for K ⊂ SN∗H\(SH∪M−H), the other case follows similarly
after sending t→ −∞ rather than t→∞.

Define Cε+(ρ) ⊂ TρS
∗M as the conic set of vectors forming at least an ε > 0 angle

with E+(ρ). Since m is upper semicontinuous, E+ is continuous, and TρSN
∗H 6=

N+(ρ) +N−(ρ), there exists ε > 0 so that TρSN
∗H ∩ Cε+(ρ) 6= 0 for all ρ ∈ K.

Next, let ρ0 ∈ K. Since N−(ρ0) = {0}, the upper semicontinuity of m− implies
that N−(ρ) = {0} for all ρ ∈ B(ρ0, ε), after possibly shrinking ε. In particular, the
continuity of E− implies that there exists δ > 0 so that for ρ ∈ B(ρ0, ε), the angle
between E−(ρ) and TρSN

∗H is larger than δ (after possibly shrinking ε).
We claim that for w ∈ Cε+(ρ0)\{0}, there exists T = T (δ, ε) so that for t ≥ T ,

dist
( dGtw

‖dGtw‖
, E−(Gt(ρ0))

)
≤ δ. (5.14)

The proof of (5.14) is postponed until the end.
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To finish the argument we argue by contradiction. Suppose that for t0 ≥ T , we have
Gt(ρ0) ∈ B(ρ0, ε) and

dGt0(Tρ0SN
∗H) = TGt0 (ρ0)SN

∗H.

Then, using that Tρ0SN
∗H ∩ Cε+(ρ0) 6= 0, we conclude from the claim in (5.14) applied

to some w ∈ Tρ0SN
∗H ∩ Cε+(ρ0)\{0} that there exists v ∈ E−(Gt(ρ0)) so that the

angle between v and dGtw
‖dGtw‖ ∈ TGt0 (ρ0)SN

∗H is smaller than δ. In particular, setting

ρ := Gt0(ρ0) ∈ B(ρ0, ε) we conclude that the angle between TρSN
∗H and E−(ρ) is

smaller than δ. And this is a contradiction since ρ ∈ B(ρ0, ε). This concludes the
proof of the proposition once we have (5.14).

It only remains to prove the claim in (5.14). Let w ∈ Cε+(ρ0)\{0}. Then we can
write

w = ũ+ + ṽ

with ũ+ ∈ E+(ρ0) and ṽ ∈ Ṽ (ρ0), where Ṽ (ρ0) ⊂ TρS
∗M denotes the collection of

vertical vectors ṽ ∈ Tρ0SN
∗H with 〈ṽ, Hp〉gs = 0 where gs is the metric induced on

TT ∗M be the Sasaki metric. Now, since E+(ρ0) ∩ Ṽ (ρ0) = {0} [Ebe73a, see right
before Proposition 2.7] and E+(ρ) is continuous, there exists cε > 0 depending only
on ε > 0 small enough so that

cε‖ũ+‖ ≤ ‖w‖ ≤
1

cε
‖ṽ‖.

For any et ∈ E−(Gt(ρ0)) we decompose∥∥∥∥ dGtw

‖dGtw‖
− et

∥∥∥∥ ≤ ∥∥∥∥ dGtũ+

‖dGtw‖

∥∥∥∥+

∥∥∥∥ dGtṽ

‖dGtw‖
− dGtṽ

‖dGtṽ‖

∥∥∥∥+

∥∥∥∥ dGtṽ

‖dGtṽ‖
− et

∥∥∥∥ , (5.15)

and find et ∈ E−(Gt(ρ0)) so that each term in the RHS has size smaller than δ/3.
Note that since ṽ is vertical, the Jacobi field through Gt(ρ) with initial conditions

given by J(0) = (dGtṽ)h and J̇(0) = (dGtṽ)v, where ()h and ()v denote respectively
the horizontal and vertical parts, has J(−t) = 0 and hence, by [Ebe73a, Remark 2.10],
there exists T1 = T1(δ) > 0 so that for Gtρ in a compact set,

dist(dGtṽ/‖dGtṽ‖, E−(Gt(ρ))) < δ/3.

