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Elements composing complex systemsusually interact in several differentways, and as such, the interaction
architecture is well modeled by a network with multiple layers—a multiplex network—where the system’s
complex dynamics is often the result of several intertwined processes takingplace at different levels.However,
only in a few cases can such multilayered architecture be empirically observed, as one usually only has
experimental access to such structure from an aggregated projection. A fundamental challenge is thus to
determine whether the hidden underlying architecture of complex systems is better modeled as a single
interaction layer or if it results from the aggregation and interplay of multiple layers. Assuming a prior of
intralayer Markovian diffusion, here we show that by using local information provided by a random walker
navigating the aggregated network, it is possible to determine, in a robustmanner,whether these dynamics can
be more accurately represented by a single layer or if they are better explained by a (hidden) multiplex
structure. In the latter case, we also provideBayesianmethods to estimate themost probable number of hidden
layers and themodel parameters, thereby fully reconstructing its architecture. Thewholemethodology enables
us to decipher the underlying multiplex architecture of complex systems by exploiting the non-Markovian
signatures on the statistics of a single random walk on the aggregated network. In fact, the mathematical
formalism presented here extends above and beyond detection of physical layers in networked complex
systems, as it provides a principled solution for the optimal decomposition and projection of complex, non-
Markovian dynamics into a Markov switching combination of diffusive modes. We validate the proposed
methodology with numerical simulations of both (i) random walks navigating hidden multiplex networks
(thereby reconstructing the true hidden architecture) and (ii) Markovian and non-Markovian continuous
stochastic processes (thereby reconstructing an effective multiplex decomposition where each layer accounts
for a different diffusive mode). We also state and prove two existence theorems guaranteeing that an exact
reconstruction of the dynamics in terms of these hidden jump-Markov models is always possible for arbitrary
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finite-order Markovian and fully non-Markovian processes. Finally, we showcase the applicability of the
method to experimental recordings from (i) the mobility dynamics of human players in an online multiplayer
game and (ii) the dynamics of RNA polymerases at the single-molecule level.

DOI: 10.1103/PhysRevX.8.031038 Subject Areas: Biological Physics, Complex Systems,
Interdisciplinary Physics

I. INTRODUCTION

Network science has emerged as a powerful unifying
framework for studying the emergence of collective phenom-
ena in real complex systems from different domains [1,2] and
has allowed us to increase the accuracy and predictive power
ofminimalmodels of complex dynamics, including epidemic
spreading [3], synchronization [4], or social dynamics [5].
One of the most fascinating challenges faced in the last few
yearsbynetwork science is theneed to incorporate andcouple
several network structures in order to correctly capture the
inherently multidimensional nature of interaction patterns in
real-world systems. As a result, much effort has been recently
devoted to the definition and study of multilayer and
multiplex networks [6–8]. The ubiquity of such structures
in social, biological, and technological systems has required
the revision of several canonical dynamical models that were
previously studied only on isolated complex networks,
including percolation [9–13], diffusion dynamics [14,15],
navigation [16–18], epidemics [19–22], evolutionary games
[23–25], synchronization [26], or opinion dynamics [27,28].
Notably, the collective behavior of such complex systems
depends strongly on whether they can be described by
isolated networks or by coupled networks [29], highlighting
the importance of the multilayer architecture of real-world
systems.
Multilayer network models of real-world systems face

two fundamental and dual challenges. The first one is the
necessity to assess, in a systematic way, whether a multi-
layer network model is adequate to represent the system
and when such a model gives redundant information. This
challenge was first addressed in Ref. [30] and constitutes an
intense field of research today. The dual challenge aims at
understanding whether an empirical network whose multi-
layer character is not directly observable is genuinely
monolayer or is only an aggregated projection of a hidden
multilayer network [see Fig. 1(a) for an illustration of a
multiplex network with L ¼ 2 layers and its aggregated
projection]. Such a scenario has received much less
attention despite being, for instance, central for networks
arising in natural systems whose architecture is not directly
observable, as in genetic networks or in brain functional
networks where pairs of nodes modeling different brain
areas can interact according to an a priori unknown range
of different biological pathways [31].
In this article, we provide a method to identify the hidden

multilayer structure of a complex system from coarse-
grained dynamical measurements of its state. We show that,

by using only local information extracted from simple
random-walk statistics, it is possible to discriminate whether
the underlying structure of the system is actually a single-
layer or a multilayer network and, in the latter case, to
estimate the number of interacting layers in the system. Note
that methods to infer network topological properties via
random-walk statistics have been explored previously
[32,33]. Notably, our discrimination method exploits the
breaking of Markovianity occurring in a coarse-grained
multilayer random walk, while the method to estimate the
most probable number of layers is based on a maximum
a posteriori (MAP) probabilistic criterion, which can be
implemented via numerical integration methods, including
conventional grid-based approximations [34] or more
sophisticated Monte Carlo algorithms [35], which we show
increase the computational efficiency.
Interestingly, this paper not only deals with a particular

problem of network science. As a matter of fact, we show

(b)(a)

FIG. 1. (a) A multiplex network with L ¼ 2 layers (L1 and L2)
and K ¼ 7 nodes. A random walker diffusing over this structure
generates a two-dimensional time series fXðtÞ;lðtÞgNt¼1, where
XðtÞ and lðtÞ are the vertex and layer locations of the walker at
time t. In many real-world cases, the layer indicator lðtÞ is
hidden, and one has access only to fXðtÞgNt¼1, i.e., to the series of
states of the walker on the projected network (P) shown in the
bottom of the figure. For L > 1, the resulting trajectory is non-
Markovian: We rely on this Markovianity-breaking phenomenon
property to detect multiplexity and to provide an estimate of the
number of layers in the system by observing only fXðtÞgNt¼1.
(b) Simple canonical model where we fix a prior on the topology
of each layer: a cycle graph with homogeneous transition rates,
with uniform interlayer transition rates. This model serves as a
basis for a generic stochastic decomposition of non-Markovian
dynamics on the aggregated network.
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that the mathematical formulation can indeed be applied to
signals of arbitrary origin—not necessarily random walkers
navigating a network—and the multiplexity estimation
framework reduces in the general case to a stochastic
decomposition of the signal in terms of an effective
multiplex network, whose layers play the role of indepen-
dent dynamical modes. More concretely, non-Markovian
dynamics can thereby be decomposed into a stochastic
combination of diffusive modes by projecting the dynamics
into an appropriate hidden jump-Markov model.
We validate the proposed methodology with numerical

simulations of (i) random walks navigating hidden multiplex
networks (thereby reconstructing the true architecture of the
hidden multiplex networks) and (ii) both Markovian and
non-Markovian continuous stochastic processes (thereby
reconstructing an effective multiplex decomposition where
each layer accounts for a different dynamical mode).
Furthermore, we state and prove two existence theorems,
guaranteeing that such multiplex decomposition is always
possible for any finite-order Markovian and infinite-order
(fully non-Markovian) process. Specifically, we show that
random sequences generated by those processes can be
exactly reconstructed as a random walk over an effective
multiplex network. Finally, we apply our method to exper-
imental recordings of two complex systems of different
nature and show that the method can be leveraged to
decompose noisy, non-Markovian processes into alternating
combinations of simpler dynamics, and we extract valuable
information accordingly.
The article is structured as follows: In Sec. II, we propose

the methods for multiplexity detection and layer estimation,
and we explore their performance in a few examples. In
Sec. III, we discuss the analogy between multiplexity
unfolding and the decomposition of non-Markovian proc-
esses as multiple-layer Markovian processes; therefore,
we extend the methodology to continuous time processes.
We also state and discuss the implications of two existence
theorems, whose proofs are put in two appendixes for
readability. In Sec. IV, we address real-world scenarios,
where we analyze two sets of experimental recordings,
namely, human mobility in an online environment and
traces of RNA polymerase, which further showcase the
applicability of the method. In Sec. V, we provide a
discussion of our results. Mathematical details and addi-
tional examples can be found in the appendixes.

II. DESCRIPTION OF THE METHODS AND
ILLUSTRATIVE EXAMPLES

Multiplex networks are the most ubiquitous class of
multilayer networks. They are a natural model for online
social networks [36], where a given individual can commu-
nicate with others via different platforms (e.g., Facebook,
Twitter, email, etc.) or transportation networks [37,38],
where a set of locations can be connected in a multimodal
way (e.g., bus, train, underground, etc.).

A multiplex network is defined by a set of L ≥ 1
interaction layers (networks), all of them having the same
set of K nodes but different topology (different edge set),
with the peculiarity that each node has a replica in each
layer [see Fig. 1(a) for an illustration]. This structure is
thereby fully described by a set of adjacency matrices

fAðlÞgLl¼1, where AðlÞ
αβ ¼ 1 if there is an edge between

nodes α and β at layer l and zero otherwise. For simplicity,
we label the different layers of the multiplex network with
Roman letters (i, j, etc.) and the nodes of each layer with
Greek letters (α, β, etc.).
We consider a random walker navigating a multiplex

[16] defined as follows: Jumps between layers are governed
by a Markov chain with an L × L transition matrixRL (Rij

is the probability to jump from layer i to layer j), while the
dynamics within each individual layer l is also Markovian
and determined by a K × K transition matrix TðlÞ (where
TðlÞ
αβ is the probability to walk from node α to node β at

layer l). For simplicity, we only consider diffusive dynam-
ics, where at each time step, the walker at node α on layer l
(i) remains in the same layer with probability Rll ¼ 1 − r
or instantaneously jumps with uniform probability Rll0 ¼
r=ðL − 1Þ to a different layer l0 and, subsequently, (ii) dif-
fuses to one of the neighbors of node α in the chosen layer
according to the layer’s internal dynamics (given by TðlÞ or
Tðl0Þ). Notice that this type of dynamical model can be
mathematically formalized in terms of a jump-Markov
affine system, as defined in the field of control theory
(see Ref. [39] and references therein for a review).
When r ≪ 1, i.e., when walkers tend to remain in the

same layer, this navigation model might mimic, for
instance, human mobility in multilayered transportation
networks [40,41], where multimodality is minimized
to avoid waiting times related to connections between
different modes.
In the particular case when layers have a simple cycle-

graph topology, the jump-Markov model described above is
also reminiscent of the so-called discrete flashing ratchet
model [42,43], better known as a Parrondo game [44,45].
This is a paradoxical gambling strategy that allows winning
in losing scenarios, where gamblers can alternate between
two different strategies (game A, layer 1; game B, layer 2),
each of them having different rules and winning proba-
bilities. Our model for L ¼ 2 can be seen as a variant of a
Parrondo gambler that plays with probabilities r and 1 − r
with two different biased coins.
More generally, Brownian ratchets are paradigmatic

models used in nonequilibrium physics to describe the
transport of Brownian particles embedded in periodic,
asymmetric energy potentials, a paradigm originally pro-
posed by Smoluchowski [46] and popularized by Feynman
[47] in the context of thermodynamic engines, and further
shown to be a minimal model system for molecular motors
in biophysics [43]. Again, a Brownian particle subject to a
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periodic asymmetric potential that is switched on and off
stochastically is formally equivalent to our random walker
navigating over a multiplex with L ¼ 2 cycle graphs with
different transition matrices [48].
The general navigation process on a multiplex network

discussed above can be expressed as a stochastic process
fully described by an infinite two-dimensional time series
fXðtÞ;lðtÞg∞t¼1, where XðtÞ ∈ f1;…; Kg and lðtÞ ∈
f1;…; Lg. As in real-world scenarios, the multiplex nature
of the system is not always empirically accessible, the layer
indicator lðtÞ is usually hidden, and the only observable is
the sequence of node locations Xð1Þ; Xð2Þ;… . In such a
situation, we only have experimental access to partial
information of the process, described by a finite sequence
of observations of the variable X: O ¼ fXðtÞgNt¼1. This is
formally equivalent to observing a dynamical process on
the aggregated (projected) network. Hence, the question is
as follows: Is it possible to discern if the system is multiplex
and, in that case, to estimate the most probable number of
layers if we only have access to O? We now propose and
test a novel method to achieve this highly nontrivial task.

A. Method to detect multiplexity

Consider the Markov switching walker discussed above,
navigating on a (multiplex) network from which we
only have access to coarse-grained information given by
O. Initially assuming XðtÞ is a Markov process, we can
estimate directly from O the (monoplex) transition matrix
Q that would describe such a Markovian dynamics.
Accordingly, we can define a Markov chain associated
to Q and generate a Markovian surrogate of the original
process fYðtÞgNt¼1. If the underlying network was truly
monoplex, then XðtÞ would actually be Markov, and XðtÞ
and YðtÞ would then have asymptotically equivalent sta-
tistics, PXðZ1;…; ZmÞ ¼ PYðZ1;…; ZmÞ, for all possible
sequences Z1;…; Zm of any arbitrary length m. For
multiplex structures however, losing information of lðtÞ,
in general, breaks Markovianity, and therefore, XðtÞ is
typically non-Markovian. Accordingly, XðtÞ and YðtÞ now
share the same joint distributions only up to blocks of size
m ¼ 2. For blocks of size m ≥ 3, their statistics may differ,
PXðZ1;…; ZmÞ ≠ PYðZ1;…; ZmÞ. To quantify such a dif-
ference, we make use of the mth-order Kullback-Leibler
divergence rate [49,50] between data blocks of size m ≥ 1:

DðmÞ ≔ 1

m

X
BðmÞ

PXðZ1;…; ZmÞ log
PXðZ1;…; ZmÞ
PYðZ1;…; ZmÞ

; ð1Þ

where BðmÞ enumerates all the blocks of size m. The
statistic DðmÞ is semipositive definite and vanishes only
when the joint probabilities coincide [51]. Thus, by con-
struction, Dð1Þ ¼ Dð2Þ ¼ 0. The Markovianity-breaking
criterion implies that if DðmÞ > 0 for m ≥ 3, then the
underlying dynamics is multiplex [52].

As a proof of concept, we first consider the simple
scenario where a random walker navigates over a two-layer
multiplex ring (each layer is a cycle graph of K nodes), a
model compatible with a discrete flashing ratchet as
mentioned before. In the first layer, we define a Markov

chain with homogeneous transition probabilities Tð1Þ
αþ1;α ¼

2=3; Tð1Þ
α;αþ1 ¼ 1=3 and Tð1Þ

αβ ¼ 0 if β ≠ αþ 1 mod K or
β ≠ ðα − 1Þ mod K. A random walker diffusing in this
layer will have an induced current in the direction of
decreasing node indices. In the second layer, we define a
different Markov chain with homogeneous transition prob-

abilities Tð2Þ
αþ1;α ¼ 1=2; Tð2Þ

α;αþ1 ¼ 1=2 and Tð2Þ
αβ ¼ 0 other-

wise, i.e., an unbiased random walk. While we can always
estimate Q numerically from the observed time series,
in this simple case, it is easy to derive it analytically:

Qαβ ¼ W1T
ð1Þ
αβ þW2T

ð2Þ
αβ , whereW1 (W2) is the probability

of finding the walker in layer l ¼ 1 (l ¼ 2). Now, since in
this case Rij ¼ Rji ¼ r, the system is symmetric with
respect to (w.r.t.) the switching process, and the walker
spends, on average, the same amount of time in each
of the two layers, W1 ¼ W2 ¼ 1=2, and then Qαβ ¼
Tð1Þ
αβ =2þ Tð2Þ

αβ =2. For this specific example, we thus
find Qαþ1;α ¼ 7=12; Qα;αþ1 ¼ 5=12.
The left panel of Fig. 2 shows numerical results of DðmÞ

as a function of the block size m for different switching
rates r. In order to deal with finite-size effects (which
increase exponentially with m), we systematically increase
the size of the walker series under study as a function
of m, taking series of size NðmÞ ¼ N0 · 2m data extracted
from the original system and from the corresponding
Markovian surrogates. We use N0 ¼ 105, although smaller
values yield qualitatively equivalent results. As expected,
Dð1Þ ¼ Dð2Þ ¼ 0, meaning that YðtÞ is a faithful
Markovian surrogate of XðtÞ. Furthermore, DðmÞ > 0
for m ≥ 3, meaning that XðtÞ is non-Markovian [49];
hence, the underlying network is correctly identified as a
multiplex. This result is robust for a quite large range of
values of r (see Appendix B, and note that r ¼ 0.5 is a
trivial exception), meaning that the method works even if
the walker makes fast switches between layers. A similar
scenario is found if we tune the transition probabilities such
that no net-induced current is found (see Appendix B),
pointing out that multiplexity can be unraveled even in that
case. In the right panel in Fig. 2, we plot Dð3Þ for different
series sizes to showcase how finite-size effects vanish as the
series gets larger. Notably, with a few thousand data points,
we can already accurately detect multiplexity.
Furthermore, we have demonstrated the flexibility and

robustness of our method to detect multiplexity in a range
of additional scenarios, including (i) layers with increas-
ingly different and disordered topologies controlled by both
rewiring and edge addition, (ii) Erdos-Renyi graphs, and
(iii) similar scenarios on larger graphs. For all cases, we

LUCAS LACASA et al. PHYS. REV. X 8, 031038 (2018)

031038-4



find a correct multiplexity detection and good scalability
(see Appendix B).

