
Proof-of-Prestige: A Useful Work Reward System
for Unverifiable Tasks

Michał Król, Alberto Sonnino, Mustafa Al-Bassam, Argyrios Tasiopoulos, Ioannis Psaras
University College London, United Kingdom

Abstract—As cryptographic tokens and altcoins are increas-
ingly being built to serve as utility tokens, the notion of useful
work consensus protocols, as opposed to number-crunching PoW
consensus, is becoming ever more important. In such contexts,
users get rewards from the network after they have carried out
some specific task useful for the network. While in some cases
the proof of some utility or service can be proved, the majority of
tasks are impossible to verify. In order to deal with such cases, we
design “Proof-of-Prestige” (PoP)—a reward system that can run
on top of Proof-of-Stake blockchains. PoP introduces “prestige”
which is a volatile resource and, in contrast to coins, regenerates
over time. Prestige can be gained by performing useful work,
spent when benefiting from services and directly translates to
users minting power. PoP is resistant against Sybil and Collude
attacks and can be used to reward workers for completing
unverifiable tasks, while keeping the system free for the end-
users. We use two exemplar use-cases to showcase the usefulness
of PoP and we build a simulator to assess the cryptoeconomic
behaviour of the system in terms of prestige transfer between
nodes.

I. INTRODUCTION

Following the recent success of Bitcoin [1], a plethora
of cryptocurrencies have experienced an increase of popular-
ity [2]. There are over 1,900 cryptocurrencies one can invest in
with the total market cap exceeding 280B USD1. In contrast to
resource-wasting Proof-of-Work (PoW) protocols [1] or Proof-
of-Stake (PoS) binding users’ minting power to the amount
of their coins [3]–[5], a recent trend sees cryptocurrencies
as an incentive method for users to perform useful work
and create a shared economy environment. For instance,
Filecoin [6], [7] rewards miners for renting storage capacity,
while Golem [8] allows to rent out processing power and
perform client’s computation-heavy tasks. The vision is to
create a decentralised system, where miners are incentivised
to do useful work, secure the transactions and automatically
receive rewards when tasks are completed.

In the classic setup, useful work can be performed by a
“contributor” for a “beneficiary”. The beneficiary submits a
task and a reward to the blockchain that is used to assure
payment for service [9] [10]. When the contributor correctly
completes the requested task, the payment is unlocked. How-
ever, currently, multiple cloud platforms do not expect their
users to pay for the services (i.e., Facebook, Youtube). As
a result, in order to attract more users, blockchain-based
platforms must keep this featue as well. It means involving a
third party in the system to whom we refer to as a “motivator”.
The motivator benefits from increasing the size and popularity
of the network and rewards contributors’ useful work, while
keeping it free for the end-users. For instance, on Steem [11]

1https://www.investing.com/crypto/currencies

authors (contributors) create content for readers (beneficiaries).
Readers can then signal interesting content using a “vote-
up” button. Steem (motivator), which is primarily interested
in increased viewership in order to increase its income from
advertisements, rewards the most successful authors with an
automatic coin transfer.

Such a system presents multiple benefits. Beneficiaries do
not have to pay for the content, the system remains open
for any contributor to join, perform useful work and be paid
according to their performance and contribution; the motivator
on the other hand benefits from an open platform avoiding
costly contracts, and contributor selection process. However,
for that to work, the network must be able to automatically
verify tasks. While completion of some tasks can be proven
to a third party (e.g., file storage [7]), in many cases this is
impossible. For instance, it is not possible to prove that a file
has been successfully transferred between any two untrusted
nodes. In such cases, the motivator relies only on beneficiary
acknowledgments to reward contributors and can be thus
susceptible to Sybil attacks. In order to maximize their reward,
contributors can create multiple fake identities claiming use-
fulness of their work. Moreover, even with access restriction
techniques or voting power bounded to stake, users can collude
and cross-acknowledge their potentially non-existing work.

In this paper, we present Proof-of-Prestige (PoP) that aims
to be a building block of cryptocurrencies based on useful
work. PoP builds on PoS, but instead of binding user minting
power to stake, the probability of minting a new block is deter-
mined by users’ prestige. One can generate prestige associated
with each identity in the system from money or by performing
useful work; prestige is much more volatile and renewable
resource than virtual currencies. In PoP, beneficiaries pay for
services by transferring prestige to contributors, while avoiding
spending coins. A task is considered as completed when
acknowledged by its beneficiary. PoP can thus be used in wide
variety of use-cases, securing the system against Colluding
and Sybil attacks and avoiding artificial inflation of miners’
power by completing dummy tasks. PoP is not meant to be a
new consensus protocol, but rather a new system of assigning
minting power to users that is compatible with already existing
PoS protocols. Proof-of-Prestige, does not deal with the fair
exchange problem between beneficiary and benefactor [12],
but rather offers a secure way to reward benefactors, by
network operators. Our system builds on Proof-of-Stake and
can be easily integrated in a distributed ledger using the latter
(Section II). We present two variants of our system, simple
and progressive mining, and show how they can be used in
real-world scenarios.

We make the following contributions:
• Section III presents Proof-of-Prestige (PoP), a novel type

of proof of useful work that can run on top of any Proof-
of-Stake blockchain, and that is resilient against Sybil and
Collude attacks.

• Section III-C and Section III-D introduce two types
of minting power distribution, simple and progressive
mining, to support a wide variety of scenarios.

• Section IV presents and analyzes two key use-case ap-
plications, a publisher platform and a file distribution
system, that benefit from our framework.