In particular, for all t ≥ T1, there exists et ∈ E−(Gt(ρ0)) so that∥∥∥∥ dGtṽ

‖dGtṽ‖
− et

∥∥∥∥ ≤ δ

3
. (5.16)

Next, observe that by [Ebe73a, Remark 2.10], for all α > 0, there exists T2 = T2(α)
so that for all ρ, and |t| ≥ T2,

‖dG−t|dGtṼ (ρ)‖ ≤ α. (5.17)

In particular, by (5.17), given R > 0 there exists T3 = T3(R, ε) > 0 so that for |t| ≥ T3

and z ∈ Cε+(ρ0)\{0},
‖dGtz‖ ≥ R‖z‖.
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Furthermore, by [Ebe73a, Corollary 2.14], there exists B > 0 so that for all t ≥ 0 and
all u ∈ E+(ρ0),

‖dGtu‖ ≤ B‖u‖. (5.18)

In particular, setting Rδ,ε := 3Bc−1
ε δ−1, and letting |t| ≥ T3(Rδ,ε, ε),∥∥∥∥ dGtũ+

‖dGtw‖

∥∥∥∥ ≤ B‖ũ+‖
‖dGtw‖

≤ B‖ũ+‖
Rδ,ε‖w‖

≤ δ

3
. (5.19)

On the other hand, for |t| ≥ T3(Rδ,ε, ε),∥∥∥ dGtṽ

‖dGtṽ‖
− dGtṽ

‖dGtw‖

∥∥∥ =
1

‖dGtw‖
|‖dGtṽ‖ − ‖dGtw‖| ≤ ‖dG

tũ+‖
‖dGtw‖

≤ δ

3
. (5.20)

Taking T = max
(
T3(Rδ,ε, ε), T1(δ)

)
we conclude that the claim in (5.14) holds after

combining (5.16),(5.19), and (5.20), into (5.15).
�

Now that we have introduced Propositions 17, 23, and 21, we are ready to present
the proof of Theorem 8.

Proof of Theorem 8. We start with the case in which (M, g) has no focal points.
Recall from Lemma 20 that m,m± from (5.9) are upper semicontinuous. In particular,
the sets

SN∗H\SH = {ρ ∈ SN∗H : m(ρ) < n−1} and SN∗H\M±H = {ρ ∈ SN∗H : m±(ρ) < 1}

are open, and hence SN∗H \ (SH ∪M±H) are open as well. Thus, there exist collections

{K±` }` of compact sets

K+
` ⊂ SN∗H \ (SH ∪M+

H), K+
` ⊂ SN∗H \ (SH ∪M−H)

with

σ
SN∗H (K±` ) ↑ σ

SN∗H (SN∗H \ SH ∪M±H).

Since

SN∗H \ (SH ∪ (M+
H ∩M

−
H)) =

[
SN∗H \ (SH ∪M+

H)
]⋃[

SN∗H \ (SH ∪M−H)
]
,

the proof of the theorem will follow once we prove that for any compact subset K± ⊂
SN∗H \ (SH ∪M±H)

σH(RH ∩K±) = 0. (5.21)

We then proceed to prove (5.21).
Let T± > 0 and ε > 0 be the constants associated to K± given by Proposition 23.

Since

RH ⊂
[ ⋂
m>0

⋃
n≥m

Aεn

]⋂[ ⋂
m>0

⋃
n≥m

Aε−n

]
,

with

Aεn :=
{
ρ ∈ SN∗H : Gt(ρ) ∈ B(ρ, ε) for some t ∈ [n, n+ 1]

}
,

we have that (5.21) is a consequence of showing that
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σ
SN∗H (Aεn ∩K±) = 0, (5.22)

for all n with ∓n ≥ T±.

To prove (5.22) let ρ0 ∈ Aεn ∩K. Since Gt0(ρ0) ∈ B(ρ0, ε) for some t0 ∈ [n, n + 1],
and ∓t0 ≥ T , Proposition 23 combined with Lemma 19 give that there exists Ut0,ρ0 ⊂
R× SN∗H a neighborhood of (t0, ρ0) for which

σ
SN∗H

(
ρ ∈ SN∗H : Gt(ρ) ∈ SN∗H for some (t, ρ) ∈ Ut0,ρ0

)
= 0.