B. Method to quantify multiplexity

The Markovianity-breaking phenomenon that we have
exploited only provides a means to discriminate whether
hidden layers do exist in the multiplex, but not to quantify
the number of underlying layers. In order to bridge this gap,
we now make use of statistical inference tools to define a
model selection scheme [53]. We assume that two models
are different if they have a different number of layers.
Accordingly, the number of layers L is now modeled as a
random variable with prior probability mass function
P0ðLÞ. Given the value of L, the motion of the random
walker is determined by the Markov switching of layers,
with transition matrix RL, and Markov walks within each
layer characterized by TL ¼ fTðlÞgLl¼1. Assuming prior
probability density functions for these parameters p0;RðRLÞ
and p0;TðTLÞ, the likelihood of a given model with L layers
conditional on the observed data fXðtÞgNt¼1 reads

PðfXðtÞgNt¼1jLÞ ¼
Z

PðfXðtÞgNt¼1jTL;RLÞ

× p0;TðTLÞp0;RðRLÞμðdTL × dRLÞ;
ð2Þ

where μ is a suitable reference measure for TL andRL (see
Appendixes C and D for technical details). In general, this
multidimensional integral cannot be computed exactly, and
it needs to be approximated numerically. Then, the number
of layers L in the system that generated the data fXðtÞgNt¼1

can be detected using a MAP criterion, i.e.,

L̂MAP ¼ arg max
L∈f1;2;…;Lþg

PðfXðtÞgNt¼1jLÞP0ðLÞ; ð3Þ

where L̂MAP is the estimate of the actual number of layers,
2 ≤ Lþ < ∞ is the (assumed) maximum possible value
of L, and PðLjfXðtÞgNt¼1Þ ∝ PðfXðtÞgNt¼1jLÞP0ðLÞ is the
a posteriori probability mass function of L given the
observations fXðtÞgNt¼1.
The practical computation of the MAP estimator in

Eq. (3) can be addressed in different ways. The classical
literature on hidden Markov models (HMMs) [54–56]
suggests the use of the expectation-maximization (EM)
algorithm (in various forms) to compute approximate
maximum likelihood (ML) estimators, T̂L and R̂L, of
the parameters and then assume that PðfXðtÞgNt¼1jLÞ ≈
PðfXðtÞgNt¼1jT̂L; R̂LÞ in order to compare the models (i.e.,
one tries to optimize the parameters instead of averaging
over them). This approach has also been applied to jump-
Markov affine systems [57], and it relies on standard
techniques; however, it has several drawbacks and is
therefore not adopted here. Actually, the equation of the
model likelihood with the parameter likelihood easily
breaks down when the parameter estimates are poor
(e.g., because of overfitting). Another major disadvantage
of EM is that it converges locally and thus performs badly
when the parameter likelihood is multimodal or when
the parameter dimension varies significantly for different
models. More sophisticated parametric schemes have been
proposed (see, e.g., Ref. [58]); however, they are still
subject to these fundamental limitations. Integration in
Eq. (2), which we adopt here, has been favored theoreti-
cally but criticized practically because of the computational
cost of approximating PðfXðtÞgNt¼1jLÞ numerically [56].
However, we have found that state-of-the-art variational

FIG. 2. (Left panel) Multiplexity detection statistic DðmÞ [see Eq. (1)] for XðtÞ, in a case where XðtÞ shows an induced current, for
different values of the switching rate r. The series XðtÞ records the position of a walker diffusing over two layers, with transition

probabilities in the layers given by Tð1Þ
α;αþ1 ¼ 1=3 and Tð2Þ

α;αþ1 ¼ 1=2, respectively, such that the transition probability in the Markovian
surrogate series is Qα;αþ1 ¼ 5=12. We correctly find that XðtÞ is non-Markovian even for large values of r as DðmÞjm≥3 > 0, which
suggests an underlying multiplex structure. (Right panel) Finite-size-scaling analysis where we computeDð3Þ as a function of the series
size N, for the multiplex considered in the left panel (r ¼ 0.1, green dots) and a null model with equivalent monoplex dynamics (red
squares) for whichDð3Þ should vanish for large values of N. In both panels, the symbols represent the mean, and the error bars represent
the standard deviation calculated over 10 different realizations.
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Bayes [59] or adaptive importance sampling [60] methods
can be applied effectively up to moderate values of L. See
Appendixes C 3 and D for further discussion, including
examples of using both deterministic integration and the
adaptive Monte Carlo sampler from Ref. [61].
To illustrate the MAP model selection method given

by Eq. (3), we consider again the discrete flashing ratchet
model formed now by L ¼ 3 ring-shaped layers with K ¼
3 nodes and homogeneous transition probabilities [see
Fig. 1(b) for an illustration and Appendix D for other
examples]. In this example, the probability to stay in the
same layer is Rll ¼ 1 − r ¼ 0.84, and the probabilities for

the walker to move from node α → αþ 1 are Tð1Þ
α;αþ1 ¼

0.16, Tð2Þ
α;αþ1 ¼ 0.76, and Tð3Þ

α;αþ1 ¼ 0.24, respectively

(TðlÞ
αþ1;α ¼ 1 − TðlÞ

α;αþ1 for every l, and TðlÞ
αβ ¼ 0 for any

other α and β).
In order to evaluate the likelihood function

PðfXðtÞgNt¼1jLÞ, we need to approximate the integral in
Eq. (2) for each value L ¼ 1;…; 4 as discussed previously.
Here, we assume Lþ ¼ 4. A very simple strategy is to
evaluate it via numerical integration over a deterministic
grid of 19 points on the interval (0,1) for each unknown
parameter. For the case L ¼ 1, this reduces to a single

unknown, Tð1Þ
α;αþ1, and for L>1, there are Lþ 1 unknowns:

r and TðlÞ
α;αþ1 for l ¼ 1;…; L. Note that the particular choice

of transition probabilities was taken to make the problem
more challenging, as these values are not commensurate
with the integration grid points. We use an unbiased prior
probability density function p0;RðRLÞ given by a uniform
probability density function on (0,1) for the unknown
parameter r, while the prior p0;TðTLÞ is used to penalize
system configurations with two or more identical layers
[62]. For this particular numerical experiment, the penal-

izing prior is p0;TðTLÞ ∝ minðl;l0ÞjTðlÞ
α;αþ1 − Tðl0Þ

α;αþ1j; i.e., the
prior probability density function of a given configuration
TL is proportional to the minimum distance between any
pair of matrices TðlÞ and Tðl0Þ. Since in this example each
scalar TðlÞ fully characterizes layer l, this prior simply
penalizes configurations where two or more layers are very
similar and thus avoids overfitting. In general, the prior
p0;TðTLÞ is set to penalize models where pairs of layers
have similar transition matrices, to avoid redundancy,
so p0;TðTLÞ ∝ minðl;l0ÞjjTðlÞ − Tðl0Þjj, for some chosen
norm jj · jj.
Figure 3 shows that the true model is easily estimated

with the proposed scheme, as the posterior probability
emphatically peaks at L ¼ 3, which implies that L̂MAP ¼ 3.
Without penalization—i.e., with a uniform prior p0;T—we
obtain multiple equivalent solutions involving layers with
identical values of the estimated parameters.
Now, it is well known that direct, grid-based determin-

istic integration of the posterior probability is intuitive but

computationally inefficient. Accordingly, we have further
considered alternative approximations of the integral in
Eq. (2) using a nonlinear population Monte Carlo (NPMC)
algorithm [61], and we have effectively reduced the runtime
by a factor close to 100 on the same computer for the
example of Fig. 3 (see Appendixes C and D for details).
Actually, our NPMC is a sophisticated importance sam-
pling procedure by which an efficient grid of the parameter
space is obtained. This procedure meshes, in a tight way,
the regions where the posterior probability density of the
parameters is high and, in a sparse way, in the regions
where the posterior probability density is low. Accordingly,
the nodes of this mesh cover all the regions of the parameter
space where the likelihood is sufficiently large (this
approach ensures a global exploration of the parameter
space, at odds with the EM algorithm, which can only
perform a local search). A simple inspection of the like-
lihoods of each node in the grid allows us to robustly decide
which is the one with highest likelihood. Accordingly,
we are able to infer that the maximum of the posterior
probability density PðfXðtÞgNt¼1jTL; rÞp0;TðTLÞ [i.e., the
integrand of Eq. (2) with uniform prior for r] is indeed
attained at the true value of T3 (see Appendix D 5 for
details). We therefore conclude that our model selection
scheme correctly estimates not only the number of layers
but also the transition probabilities within each layer, i.e.,
the full architecture. Finally, we have also verified that the
posterior probability density is smooth close to its maxi-
mum, as perturbations T̃3 ¼ T3 þ δT systematically yield
a smaller posterior probability density function for suffi-
ciently large N (see Fig. 21).

FIG. 3. Posterior probability PðLjfXðtÞgNt¼1Þ as a function of
the number of layers L, computed from a trajectory of 2 × 104

time steps generated using a model with L ¼ 3 cycle graphs
(K ¼ 3) and parameters Rii ¼ 1 − r ¼ 0.84 for i ¼ 1, 2, 3,

Tð1Þ
α;αþ1 ¼ 0.16, Tð2Þ

α;αþ1 ¼ 0.76, and Tð3Þ
α;αþ1 ¼ 0.24 (see the text

and Appendix B for details). The algorithm easily estimates the
correct model L ¼ 3. (Inset) A linear-log plot of the same graph.
Note that the probability for L ¼ 1 is zero up to the computer’s
accuracy; hence, this point is not shown in logarithmic scales.
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III. MULTIPLEX DECOMPOSITION OF
NON-MARKOVIAN DYNAMICS

As it happens for any Bayesian inference-based method
[53,63,64], our approach, in principle, would provide a
conclusive indication of the hidden multiplexity in the case
where the prior—intralayer dynamics are diffusive—is a
reasonable assumption. Notwithstanding, the methodology
proposed here actually extends above and beyond the
reconstruction of hidden multiplex architectures using
walkers with partial information. As a matter of fact, a
similar approach can be considered even when the archi-
tecture is truly single layered. Suppose, for instance, that a
given observed time series is truly the outcome of a non-
Markovian dynamics running on a physical single-layered
network. In that case, our multiplex reconstruction method
would still provide the most probable multiplex model,
with L > 1 due to lack of the walker’s Markovianity. The
key difference is that now layers in the hidden multiplex
would be providing the most probable effective multiplex
reconstruction with Markovian intralayer dynamics, which
would yield such complex dynamics. Incidentally, note
that this brand of effective models is used in community
detection in single-layered networks, which result from
finding the optimal number of effective groups of nodes
which maximize a certain likelihood function [53].
In what follows, we first capitalize on this new inter-

pretation to extend our previous analysis on random walks
on graphs to continuous stochastic processes, and then we
present two existence theorems that guarantee that this
stochastic decomposition is universally applicable to ran-
dom sequences with arbitrary memory.

A. Extension to continuous processes

When the original dynamics is continuous, we can
discretize motion and embed the original time series into
a simple graph topology, for example, via the transforma-
tion fXðtÞg → fX̃ðtÞg given by X̃ð0Þ ¼ 0 and

X̃ðtþ 1Þ ¼
�
X̃ðtÞ þ 1 mod K; if Xðtþ 1Þ > XðtÞ
X̃ðtÞ − 1 mod K; if Xðtþ 1Þ < XðtÞ;

ð4Þ

and apply our multiplexity detection methods to the
discretized trace fX̃ðtÞg. To illustrate and validate this
extension, we have considered two continuous stochastic
processes: (i) an Ornstein-Uhlenbeck process (Markovian)
governed by the stochastic differential equation

_x ¼ −xþ ξ; ð5Þ

where ξ is a Gaussian white noise with zero mean
hξðtÞi ¼ 0, amplitude σ, and autocorrelation hξðtÞξðt0Þi ¼
σ2δðt − t0Þ, and (ii) a generalization of the preceding

Langevin equation, where the noise term is not white
anymore but has some color. Such a process can be
described by the following Langevin equation:

_x ¼ −xþ η; ð6Þ

with ηðtÞ being defined by an Ornstein-Uhlenbeck process
such that hηðtÞi ¼ 0 and hηðtÞηðt0Þi ∝ expð−jt − t0j=τÞ=τ,
with τ > 0 the correlation time of the noise. Note that
in Eqs. (5) and (6), the dot denotes the time derivative.
When the noise term η is not white anymore, the Langevin
equation (6) generates non-Markovian trajectories for the
variable x. Interestingly, Eq. (6) has been attracting con-
siderable attention in soft matter as a minimal model for the
non-Markovian dynamics of the position of a passive
particle immersed in an active (e.g., bacterial) bath [65,66].
We perform numerical simulations of these processes

using a Euler-Mayurama algorithm and subsequently
embed the resulting trajectories of 104 data in a cycle-
graph topology [see Fig. 1(b)] via Eq. (4) with K ¼ 4; then,
we apply our multiplex detection and estimation protocol.
In the top panels of Fig. 4, we plot DðmÞ and the outcome
of a layer estimation. For the Ornstein-Uhlenbeck process,
the method does not detect multiplexity (and a layer
estimation confirms that a model with an L ¼ 1 layer is
the most probable one), in good agreement with the fact
that the Ornstein-Uhlenbeck process is indeed a Markovian
process. On the other hand, the Langevin equation with
colored noise has a nontrivial memory kernel and generates
non-Markovian dynamics, which is correctly captured
by the fact that Dð3Þ > 0. In this case, the dynamics
optimally decomposes into a Markov switching combina-
tion of L ¼ 2 layers.
To further validate these results, we now generate

synthetic trajectories from the estimated multiplex models
with L layers. Importantly, we should recall that our layer
estimation method makes use of an importance sampling
algorithm to concentrate the Monte Carlo search in the
regions of the parameter space with large likelihood. As a
by-product, we are are able to estimate—given the number
of layers L—the parameters of the most likely model, and
therefore, we can now generate a synthetic series from this
fitted model. We then compare the statistics of a synthetic
series from the most likely model with L layers with those
of the original Ornstein-Uhlenbeck and non-Markovian
processes, respectively. In the bottom panels of Fig. 4, we
plot the mth-order Kullback-Leibler divergence between
the original (discretized) series and the synthetic series
generated by the reconstructed multiplex model. We con-
firm that the series generated by the model with L ¼ 1 and
L ¼ 2, respectively, are the ones that show higher similarity
with the Ornstein-Uhlenbeck (Markovian) and non-
Markovian series, respectively. Finding L ¼ 2 layers in
the non-Markovian case is indeed reasonable, having in
mind that Eq. (6) allows a well-known decomposition as
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shown in the following 2D (Markovian) stochastic differ-
ential equation:

_x ¼ −xþ y; _y ¼ −βyþ ξ; ð7Þ

with ξ a Gaussian white noise process and β > 0 a positive
constant.
In even more general terms, our methodology provides a

mathematically sound solution for the stochastic projection
of non-Markovian dynamics onto a base of simple diffusive
dynamical modes. For random sequences that were origi-
nally generated by a random walker navigating a hidden
multiplex network, the method easily reconstructs such
hidden architecture, whereas for general random sequences

[such as the ones generated by Eqs. (5) and (6)], the
effective multiplex model provides a good reconstruction of
the original dynamics. Hence, the question is as follows: Is
this type of hidden jump-Markov model able to fully (i.e.,
exactly) reconstruct any random sequence (i.e., high-order
Markovian and fully-non Markovian)? These questions are
answered affirmatively in the next subsection, where we
state and prove two theorems that address these matters.