• Section V provides an extensive evaluation of our proto-
col and prove its security and high performance.

II. THREAT MODEL AND GOALS

We assume the following actors in our system:
• Beneficiaries: End-users of the system which transfer

prestige to the contributors in exchange for a task to be
performed (such as distributing a file).

• Contributors: Nodes which perform tasks for beneficia-
ries in return for prestige.

• Motivators: System operators or users that submit tasks
to the network. Motivators do not benefit from services
directly, but rather from expanded network size (i.e.,
crowdsourcing their own tasks).

Each user is represented by an identity and can act as
contributor, beneficiary and/or motivator. We assume that none
of the actors can be trusted; i.e., they may attempt to steal
funds, avoid making payments, create fake transfers, and create
fake identities. At any given time, each party may drop, send,
record, modify, and replay arbitrary messages in the protocol.

Proof of Prestige assumes an underlying blockchain to
facilitate prestige transfers without a trusted third party. We
assume that the underlying blockchain is resistant to double-
spending attacks, and guarantees liveness - that is, transactions
submitted to the blockchain will be eventually processed,
within some defined period of time.

Proof of Prestige has the following design goals:
• Open membership. Any system user is able to participate

in the system as a contributor or beneficiary without prior
approval by some third party.

• Creditless rewards. A beneficiary can reward a contrib-
utor for completing a task without actual credit (i.e.,
virtual currency), but rather by increasing the chance of
the contributor minting next blocks.

• Contributor incetivisation. Contributors are economically
incentivized to perform tasks.

• Inflation control. Given a predefined rule to determine the
inflation rate, the rate of inflation of coins in the system
cannot be changed by users.

• Sybil attack resistance. Creating multiple identities cannot
increase a user’s minting power without obtaining more
coins.

• Collude attack resistance. Users cannot increase their
total amount of prestige by colluding with each others.

Furthermore, Proof of Prestige requires a PoS consensus
protocol that can assign custom weights to users, where each
weight determines the probability of minting a new block

(i.e., Algorand [13], Tendermint [14], Hashgraph [15]). As
prestige is a volatile resource, it cannot be used with PoS
protocols which require stakers to deposit and lock their coins
for a long period of time (such as Casper FFG [16]), so that
their deposit can be reduced if they are caught misbehaving.
This is because prestige cannot be locked, as by design it
automatically increases or decreases. However, it is compatible
with protocols such as Ouroboros [5] which do not require
deposits, and adapt to the new stake mapping in the system
every epoch, where coins (and prestige) do not have to be
locked up and can be transferred at any time.

III. PROOF OF PRESTIGE

In PoP, users have two values associated with their accounts:
• Coins - similar to other crypto-currencies (such as Bitcoin

or Ether) or ERC20 tokens [17]. Coins can be directly
sent to or received by other users via transactions, as
is the case with all crypto-currencies. More importantly,
coins generate prestige over time.

• Prestige - determines the probability of the user minting
a new block. Prestige cannot be directly transferred be-
tween accounts, but is exchanged as a reward for perform-
ing useful work. Contributors gain prestige by completing
tasks, and beneficiaries lose prestige by acknowledging
services.

Both values are related and can influence one another.
The coins generate prestige over time up to a Static Value
(see Section III-A), while prestige determines the probability
of minting the next block, similarly to stake in PoS. The
probability of each user minting a block is thus proportional
to their prestige. Minting a new block, in turn, allows users to
collect transaction fees, discover new coins and thus increase
their total amount of coins. Prestige represents a much more
volatile and renewable resource, while the amount of coins
does not change over time unless minted or transferred in
transactions. Prestige can be spent to benefit from services
or gained when performing services for others.

There is one note worth making regarding the difference of
PoP to PoS as regards the ability of rich users to gain more
from the system: while in PoS the amount of coins (stake) a
user has is the only resource that determines who mines the
new block, in PoP useful work can increase a users’ prestige
and therefore, the probability of minting new coins, even if
the user starts with a low amount of coins/prestige. Therefore,
although someone who buys more coins can enter the system
with higher prestige (and hence, higher probability of minting
new coins), this does not exclude users with less coins from
building up prestige if they contribute to the system with useful
work.

A. Prestige
When user Ui joins the system (i.e., creates their identity),

they start with no prestige Pi = 0. With each new block
(mined by any user in the system) the amount of prestige of
every user in the system is increased by the number of coins in
their wallet Ci, so that richer users generate prestige at higher
rate. At the same time, in order to avoid prestige increasing
indefinitely, we introduce a decay parameter d. The decay
determines what percentage of current prestige is lost with

each block. Specifically, the prestige of a user evolves over
time according to a non-homogeneous, autonomous, affine,
first order, Discrete Dynamical System (DDS) with prestige
increment on time-slot t:

δP t
i = Ct

i − dP t−1
i , (1)

where t ≥ 1 and 0 < d < 1 is a tunable system parameter.
We can see that prestige on time-slot t can be written as:

P t
i =

t∑
j=1

δP j
i = P t−1

i + δP t
i = Ci + (1− d)P t−1

i . (2)

The fixed point(s) of Equation (2) DDS can be easily derived
by applying simple linearisation techniques. In detail, consider
that P t

i = g(P t−1
i), then for a candidate fixed point Si we have

that Si = g(Si):

Si =
Ci

d
. (3)

In fact, |g′(Si)| < 1, i.e., g′(·) = 1 − d < 1, and therefore
Si is an attractor fixed point indicating the convergence of
prestige DSS to Si. The amount of prestige that a user
can generate from coins is thus limited to Si—called Static
Value—where increasing decay evens up prestige generated
from coins (Figure 1). The static value depends only on the
amount of coins in user’s wallet Ci and the decay parameter
d and it therefore increases by acquiring more coins.