Since, K± is compact if Aεn is closed, Aεn ∩K± is compact and we can cover [n, n +
1]× (K± ∩Aεn) by finitely many such neighborhoods and in particular,

σ
SN∗H

(
ρ ∈ SN∗H : Gt(ρ) ∈ SN∗H for some (t, ρ) ∈ [n, n+ 1]× (K± ∩Aεn)

)
= 0.

and hence σ
SN∗H (Aεn ∩K±) = 0. Therefore, we have (5.22) provided we show that Aεn

is closed
We dedicate the end of the proof to showing that Aεn is closed. To see this, let

{ρj} ⊂ Aεn with ρj → ρ ∈ SN∗H. For each j let tj ∈ [n, n+ 1] be such that Gtj (ρj) ∈
B(ρj , ε). By possibly taking a subsequence of times, we may assume that there exists
t ∈ [n, n + 1] with the property that tj → t as j → ∞. In particular, we have that
Gtj (ρj)→ Gt(ρ). Then, the triangle inequality

d(Gt(ρ), ρ) ≤ lim sup
j→∞

(
d(ρ, ρj) + d(ρj , G

tj (ρj)) + d(Gtj (ρj), G
t(ρ))

)
≤ ε

shows that ρ ∈ Aε,n as claimed.
In the case that (M, g) has Anosov geodesic flow, we simply appeal to Proposition 21

in place of Proposition 23 to show that, for K ⊂ SN∗H \ SH compact,

σ
SN∗H (K ∩RH) = 0.

and hence using that SN∗H\SH is open and approximating SN∗H\SH by compact sets,
we see that σ

SN∗H (RH\SH) = 0. Then, applying Lemma 22, σ
SN∗H

(
RH∩[SH\MH ]

)
= 0

and the theorem follows. �

5.4. Proof of parts C, D, E and F. In all of these cases (M, g) has Anosov flow
(see (1.17)) for the definition.

Proof of part E. For this part we assume that (M, g) has Anosov geodesic flow,
non-positive curvature, and H is totally geodesic.

We use that, since there are no parallel Jacobi fields on a manifold with non-positive
curvature and Anosov geodesic flow [Ebe73b, Theorem 1 (6)], the spaces E+ and E−
are nowhere horizontal. In particular, for any horizontal vector vh, ‖dGtvh‖ → ∞
for t → ±∞. To take advantage of this, fix ρ = (x, ξ) ∈ SN∗H. Since H is totally
geodesic, the horizontal lift vh of any v ∈ TxH satisfies

vh ∈ Tρ(SN∗H).

On the other hand, vh /∈ E+(ρ) ∪ E−(ρ).
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Suppose that H is n − 1 dimensional. Then, we may choose linearly independent
vectors {v1, v2, . . . , vn−1} ∈ TxH and get

Tρ(SN
∗H) = span{vh1 , vh2 , . . . , vhn−1}.

In particular, this yields that

Tρ(SN
∗H) ∩ (E+(ρ) ∪ E−(ρ)) = ∅.

Therefore,
SH = ∅,

and hence σ
SN∗H (RH) = 0.

To finish the proof we explain that it suffices to assume that H is n−1 dimensional.
Note that since H is totally geodesic submanifold, Ht := π(Gt(SN∗H)) is also a totally
geodesic submanifold. Now, for t small,

Gt : N∗H →M

is an isometry, and in particular, Ht is an embedded submanifold of dimension n− 1.
Moreover, by Lemma 16, σSN∗Ht(RHt) = 0 implies σ

SN∗H (RH) = 0. Therefore, it is
enough to show that σ

SN∗H (RH) = 0 for every totally geodesic submanifold H of
dimension n− 1 which we have already done.

�

The proofs of Parts C, D, and F, rely on showing that in each of these settings
one has that the set of points ρ ∈ RH for which Tρ(SN

∗H) is purely stable, or purely
unstable, has full measure and applying Lemma 22.

Proof of part D. For this part we assume that (M, g) is a surface with Anosov geo-
desic flow. Theorem 8 implies

σ
SN∗H (RH) = σ

SN∗H

(
RH ∩ SH ∩MH

)
.

But, since dimM = 2, we have dimSN∗H = 1 and, since E+(ρ) ∩ E−(ρ) = {0},
MH = ∅. Thus, σ

SN∗H (RH) = 0 as claimed. �

Proof of part F. For this part we assume that (M, g) has Anosov geodesic flow and
H is a subset of a stable or unstable horosphere (see e.g. [Rug07, Chapter 4] or [KH95,
Section 17.6, Theorem 6.2.8] for a definition a horosphere). The crucial fact is that
a stable horosphere, H+ has the property that TρSN

∗H+ ⊂ E+(ρ) and an unstable
horosphere, H− has TρSN

∗H− ⊂ E−(ρ). That σ
SN∗H (RH) = 0 then follows immediately

from Lemma 22. �

Proof of part C. In part C, we claim that on a manifold of constant negative cur-
vature, σ