B. Exact decomposition of Markovian and
non-Markovian dynamics via multiplex models

In this subsection, we pose the question of whether the
statistics of arbitrary random sequences fXðtÞgt≥0, possibly
with long memory, can be recovered exactly using a hidden

FIG. 4. (Top-left panel) Multiplexity detection statisticDðmÞ, applied to a trajectory generated by (blue) an Ornstein-Uhlenbeck process
(Markovian, see the text) and (green) a Langevin equation with colored noise (non-Markovian, see the text) after embedding the trajectories
in a ring topology via Eq. (4). The multiplexity detection is negative in the Markovian case and positive for the Langevin equation with a
nonwhite noise term, as expected. (Top-right panel) Posterior probability of a multiplex model with L layers, confirming that L ¼ 1 (i.e.,
monoplex) is the most probable model for the Markovian case (Ornstein-Uhlenbeck) and that a model with L ¼ 2 is the most likely model
for the case of a Langevin equation with correlated noise. (Bottom-left panel) DðmÞ (order-m Kullback Leibler divergence) between the
Ornstein-Uhlenbeck (Markovian) process and a synthetic series generated by the most likely model with L layers (for L ¼ 1, 2, 3).
Estimation of the model parameters (the architecture) is possible thanks to the importance sampling procedure, which preselects parameter
configurations with high likelihood, in such a way that one can find the global optimum by searching in this reduced set. The synthetic
series that shows the highest similarity with the original process is found for the model L ¼ 1 (only improved by the comparison with a
Markovianized time series) coinciding with the prediction found by the model selection scheme. (Bottom-right panel) Similar measures as
the left panel, performed on the series extracted from the Langevin equation with colored noise (non-Markovian). In this case, the synthetic
series that shows more similarity with the actual non-Markovian series is the one generated by the most likely model with L ¼ 2 layers.
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jump-Markov model of the class described in Sec. II (from
now on, we refer to it as a multiplex model). The answer is
positive (in a probabilistic sense, to be made precise), as
summarized by two representation theorems.
In particular, we first state and prove that every Markov

model of finite (but arbitrarily large) orderh can be recast into
a multiplex model. Then, we address the representation of
models with infinite memory, by letting h → ∞, and show
that, undermild regularity assumptions, they admit a compact
representation in the form of a model with an uncountable
(continuous) set of hidden layers. For readability, we have
relegated as many technical details as possible (including all
themathematical proofs) toAppendixesFandG, andweonly
discuss the key results and implications here.

1. Representation of Markov models of order h

Let us consider a discrete state space with K elements,
K ¼ f1;…; Kg (this will be the node set of the multiplex).
A Markov sequence of (integer) order h ≥ 1 is defined by
the set of Khþ1 probability masses

Ph
Kðitjit−h∶t−1Þ ≔ P(XðtÞ ¼ itjXðt − h∶t − 1Þ ¼ it−h∶t−1);

where Xðt−h∶t−1Þ¼fXðt−hÞ;…;Xðt−1Þg and it−h∶t ¼
fit−h;…; itg ∈ Khþ1 is a sequence of hþ 1 state-space
observations. If we fix it−h∶t−1, then Ph

Kðitjit−h∶t−1Þ is a
probability mass function (PMF) and, as a consequence,
Ph
Kðitjit−h∶t−1Þ ∈ ½0; 1� and Pit∈KP

h
Kðitjit−h∶t−1Þ ¼ 1.

Now, any Markov model of finite order h can be
transformed into an equivalent multiplex model with a
sufficiently large, but finite, number of layers L, as formally
stated below.
Theorem 1: For everyMarkov model of order h < ∞ on

the state space K ¼ f1;…; Kg, there exists an equivalent
multiplex model, with observation space K and L ¼ Kh

layers.
The proof of Theorem 1 is technical and is therefore put in
Appendix F. Theorem 1 guarantees that every random
Markov sequence with finite memory h can be represented
by a multiplex model withKh layers (i.e., this is an existence
theorem). The theorem does not state that this representation
is unique, though, and it does not state that it is minimal
either. According to the numerical evidence given in the
previous sections, we conjecture that a suitable selection of
RL and TL (e.g., using the estimation methods described in
this paper) can yield an accurate representation of a sequence
of order h with considerably less than Kh layers.
Let us also remark that there is no contradiction between

Theorem 1 and our earlier claim that multiplex models can
represent systems with infinite memory. Indeed, depending
on the choice of its parameters (L,RL, and TL), a multiplex
system can yield random sequences with either finite or
infinite memory. For example, in the proof of Theorem 1,
we explicitly construct a multiplex model that matches

the transition probabilities of a Markov model of order h.
On the other hand, multiplex models where the transitions
between layers are independent of the walker’s past
trajectory yield sequences with infinite memory (except
for pathological cases).

2. Representation of sequences with infinite memory

In the second part, we extend the previous existence
theorem to a wide class of infinite memory (i.e., fully
non-Markovian) models. Let fXhðtÞgt≥0 denote a random
sequence on K ¼ f1;…; Kg that can be represented
exactly by a Markov model of order h. We consider here
the class of sequences with infinite memory that can be
obtained from Markov models as h → ∞ and refer to them
as “Markov-∞” sequences. To be precise, we say that
fXðtÞgt≥0 is the limit of fXhðtÞgt≥0 as h → ∞, and wewrite

X¼d lim
h→∞

Xh ð8Þ

when we can approximate the transition probabilities of the
sequence fXðtÞgt≥0 with an arbitrarily small error using a
Markov model of sufficiently large order. Specifically, we
need to introduce the following technical definition:
Definition 1: The random sequence fXðtÞgt≥0 is

Markov-∞ if it satisfies the regularity conditions below:
(C1) The joint probability of any sequence of states
vanishes uniformly with the length of the sequence, i.e.,

lim
t→∞

sup
i0∶t∈Ktþ1

PðXð0∶tÞ ¼ i0∶tÞ ¼ 0:

(C2) There exists a sequence of Markov models
fXhðtÞgt≥0, h ¼ 1; 2;…, such that for any ϵ > 0

(arbitrarily small), there exists h0 ∈ N (sufficiently
large) that guarantees

sup
i0∶t∈Ktþ1

jPðXðtÞ ¼ itjXð0∶t − 1Þ ¼ i0∶t−1Þ −…

− Ph
Kðitjit−h∶t−1Þj < ϵ;

for every t > h and

sup
i0∶t∈Ktþ1

jPðXðtÞ ¼ itjXð0∶t − 1Þ ¼ i0∶t−1Þ −…

− Ph
Kðitjit−h∶t−1Þj ¼ 0;

for every t ≤ h, whenever h > h0.
Let fXLðtÞg represent a random sequence generated by a
multiplex model with L layers. Since every Markov-∞
model is the limit of a sequence of Markov systems with
increasing order, h → ∞, they can also be obtained (via
Theorem 1) as the limit of a sequence of multiplex systems
as the number of layers grows, L → ∞. Moreover, it turns
out that the limit limL→∞fXLðtÞgt≥0 can be interpreted
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itself as a multiplex model with an uncountable set of layers
and a first-order Markov system on K associated with each
layer. This is made precise by the following theorem:
Theorem 2 Let fXðtÞgt≥0 be a Markov-∞ random

sequence on K. There exists a Markov kernel

M∶ Bð½0; 1ÞÞ × ½0; 1Þ → ½0; 1�; ð9Þ

where Bð½0; 1ÞÞ denotes the Borel σ-algebra of subsets of
[0, 1), a probability measureM0∶Bð½0; 1ÞÞ → ½0; 1�, and an
uncountable family of K × K transition matrices

TðyÞ ¼

2
664
T11ðyÞ … TiKðyÞ

..

. . .
. ..

.

TK1ðyÞ … TKKðyÞ

3
775; y ∈ ½0; 1Þ; ð10Þ

such that

PðXðtÞ¼ itjXð0∶t−1Þ¼ i0∶t−1Þ

¼Pi0

Z
…

Z Yt−1
k¼1

Tikþ1ikðykÞMðdykjyk−1ÞM0ðdy0Þ;

for every i0∶t ∈ Ktþ1, where Pi0 ¼ PðXð0Þ ¼ i0Þ.
See Appendix G for a proof. Theorem 2 indicates that
multiplex network models can be generalized to obtain
probabilistic systems with an infinite and uncountable
number of layers, which are flexible enough to represent
(i.e., exactly recover) a broad class of random sequences
with infinite memory.

IV. APPLICATIONS TO EXPERIMENTAL DATA

We now apply our methodology to two experimental
recordings of completely different nature: the mobility
dynamics of human players of an online video game and
the dynamics of polymerases during RNA transcription.

A. Application to mobility: Pardus universe

Human and animal mobility [67–69] is often described
by dynamical processes on single-layer networks and,
interestingly, has been found to display signatures of
memory [70–72], which can be interpreted as a deviation
from Markovianity. Can such lack of Markovianity be
interpreted as being the result of a Markovian dynamics
taking place on a hidden multiplex network? In the case
where mobility takes place across (hidden) multimodal
transportation systems (as when we collect GPS traces of
urban mobility), layers could be physical (underground,
bus, car, etc.). On the other hand, animal foraging dynamics
are clearly different and alternate during day and night [73].
In a similar vein, human mobility patterns change when
switching from work to leisure styles [74]: These would be
cases where layers would be effective rather than physical.

There are a large variety of problems involving the afore-
mentioned scenarios, which could be amenable to our
approach. To guarantee computational efficiency, we would
only require that the network over which the agents move is
not too large, something that in the general case can be
achieved by coarse graining the network via community
detection. Mathematically, within this context, a non-
Markovian process running on a monoplex and a Markov
switching process running on a multiplex are equally valid
models, much in the same way a function is equivalent to its
Fourier series representation. Still, we consider this new
interpretation not just suggestive but also parsimonious from
a cognitive point of view, and therefore, it might be of
relevance in the study of memory in search processes.
To illustrate this type of application, we consider

experimental mobility trajectories performed by players
(agents) in a virtual environment: The Pardus universe (see
Ref. [75] for details). The Pardus universe is a multiplayer
online role-playing video game, which is used as a large-
scale socioeconomic laboratory to study mobility in a
controlled way. It consists of an (online) physical network
with K ¼ 400 nodes, a networked universe with social and
economic activities, where the players of the game move
around. The mobility traces of these players can then be
naturally symbolized by coarse graining the original net-
work via community detection into a network of 20
nonoverlapping communities wired by a 20 × 20 weighted
adjacency matrix with complex topology [75].
Szell et al. analyzed online player’s trajectories and

reported evidence of long-term memory in the diffusing
patterns of agent mobility in this universe [75]. Here, we
apply the multiplexity detection statistic to a long time series
obtained by concatenating individual traces. In Fig. 5, we
show the numerical results (black dots), along with the null
case of a Markovian diffusion (red squares) over the same
network. We find Dð3Þ > 0 as a footprint of multiplexity,
which can be interpreted here as the hidden presence of

FIG. 5. Multiplexity detection statistic DðmÞ, applied to ex-
perimental mobility trajectories on the Pardus universe [75]. We
find Dð3Þ > 0, which suggests that mobility series are non-
Markovian, in agreement with independent evidence [75].
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several effective layers. Szell et al. introduced a long-term
memory model to account for the mobility dynamics and the
heterogeneity of players. An alternative interpretation is that
players are performing simple diffusion dynamics but are
switching stochastically between different effective dynami-
cal regimes. The challenge, which we leave as an open
question for future work, would be to assign a social or
perhaps cognitive meaning to the different layers. In this
sense, our method here is closer to an unsupervised
clustering paradigm than to a supervised one. Since our
experimental trace is given by the concatenation of traces of
different walkers, the different effective layers could also
reveal a taxonomy of different game strategies.

B. Application to biology: Transcription by
eukaryotic RNA polymerases

It has been shown that the ratchet mechanism plays an
important role in active transport by molecular motors in
living cells [43]. A paradigmatic example of a molecular
motor that can be well described by a ratchet mechanism is
RNA polymerase (RNAP). RNAPs are macromolecular
enzymes responsible for the transcription of genetic infor-
mation encoded in the DNA into RNA [76]. During

transcription, the spatial location of RNAPs along the
DNA template exhibits noise due to thermal fluctuations.
In addition, the dynamics of polymerases exhibits switching
between two different dynamical regimes: an active polym-
erization state called elongation and a passive or diffusive
state called backtracking [77]. While elongating, RNAP
moves along the DNA template with a net velocity of the
order of about 20 nucleotides per second, with 0.34 nm being
the distance between two nucleotides. In the backtracking
regime, the polymerization reaction is stalled, and RNAPs
perform passive Brownian diffusion due to several types of
noise (e.g., thermal and chemical). Optical tweezers enable
measuring the motion of a single RNAP during transcription
of a single DNA template at a base-pair resolution [77,78].
Single-molecule experimental RNAP traces are, however,
extremely noisy, and the problem of identifying the possible
mixture of different underlying dynamical processes—
including transitions from elongation to backtracking as well
as the hidden presence of other regimes—from a single
experimental trace is a challenging task.
At the single-molecule level, the RNAP dynamics

corresponds to a molecular motor producing a non-
Markovian dynamics, which can thus be modeled as a
Markov switching random-walk dynamics in a biochemical

FIG. 6. (Upper panels) Experimental RNA polymerase I trace XðtÞ (in base-pair units) from which we extract an excerpt of the first 104

time steps (highlighted in red in the original trace, shown in the middle panel) and a sample of the first 100 data of its symbolized trace
X̃ðtÞ (right). Experimental traces of RNA polymerase I are extremely noisy, and one cannot always easily distinguish different
dynamical regimes (see Appendix E for additional traces studied in this work). (Bottom-left panel) Multiplexity detection statisticDðmÞ
applied to five (symbolized) experimental RNAP traces. We consistently find Dð3Þ > 0, which suggests that to correctly describe the
dynamics of RNA polymerase I, we need at least two diffusive layers. (Bottom-right panel) Posterior probability for the layer estimation
applied to five experimental series. We confirm that, with overwhelming probability, the most likely number of layers is L ¼ 2. One
possibility is that the identification of L > 1 is the consequence of the presence of colored noise in the single-molecule optical tweezer
transcription experiment, whereas another possibility is that L ¼ 2 corresponds to the elongation (active state) and backtracking (passive
state) dynamical modes (in the inner panel, the same results are shown in log-linear scales, and the probability associated with L ¼ 1 is
zero so is not defined in a log scale).
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multiplex with L ¼ 2 layers (corresponding to elongation
and backtracking, respectively) [79]. This suggests that our
methodology (using cycle graphs with homogeneous tran-
sition rates as the prior topology) is applicable, and under
the aforementioned assumptions, we should find that both
Dð3Þ > 0 and the model with L ¼ 2 should have a clear
maximum likelihood. To test such a prediction, we have
applied our complete methodology to five single-molecule
experimental traces of the position X of RNA polymerase I
(Pol I) from yeast S. cerevisiae, obtained with a dual-trap
optical tweezer setup in the assisting force mode [80]. We
systematically choose the first 104 data points at a 1-kHz
sampling rate (see Fig. 6 and Appendix E) to keep the time
series short and make the inference problem harder (for
instance, for the series shown in Fig. 6, it is not easy to
visually distinguish the elongation and backtracking
regimes). Since the original traces have continuous state
space, we discretize these series by embedding the exper-
imental recordings into a cycle graph via the transformation
proposed in Eq. (4) for K ¼ 4. An example is shown in the
top-right panel in Fig. 6. In the bottom-left panel of the
same figure, we plotDðmÞ applied to fX̃ðtÞg for each of the
five experimental series, consistently showing Dð3Þ > 0.
For comparison and control of finite-size effects, a similar
measure is computed on a null model: a time series of 104

data points generated by a (monoplex) Markov chain
whose transition matrix has been estimated from X̃ðtÞ
(red dashed line). We can conclude that the underlying
dynamics requires at least two alternating dynamics—a
stochastic alternation between two diffusive layers—hence
the projection onto an effectively multiplex model.
Subsequently, in the bottom-right panel of the same

figure, we provide the results on the layer estimation using
our nonlinear population Monte Carlo algorithm (conver-
gence after 12 iterations, 102 samples per iteration). The
algorithm directly provides log (PðOjLÞ), so assuming a
uniform prior on the number of layers, log (PðOjLÞ) ∝
log (PðLjOÞ), i.e., the logarithm of the a posteriori prob-
ability of model L. The true probability of the model (in
natural units) is subsequently extracted and plotted accord-
ingly. We find that the probability is essentially 1 for the
model with L ¼ 2 layers and negligible for the rest. Our
algorithm thus reveals that the optimal hidden multiplex
has L ¼ 2 effective layers. One possibility is that the
identification of L > 1 is the consequence of the presence
of colored noise in the single-molecule optical tweezer
transcription experiment. Quite intriguingly, additional
evidence points to the presence of non-Markovianity also
in the backtracking regime (see Appendix E), which might
suggest the presence of colored noise even in the back-
tracking mode, as in the example in Sec. III. Another
possibility is, as previously discussed, that the two effective
layers correspond to the biochemical mechanisms of
elongation (active state) and backtracking (passive state)
dynamical modes. Finally, we expect our approach to also

be applicable to more complicated scenarios such as
identifying the number of different nucleotides in copolym-
erization processes of templates with strong disorder [81].