To increase their prestige above their Static Value users have
to perform useful work, confirmed by a beneficiary for whom
the task was completed. When performing useful work, users
instantly get more prestige (see Prestige spikes in Figure 1)
and therefore, increase their chances of minting the new block.
In turn, minting a new block results in extra coins and thus,
in higher Static Value (see User U2 in Figure 1).

In PoP users do not pay with coins when benefiting
from/receiving a service, but with prestige that, even if de-
pleted, will be slowly replenished (as long as the user has
some coins). However, when user prestige is higher than its
static value, the decay exceeds prestige gained from coins and
the user loses prestige until they reach their static value again.
The reduction in prestige is another desired property, as it
incentivises users to keep on contributing to the system by
performing useful work. The network acts thus as a closed-
loop control system correcting users current prestige to their
static values (Figure 1).

Our system needs to be secure and resistant against Sybil
and Collude Attacks (Section II). When having a fixed amount
of coins, we claim that users cannot gain more prestige by
creating Sybil identities:

Theorem 1. Each user has no prestige gain incentives to
divide her coins into multiple identities.

Proof. Let user i divide her coins into 1, 2, ..., k identities ac-

cording to Ci,1, Ci,2, ..., Ci,k respectively, such that
k∑

q=1
Ci,q =

Ci. Then the aggregated prestige of multiple identities at their
limit will be:

Si,1 + Si,2 + ...+ Si,k =

k∑
q=1

Ci,q/d = Ci/d = Si.

Fig. 1: Example of evolution of the prestige and static value with time (expressed in
blocks).

Fig. 2: Simple and Progressive Mining.

That is, the total prestige generated in the long-run by multiple
identities equals the prestige achieved by a single identity.

B. Mining Overview

Users can act both as contributors and as beneficiaries and
exchange services for prestige. The total change of prestige
for useful work δxti of Ui at block t is thus given by prestige
spent to benefit from services (being a beneficiary) and gained
by performing useful work (being a contributor).

δxti = xtgained − xtspent (4)

The total amount of prestige that a user is spending is the
sum of prestige spent on each service that Ui benefited from
xispent =

∑m
j=0 xij , where the prestige fee transferred between

each pair of nodes xij = f can be predefined or negotiated
between the beneficiary and the contributor.

Analogically, the amount of prestige gained by a contrib-
utor is the sum of prestige gained on each service that Ui

performed, but is modified by a retain function xigained =∑m
j=0 fretain(xji). The retain function defines what percentage

of received prestige will be kept by a contributor. We define
different patterns of useful work (represented by simple and
progressive mining) with different retain functions explained
in detail in the following Sections. When a task is completed
by a contributor, the beneficiary recognizes it by generating
a signed acknowledgment, and sends it to the contributor
(Section III-E). The contributor can then upload the acknowl-
edgment to the blockchain to register the completed task and
get the corresponding prestige.

When performing useful work during block k and as long
as the amount of prestige transferred by the beneficiary Ui

is lower or equal to the prestige retained by the contributor
Uj , so that xkij ≥ fretain(xji)

k, then the aggregate amount
of prestige possessed by Ui and Uj does not increase. This

means that users cannot increase their minting power by cross-
acknowledging their work and the system is resistant against
both the Sybil and Collude Attacks.

Theorem 2. There are no prestige gains produced by prestige
transfers between users.

Proof. We denote by P t
i , P t

j the prestige of contributor i and
beneficiary j when there is no prestige transfer from i to j
and by P̄ t

i , P̄ t
j the prestige of contributor i and beneficiary j

when the transfer xkij is taking place upon time-slot t > k.
Then:

P̄ t
i + P̄ t

j = P k−1
i − xkij +

t∑
q=k

δP̄ q
i + P k−1

j + xkij +

t∑
q=k

δP̄ q
j ,

= P k−1
i +

t∑
q=k

δP̄ q
i + P k−1

j +

t∑
q=k

δP̄ q
j ,

= P k−1
i + Ci − d(P k

i − xkij) +

t∑
q=k+1

δP̄ q
i

+ P k−1
j + Cj − d(P k

j + xkij) +

t∑
q=k+1

δP̄ q
j ,

= P k
i +

t∑
q=k+1

δP̄ q
i + P k

j +

t∑
q=k+1

δP̄ q
j ,

...
= P t

i + P t
j .

That is, prestige transfers do not affect the total prestige that
exists in the system.

The result of Theorem 2 can be easily extended for the
general case of N users and all time-slots.

C. Simple Mining
We define Simple Mining to reward services performed

uniquely between one contributor and one beneficiary (i.e.,
renting out contributor’s CPU power to perform beneficiary’s
computations). In Simple Mining, when an acknowledgment
of service performed by contributor Ui for beneficiary Uj is
submitted to the blockchain, the contributor retains the whole
amount of transfered prestige f so that f = xtij = −xtji
(Figure 2). Therefore, the simple mining retain function is
defined as:

fretain(xij) = xij (5)

In Simple Mining, the retained value is equal to the trans-
ferred value. Therefore, Theorem 2 applies and we conclude
that, Simple Mining is resistant to Sybil and Collude Attacks.