SN∗H (RH) = 0 for all H ⊂ M . We start by showing that it suffices to as-
sume that H is n − 1 dimensional. Since the exponential map is a radial isometry,
Ht = {expx(tξ) : (x, ξ) ∈ SN∗H} is an embedded submanifold of dimension n− 1 for
small t. Moreover, by Lemma 16, σSN∗Ht(RHt) = 0 implies σ

SN∗H (RH) = 0. Therefore,
it is enough to show that σ

SN∗H (RH) = 0 for every submanifold H of dimension n−1.
We note that by Theorem 8 we have

σ
SN∗H (RH) = σ

SN∗H (RH ∩ SH ∩MH) .
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Lemma 24. Let (M, g) be a compact manifold with constant negative curvature and
H ⊂M be a closed embedded hypersurface. Then

σ
SN∗H (SH ∩MH) = 0.

Note that this result combined with Theorem 8 yield that σ
SN∗H (RH) = 0 finishing

the proof of Part C.
�

The rest of this section is dedicated to the proof of Lemma 24. Since we may work
locally to prove Lemma 24, we lift the hypersurface H to the universal cover Hn.
Hence, in this section we work with the hyperbolic space

Hn =
{

(x0, x1, . . . , xn) ∈ Rn+1 : x0 > 0, x2
0 −

n∑
i=1

x2
i = 1

}
.

We endow Hn with the metric g = dx2
0−
∑n

i=1 dx
2
i . To prove Lemma 24 we adopt the

notation

〈v, w〉g = −v0w0+
n∑
i=1

viwi

for the inner product induced by the metric g. We also write 〈v, w〉 = v0w0 +
∑n

i=1 viwi
for the usual inner product in Rn+1. With this notation the sphere bundle takes the
form SHn = {(x,w) : x ∈ Hn, w ∈ Rn+1, 〈w,w〉g = 1, 〈x,w〉g = 0}, and its tangent
space at p = (x,w) can be decomposed into a direct sum Tp(SHn) = E+(p)⊕E−(p)⊕
RX where the stable and stable fibers are Ẽ−(p) = {(v,−v) : 〈x, v〉g = 〈w, v〉g = 0}
and Ẽ+(p) = {(v, v) : 〈x, v〉g = 〈w, v〉g = 0} and X is the generator of the geodesic
flow. Since we work in the co-sphere bundle, we record the structure of the dual spaces.
The co-sphere bundle is

S∗Hn = {(x, ξ) : x ∈ Hn, ξ ∈ Rn+1, 〈ξ, ξ〉g = 1, 〈x, ξ〉 = 0},

and the tangent space at any ρ = (x, ξ) ∈ S∗Hn is

Tρ(S
∗Hn) = {(vx, vξ) : 〈x, vx〉g = 〈ξ, vx〉+ 〈x, vξ〉 = 〈ξ, vξ〉g = 0}.

We then have

Tρ(S
∗Hn) = E+(ρ)⊕ E−(ρ)⊕ RHp,

where

E+(ρ) = {((v0, v
′), (v0,−v′)) : 〈x, v〉g = 〈ξ, v〉 = 0}. (5.23)

and

E−(ρ) = {((v0, v
′), (−v0, v

′)) : 〈x, v〉g = 〈ξ, v〉 = 0}. (5.24)

Here, and in what follows, we adopt the notation (z0, z
′, zd) to represent a point in

R× Rn−1 × R.

Proof of Lemma 24. We assume that γ is a parametrization of H ⊂ Hn in a neigh-
borhood V ⊂ H of y. That is,

H ∩ V = {(α(x′), x′, γ(x′)) : x′ ∈ Ṽ },
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for some Ṽ ⊂ Rn−1 open, and where

α(x′) :=
√

1 + |x′|2 + γ(x′)2.

Using that x0 − α(x′) and xn − γ(x′) are defining functions for H as a subset of Rn+1

we find that

N∗H = {(α, x′, γ, −λfα, λ(fx′ − ∂γ), λ(fγ + 1)) : λ ∈ R},
where to shorten notation we write

f := γ − 〈x′, ∂γ〉.
This yields that

SN∗H = {(α, x′, γ, −λfα, λ(fx′ − ∂γ), λ(fγ + 1))},
where

λ := (1 + |∂γ|2 + f2)−
1
2 .

Therefore, given ρ = (x, ξ) ∈ SN∗H we find

Tρ(SN
∗H) = {(〈∂α,w〉, w, 〈∂γ,w〉, 〈A,w〉, 〈B,w〉, 〈C,w〉) : w ∈ Rn−1}, (5.25)

where

A := −∂(λfα), B := ∂(λ(fx′ − ∂γ)), C := ∂(λ(fγ + 1)).