V. DISCUSSION AND CONCLUSION

In this work, we have introduced a method that both
detects and quantifies the degree ofmultiplexity in the hidden
underlying structure of a networked system by only having
access to local and partial statistics of a random walker. Our
working hypothesis (prior) is that there is a hidden multiplex
where walkers diffuse, switching layers stochastically and
diffusing over each layer. Under these circumstances, any
random walker for which we only see a projection of such
trajectory in the aggregated network is necessarily non-
Markovian if the number of layers is larger than one. Hence,
our algorithm for multiplexity detection exploits such break-
ing of Markovianity as a means to detect multiplexity.
Incidentally, here we have focused on the specific case of

multiplex networks, where every layer has the same number
of (replica) nodes. Actually, in a multiplex, one can even have
the same topology in each layer,where only transitionweights
differ, as in the case of the multiplex cycle graphs considered
above. On the other hand, in a generic multilayer network,
each layer will have, in general, a different number of nodes
and different topology. This latter situation can be reinter-
preted as having amultiplexwhere, in each layer, we can have
isolated nodes that are never reached by awalker, or forbidden
transitions. Accordingly, we envisage that layers in a multi-
plexwould be, in general, harder to distinguish via ourmethod
than layers in a generic multilayer network, and as such, we
expect the detection method to be easily generalizable to the
multilayer case, something that should be studied in the future.
In a second step, we have introduced a probabilistic

scheme to estimate the most probable number of layers
composing the hidden multiplex. Note that probabilistic
model selection is not new in network inference; for instance,
in Ref. [82], a similar concept was used to estimate the most
probable combination of basic blockmodels that accounts for
a certain network topology (see, also,Refs. [83–86]),whereas
in Ref. [53], a probabilistic framework was developed to
estimate the most probable number of communities in a
single-layer network. Formally similar strategies to estimate
model parameters based on ϵ-machines or jump-Markov
system identification have also been put forward in the
nonlinear dynamics [87] and control theory [57] commun-
ities, respectively. In our case, the posterior probabilities
quantify the likelihood of having a hidden multiplex with L
layers; i.e., our approach for multiplex model estimation is
purely Bayesian. We were able to demonstrate the validity
and accuracy of this second part in simple synthetic networks
(multiplex cycles) up toL ¼ 5 layers, as reported in the main
text and appendixes. Since the model selection protocol can
be seen as a multidimensional Bayesian inference problem,
these schemes—similarly to hidden Markov models and
other methods in statistical inference—suffer from poor
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scalability: Essentially, the computation of the model pos-
terior probability explodes with the number of unknowns.
This is a limitation of the method, and its optimization is
therefore an open problem for futurework.As amatter of fact,
a simple and intuitive (although inefficient) way to estimate
these posteriors is to use a (deterministic) grid integration
scheme. In an effort to improve scalability and optimize such
calculations, we have proposed a nonlinear population
Monte Carlo algorithm (described in full detail in
Appendixes C and D), which reduces the computer runtime
by a factor close to 102, without performance loss, for all the
examples where we had previously used deterministic
integration. Interestingly enough, our model selection
scheme not only selects the most probable number of hidden
layers: By capitalizing on an importance sampling routine
that focuses on a small region of the parameter space where
the likelihood is concentrated,we can also provide aBayesian
estimation of the model parameters (i.e., the topology and
transition rates), thereby estimating not only the most
probable number of layers but, given that number of layers,
the full architecture.
We have thoroughly illustrated the validity and scalability

of thewhole method by addressing several synthetic systems
of varying complexity, as depicted in Sec. II and the
appendixes, where we show that we can reconstruct the full
architecture of the hidden multiplex network by analyzing
the statistics of random walks over the projected network.
Interestingly, our method can be applied to signals of

arbitrary origin, extending the formalism to also deal with
continuous processes—i.e., time series that are not neces-
sarily randomwalkers navigating a network—after a simple
graph embedding (series discretization). Under this exten-
sion, our hidden jump-Markov model provides a decom-
position of a given non-Markovian dynamics into a Markov
switching combination of diffusive modes and thus enjoys
larger generality: The reconstructed multiplex model
embeds the originally non-Markovian signal into a random
walk navigating an effective multiplex network, where each
layer accounts for a different type of diffusive dynamics.We
validated this extension by analyzing canonical continuous
processes (the Ornstein-Uhlenbeck process and a Langevin
equation with colored noise). Furthermore, we have proved
two existence theorems which guarantee that an exact
reconstruction is always possible, for any type of (arbitrary)
finite-orderMarkovian and fully non-Markovian (i.e., infin-
ite memory) process.
Finally, we applied this methodology in two experimental

scenarios (a case of human mobility in an online universe
and the analysis of the dynamics of RNA polymerase) and
hence showcased its applicability in real, experimental data.
To conclude, starting from the question of whether it is

possible to disentangle the hidden multiplex architecture
of a complex system if one only has experimental access to a
projectionof this architecture, in thisworkwehave elaborated
a mathematical and computational framework that actually

deals more generally with the decomposition of non-
Markovian dynamics. When these series are indeed traces
of walkers navigating a network, under the premise of having
intralayer diffusion, our approach provides a workable
solution for the unfolding of a multiplex network from its
aggregated projection.We shouldmake it clear that, generally
speaking, it is not possible to assert that the effectivemultiplex
representation is the true underlying architecture, much like
one cannot typically claim that there exist true communities in
an observed network. However, one can determine in a
principled way whether the available observations are more
reliably represented by a multiplex model or by a monoplex
one, in the same vein as models of networks with community
structure sometimes reproduce the observations more faith-
fully than models that lack such community structure.
In the general case, our method provides a potentially

useful approach to disentangle the combination of dynami-
cal regimes that appear intertwined in noisy dynamics;
for instance, this is the case of RNA polymerase moving
in a noisy environment and stochastically switching
between an active and a passive state. This suggests that
applications of this work not only include network science
but extend to other fields in biophysics, condensed matter
physics, gambling, or mathematical finance, where non-
Markovian signals pervade.
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APPENDIX A: A FEW NUMERICAL
CONSIDERATIONS

Bounds on switching rate.—Numerically, the problem of
detecting multiplexity via statistical differences between
the Markovian surrogates YðtÞ and XðtÞ should, in prin-
ciple, be easier when the switching rate r is small enough
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such that we allow trends associated with each layer to
build up in the series, but large enough such that Dð1Þ ¼
Dð2Þ ¼ 0 (that is, large enough such that the one- and two-
step joint distributions are still equivalent). A simple
theoretical lower bound is r < 1=m (as the average size
of a trend is 1=r, and this should be at least as large as the
block size). Note that this bound is not tight in what we
refer to as real-world scenarios (as for human mobility),
where the switching rate is normally low in order to avoid
unnecessary delays or has characteristic timescales that are
much lower than the diffusion timescales (as for changing
the foraging mode between day and night, in animal
mobility).
Finite size bias in KLD.—As a technical remark, note

that KLDðpjjqÞ diverges if the distributions p and q have
different supports [i.e., if qðmÞ ¼ 0, pðmÞ ≠ 0 or
pðmÞ ¼ 0, qðmÞ ≠ 0 for some value m]. In order to
appropriately weight this possibility while maintaining
the finite measure in pathological cases, a common
procedure [49] is to introduce a small bias that allows
for the possibility of having a small uncertainty for every
contribution. Here, we introduce a bias of order Oð1=n2Þ,
where n is the series size (i.e., we replace all vanishing
frequencies with 1=n, and we normalize the frequency
histogram appropriately).

APPENDIX B: INFERRING MULTIPLEXITY IN
SOME ADDITIONAL SCENARIOS

We start by providing, in Fig. 7, an additional analysis
similar to Fig. 2 but where there is no induced current. The

method correctly detects multiplexity in this arguably more
complicated scenario.
In the next sections, we extend the initial study on

inferring multiplexity to the case where layers have
different complex topologies, departing from the situation
where each layer is a cycle graph (ring). Note that when
each layer has a different topology, we expect the
algorithm to more easily detect the underlying multiplex
character (in this sense, extension of this formalism to the
more general case of a multilayer network is very
promising). In particular, we explore the following addi-
tional scenarios:

(i) Scenario 2: Two complete graphs with different
transition matrices.

(ii) Scenario 3: Two layers with cycle graphs, where in
one of the layers we introduce a shortcut, which is
crossed with a probability ϵ. This scenario allows
us to explore small perturbations in the transition
matrices with respect to the original scenario studied
in the main text.

(iii) Scenario 4: Each layer has a different topology and
dynamics, the first being a cycle graph (ring) with
positive net current and the second layer being a
complete graph with null net current.

(iv) Scenario 5: Initially having two identical layers
(two cycle graphs), we introduce a number of
additional edges (shortcuts) in the second one to
explore topological perturbations on our initial
scenario. We also explore the scalability of this
general scenario by considering the effect of in-
creasing the number of nodes.

(v) Scenario 6: Initially, we consider two identical layers
formed by Erdos-Renyi graphs and then rewire a
percentage of the edges in one of the layers.
Transition matrices are obtained here by unbiasing
the walker Tij ¼ Aij=ki. We also explore the scal-
ability of this scenario by considering the effect of
increasing the size of the graphs.

1. Scenario 2: Complete graphs

In this scenario, we consider two layers with identical
topology but different transition matrices. Here, we
build two replicas of a complete graph. In the first layer,
we define an unbiased random walker with transition
matrix

Tð1Þ ¼

2
6664

0 1=3 1=3 1=3

1=3 0 1=3 1=3

1=3 1=3 0 1=3

1=3 1=3 1=3 0

3
7775;

whereas in the second layer, we introduce a parametric
deviation

FIG. 7. The normalized Kullback-Leibler divergence DðmÞ
between XðtÞ and its Markovian surrogate YðtÞ, in the case
where XðtÞ does not show any induced current, for different
values of the switching rate r. The series XðtÞ records the position
of a walker diffusing over two layers, where transition proba-

bilities in the layers are Tð1Þ
i;iþ1 ¼ 1=3 and Tð2Þ

i;iþ1 ¼ 2=3. We
correctly find that XðtÞ is non-Markovian even for large values
of r as Dðm > 2Þ > 0, which suggests an underlying multiplex
structure.
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Tð2Þ ¼

2
6664

0 1=3þ 2ϵ 1=3 − ϵ 1=3 − ϵ

1=3þ 2ϵ 0 1=3 − ϵ 1=3 − ϵ

1=3þ 2ϵ 1=3 − ϵ 0 1=3 − ϵ

1=3þ 2ϵ 1=3 − ϵ 1=3 − ϵ 0

3
7775:

The statistics of a Markov chain over each layer separately
differ more for larger ϵ. For ϵ ¼ 0, both layers are
identical, and a walker diffusing over the multiplex
(switching layers at a constant rate r) reduces to a
Markov chain over one layer, whereas for ϵ > 0, the
process is non-Markovian if we only have access to the
state XðtÞ. In Fig. 8, we plot the results for DðmÞ, which
show that multiplexity can always be detected, and such
detection is easier as ϵ increases.

2. Scenario 3: Controlled perturbation on one layer

In this scenario, we explore the effect of a controlled
perturbation in the topology of one of the layers. We start
by defining L ¼ 2 identical layers (two rings with the same
transition matrix, with a homogeneous probability to flow
from i → iþ 1 Ti;iþ1 ¼ 1=3). In the second replica, we
introduce a shortcut between two nodes, weighting the
probability of traversing this node as 2ϵ and biasing the rest
of the edges accordingly. Thus, the transition matrices of
both layers read

Tð1Þ ¼

2
6664

0 1=3 0 2=3

2=3 0 1=3 0

0 2=3 0 1=3

1=3 0 2=3 0

3
7775;

Tð2Þ ¼

2
6664

0 1=3 − ϵ 2ϵ 2=3 − ϵ

2=3þ ϵ 0 1=3 − ϵ 0

2ϵ 2=3 − 3ϵ 0 1=3þ ϵ

1=3þ ϵ 0 2=3 − ϵ 0

3
7775:

When ϵ ¼ 0, this extra edge has no effect, and we should
expect that the multiplex is effectively monoplex; however,
for ϵ > 0, both layers show gradually different structures,
and as such, XðtÞ is non-Markovian. Similar to the previous
case, our methodology predicts that the network is a
multiplex when Dðm ≤ 2Þ ¼ 0 and Dðm > 2Þ > 0.

FIG. 8. Scenario 2. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ, in the
case where both layers are complete graphs with different
transition matrices and the switching rate is r ¼ 0.1. The differ-
ence is parametrized by ϵ (when ϵ ¼ 0, both matrices are
identical, and they increasingly differ with increasing values
of ϵ). The method detects multiplexity [Dðm > 2Þ > 0] with
larger values as ϵ increases.

FIG. 9. Scenario 3. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ in the
case where the second layer has a shortcut, which is traversed
with probability ϵ (scenario 3) and the switching rate is r ¼ 0.1.
For ϵ ¼ 0, both layers are identical, and the walker is essentially
navigating over a monoplex; therefore, XðtÞ is Markovian, and
DðmÞ ¼ 0 ∀ m. For ϵ > 0, the graph is multiplex; therefore,
Dðm > 2Þ > 0, and such a feature is detected with quantitatively
larger fingerprints as ϵ increases.

FIG. 10. Scenario 4. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ in the
case where the second layer is a complete graph.
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Intuitively, as ϵ increases, the effect of the shortcut should
be higher, and thus, detecting the multiplex nature of the
network should be easier. In Fig. 9, we plot DðmÞ for a
Markov chain walking over this topology with a constant
switching rate r ¼ 0.1 and different values of ϵ. The results
support the accuracy of the method; even for small values
of ϵ, the multiplex nature of the network is detected.

3. Scenario 4: Ring versus complete graph

In this scenario, we focus on a multiplex with L ¼ 2,
where each layer is totally different. The first layer is a ring
with a net current described by the transition matrix

Tð1Þ ¼

2
6664

0 1=3 0 2=3

2=3 0 1=3 0

0 2=3 0 1=3

1=3 0 2=3 0

3
7775;

whereas the second layer is a complete graph with no net
current and detailed balance everywhere:

Tð2Þ ¼

2
6664

0 1=3 1=3 1=3

1=3 0 1=3 1=3

1=3 1=3 0 1=3

1=3 1=3 1=3 0

3
7775:

Again, we find that the method can clearly detect the
multiplex nature of the network as Dðm > 2Þ > 0
(see Fig. 10).