D. Progressive Mining
For cases where benefiting from a service, allows the

beneficiary to perform useful work for others (e.g., seeding
in a content distribution system), we introduce the concept
of Progressive Mining. In Progressive Mining, contributors

are rewarded by their own useful work, but also for work
performed by their beneficiaries. That is, if Ui performs a
service for Uj , Ui will receive some prestige for each service
performed by Uj and other nodes that Uj provided the service
to (Figure 2). The scheme can be seen as a Directed Acyclic
Graph (DAG) with users as nodes and edges representing
useful work performed for subsequent users. In this case,
Prestige is flowing from the leaves towards the root.

This type of rewarding scheme is useful in scenarios such
as file propagation, where receiving a file allows to distribute
it to other users. At the same time, we want to protect the
system from distribution manipulations that would change the
amount of prestige received by legitimate parties.

In particular, when Uj performs a task for Ui, the transferred
prestige value xji is not directly added to Uj’s account.
Instead, Uj must share earned prestige with its DAG prede-
cessors and can retain only a part of earned prestige:

fretain(xji) =
xji ∗ Pi

Pi + P i
b

(6)

where P i
b is branch power of Ui. Pb is the sum of the prestige

values of the predecessors of Pi multiplied by a branch power
parameter b:

P i
b = sum prestige(predecessors(Ui)) ∗ b (7)

Such a branch power function incentivises users to attach to
shorter branches, automatically balancing the DAG. Ui will
thus keep only a part of xji, while the remaining part will be
transferred upstream towards the root. If P i

b = 0, no prestige
is sent upstream (which is the case for the DAG root) and
users with no base prestige cannot retain any prestige flowing
upstream, which protects the scheme from DAG manipulations
using Sybil identities. With increasing P i

b more prestige is
pulled upstream towards the root of the distribution tree.

The whole scheme is based on user’s own prestige and
the prestige sum of its predecessors. It is fully resistant to
topology manipulation using Sybil identities that do not have
any prestige. Users also cannot increase their prestige gain
by spreading their coins (and thus gain prestige) over several
artificial identities.

Theorem 3. In Progressive Mining, users cannot retain more
prestige by splitting their coins into multiple identities.

Proof. Without loss of generality assume that user i divides
her coins into 2 identities according to Ci,1 and Ci,2, such that
Ci,1 + Ci,2 = Ci. hen, the prestige retained by the multiple
identities of user i out of the prestige transferred from user j,

x, will be:

fretain,1(x)− x+ fretain,2(2x− fretain,1(x)) =

= x
Pi,1

Pi,1 + bPi,2 + P i
b

− x

+x

(
2− Pi,1

Pi,1 + bPi,2 + P i
b

)
Pi,2

Pi,2 + P i
b

,

= x
Pi,1Pi,2 + Pi,2P

i
b + bP 2

i,2 − bPi,2P
i
b − (P i

b)2

(Pi,1 + bPi,2 + P i
b)(Pi,2 + P i

b)
,

≤ x Pi,1 + Pi,2

Pi,1 + Pi,2 + P i
b

,

= x
Pi

Pi + P i
b

,

= fretain(x).

where the inequality applies since:

Pi,1Pi,2 + Pi,2P
i
b + bP 2

i,2 − bPi,2P
i
b − (P i

b)2

(Pi,1 + bPi,2 + P i
b)(Pi,2 + P i

b)

≤ Pi,1 + Pi,2

Pi,1 + Pi,2 + P i
b

⇐⇒

−P i
b

(
bPi,1Pi,2 + Pi,1P

i
b + Pi,2(bPi,2 + P i

b + bP i
b) + (P i

b)2
)

≤ Pi,1(Pi,1P
i
b + bPi,2P

i
b + (P i

b)2).

On the other hand, from Theorem 1 we know that multiple
identities have no prestige gains, i.e., Pi,1 + Pi,2 = Pi,
and therefore the third equality is valid. Hence, users can-
not increase their prestige by creating multiple identities in
progressive mining, intuitively due to the prestige payments
that is forced to submit to her fake identities that in turn they
retain only a portion of the prestige.

E. Acknowledgments
Nodes generate Acknowledgments when benefiting from

useful work. Contributors earn prestige by submitting a re-
ceived Acknowledgment to the blockchain, showing that they
provided some service to other nodes.

For Simple Mining (Section III-C), acknowledgments are
standard digital signatures. The beneficiary generates a signa-
ture on an ID uniquely identifying the task, the contributor’s
public key, and the agreed amount of prestige to transfer.
This is transferred to the contributor who uploads it to the
blockchain to trigger the prestige transfer.

For Progressive Mining (Section III-D), acknowledgments
are composite signatures [18]. Each node in the DAG branch
composes its signature with the initial signature generated by
the DAG root, forming a composite signature that contains the
signature of each node involved in the task.

When a new task is added, the DAG root node performs
services to beneficiaries and collects their signatures σi,ID
over an ID uniquely identifying the task, the contributor’s
public key, and the agreed amount prestige to transfer. The root
then submits the signed message to the blockchain to receive
prestige, while beneficiaries can turn into contributors and
continue performing services for other users. These nodes start

by sending σi,ID to potential recipients. Each recipient checks
the validity of the signatures and the task can be performed
if the check passes. A beneficiary Uj generates their own
signature, and composes it with the previous signature σi,ID,
obtaining a composite signature σj,ID. The beneficiary then
sends the resulting composite signature to the contributor who
uploads it to the blockchain in order to update the prestige
value of the previous contributors’ and the root node. The
above process continues as the DAG grows.