We assume without loss of generality that y = (α(0), 0, γ(0)), where γ(0) = 0 and
∂γ(0) = 0. Note that, with

γ(x′) =
1

2
〈Qx′, x′〉+O(|x′|3),

where Q is an (n− 1)× (n− 1) symmetric matrix we have

α = 1 +
1

2
|x′|2 +O(|x′|4), ∂α = x′ +O(|x′|3),

f = −1

2
〈Qx′, x′〉+O(|x′|3), ∂f = −Qx′ +O(|x′|2),

λ = 1− 1

2
|Qx′|2 +O(|x′|4), ∂λ = −〈Q2x′, w〉+O(|x′|3).

Now, suppose there exist two non-zero vectors

X+ ∈ E+(ρ) ∩ Tρ(SN∗H) and X− ∈ E−(ρ) ∩ Tρ(SN∗H).

Then, according to (5.25), (5.23) and (5.24) we have that there exist w+, w− ∈ Rn−1

so that
X± = (〈∂α,w±〉, w±, 〈∂γ,w±〉, 〈A,w±〉, 〈B,w±〉, 〈C,w±〉)

and satisfying

i) 〈∂α,w±〉 = ±〈A,w±〉
ii) w± = ∓〈B,w±〉

iii) 〈∂γ,w±〉 = ∓〈C,w±〉
iv) 〈x,X±〉g = 0

v) 〈ξ,X±〉 = 0.
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We proceed to showing that there cannot exist w± satisfying conditions (i), (ii) and
(iii) for all ρ = (x, ξ) in a subset of SN∗H with positive measure on which Tρ(SN

∗H) =
N+(ρ)⊕N−(ρ), N+(ρ) 6= {0}, and N−(ρ) 6= {0}. Indeed, conditions (i), (ii) and (iii)
read

i) 〈x′, w±〉 = ±〈Qx′, w±〉+O(|x′|2)

ii) w± = ±Qw± ± (∂3γ(0)x′)w± +O(|x′|2)

iii) 〈Qx′, w±〉 = ±〈Q2x′, w±〉+O(|x′|2).

These equations imply that w± = ±Qw± and so Q2w± = w±. Furthermore, we
claim that we may assume that ∂3γ(0) = 0. Indeed, let ρ ∈ SN∗H be such that
Tρ(SN

∗H) = N+(ρ) ⊕ N−(ρ). Then, if w ∈ Tρ(SN
∗H), we may decompose w it

as w = w+ + w− and use that condition (ii) gives (∂3γ(0)x′)w = 0. If we had that
condition (ii) holds on a set of ρ’s with positive measure, we must have that ∂3γ(0) = 0
since we just showed that condition (ii) should also hold for all w ∈ Tρ(SN∗H). We
then work with

γ(x′) =
1

2
〈Qx′, x′〉+O(|x′|4).

From this we get the improved estimates

f = −1

2
〈Qx′, x′〉+O(|x′|4) and ∂f = −Qx′ +O(|x′|3).

We derive the contradiction from studying the second order terms in w± = ∓〈B,w±〉.
Indeed,

〈B,w±〉 = ±Qw± +D(w±) +O(|x′|3),

where

D(w±) := −∂4γ(0)x′2w± + 〈x′, w±〉(Qx′ ∓ x′)−
1

2
〈Qx′, x′ ∓Qx′〉w±,

and where ∂4γ(0)x′2w± denotes the vector whose i-th entry is given by (∂4γ(0)x′2w)k =
1
12∂ijklγ(0)xkxlwj . Since D(w±) is a second order term in x′, equation w± = ∓〈B,w±〉
gives that

D(w±) = 0.

To take advantage of this condition, we assume without loss of generality that

Q =

 1 0 0
0 −1 0

0 0 Q̃

 ,

where Q̃ is an (n− 3)× (n− 3) matrix, and that

w+ = (1, 0, . . . , 0) and w− = (0, 1, 0 . . . , 0).

We now use that all the coordinates of the vectors D(w±) equal 0. Making the
second coordinate of the vector D(w+) equal to 0 gives

− 1

12

n∑
k,l=1

∂21klγ(0)xkxl − 2x1x2 = 0,
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while setting the first coordinate of the vector D(w−) equal to 0 yields

− 1

12

n∑
k,l=1

∂12klγ(0)xkxl + 2x1x2 = 0.

This concludes the proof since we cannot have the two relations holding simultaneously
for x′ in a subset of H that has positive measure.

�
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