4. Scenario 5: Sequentially introducing shortcuts

In this scenario, we consider two identical replicas (a
multiplex with L ¼ 2 layers), where in the second layer, we
add a certain number of additional edges. Originally, both
replicas are rings with detailed balance (unbiased walker),

Tð1Þ ¼ Tð2Þ ¼

2
6664

0 1=2 0 1=2

1=2 0 1=2 0

0 1=2 0 1=2

1=2 0 1=2 0

3
7775:

In this initial case, we expect DðmÞ ¼ 0, ∀ m (the
multiplex is effectively monoplex). We then add to this
benchmark a different number of edges [and, accordingly,
we expect Dðm > 2Þ > 0, and larger values when the
number of added edges increases], effectively interpolating
between scenario 2 and scenario 3. The adjacency matrices
for three concrete cases (with no added edges, one added
edge, and two added edges—this latter case being equiv-
alent to a complete graph) are depicted in Fig. 11, and in
Fig. 12, we show the values of DðmÞ.

5. Scenario 5b: Introducing edges on larger graphs

Here, we investigate the scalability of scenario 5, and in
particular, we explore (i) the effect of increasing the number
of nodes K in each layer and (ii) the effect of increasing the
number of rewired edges on the detectability. We start
by defining two identical replicas of a ring with K nodes
with unbiased transition matrix Tij ¼ 1=2 for i ≠ j. In the

FIG. 11. Scenario 5. Adjacency matrices of each layer for three cases: (i, left panel) No shortcuts are introduced, and both layers are
identical; (ii, middle panel) one shortcut has been introduced; (iii, right panel) two shortcuts have been rewired. The transition matrices
for each case are Tij ¼ Aij=ki, where ki is the degree of node i.

FIG. 12. Scenario 5. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ for a
two-layer multiplex, where the second layer is a replica of the first
layer in which a number of shortcuts have been introduced. When
no edges have been introduced, both replicas are identical, XðtÞ is
Markovian, and DðmÞ ¼ 0 ∀ m; otherwise, the process is non-
Markovian, and the algorithm detects multiplexity by finding
Dðm > 2Þ > 0. Such detection improves as the topology of both
layers is increasingly different.
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second layer, we introduce a number of shortcuts, and we
analyze two particular behaviors as follows.
Effect of node increase.—We fix the number of short-

cuts p ¼ 2 and vary the number of nodes K, and we
explore the dependence ofDðmÞ on K (see Fig. 13). As we
keep the series size N ðmÞ ¼ 105 × 2m independent from
K, we expect that as K increases, the statistics are poorer
as we need larger series to capture an equivalent number
of transitions.
Detectability as a function of the number of shortcuts

introduced.—Here, we fix K ¼ 10 and explore the multi-
plex detectability as the number of shortcuts p is increased
in the second layer. Multiplexity is detected when
Dð3Þ > 0, and such detection is easier with larger Dð3Þ.
In Fig. 14, we plot Dð3Þ as a function of the number of
shortcut edges p.

6. Scenario 6: Rewiring edges

In this scenario, we initially consider two replicas of
the same Erdos-Renyi graph (where nodes i and j are
connected with probability p ¼ 0.8, above the percolation
threshold, to have a connected graph). We consider three
different situations: (i) Both layers are kept identical, (ii) we
rewire one edge at random, and (iii) we rewire two edges at
random. The adjacency matrices of each layer for these
three cases are represented in Fig. 15, and we choose
unbiased random walkers with layer transition matrices
Pij ¼ Aij=ki. In Fig. 16, we plot the values of DðmÞ for
these three cases. As expected, when the layers are
identical, we findDðmÞ ¼ 0 ∀ m, whereas when we rewire
edges from a layer, the network is converted into a
multiplex one, and Dðm > 2Þ > 0. Also, Dðm > 2Þ takes
larger values—and thus multiplex detection is easier—
when the layers are increasingly different.

7. Scenario 6b: Rewiring edges on larger graphs

Finally, we consider Erdos-Renyi graphs (linking prob-
ability 0.65) with K ¼ 10 nodes per layer and explore the
multiplex detectability as we rewire a percentage of nodes

FIG. 13. Scenario 5b. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ for a
two-layer multiplex where each layer has K nodes, and the
second layer is a replica of the first layer, where p ¼ 2 shortcuts
have been introduced.

FIG. 14. Scenario 5b. Detectability measure Dð3Þ for a two-
layer multiplex with K ¼ 10 nodes per layer, where the second
layer is a replica of the first layer in which a number of shortcuts
p have been introduced. Results have been averaged over 10
network realizations for each case.

FIG. 15. Scenario 6. Adjacency matrices of each layer for three cases: (i, left panel) No rewiring takes place, and both layers are
identical; (ii, middle panel) one edge has been rewired; (iii, right panel) two edges have been rewired. The transition matrices for each
case are Tij ¼ Aij=ki, where ki is the degree of node i.
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p in the second layer. Multiplexity is detected when
Dð3Þ > 0, and the larger Dð3Þ, the easier such detection
is. In Fig. 17, we plot Dð3Þ as a function of p. Dots are the
result of an ensemble average over ER graph realizations.
For an ensemble, we keep the number of rewired edges
fixed and compute the effective average percentage of
rewired edges (which fluctuates because each realization of
an ER graph will have a different total number of edges).

APPENDIX C: MATHEMATICAL AND
ALGORITHMIC FRAMEWORK FOR

LAYER ESTIMATION

Here, we formalize the problem and provide a detailed
derivation of the model, the probabilistic model selection
scheme, and some possible algorithmic implementations of
this scheme. Let us remark that the probabilistic framework
described herein includes the case in which the path
followed by the walker across the multiplex network cannot
be observed exactly (i.e., there are observation errors) even
if this is not addressed in the main text.
We use an argument-wise notation to denote PMFs

and probability density functions (PDFs). If X and Y are
discrete random variables (RVs), then PðXÞ and PðYÞ are
the PMF of X and the pmf of Y, respectively, and
are possibly different. Similarly, PðX; YÞ and PðXjYÞ
denote the joint PMF of the two RVs and the conditional
PMF of X given Y, respectively. We use lowercase p for
PDFs. If X and Y are continuous RVs, then pðXÞ and pðYÞ
are the corresponding densities, which are possibly differ-
ent, and pðX; YÞ and pðXjYÞ denote the joint and condi-
tional PDFs. We may have a PDF of a continuous RV X
conditional on a discrete RV Y, pðXjYÞ, as well as a PMF of
Y given X, PðYjXÞ. Most RVs are indicated with uppercase
letters, e.g., X. If we need to denote a specific realization of
the RV, then we use the same letter but in lowercase, e.g.,
X ¼ x or Y ¼ y. Matrices and vectors are indicated with a
boldface font, e.g., T.

1. The model

We assume that a walker travels through a multiplex
network, taking random moves between neighboring
nodes and, occasionally, between layers. Let L denote
the number of layers in the multiplex network, and let K be
the number of nodes per layer. At discrete time t, the RV
XðtÞ denotes the in-layer walker position. Therefore,
XðtÞ ∈ f0;…; K − 1g, and XðtÞ ¼ k means that the par-
ticle is located at node number k at time t, irrespective of
the layer. The RV lðtÞ indicates the layer at time t, i.e.,
lðtÞ ∈ f1; 2;…; Lg, and lðtÞ ¼ l means that the walker is
found in layer l at time t. The state of the walker, therefore,
is given by the 2 × 1 vector ZðtÞ ¼ ½XðtÞ;lðtÞ�⊤.
At each time step, the walker may jump across layers.

This motion is assumed to be Markov, and hence it can be
characterized by an L × L stochastic transition matrix RL,
where the entry Rij, ði; jÞ ∈ f0;…; L − 1g2, represents the
probability of moving from layer i to layer j. Subsequently,
the particle diffuses within the new layer to one of its
neighbors. Within each single layer, the motion of the
walker is also assumed to be Markovian. Hence, in the lth
layer, it is governed by a K × K transition matrix TðlÞ, such
that TðlÞ

ij is the probability of a particle lying in layer l to
diffuse from node i to node j. These probabilities are
constant over time t. The complete Markov model is

FIG. 16. Scenario 6. Normalized Kullback-Leibler divergence
DðmÞ between XðtÞ and its Markovianized surrogate YðtÞ for a
two-layer multiplex, where the second layer is a replica of the first
layer in which a number of edges have been rewired. When no
edges have been rewired, both replicas are identical, XðtÞ is
Markovian, and DðmÞ ¼ 0 ∀ m; otherwise, the process is non-
Markovian, and the algorithm detects multiplexity by finding
Dðm > 2Þ > 0. Such detection improves as the topology of both
layers is increasingly different.

FIG. 17. Scenario 6b. Detectability measure Dð3Þ for a two-
layer multiplex with K ¼ 10 nodes per layer, where each layer is
a connected Erdos-Renyi graph (link probability 0.65). The
second layer is a replica of the first layer, where a percentage
p of nodes have been rewired. Results have been averaged over
102 network realizations for each case.
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characterized by the set of matrices fRL;Tð0Þ;…;TðL−1Þg,
and we denote T L ¼ fTðlÞgL−1l¼0 in the sequel for
convenience.
We can think of this model as a discrete-time state-space

dynamical system, where the state variables at time t are

XðtÞ ¼ fRL; T L; XðtÞ;lðtÞg; t ¼ 0; 1; 2;…; ðC1Þ

and we assume there is a sequence of observations
fYðtÞgt≥1 taking values in the set of node labels
f0; 1;…; K − 1g. In the main text, we assume that the
observations are exact and, therefore, YðtÞ ¼ XðtÞ.
However, we can handle a more general class of models
in which YðtÞ is a RV with conditional PMF P(YðtÞjXðtÞ)
(independently of the current or past layers). If the
observation is exact, then

PðYðtÞ ¼ jjXðtÞ ¼ iÞ ¼
�
1 if j ¼ i

0 otherwise:

However, the proposed model (and related numerical
methods) admit the cases in which observation errors
may occur, and hence, P(YðtÞjXðtÞ) is a nondegenerate
PMF. We assume there are known and independent a priori
PMFs for the node and layer at time t ¼ 0, P0(Xð0Þ;
lð0Þ) ¼ P0(Xð0Þ)P0(lð0Þ). In practical problems, the
parameters T L and RL are unknown, and we also endow
them with prior PDFs p0ðT L;RLÞ ¼ p0ðT LÞp0ðRLÞ w.r.t.
a suitable reference measure μðdT L × dRLÞ. Most often,
and for a general scenario, μ can be the Lebesgue measure
on RL×K×K ×RL×L, but other choices may be possible if
we wish to impose constraints on T L and RL. For the case
of the network with ring-shaped layers in the main text, μ
can be reduced to the Lebesgue measure on RLþ1.

2. Bayesian model selection

Assume that we have collected a sequence of N
observations, which we now label

Yð1∶NÞ ¼ fYð1Þ; Yð2Þ;…; YðNÞg ∈ f0; 1;…; K − 1gN:

We wish to make a decision as to what model is the best fit
for that sequence. We adopt the view that two models are
different when they have a different number of layers;
hence, if model A has L layers and model B has L0 layers,
A ¼ B ⇔ L ¼ L0. A convenient way to tackle this problem
is to model the total number of layers L as a RV, in such a
way that each possible value of L corresponds to a different
model. If we define

(i) a prior probability mass function for L, say, P0ðLÞ,
for L ∈ f1; 2;…; Lþg, where Lþ is the maximum
admissible number of layers, and

(ii) a likelihood function

P(Yð1∶NÞjL) ¼
Z

P(Yð1∶NÞjT L;RL)p0ðT LÞ

× p0ðRLÞμðdT L × dRLÞ; ðC2Þ

then we can aim at computing the posterior PMF of the
number of layers,

P(LjYð1∶NÞ) ∝ P(Yð1∶NÞjL)P0ðLÞ;

and choose the model according to the MAP criterion

L̂MAP ¼ arg max
L∈f1;2;…;Lþg

P(LjYð1∶NÞ)

¼ arg max
L∈f1;2;…;Lþg

P(Yð1∶NÞjL)P0ðLÞ; ðC3Þ

i.e., we choose the value of L that is more probable given
the available observations.
Expression (C3) yields the optimal solution to the

problem of selection of the number of layers in the multiplex
from a probabilistic Bayesian point of view. As discussed
below, one can find alternatives to this approach in the
literature on HMMs [54,56]; however, the latter suffer from a
number of theoretical and practical limitations, and we
strongly advocate for the Bayesian solution (C3).

3. Connections with hidden Markov model
estimation theory

The problem of selecting the number of layers L in the
multiplex model can be cast as one of selecting a HMM
where the complete state is ZðtÞ ¼ ½XðtÞ;lðtÞ�⊤ and the
transition from time t to time tþ 1 is governed by the
(unknown) stochastic matrices RL;Tð0Þ;…;TðL−1Þ. Let us
adapt the notation a bit in order to make it closer to the
classical HMM theory. We only have partial observations
of the Markov chain, namely, the sequence O ¼ Yð1∶NÞ,
with “emission probabilities” P(YðtÞjXðtÞ), while the
sequence of layer labels flðtÞgNt¼1 remains unobserved.
The goal is to estimate the total number of layers L from the
observations O.
The theory of HMMs has received considerable attention

in the literature since the 1970s because of their application
in a variety of fields, including speech processing, molecu-
lar biology, data compression, or artificial intelligence. The
problem of fitting a HMM, i.e., estimating its unknown
parameters, has been thoroughly researched [54]. The
classical technique is the Baum-Welch algorithm, which
is actually an instance of the expectation-maximization
(EM) method [54,88]. Indeed, the general EM methodol-
ogy, in several forms, is the standard approach to the
problem of fitting HMMs, often combined with other
techniques for its implementation, such as the Viterbi
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algorithm, the forward-backward algorithm, or the Kalman
smoother (see Ref. [56] for an excellent survey). Many of
these techniques adopt the general form of a space-
alternating EM algorithm, where the unobserved states
and the unknown parameters are iteratively estimated, one
at a time. The space-alternating generalized EM (SAGE)
methodology was introduced in Ref. [55], and it provides a
common framework for many current algorithms for
fitting HMMs.
However, the estimation of the number of layers in the

proposed multiplex scheme does not amount to HMM
fitting. Modeling L as a random variable, in order to solve
problem (C3), we aim at computing the model posterior
probabilities given the available data O, i.e.,

PðLjOÞ ∝ PðOjLÞP0ðLÞ; ðC4Þ

where P0ðLÞ, L ¼ 1; 2;…, are the a priori probabilities
we attribute to models with different numbers of layers
(e.g., we may deem models with many layers less probable
than simpler models with a few layers) and PðOjLÞ is the
model likelihood. The latter is an integral with respect to
the probability distribution of the matrix parameters T L ¼
fTð0Þ;…;TðL−1Þg and RL for an L-layer system, namely,

PðOjLÞ ¼
Z

PðOjT L;RLÞp0;TðT LÞp0;RðRLÞ

× μðdT L × dRLÞ; ðC5Þ

which is equivalent to Eq. (C2). Recall that p0;TðT LÞ and
p0;RðRLÞ are a priori PDFs w.r.t. a reference measure μ.
These PDFs can be chosen differently for different values
of L. EM methods for HMM fitting are tools to address the
problem of estimating T L and RL via the maximization of
the parameter likelihood PðOjT L;RLÞ that appears in the
integrand of Eq. (C5).
We see from Eqs. (C4) and (C5), however, that what we

need is to be able to integrate the likelihood PðOjT L;RLÞ,
rather than maximizing it. Nevertheless, most methods in
the HMM literature tackle the model selection problem (in
our case, selection of the number of layers L) by computing
estimates of the parameters via the EM method and then
comparing the likelihoods of the optimized parameters
[56,58]. In our setup, this means that, given two choices L1

and L2, we would estimate T̂ L1
; R̂L1

and T̂ L2
; R̂L2

[using
an EM scheme to maximize PðOjT Li

;RLi
Þ for i ¼ 1, 2]

and then compare the likelihoods PðOjT̂ L1
; R̂L1

Þ and

PðOjT̂ L2
; R̂L2

Þ. This approach has several problems:
(i) There is no guarantee that T̂ L1

; R̂L1
and T̂ L2

; R̂L2
are

accurate estimates (e.g., they may be overfitted). It
may well happen that, e.g., T̂ L1

; R̂L1
are poor esti-

mates and, hence, PðOjT̂ L1
;R̂L1

Þ<PðOjT̂ L2
;R̂L2

Þ,
while PðOjL1Þ > PðOjL2Þ.