Before accepting a service using progressive mining, the
beneficiary should verify that the contributor is already in-
cluded in the DAG. In order to achieve this, the contributor
transmits their own composite signature indicating the path
from the DAG root to itself—this allows the beneficiary
to register the transaction on the blockchain even if their
predecessors do not do it. The properties of composite signa-
tures prevent any single or subset of signature(s) from being
removed from the composite [18]. Furthermore, the system
will update the prestige of all nodes even if only the last
sender in each branch uploads the composite signature to
the blockchain. However, it is in the best interest of every
contributor to upload the composite signature, in case no other
subsequent node uploads theirs.

After benefiting from a service, the beneficiary might refuse
to send back the acknowledgment, or might attempt to gen-
erate an acknowledgment for another, colluding node. While
multiple solutions exist to ensure fair exchange between two
mutually distrusting parties [9], [12], [19], a specific solution
should be tailored to the nature of performed tasks. We thus
sketch some solutions in Sec. IV and leave more detailed
discussion for future work.

F. Prestige Economics
In the previous sections, we explained the prestige flow

between users. However, prestige is a volatile resource and
does not represent real assets. High prestige value increases
the chances of a node to be elected to submit a new block.
That said, in order to incentivise users, it must be bound to
a reward expressed in coins. In current blockchain payments
systems, such as Bitcoin, the rewards come from (i) fees paid
by users submitting transactions included in the block and
(ii) new coins being discovered with each new block. The
fees protect from Denial of Service (DoS) attacks, but also
increase the exploitation cost of the system. On the other hand,
new coins increase inflation and de facto reward the successful
miner from money stored in the wallets of other users.

PoP is compatible with both reward methods described
above, but additionally, we introduce a third type of reward
based on optional fees paid by motivators. Motivators directly
benefit from increasing network size and can add coins as
an additional reward for mining new blocks. The reward can
be specified as an amount of coins distributed per block
within limited duration (i.e., 1000 blocks). Motivators can thus
incentivise users to participate in a specific task when their
services are needed the most.

IV. USE CASES

We present two applications that leverage PoP to support a
reliable and secure incentive mechanism: a Publisher Platform

as a system that uses simple mining, and a File Distribution
system as a system that needs progressive mining.

A. Simple mining - Publisher Platform
Steem [11] is a popular publishing platform that uses

a combination of Proof-of-Brain and Delegated Proof-of-
Stake [20] to reward content creators (contributors) and readers
(beneficiaries). Readers can vote for interesting content using
their Steem Power acquired by committing their coins to a
thirteen-week vesting schedule. The best creators and readers
are then rewarded by newly created coins. Steem is thus
resistant to Sybil attacks (fake identities do not have coins
and thus cannot acquire Steem Power), but is vulnerable to
collude attacks. As users can recommend unlimited number
articles, they are incentivized to cross-recommend their work
with other users in order to maximize their reward.

Introducing our PoP with Simple Mining into Steem could
solve this problem. Replacing Steem Power with prestige,
introduces a limit on the number of content items that readers
can vote for within a specified period of time. Increased
amount of coins replenishes prestige faster so richer users
have still higher voting power as in the current scheme. Cross-
recommendations no longer make sense as they do not increase
the combined reward of the involved parties. Readers are thus
incentivized to vote for only the best articles they find in order
to receive high quality content in the future.

B. Progressive mining - File Distribution
We base our File Distribution use case on already existing

systems requiring a secure rewarding scheme for file propaga-
tion such as Filecoin/IPFS [6] or NOIA [21]. Currently those
systems either do not provide incentives for file propagation
(IPFS), or are vulnerable to Sybil attacks (NOIA). A content
creator (acting as a motivator) wants to distribute and pre-
fetch large video files among mobile phone users at the edge
of the network in order to increase its viewership. In the
current/traditional client-server model, content is pulled from
the Content Delivery Network (CDN) server upon the user’s
request. Using CDNs, however, involves substantial fees and
scales badly when crossing the mobile data link. In our File
Distribution system, users themselves contribute to the distri-
bution of the content directly between mobile devices without
involving the network or third party CDNs. Effectively, users
participate in an “incentivised content propagation network”,
where they get rewarded for contributing their resources to
the network. At the same time, content creators/publishers can
significantly reduce the cost of content distribution.

In the beginning, a file is directly transferred from the
creator to a few users initiating a distribution DAG with the
creator as its root (right part of Figure 2). The propagation then
continues directly between user devices expanding the DAG.
Each time a user receives a file, he acts as beneficiary and must
generate an acknowledgment for the contributor who sent the
file. In order to reduce the risk of a malicious beneficiary
walking away without generating an acknowledgment, each
file is partitioned into small chunks. A new chunk is sent only
if an acknowledgment for the previous one has been received.

This type of content propagation is a typical use-case
for progressive mining: a contributor transmits a file to a

beneficiary and is rewarded not only for this one-hop transfer,
but for all the subsequent transfers in their subtree.

V. EVALUATION

In order to evaluate the behaviour of Proof-of-Prestige, we
developed a Python3 simulator that we will release as open-
source software. In the following, we investigate a number of
factors that influence users’ prestige fluctuation and present
one scenario for each of those factors.