(ii) The EM framework yields local optimization algo-
rithms. Even if the EM scheme converges, it may
yield a local maximizer of the likelihood for L1 and,
perhaps, a global maximizer for L2. In this case, we
may again have PðOjT̂ L1

; R̂L1
Þ < PðOjT̂ L2

; R̂L2
Þ,

while PðOjL1Þ > PðOjL2Þ.
(iii) Even if we manage to obtain accurate maximum

likelihood estimates of T L1
,RL1

and T L2
,RL2

, there

is no guarantee thatPðOjT̂ L1
;R̂L1

Þ<PðOjT̂ L2
;R̂L2

Þ
must imply PðOjL1Þ < PðOjL2Þ.

Many authors have aimed at mitigating these flaws by
introducing different heuristics in the way the models to be
fitted are chosen (typically, heuristics for merging and
splitting candidate states, in our case candidate layers) and
producing sophisticated EM parameter estimation algo-
rithms. See Ref. [58] for examples. This approach does not
attack the core of the problem, though.
Instead, Ref. [56] advocates Bayesian model selection as

a framework to address problem (C4), which automatically
handles overfitting (by imposing prior probability distri-
butions on the parameters) and the comparison of models of
different complexity [by integrating over the parameters as
in Eq. (C5)]. In Ref. [56], the term used for the MAP model
selection method of Eq. (C3) is, actually, Bayesian inte-
gration, which makes reference to the need to solve, or
numerically approximate, the integral in Eq. (C5). Some
candidate methods to tackle this computation include the
following:

(i) The Laplace approximation [89], which consists
in searching the maximum of PðOjT̂ L; R̂LÞ and
then approximating the integrand PðOjT L;RLÞ ×
p0;TðT LÞp0;RðRLÞ by a Gaussian with the adequate
covariance structure. This approach ignores the fact
that PðOjT̂ L; R̂LÞ is, in our case, multimodal.

(ii) The variational Bayes method [59,90] is an approxi-
mation scheme that relies on the use of surrogate
probability distributions for the parameters (which
need to be analytically tractable) in order to design
an EM method that tackles the maximization of
the model likelihood PðOjLÞ, i.e., the integral in
Eq. (C5). It is a relatively “inexpensive” method in
terms of computational cost, comparable to classical
EM-based model fitting techniques. However, like
any EM scheme, it performs a local optimization and
does not guarantee an optimal solution.

(iii) Deterministic integration of Eq. (C5) using either
deterministic regular grids on the space of the
parameters fT L;RLg or specific cubature methods
for some convenient family of functions [91].
While accurate, the complexity of these methods
typically grows exponentially with the dimension of
the parameters; hence, they can be prohibitive for
larger-scale models. Examples for multiplex models
with up to L ≥ 4 layers are shown.
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(iv) Conventional Monte Carlo integration, which suf-
fers from a similar complexity limitation. Classical
Markov chain Monte Carlo (MCMC) samplers
[92,93] could be well suited to solve integrals with
respect to the posterior PDF pðT L;RLjOÞ; however,
the integral in Eq. (C5) is actually the normalizing
constant of this posterior, which turns out to be hard
to estimate via MCMC, which limits its application
to model selection, in general [93].
The classical alternative toMCMC inMonte Carlo

integration is importance sampling (IS) [93]. While
conventional IS suffers from a problem called weight
degeneracy, which translates into poor scaling with
the dimension of the parameters in the integral,
recently, families of much more efficient adaptive
IS schemes have been introduced [60,61,94,95].
These techniques yield estimates of the integral in
Eq. (C5) in a simple way (unlike MCMC) and can
potentially work in high dimensions [95].

Below, we present a detailed description of the nonlinear
population Monte Carlo (PMC) scheme of Ref. [61] and
show an example of model selection with up to 10 layers
(L ≤ 10). While conventional (and even state-of-the-art)
importance samplers are based on the computation of
weights of the form wðzÞ ∝ f½pðzÞ�=½qðzÞ�g, where pðzÞ
is the target PDF and qðzÞ is a proposal density, the key
feature of the nonlinear PMC scheme is to compute
transformed weights w̄ðzÞ ∝ ϕf½pðzÞ�=½qðzÞ�g, where
ϕð·Þ is a nonlinear function, in order to reduce the variance
of the weights [if z is a random variable, then U ¼ wðZÞ
is random as well]. This very simple transformation, if
properly chosen, significantly improves the numerical
stability of the algorithm when the dimension of Z grows,
while preserving the convergence properties of conven-
tional IS. The examples presented below, for the nonlinear
PMC and a deterministic scheme based on regular grids,
show that this Monte Carlo integration scheme can be as
effective as a deterministic integrator with just a fraction of
the running time.

4. Computation of the posterior probabilities
via Monte Carlo integration

Let us return to the original notation where Yð1∶NÞ
denotes the sequence of observations. In order to select
the number of layers L in the multiplex according to the
Bayesian criterion in Eq. (C3), we need the ability to
evaluate the posterior probability

P(LjYð1∶NÞ) ∝ P(Yð1∶NÞjL)P0ðLÞ;

where the prior P0ðLÞ is known (chosen by design) but the
model likelihood P(Yð1∶NÞjL) is an integral given by
Eq. (C2), namely,

P(Yð1∶NÞjL) ¼
Z

P(Yð1∶NÞjT L;RL)p0ðT LÞ

× p0ðRLÞμðdT L × dRLÞ: ðC6Þ

Using the Bayes theorem, we realize that the integrand in
Eq. (C6) is proportional to the posterior density of the
parameters, given the observations Yð1∶NÞ, i.e.,

p(T L;RLjYð1∶NÞ) ∝ P(Yð1∶NÞjT L;RL)p0ðT LÞp0ðRLÞ:
ðC7Þ

Taken together, Eqs. (C6) and (C7) indicate that the model
likelihood P(Yð1∶NÞjL) is the normalization constant of
the posterior PDF of the parameters, p(T L;RLjYð1∶NÞ).
This normalization constant is often termed the model
evidence in the Bayesian terminology.
An efficient way of computing the normalization con-

stant of a target PDF via Monte Carlo integration is by
using the importance sampling (IS) method.

a. Importance sampling in a nutshell

Let pðzÞ be a target PDF that we can evaluate up to a
normalization constant c; i.e., we have the ability to
compute

p̃ðzÞ ¼ cpðzÞ

pointwise, but c is unknown. The IS method [93] enables
the estimation of c [actually, it enables the estimation of
integrals of the form

R
fðzÞpðzÞdz in general, for any

integrable test function f] by sampling from an alternative
PDF, qðzÞ, often called the proposal density or importance
function. We assume that qðzÞ is chosen to satisfy

wðzÞ ¼ p̃ðzÞ
qðzÞ < ∞; ðC8Þ

where wðzÞ is the weight function. The inequality in
Eq. (C8) typically implies, at least, that qðzÞ > 0 whenever
pðzÞ > 0.
The basic IS algorithm proceeds as follows:
(1) Draw M independent samples z1;…; zM from qðzÞ.
(2) Compute weights

w̃i ¼ wðziÞ ¼ p̃ðziÞ
qðziÞ ; for i ¼ 1;…;M:

(3) Normalize the weights,

wi ¼ w̃iP
M
m¼1 w̃

m :

It is a straightforward application of the strong law of large
numbers [93] to prove that
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lim
M→∞

XM
i¼1

wifðziÞ ¼
Z

fðzÞpðzÞdz almost surely ða:s:Þ

for any square-integrable test function f.
However, the most relevant result for the purpose of this

paper is that

ĉM ¼ 1

M

XM
i¼1

w̃i ðC9Þ

is an unbiased, consistent estimator of the normalization
constant c. By the strong law of large numbers again,

lim
M→∞

ĉM ¼
Z

wðzÞqðzÞdz ¼
Z

p̃ðzÞdz ¼ c a:s: ðC10Þ

since p̃ðzÞ ¼ cpðzÞ and pðzÞ is a PDF (hence, it integrates
to 1).
In the Bayesian model selection problem at hand, the

target non-normalized function is given by p̃ðzÞ≡
PðYð1∶NÞjT L;RLÞp0ðT LÞp0ðRLÞ, which we can evalu-
ate (as will be shown below), and c ¼ R p̃ðzÞdz≡
PðYð1∶NÞjLÞ is the model likelihood.

b. Nonlinear population Monte Carlo technique

The main drawback of standard IS is that, whenever
there is a significant mismatch between p̃ðzÞ and qðzÞ, the
variance of the weights becomes very large. As a conse-
quence, estimators converge very slowly (withM), and they
become of little use. This issue is usually referred to as
weight degeneracy [96]. It typically happens when the
dimension of the random variable Z is large or when,
simply, the target PDF is very narrow.
To mitigate degeneracy, a number of adaptive IS have

been proposed, especially since the publication of Ref. [97].
Here, we resort to one such method that introduces a
nonlinear transformation of the weights to control their
variability and, hence, degeneracy. The technique is called
the NPMC method, and it was originally proposed in
Ref. [61]. It consists of J iterations, each involving the
computation of both conventional importance weights (IWs)
and transformed importance weights (TIWs). The trans-
formation is a clipping or truncation operation, denoted
ϕð·; ·Þ. For a set of M ordered IWs, w̃i1 > w̃i2 > � � � > w̃iM ,
we obtain a set of M TIWs, with clipping of order
Mc <

ffiffiffiffiffi
M

p
, as

w̄i ¼ ϕði; fw̃mgMm¼1Þ ¼
�
w̃iMc if w̃i ≥ w̃iMc

w̃i otherwise:

This operation truncates the bigger Mc weights. A general
algorithm is outlined below, with M samples per iteration
and an instrumental Markov sampling kernel Kð·; ·jT i

L;R
i
LÞ

centered at T i
L, R

i
L.

(1) Initialization.
(a) Draw M independent samples ðT̃ i

L;0; R̃
i
L;0Þ, i ¼

1;…;M, from the prior PDFs p0ðT LÞ and
p0ðRLÞ.

(b) Compute non-normalized IWs, w̃i
0¼P(Yð1∶NÞj

T̃ i
L;0;R̃

i
L;0), i ¼ 1;…;M.

(c) Compute non-normalized TIWs, w̄i
0 ¼

ϕði; fw̃m
0 gMm¼1Þ, i ¼ 1;…;M.

(d) Normalize the TIWs,

wi
0 ¼

w̄i
0P

M
m¼1 w̄

m
0

; i ¼ 1;…;M:

(e) Resample M times the set fT̃ i
L;0; R̃

i
L;0gMi¼1, with

replacement and using the normalized TIWs
as probability masses, to yield an unweighted
sample set fT i

L;0;R
i
L;0gMi¼1.

(2) Iteration. For j ¼ 1∶J:
(a) Draw M independent samples

ðT̃ i
L;j; R̃

i
L;jÞ ∼ KðT L;RLjT i

L;j−1;R
i
L;j−1Þ;

i ¼ 1;…;M:

(b) Compute non-normalized IWs,

w̃i
j ¼

PðYð1∶NÞjT̃ i
L;j; R̃

i
L;jÞp0ðT̃ i

L;jÞp0ðR̃i
L;jÞ

KðT̃ i
L;j; R̃

i
L;jjT i

L;j−1;R
i
L;j−1Þ

;

i ¼ 1;…;M:

(c) Compute non-normalized TIWs, w̄i
j ¼

ϕði; fw̃m
j gMm¼1Þ, i ¼ 1;…;M.

(d) Normalize the TIWs,

wi
j ¼

w̄i
jP

M
m¼1 w̄

m
j
; i ¼ 1;…;M:

(e) Resample M times the set fT̃ i
L;j; R̃

i
L;jgMi¼1, with

replacement and using the normalized TIWs as
probability masses, to yield an unweighted
sample set fT i

L;j;R
i
L;jgMi¼1.

After the Jth iteration, we have the IS estimator of the
model likelihood

PM(Yð1∶NÞjL) ¼ 1

M

XM
i¼1

w̃i
J:

This is a consistent estimator that converges with optimal
Monte Carlo error rates. In particular, assuming that the
IWs are bounded away from zero, Theorem 1 of Ref. [98]
states that for any arbitrarily small ϵ < 1

2
, there exists an a.s.

finite random variable Uϵ such that
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jPM(Yð1∶NÞjL) − P(Yð1∶NÞjL)j < Uϵ

M
1
2
−ϵ

and, therefore,

lim
M→∞

PM(Yð1∶NÞjL) ¼ P(Yð1∶NÞjL) a:s:

All that remains is to show that the parameter likelihood
function P(Yð1∶NÞjT L;j;RL;j), and hence the IWs and the
TIWs, can be evaluated exactly.

c. Exact calculation of the parameter likelihood
P(Yð1∶NÞjT L;RL)

We start with the factorization

P(Yð1∶NÞjT L;RL) ¼
YN
t¼1

P(YðtÞjYð1∶t − 1Þ; T L;RL);

ðC11Þ

where each factor

P(YðtÞjYð1∶t − 1Þ;T L;RL) ðC12Þ

is a PMF that can be computed exactly using a recursive
algorithm. We can write the function P(YðtÞjYð1∶t − 1Þ;
T L;RL) as a marginal of the mass P(YðtÞ; XðtÞ;lðtÞj
Yð1∶t − 1Þ; T L;RL), namely,

P(YðtÞjYð1∶t−1Þ;T L;RL)

¼
X
XðtÞ

X
lðtÞ

P(YðtÞjXðtÞ)P(XðtÞ;lðtÞjYð1∶t−1Þ;T L;RL);

ðC13Þ

where we have used the fact that P(YðtÞjXðtÞ) ¼
P(YðtÞjXðtÞ). The conditional observation PMF
P(YðtÞjXðtÞ) is one of the building blocks of the state-
space model, so it can be readily evaluated. The predictive
PMF P(XðtÞ;lðtÞjYð1∶t − 1Þ; T L;RL), on the other hand,
can be decomposed as

P(XðtÞ;lðtÞjYð1∶t − 1Þ; T L;RL) ¼
X
Xðt−1Þ

X
lðt−1Þ

P(XðtÞjXðt − 1Þ;lðt − 1Þ; T L) × P(lðtÞjlðt − 1Þ;RL)

× P(Xðt − 1Þ;lðt − 1ÞjYð1∶t − 1Þ;T L;RL); ðC14Þ

which depends on the filtering PMF at time t − 1:

PðXðt − 1Þ;lðt − 1ÞjYð1∶t − 1Þ; T L;RLÞ ∝ PðYðt − 1ÞjXðt − 1ÞÞ × PðXðt − 1Þ;lðt − 1ÞjYð1∶t − 2Þ; T L;RLÞ: ðC15Þ

Note that Eqs. (C13)–(C15) are recursively related. If we start from the prior PMF P0(Xð0Þ;lð0Þ) ¼ P0(Xð0Þ)P0(lð0Þ),
then we can recursively compute the required sequence of PMFs for t ¼ 1; 2;…; T as

P(XðtÞ;lðtÞjYð1∶t − 1Þ; T L;RL) ¼
X
Xðt−1Þ

X
lðt−1Þ

P(XðtÞjXðt − 1Þ;lðt − 1Þ; T L) × P(lðtÞjlðtÞ − 1;RL)

× P(Xðt − 1Þ;lðt − 1ÞjYð1∶t − 1Þ;T L;RL); ðC16Þ

P(YðtÞjYð1∶t − 1Þ; T L;RL) ¼
X
XðtÞ

X
lðtÞ

P(YðtÞjXðtÞ) × P(XðtÞ;lðtÞjYð1∶t − 1Þ; T L;RL); ðC17Þ

P(XðtÞ;lðtÞjYð1∶NÞ; T L;RL) ∝ P(YðtÞjXðtÞ)P(XðtÞ;lðtÞjYð1∶t − 1Þ; T L;RL): ðC18Þ

Substituting Eq. (C17) into Eq. (C11) for each t ¼ 1;…; N
yields the parameter likelihood.