Decay Parameter, d: We start by investigating the be-
haviour of the prestige correction function shown in Equa-
tion (1). Figure 3 shows the influence of the decay parameter
d on prestige gain. We create 4 users with different amounts
of coins and d values. All the users start with zero prestige
P 0 = 0; we add prestige δPi = 200 at block t = 100
to each user, and remove prestige by δP = −200 at block
t = 150. The number of coins determines the static value
(Equation (3)), but the number of coins does not influence
the time needed to converge back to the static value. On the
other hand, increasing the decay parameter d lowers the static
value and reduces the time required by each user to reach
their static value from P = 0. The same applies when users
receive (t = 100) or spend (t = 150) prestige. A higher decay
parameter will make prestige go back to their static values
faster. In contrast, reducing the decay parameter increases the
value of prestige gained from useful work in comparison to
prestige gained from coins.

Gained Prestige: Figure 4 introduces 4 users with the same
amount of coins C = 100 and prestige set to the corresponding
static value Pi = Si. We then inject different amounts of
prestige per block to each user, reflecting the case where each
user has provided services of different value, and let the system
run for 10, 000 blocks. We measure the sum of gained prestige
for this period for different values of the decay parameter 0 <
d < 1 (x-axis). The impact of gained prestige (and thus of
useful work) increases exponentially for small values of d,
while it decreases for higher values of d (notably for d ≈ 1,
where all the gained prestige is removed in the next block).

Distance from the DAG root: We create 1000 users
involved in 100 random DAGs, where each edge represents
performing useful work between nodes. Initial prestige values
follow a uniform distribution from 0 to 100, while the branch
power parameter is set to b = 0.5. Figure 6 presents the
average prestige gained by each user and standard error as
a function of distance from the DAG root. In simple mining,
the root gains significantly more prestige than other users as
it acts only as a contributor and does not benefit from (and
thus pay for) services. For the other nodes, the distance does
not influence the prestige gain and the standard error is low.

In contrast, in progressive mining, users located close to
the root have the highest average prestige gain, while with
increasing distance, the rewards decrease. This is a desired
behaviour, as users close to the root have larger subtrees and
collect fees from useful work of their successors. Progressive
mining takes into account multiple factors when calculating
the reward (e.g., base prestige, distance fom the root) which
results in increased standard error.

Base Prestige: We investigate the prestige gain as a function
of base prestige (Figure 7). Simple mining is not influenced

Fig. 3: Prestige over time. Fig. 4: Prestige sum above static value. Fig. 5: Reward Distribution.

by base prestige, while in progressive mining, with increasing
base prestige, a user can collect higher rewards. This mecha-
nism prevents the Sybil attack and rewards users who invested
more in the system. However, a small fraction of high base
prestige users experience prestige loss. Those are users that in
spite of having high prestige, benefit from services and do not
perform any useful work, which is another desired behaviour.

Number of Completed Tasks: Next, we investigate the
effect of useful work to user prestige gain (Figure 8). For
both progressive and simple mining, the average gain increases
linearly with the number of services performed for other users.
This experiment proves that for both mining modes, users with
low base prestige and located further from the root in the
distribution tree, can gain significant amounts of prestige by
being useful for the network.

Contributor Involvement Probability: We investigate
prestige dynamics over time with both simple (Figure 9) and
progressive (Figure 10) mining to provide a global view of
the system. We introduce different poor (C = 50) and rich
(C = 100) users having W = 5% or W = 20% probability
of performing useful work with each new block in a random
DAG containing 100 nodes, service fee f = 200, and decay
parameter d = 0.05. At the beginning of the simulation,
prestige values of each user go from 0 towards their corre-
sponding static value. In simple mining, users gain steady
and moderate amounts of prestige and we do not observe
differences between poor and rich users. In comparison, users
performing progressive mining can reach much higher prestige
gains and increased amount of coins (and thus base prestige)
allows richer users to maximize their reward. The amount of
performed useful work W is important in both schemes, but
its impact is higher in progressive mining, where poor, but
active users, can reach prestige values similar to much richer,
but less active nodes.

Contribution vs Coins Tradeoff: We conclude by in-
vestigating the total value of acquired prestige over 1, 000
blocks by rich (C = 50) and poor (C = 10) users having
different probabilities of performing useful work (W = 5%
and W = 25%) for different values of the parameter d
(Figure 11). For small values of d, useful work is more
important than money. Poorer, but more active users, can thus
acquire substantial amount of prestige, eventually surpassing
rich users. This effect is decreased with increased values of d.
On the other end of the spectrum, for high values (d > 20) the
sum of acquired prestige depends mostly on user money, and

is independent from the amount of performed useful work.
Rewards: To investigate potential rewards for users using

Proof-of-Prestige, we focus on the File Distribution use case
presented in Section IV-B and apply it to popular a BBC
Series - Bodyguard. BBC does not include advertisement in
their content — thus, each consecutive download increase the
broadcaster’s cost. With the number of viewers ranges from
14M to 17M2, and the file size of approximately 250MB,
the cost of delivering one series season using a CDN equals
4.7M$3. For each episode of the series, we create a DAG with
the corresponding size of users with random amount of base
prestige ranging from 1 to 10000 and distribute the money
spent on CDN to users proportionally to their prestige after
performing useful work. In this scenario users transfer files to
maximum 8 users. Figure 5 shows the reward distribution for
different values of f and b. Surprisingly, those parameters have
a negligible effect on the majority of the nodes. With changing
parameters, user receive, but also transfer upstream different
amounts of prestige. Such a behaviour influences mainly the
most active nodes located close to the DAG root. With high
f and b those nodes can acquire significantly higher amounts
of prestige and thus collect higher rewards. The most active
users collect up to 30$ reward, while the distribution remains
free for all the users.