APPENDIX D: QUANTIFYING COMPLEXITY:
ADDITIONAL RESULTS

In this section, we present some additional computer
simulation results that complement those shown in the main
text. For the simulations, we assume (the same as in the

main text) a simple ring topology for the layers of the
multiplex, as well as a particular structure for the matrix
RL, in such a way that it can be parametrized by a single
scalar r ∈ ð0; 1Þ. This is described in Appendix D 1. In
Appendix D 2, we show how, given the ring topology of the
layer and assuming exact observations YðtÞ ¼ XðtÞ, it is
possible to construct a relatively simple deterministic
approximation to the posterior probabilities P(LjYð1∶NÞ).
A NPMC algorithm for this specific model is also detailed.
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Finally, our numerical results are displayed and discussed in
Appendix D 5.

1. Multiplex of ring-shaped layers

From now on, we assume a ring topology (cycle graph)
for every layer. In this particular case, the particle may jump
from one node to its neighbors (left or right on the ring) and
from one layer to another layer. This motion is random, and
we model it by way of the following probabilities,

Rij ¼ P(lðtÞ ¼ jjlðt − 1Þ ¼ i); ðD1Þ

TðlÞ ¼ P(XðtÞ ¼ Xðt − 1Þ þ 1 ðmod KÞjlðt − 1Þ ¼ l);

ðD2Þ

where Rij represents the probability of moving from layer i
to layer j and TðlÞ is the probability of moving rightwards in
layer l, i.e., of jumping from node i to node iþ 1 ðmod KÞ.
The probability of moving leftwards within layer l is,
therefore,

1−TðlÞ ¼ 1−P(XðtÞ¼Xðt−1Þ−1 ðmodKÞjlðt−1Þ¼ l):

These rightwards-jump probabilities for layers l ¼
0; 1;…; L − 1 are put together in the vector [99]

TL ¼

2
664
Tð1Þ

..

.

TðlÞ

3
775
L×1

ðD3Þ

In order to simplify the structure of the stochastic matrix
R, we assume that, at each time t, the walker may stay in
the same layer (as in t − 1) with probability 1 − r
(r ∈ ð0; 1Þ) or may jump to a different layer with proba-
bility ½r=ðL − 1Þ�. Hence, the transition matrixRL becomes

RL ¼

2
666664

1 − r r
L−1 � � � r

L−1
r

L−1 1 − r � � � r
L−1

..

. ..
. . .

. ..
.

r
L−1

r
L−1 � � � 1 − r

3
777775;

and there is a single unknown parameter, the probability to
jump, r.

2. Approximation of the posterior model probabilities

In the main text, we have focused on scenarios where
the node visited at time t can be observed exactly; i.e.,
YðtÞ ¼ XðtÞ and

PðYðtÞ ¼ jjXðtÞ ¼ iÞ ¼
�
1 if j ¼ i

0 otherwise:

This constraint simplifies some of the general equations in
Appendix C 2. Specifically, the recursions given by
Eqs. (C16)–(C18) for the evaluation of the PMF
P(YðtÞjYð1∶t − 1Þ;TL; r) (note that we have reduced
RL and T L to the scalar r and vector TL) become

P(XðtÞjXð1∶t − 1Þ;TL; r) ¼
X
lðt−1Þ

P(XðtÞjlðt − 1Þ; Xðt − 1Þ;TL) × P(lðt − 1ÞjXð1∶t − 1Þ;TL; r); ðD4Þ

P(lðtÞjXð1∶tÞ;TL; r) ¼ P(XðtÞjlðtÞ; Xð1∶t − 1Þ;TL; r)P(lðtÞjXð1∶t − 1Þ;TL; r)

¼ P(XðtÞjXð1∶t − 1Þ;TL; r)
X
lðt−1Þ

P(lðtÞjlðt − 1Þ; r)P(lðt − 1ÞjXð1∶t − 1Þ;TL; r): ðD5Þ

Equations (D4) and (D5) can be applied recursively, with
initial conditions given by the prior PMFs P0(Xð0Þ) and
P0(lð0Þ). In particular, note that

P(Xð1ÞjTL; r) ¼
X
Xð0Þ

X
lð0Þ

P(Xð1ÞjXð0Þ;lð0Þ;Tl)

× P(lð0Þ)P(Xð0Þ); ðD6Þ
while

Pðlð1ÞjTl; rÞ ¼
X
lð0Þ

Pðlð1Þjlð0Þ; rÞPðlð0ÞÞ: ðD7Þ

These priors are assumed to be known as part of the model
specification (typically, they can be uniform PMFs, as they
have been selected in computer experiments).
Given Eq. (D4), we can evaluate the likelihood of the

parameters TL and r. In particular,

P(Xð1∶NÞjTL; r)

¼ P(Xð1ÞjTL; r)
YN
t¼1

P(XðtÞjXð1∶t − 1Þ;TL; r); ðD8Þ

with P(Xð1ÞjTL; r) computed as in Eq. (D6). Numerically,
it is convenient to work with the log-likelihood
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logP(Xð1∶NÞjTL; r)

¼ logP(Xð1ÞjTL; r)þ
XN
t¼1

logP(XðtÞjXð1∶t− 1Þ;TL; r)

ðD9Þ

and transform it into natural units only when strictly
needed.
The likelihood of the RV, L, given by the observation

record Xð1∶NÞ is, therefore, given by the integral

P(Xð1∶NÞjL) ¼
Z

P(Xð1∶NÞjTL; r)p0ðTLÞp0ðrÞdTLdr;

ðD10Þ

where we have assumed prior densities w.r.t. the Lebesgue
measure. Indeed, in the absence of any prior knowledge, it
is natural to choose p0ðrÞ to be uniform over the interval
(0,1), i.e., p0ðrÞ ¼ 1. The prior p0ðTLÞ is important
because it is used to penalize system configurations with
two or more identical layers. Note that a multiplex with
L ¼ 2 and identical transition matrices Tð1Þ ¼ Tð2Þ ¼ T̃
is equivalent to a monoplex with transition matrix T̃.
Similarly, any multiplex with L layers, out of which
L0 ≤ L have identical transition matrices, is fully equivalent
to a reduced system with L − L0 þ 1 layers [100]. For our
computer simulations, we have chosen

p0ðTLÞ ∝ min
l≠l0

jTðlÞ − Tðl0Þj; ðD11Þ

i.e., we penalize systems with at least two layers that have
similar transition probabilities.

3. Deterministic integration

One conceptually simple way to approximate the integral
in Eq. (D8) is

P(Xð1∶NÞjL)
≈
X
Tð0Þ∈G

� ��
X

TðL−1Þ∈G

X
r∈G

P(Xð1∶NÞjTL;r)p0ðTLÞ; ðD12Þ

where G ¼ fg1;…; gHg is a grid of H points over the
interval (0,1), i.e., 0 < g1 < g2 < � � � < gH < 1. The pro-
portionality constant of the prior p0ðTLÞ can be approxi-
mated numerically as well (over the grid GL). We have
selected a uniform prior on L; i.e., assuming that
L ∈ f1; 2;…; Lþg, we choose P0ðLÞ ¼ ð1=LþÞ. In this
way, the MAP selection criterion reduces to choosing the
value of L ∈ f1; 2;…; Lþg that maximizes the model
likelihood P(Xð1∶NÞjL).

4. NPMC algorithm for Monte Carlo integration

Let us specify a practical NPMC algorithm for the
multiplex composedof ring-shaped layers. Theprior densities
are p0ðrÞ ¼ Uð0; 1Þ and p0ðTLÞ ∝ minl≠l0 jTðlÞ − Tðl0Þj. We
approximate the normalization constant Ĉ of the latter PDF
by standard Monte Carlo integration [simulating the TðlÞ’s
uniformly over (0,1)].
The sampling kernels Kð·; ·jTL; rÞ are truncated

Gaussian PDFs. Specifically, if TNðxjμ; σ2; a; bÞ denotes
the truncated Gaussian density

TNðxjμ;σ2;a;bÞ¼ expf− 1
2σ2

ðx−μÞ2gR
b
a expf− 1

2σ2
ðu−μÞ2gdu; for x∈ ða;bÞ;

then

KðTL;rjT̆L;r̆Þ¼TNðrjr̆;σ2;0;1Þ
YL
l¼1

TNðTðlÞjT̆ðlÞ;σ2;0;1Þ;

where σ2 ¼ 0.005.
The number of clipped weights is Mc ¼ b ffiffiffiffiffi

M
p c. Recall

that the function ϕði; fw̃m
j gMm¼1Þ truncates the biggest Mc

weights to be equal (and identical to the Mcth largest
weight).
(1) Initialization.

(a) Draw M independent samples ðT̃i
L;0; r̃

i
0Þ, i ¼

1;…;M, from the prior PDFs p0ðTLÞ and
p0ðrÞ ¼ 1 for r ∈ ð0; 1Þ.

(b) Compute non-normalized IWs, w̃i
0¼PðXð1∶NÞj

T̃i
L;0; r̃

i
0Þ, i ¼ 1;…;M.

(c) Compute non-normalized TIWs, w̄i
0 ¼ ϕði;

fw̃m
0 gMm¼1Þ, i ¼ 1;…;M.

(d) Normalize the TIWs,

wi
0 ¼

w̄i
0P

M
m¼1 w̄

m
0

; i ¼ 1;…;M:

(e) Resample M times the set fT̃i
L;0; r̃

i
0gMi¼1, with

replacement and using the normalized TIWs
as probability masses, to yield an unweighted
sample set fTi

L;0; r
i
0gMi¼1.

(2) Iteration. For j ¼ 1∶J:
(a) Draw M independent samples

r̃ij ∼ TNðrjrij−1; σ2; 0; 1Þ; i ¼ 1;…;M;

T̃ðlÞ;i
j ∼ TNðTjTðlÞ;i

j−1 ; σ
2; 0; 1Þ;

l ¼ 1;…; L; i ¼ 1;…;M:
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(b) Compute non-normalized IWs,

w̃i
j ¼

P(Xð1∶NÞjT̃i
L;j; r̃

i
j)p0ðT̃i

L;jÞp0ðr̃ijÞ
TNðr̃ijjrij−1; σ2; 0; 1Þ

Q
L
l¼1 TNðT̃ðlÞ;i

j jTðlÞ;i
j−1 ; σ

2; 0; 1Þ
; i ¼ 1;…;M:

(c) Compute non-normalized TIWs, w̄i
j ¼

ϕði; fw̃m
j gMm¼1Þ, i ¼ 1;…;M.

(d) Normalize the TIWs,

wi
j ¼

w̄i
jP

M
m¼1 w̄

m
j
; i ¼ 1;…;M:

(e) Resample M times the set fT̃i
L;j; r̃

i
jgMi¼1, with

replacement and using the normalized TIWs as
probability masses, to yield an unweighted
sample set fTi

L;j; r
i
jgMi¼1.

5. Numerical results

From deterministic integration to NPMC: Efficiently
validating the full architecture.—We first consider a differ-
ent example than the one shown in the main text, where
now the true model from which the observations are
generated has only L ¼ 2 layers, and we aim at estimating
this hidden model via posterior probability maximization.
As for the case considered in the main text, the posterior
probabilities are computed via the approximation in
Appendix D 2, in particular, using a 19-point grid G ¼
f0.05; 0.10;…; 0.95g for each unknown variable, which
includes the probability to move rightwards, TðlÞ, over each
layer and the additional parameter r, which is the proba-
bility to jump to a different layer at each iteration. For a
maximum of L ¼ 4 layers, this makes a grid of 195 nodes,

plus a 194 grid for L ¼ 3, plus a 193 grid for L ¼ 2, plus a
19-point grid for L ¼ 1.
In the left panel of Fig. 18, we plot the posterior

probability of four possible models with L ¼ 1;…; 4
layers. It peaks at the correct value, although less emphati-
cally than for the case shown in the main text. The reason
for this is that, in this example, these probabilities are
obtained using a record of only N ¼ 104 observations,
while we used a larger time series of N ¼ 2 × 104 obser-
vations in the case reported in the main text. Nevertheless,
the method correctly classifies the underlying architecture,
which suggests that the estimation protocol is robust
against short series size, something extremely relevant
for real-world applications. Note also that the posterior
probability of L ¼ 1 is zero up to the computer degree of
accuracy. The observations Xð1∶NÞ, N ¼ 104, were gen-
erated from a model with 1 − r ¼ 0.89, Tð1Þ ¼ 0.14, and
Tð2Þ ¼ 0.56. This is not a node of the grid G3, and yet the
model is identified unequivocally.
In a second step, we explore this particular case with

our NPMC algorithm, with I ¼ 10 iterations, M ¼ 900
Monte Carlo samples per iteration, and clipping parameter
Mc ¼

ffiffiffiffiffi
M

p ¼ 30, to approximate the posterior probabilities
P(L̃jXð1∶NÞ) for L̃ ¼ 1, 2, 3, and 4. We observe, in the
right panel of Fig. 18, that the posterior probability peaks
at L̃ ¼ L ¼ 2, with similar values of the approximations.
The runtime was approximately 68 minutes, while the
computations for deterministic grid integration took
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FIG. 18. (Left panel) Posterior probability P(LjXð1∶NÞ) as a function of the number of layers L, computed from a trajectory of 104

time steps generated using a model with L ¼ 2 layers and parameters 1 − r ¼ 0.89, Tð1Þ ¼ 0.14, and Tð2Þ ¼ 0.56. Computation is
performed using deterministic grid integration. The algorithm clearly picks out the correct model L ¼ 2. (Right panel) Similar results as
for the left panel but using the NPMC algorithm instead of the deterministic integration, which is much faster and allows us to
reconstruct the full architecture.
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approximately 6480 minutes (a reduction by a factor of
approximately 95) on the same computer and with the
same software.
Moreover, the NPMC also allows us to efficiently

estimate, given L ¼ 2, the most probable architecture of
the multiplex, i.e., r, Tð1Þ, and Tð2Þ. The NPMC method
generates a grid of the parameter space that is tighter in the
regions with high probability measure; therefore, it is
guaranteed that all the nodes in this grid yield parameters
with high likelihood. If we view the problem as one of
optimizing the parameter values for a given number of
layers L, one can simply take this grid and choose the point
that displays the highest probability density (which can be
approximated numerically) or the highest likelihood (which
can be computed exactly). The former is a MAP estimate,
and the latter is a ML estimate. This ML estimate is indeed
global. The method guarantees that the global maximum of

the likelihood is found (when the number of samples is
sufficiently large), while other techniques, namely, EM
algorithms, are local and can get stuck in local maxima of
the likelihood no matter how many times they are iterated.
All these computations (including the calculation of the
parameter likelihoods) are implicitly carried out by our
algorithm. Therefore, parameter estimation of the full
architecture comes at no extra cost.
In Fig. 19, we depict the parameters sampled by the

NPMC (100 Monte Carlo samples—note that this is not
shown in the figure, as a resampling procedure yields many
samples that are very similar). The importance sampling
algorithm is emphatically concentrated in two small regions
of the space, whose coordinates are indeed very close to the
true parameters (highlighted in red). Incidentally, note that
there are two clouds of points instead of one due to the
symmetry between layers. This implies that the posterior
PDF of the parameters is multimodal (which would create
difficulties with the application of local search algorithms,
such as the EM method). The histograms that approximate
the (posterior) probability density function of these param-
eter probabilities are actually shown in Fig. 20. As can be
seen, the histograms are concentrated close to the true values
(the bimodal nature of the distributions in the case ofT is due
to the symmetries of the model). The histograms in the figure
can be smoothed out to obtain an approximation of the
posterior PDF and, from it, MAP estimates of Tð1Þ;Tð2Þ, and
r. Alternatively, one can obtainML estimates at no extra cost
since the likelihood of each configuration ðTð1Þ;Tð2Þ; rÞ is
computed by the importance sampling scheme.
Estimated architecture is a likelihood maximum.—As

discussed above, we have also confirmed that the likelihood
of the parameters, P(Xð1∶NÞjTL; r) [which is the key
ingredient in the approximation of P(LjXð1∶NÞ)], is
maximized at the values corresponding to the true model
that generates the observations. In order to illustrate
this fact further, we again consider the system under study
in the main text (a model with L¼3 layers, with 1−r¼0.84
and TL ¼ ½0.16; 0.76; 0.24�⊤), together with ten slightly
perturbed models withL ¼ 3 layers and parameters 1 − r0 ¼
1 − rþ Δ and T0

L ¼ ½0.16þ Δ0; 0.76þ Δ00; 0.24þ Δ000�,
where Δ, Δ0, Δ00, Δ000 represent independent Gaussian

FIG. 19. Scatter plots of 100 Monte Carlo samples of 1 − r (top
panel) and the interlayer transition probabilities Tð1Þ and Tð2Þ
(bottom panel). They are all concentrated in a region close to the
ground truth (note that there are two clouds in the bottom panel
due to the symmetry Tð1Þ ↔ Tð2Þ).