Volume of Data Submitted to the Blockchain: Finally, we
approximate the amount of data submitted to the blockchain,
which varies between simple and progressive mining. Sim-
ple mining requires a separate acknowledgment for each
interaction—the number of submitted ACKs equals the num-
ber of performed tasks. The size of an ACK for simple mining
is about 102 bytes; it is computed as the sum of the size of
the composite signature4 (33 bytes), the task ID (32 bytes), the
contributor public key (33 bytes), and the amount of prestige
transferred (set to 4 bytes). Progressive mining requires an
acknowledgment for each leaf in the DAG since composite
signatures contain information about all the nodes between
the root and the leaf; and the size of the ACK increases
linearly with the depth of the DAG. The ACK size is therefore,
(33+69×ni) bytes, where ni is the depth of the DAG follow-
ing path i. While this represents a substantial amount of data,
acknowledgments can be processed off-chain using platforms
such as Plasma [23] and update users’ prestige periodically,

2https://www.barb.co.uk/viewing-data/four-screen-dashboard/
3http://cdncomparison.com/
4We implement composite signatures with BGLS signatures [22].

Fig. 6: Distance from root Fig. 7: Base Prestige Fig. 8: Useful work

Fig. 9: Prestige evolution for work Simple Mining Fig. 10: Prestige evolution for work Progressive Mining Fig. 11: Prestige sum acquired by different users.

significantly decreasing the volume of information kept on the
main-chain.

VI. RELATED WORK

There are currently multiple systems focusing on rewarding
miners for useful work. The largest group focuses on prooving
file storage where a verifier sends a file to a prover and later
requests a proof that the prover really stored the file [7],
[24]–[30]. Alternatively, several platforms allow the prover to
convince that the prover has access to some space [31] [32]
[33] [34] [35] [36]. Additionally one can require that the proof
implies that the space also was erased [33], [35], or some
function can only be computed in forward direction [34]. In
all those cases, the network must be able to reliably verify
the completed task to reward miners which narrows the scope
of supported tasks to a small group. Some solution replace
traditional Proof-of-Work with useful mathematical tasks that
are easy to verify such as poynomials evaluation [37], [38].
However, such systems support only one type of tasks and
does not accept custom ones requested by users.

Another family supports broader range of tasks (such as
custom computation tasks) [9] [10] [39] [40], but relies on
Trusted Execution Environments (TEEs) and Remote Attes-
tation Protocols [41] [42] to verify that the computations are
being run on a genuine platform and the results are correct.
However, TEEs are not available on every platform, require
users to trust hardware vendors and are susceptible to side
channel attacks [43] [44]. In contrast, PoP does not make any
assumptions on users hardware. Some open platforms rely on
centralized 3rd parties acting as consents to validate tasks or
perform conflict resolution [8] [45] [46]. However, for those
system to work correctly, the 3rd parties must be trusted by
all network participants. Such an approach contrasts with the

idea of open and trustles system lying behind blockchain and
exposes the network to multiple colluding attacks.

Finally, there exists multiple industrial projects in which
the network operator (motivator) wants to reward users for
performing useful work that is difficult or impossible to prove
to a 3-rd party making those system susceptible to Sybil
attacks. Such tasks include content creation [11], content
distribution [21] or providing hardware for game players [47].
PoP can be a valuable addition to those system allowing to
reliably reward users for truly performed tasks.

VII. CONCLUSION

We presented Proof-of-Prestige (PoP)—a reward system
that can run on top of any Proof-of-Stake blockchain. We
introduce the notion of Prestige that is a volatile and renewable
resource, is generated from coins and useful work, and can be
spent to benefit from services. In PoP, each user’s probability
of minting a new block is directly determined by their prestige.

In contrast to PoS, where the amount of coins (stake) a
user has is the only resource that determines who mines the
new block, PoP allows the network to reward contributors for
their useful work acknowledged by beneficiaries. Our scheme
is resistant to Sybil and Collude attacks and can be used in
multiple scenarios without requiring to prove task completion
to the network. Rather, a task is considered to be completed
once confirmed by its beneficiary.

We presented two variants of our scheme—simple and
progressive mining, and showed how they can be used in real-
world scenarios. Our evaluation confirmed that within both
schemes users with low amounts of coins who contribute to the
network can acquire significant amounts of prestige, similar to
rich and “lazy” users. PoP reduces inequalities present in PoS
and incentivises users to perform useful work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[2] S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-

lejohn, and G. Danezis, “Consensus in the age of blockchains,” arXiv
preprint arXiv:1711.03936, 2017.

[3] I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake.,” IACR Cryptology ePrint Archive, vol. 2016, p. 919, 2016.

[4] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake protocol,” IOHK
paper, 2017.

[5] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Annual Interna-
tional Cryptology Conference, pp. 357–388, Springer, 2017.

[6] Y. Combinator, “June 30th 2017.“ipfs, coinlist, and the filecoin ico with
juan benet.”.”

[7] P. Labs, “Proof of replication technical report,” tech. rep., 2017.
[8] “Golem whitepaper.” https://golem.network/doc/Golemwhitepaper.pdf,

2016.
[9] M. Al-Bassam, A. Sonnino, M. Król, and I. Psaras, “Airtnt: Fair

exchange payment for outsourced secure enclave computations,” arXiv
preprint arXiv:1805.06411, 2018.

[10] M. Król and I. Psaras, “Spoc: Secure payments for outsourced com-
putations,” Proc. NDSS Workshop on Decentralized IoT Security and
Standards, San Diego, CA, 2018.

[11] “Steem whitepaper.” https://steem.io/, 2018.
[12] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly

exchange digital goods,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pp. 967–984,
ACM, 2018.

[13] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling byzantine agreements for cryptocurrencies,” in Proceedings of
the 26th Symposium on Operating Systems Principles, pp. 51–68, ACM,
2017.

[14] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
2014.

[15] L. BAIRD, “The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance,” 2016.

[16] V. Buterin and V. Griffith, “Casper the friendly finality gadget,” CoRR,
vol. abs/1710.09437, 2017.

[17] “Erc-20 token standard.” https://github.com/ethereum/EIPs/blob/master/
EIPS/eip-20.md, 2015.

[18] A. Saxena, J. Misra, and A. Dhar, “Increasing anonymity in bitcoin,” in
International Conference on Financial Cryptography and Data Security,
pp. 122–139, Springer, 2014.

[19] H. Pagnia and F. C. Gärtner, “On the impossibility of fair exchange
without a trusted third party,” tech. rep., Technical Report TUD-BS-
1999-02, Darmstadt University of Technology, Department of Computer
Science, Darmstadt, Germany, 1999.

[20] “Steem delegated proof of stake.” https://steemit.com/dpos/
@dantheman/dpos-consensus-algorithm-this-missing-white-paper,
2018.

[21] “Noia whitepaper.” https://drive.google.com/file/d/1IfdKbai7hkScw\
Zj6-kbZPoxNCmQzKaR/view, 2018.

[22] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifi-
ably encrypted signatures from bilinear maps,” in Eurocrypt, vol. 2656,
pp. 416–432, Springer, 2003.

[23] J. Poon and V. Buterin, “Plasma: Scalable autonomous smart contracts,”
White paper, 2017.

[24] P. Golle, S. Jarecki, and I. Mironov, “Cryptographic primitives enforcing
communication and storage complexity,” in International Conference on
Financial Cryptography, pp. 120–135, Springer, 2002.

[25] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory
and implementation,” in Proceedings of the 2009 ACM workshop on
Cloud computing security, pp. 43–54, ACM, 2009.

[26] R. Di Pietro, L. V. Mancini, Y. W. Law, S. Etalle, and P. Havinga,
“Lkhw: A directed diffusion-based secure multicast scheme for wireless
sensor networks,” in Parallel Processing Workshops, 2003. Proceedings.
2003 International Conference on, pp. 397–406, IEEE, 2003.

[27] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Pro-
ceedings of the 14th ACM conference on Computer and communications
security, pp. 598–609, Acm, 2007.

[28] A. Juels and B. S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security, pp. 584–597, Acm, 2007.

[29] Maidsafe, “Maidsafe whitepaper.” https://github.com/maidsafe/
Whitepapers/blob/master/Project-Safe.md, 2018.

[30] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in 2014 IEEE Symposium
on Security and Privacy (SP), pp. 475–490, IEEE, 2014.

[31] T. Hønsi, “Spacemint-a cryptocurrency based on proofs of space,”
Master’s thesis, NTNU, 2017.

[32] “Chia network.” https://chia.network, 2018.
[33] D. Perito and G. Tsudik, “Secure code update for embedded devices

via proofs of secure erasure,” in European Symposium on Research in
Computer Security, pp. 643–662, Springer, 2010.

[34] S. Dziembowski, T. Kazana, and D. Wichs, “One-time computable self-
erasing functions,” in Theory of Cryptography Conference, pp. 125–143,
Springer, 2011.

[35] N. P. Karvelas and A. Kiayias, “Efficient proofs of secure erasure,” in
International Conference on Security and Cryptography for Networks,
pp. 520–537, Springer, 2014.

[36] G. Ateniese, I. Bonacina, A. Faonio, and N. Galesi, “Proofs of space:
When space is of the essence,” in International Conference on Security
and Cryptography for Networks, pp. 538–557, Springer, 2014.

[37] M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of useful
work.,” IACR Cryptology ePrint Archive, vol. 2017, p. 203, 2017.

[38] X. Hu and C. Tang, “Secure outsourced computation of the characteristic
polynomial and eigenvalues of matrix,” Journal of Cloud Computing,
vol. 4, no. 1, p. 7, 2015.

[39] “iexec whitepaper.” https://iex.ec/whitepaper/iExec-WPv3.0-English.
pdf, 2018.

[40] L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security
analysis of proof-of-elapsed-time (poet),” in International Symposium
on Stabilization, Safety, and Security of Distributed Systems, pp. 282–
297, Springer, 2017.

[41] V. Costan and S. Devadas, “Intel sgx explained.,” IACR Cryptology
ePrint Archive, vol. 2016, no. 086, pp. 1–118, 2016.

[42] J. Winter, “Trusted computing building blocks for embedded linux-based
arm trustzone platforms,” in Proceedings of the 3rd ACM workshop on
Scalable trusted computing, pp. 21–30, ACM, 2008.

[43] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache attacks on
intel sgx,” in Proceedings of the 10th European Workshop on Systems
Security, p. 2, ACM, 2017.

[44] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “Asyncshock:
Exploiting synchronisation bugs in intel sgx enclaves,” in European
Symposium on Research in Computer Security, pp. 440–457, Springer,
2016.

[45] “Sonm documentation.” https://docs.sonm.com/, 2018.
[46] A. Angelo, P. Thellmann, and D. Dalkilic, “Rewarding the token

economy.,” 2018.
[47] “Playkey whiteaper.” https://cdn.playkey.net/img/playkeynet/ico/

Whitepaper\ 1\ 31\ En.pdf, 2018.