FIG. 20. Probability density of each parameter obtained from the 100 Monte Carlo samples of Fig. 19.
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perturbations of zero mean and variance 5 × 10−4. As a
function of the time series size [the observation window
Xð1∶NÞ], we have computed the likelihood of each set of
parameter values, which, in every case, we compare with the
likelihood obtained for the true parameters. In Fig. 21, we
plot the logarithm of the ratio of these likelihoods, where a
positive value indicates that the ratio is larger than 1, i.e., that
the likelihood of the true parameters is larger than the
likelihood of the perturbed parameters. We systematically
find that this is the case, and interestingly, we find that any
small perturbation grows and generates a monotonically
decreasing likelihood ratio as the size of the observed series
increases.
Scalability.—Finally, we consider the issue of scalability

and computational cost. All simulations have been carried
out using Matlab R2016a running on an Apple iMac
equipped with an Intel Core i7 processor, with 4 cores
and 32 GB of RAM. For a first experiment, we have
considered the same model and data as in Fig. 18, i.e., a
system with L ¼ 2 layers, parameters 1 − r ¼ 0.89,
Tð1Þ ¼ 0.14, and Tð2Þ ¼ 0.56, and a series of N ¼ 104

observations. As discussed previously, using NPMC
instead of deterministic integration reduces the computing
time by a factor of approximately 95. Therefore, equipped
with the NPMC algorithm, we can tackle more complex
systems. For the last computer experiment, we have
generated a sequence of N ¼ 20 × 103 observations from
a model with L ¼ 5 layers, and parameters Tð1Þ ¼ 0.1,

Tð2Þ ¼ 0.2, Tð3Þ ¼ 0.6, Tð4Þ ¼ 0.7, Tð5Þ ¼ 0.9, and
1 − r ¼ 0.85. We have applied the NPMC algorithm—
with J ¼ 10 iterations, M ¼ 1000 Monte Carlo samples
per iteration, and Mc ¼ 31—to approximate the posterior
probabilities PðL̃jXð1∶NÞÞ for L̃ ¼ 1;…; 10. This simu-
lation took around 370 minutes on the same computer.
Figure 22 displays the results, where we observe that the
correct model is still clearly identified.

APPENDIX E: BIOCHEMICAL NETWORKS:
ADDITIONAL DETAILS FOR THE CASE

OF RNA POLYMERASE

In Fig. 23, we plot (right panels) the five experimental
traces of RNA polymerase I analyzed in this work. To make
the inference problem more challenging, we systematically
select the initial 104 time steps (about 10 seconds, as the
signal is sampled at 1 kHz), where it is often not possible
to visually distinguish the periods where elongation and
backtracking are at play. Because of the inherent noise
inside the cell, and as one can see in the figure, only for
two cases (traces #2 and #3) are the two operating
mechanisms—elongation and backtracking—observable,
while the rest are hidden below the noise. Our method-
ologies (both the layer detection and layer estimation
protocols) are successful at detecting and correctly infer-
ring the presence of these two modes, as we find that the
more likely number of hidden layers is L ¼ 2. Intriguingly,
if we select a period where apparently only one mode
(backtracking) is at play, then our methodology again
predicts multiplexity [Dð3Þ > 0] and L ¼ 2 (see
Fig. 24). This is a surprising result, which suggests that

FIG. 21. Log-likelihood difference between a model with the
true values and ten models with slightly perturbed values in the
parameters, as a function of the size of the observation sequence.
In every case, we find that the log-likelihood difference is larger
than zero, meaning that the likelihood of the true model is always
larger than the likelihoods of the models with perturbed param-
eters: The model with maximum a posteriori probability is
indeed also the model with the correct parameters (not just a
model with the correct number of layers), and this is an apparent
global maximum. This result is robust as it gets more acute as we
increase the size of the observed walker sequence.
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FIG. 22. Posterior probability P(LjXð1∶NÞ) as a function
of the number of layers L, computed from a trajectory of N ¼
20 × 103 time steps generated using a model with L ¼ 5
and parameters Tð1Þ ¼ 0.1, Tð2Þ ¼ 0.2, Tð3Þ ¼ 0.6, Tð4Þ ¼ 0.7,
Tð5Þ ¼ 0.9, and 1 − r ¼ 0.85. The algorithm clearly picks out the
correct model L ¼ 5. These results are obtained using the NPMC
algorithm.
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either (i) short elongation times are hidden among a long
backtracking pause or (ii), while in backtracking, stochastic
fluctuations have a non-Markovian character. Both inter-
pretations are in contrast with the state of the art and
deserve further investigation.

APPENDIX F: PROOF OF THEOREM 1

It is well known that a higher-order Markov model
(h > 1) can be converted into a first-order Markov system
(h ¼ 1) defined over a higher-dimensional state space (see,
e.g., Ref. [101]). In the same vein, we show that every
higher-order Markov model can be converted into an
equivalent hidden jump-Markov model of the type dis-
cussed in Sec. II (which, from now on, we call the multiplex
model) with a sufficiently large number of layers. The proof
hence consists of two parts:

(i) We first describe a constructive procedure to obtain a
multiplex model from the transition probabilities of
a generic Markov model of order h.

(ii) We then prove that the probability of generating
any sequence of length hþ 1 is the same for
the (order h) Markov model and the multiplex
model.

1. Construction of the multiplex model

Recall that the Markov sequence takes values on the
space K ¼ f1;…; Kg (this is the node set in the multiplex
network) and is defined by the transition probabilities
Ph
Kðitjit−h∶t−1Þ, it−h∶t ∈ Khþ1. We aim at constructing a

model with L ¼ Kh−1 layers, which implies that the
random layer sequence lðtÞ takes values on the set
Lh−1 ≔ 1;…; Kh−1. As a first step, we establish a bijection
between the set of layers Lh−1 and the set of vectors Kh−1.

FIG. 23. Experimental traces of RNA polymerase I. In particular, and to make the inference problem more challenging, we only select
the first 104 steps (about 10 seconds) for each trace. These parts are highlighted in red in the right panels, and plotted in the left panels.
Interestingly, only for traces #2 and #3 are the two operating mechanisms—elongation and backtracking—observable and clearly
discernible, while the rest are hidden below the noise.
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To be specific, let us introduce the map b∶Kh−1 → Lh−1,
which associates every vector of states

v ¼

2
666664

ih−1
ih−2

..

.

i1

3
777775 ∈ Kh−1

with a unique layer bðvÞ ≔ 1þPh−1
s¼1ðis − 1ÞKs−1 ∈ Lh−1.

Intuitively, we interpret the vector

v ¼

2
666664

ih−1
ih−2

..

.

i1

3
777775 ∈ Kh−1

as a sequence of digits in a base K number system, and the
function bð·Þ simply returns the evaluation of this number
(plus one, for notational coherence). Since b is bijective, we
can readily construct the inverse function b−1∶Lh−1 → Kh−1,
which takes a layer number l ∈ Lh−1 and returns its base-K
representation (in vector form) b−1ðlÞ.
With these ingredients, we can now construct a multiplex

model with the form of a Markov chain on the state space
K × Lh−1 described by the transition probabilities

P

��
XðtÞ
lðtÞ

�
¼
�
it
jt

�����
�
Xðt − 1Þ
lðt − 1Þ

�
¼
�
it−1
jt−1

��

¼ M�

 
it it−1
jt jt−1

!
;

where it, it−1 ∈ K, jt, jt−1 ∈ Lh−1 and

M�

0
B@ it it−1

jt jt−1

1
CA ¼

8>>><
>>>:

Ph
Kðitjit−1∶t−hÞ if b−1ðjt−1Þ ¼

0
B@

it−2

..

.

it−h

1
CA and b−1ðjtÞ ¼

0
B@

it−1

..

.

it−hþ1

1
CA

0 otherwise:

Note that we have simply encoded the history of states it−2∶t−h into the layer index jt−1. For the system to behave
“correctly,”we need to check that the transition from layer jt−1 to layer jt is compatible with the sequence of states it−1∶t−hþ1

that has to be “recorded” for the next element of the chain. Unfortunately, the Markov chain described by the transition
probabilities M�ð·j·Þ is semidegenerate. To be specific, the layer value lðtÞ ¼ jt is deterministic, given Xðt − 1Þ ¼ it−1
and lðt − 1Þ ¼ jt−1. Indeed,

if jt−1 ¼ b−1

0
BBBBB@

i0h−1
i0h−2

..

.

i01

1
CCCCCA and Xðt − 1Þ ¼ it−1; then jt ¼ b−1

0
BBBBB@

it−1
i0h−1

..

.

i02

1
CCCCCA

with probability 1. This determinism is not coherent with our discussion of multiplex models in Secs. I and II. Fortunately,
this difficulty can be easily removed if we further extend the state space of the model.
Let us construct a (new but similar) Markov chain on the space K × Lh, defined by the transition probabilities

P

��
XðtÞ
lðtÞ

�
¼
�
it
jt

�����
�
Xðt − 1Þ
lðt − 1Þ

�
¼
�
it−1
jt−1

��
¼ M

 
it it−1
jt jt−1

!
; ðF1Þ

where

M

 
it it−1
jt jt−1

!
≔ Ph

Kðitjit−1∶t−hÞRjt−1jt ðF2Þ

and
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Rjt−1jt ≔

8>>>>>><
>>>>>>:

1
K if b−1ðjtÞ ¼

0
BBBBB@

r

it−1

..

.

it−hþ1

1
CCCCCA and b−1ðjt−1Þ ¼

0
BBBBB@

s

it−2

..

.

it−h

1
CCCCCA for some s; r ∈ K

0 otherwise:

ðF3Þ

(Note that, in this case, the bijection b is a function
Kh → Lh, with the same interpretation as before.) Intui-
tively, we have now encoded the system memory (the
sequence of states it−h∶t−2) into a subset ofK layers, instead
of a single one. From each layer in this subset, there is
probability 1=K to jump to a new layer belonging to the
subset that encodes the sequence it−hþ1∶t−1. Comparing
Eq. (F2) with our notation for multiplex models in Secs. I
and II, we can readily identify the matrix RL of transition
probabilities between layers, while Tðjt−1Þ

it−1it
¼ Ph

Kðitjit−1∶t−hÞ
(note that jt−1 uniquely identifies the sequence it−2∶t−h).

2. Identity of transition probabilities

What remains to be shown is that the conditional
probabilities

P(XðtÞ ¼ itjXðt − h∶t − 1Þ ¼ it−h∶t−1)

generated by the probability function Ph
Kð·j·Þ (for the order-

hMarkov model) and the Markov kernelMð·j·Þ in Eq. (F2)
(for the multiplex model) coincide.
On one hand, if fXðtÞgt≥0 is an order-h Markov

sequence, then

P(XðtÞ ¼ itjXðt − h∶t − 1Þ ¼ it−h∶t−1) ¼ Ph
Kðitjit−h∶t−1Þ

ðF4Þ

by definition. On the other hand, if the sequence fXðtÞgt≥0
is generated by the multiplex model on K × Lh defined
by M, we have

FIG. 24. (Top panel) Sample of Pol I trajectory of 104 steps in a backtracking pause. (Bottom-left panel) DðmÞ as a function of
m. We find Dð3Þ > 0, suggesting that this series is non-Markovian. (Bottom-right panel) Posterior probability P(LjXð1∶NÞ) as a
function of the number of layers L, peaking at L ¼ 2. The probability for L ¼ 1 is below the ϵ of the machine, meaning it is
virtually null.
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P(XðtÞ ¼ itjXðt − h∶t − 1Þ ¼ it−h∶t−1)

¼
X
jt∈Lh

X
jt−1∈Lh

P(XðtÞ ¼ it;lðtÞ ¼ jt;lðt − 1Þ ¼ jt−1jXðt − h∶t − 1Þ ¼ it−h∶t−1)

¼
X
jt∈Lh

X
jt−1∈Lh

P(XðtÞ ¼ it;lðtÞ ¼ jtjlðt − 1Þ ¼ jt−1; Xðt − h∶t − 1Þ ¼ it−h∶t−1)

× P(lðt − 1Þ ¼ jt−1jXðt − h∶t − 1Þ ¼ it−h∶t−1)

¼
X
jt∈Lh

X
jt−1∈Lh

M

� it it−1
jt jt−1

�
P(lðt − 1Þ ¼ jt−1jXðt − h∶t − 1Þ ¼ it−h∶t−1); ðF5Þ

where the first equality follows from the theorem of total probabilities, the second equality is obtained from the definition of
conditional probability, and the third identity follows from the definition of the multiplex model on K × Lh. Moreover, for
the multiplex model constructed in Appendix F 1,

P(lðt − 1Þ ¼ jt−1jXðt − h∶t − 1Þ ¼ it−h∶t−1) ¼

8>>>>>>>><
>>>>>>>>:

1
K if b−1ðjt−1Þ ¼

0
BBBBB@

s

it−2

..

.

it−h

1
CCCCCA; s ∈ K

0 otherwise:

ðF6Þ

Hence, substituting Eqs. (F6) and (F2) into Eq. (F5) yields

P(XðtÞ ¼ itjXðt − 1∶t − hÞ ¼ it−1∶t−h) ¼
1

K

X
jt∈Lh

X
jt−1∈Sb−1 ðit−h∶t−2Þ

Ph
Kðitjit−1∶t−hÞRjt−1jt ; ðF7Þ

where

Sb−1ðit−h∶t−2Þ ≔

8>>>>><
>>>>>:
j ∈ Lh∶b−1ðjÞ ¼

2
666664

s

it−2

..

.

it−h

3
777775; s ∈ K

9>>>>>=
>>>>>;
:

However, from the definition of Rjt−1jt in Eq. (F3), we can further reduce Eq. (F7) and obtain

P(XðtÞ ¼ itjXðt − h∶t − 1Þ ¼ it−h∶t−1) ¼
1

K
Ph
Kðitjit−1∶t−hÞ

X
jt∈Sb−1 ðit−hþ1∶t−1Þ

X
jt−1∈Sb−1 ðit−h∶t−2Þ

Rjt−1jt ; ðF8Þ

and, for each term in the sum of Eq. (F8), we have Rjt−1jt ¼ ð1=KÞ [from the definition in Eq. (F3)]. Because of the
construction of the sets Sb−1ðit−hþ1∶t−1Þ and Sb−1ðit−h∶t−2Þ, there are exactly K2 terms in the sum of Eq. (F8), which readily
yields

PðXðtÞ ¼ itjXðt − 1∶t − hÞ ¼ it−1∶t−hÞ ¼ Ph
Kðitjit−h∶t−1Þ

and completes the proof. □
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APPENDIX G: PROOF OF THEOREM 2

Theorem 1 guarantees that any order-hMarkov sequence
on K can be represented exactly by a multiplex model with
L ¼ Kh layers. Hence, for every random sequence
fXhðtÞgt≥0, we have an equivalent sequence fXLðtÞgt≥0
with L ¼ Kh layers and transition probabilities

Rij ¼ P(lðtÞ ¼ jjlðt − 1Þ ¼ i);

i; j ∈ f1;…; Lg for the layers, and

TðjÞ
is ¼ P(XLðtÞ ¼ sjXLðt − 1Þ ¼ i;lðt − 1Þ ¼ j);

for i; s ∈ f1;…; Kg, j ∈ f1;…; Lg. Therefore, every
Markov-∞ sequence fXðtÞgt≥0 can also be represented
by a sequence of random processes fXLðtÞgt≥0 described
by suitably constructed multiplex models, i.e.,

lim
L→∞

XL ¼d X;

where ¼d denotes equality in distribution. What we need to
prove is that the sequence of multiplex models, described
by the pairs ðTL;RLÞ, L ¼ K;K2; K3;…, yields the
continuous-layer model described by a proper probability
measure M0, a Markov kernel M on Bð½0; 1ÞÞ, and a
family of transition matrices TðyÞ, y ∈ ½0; 1Þ, when
L → ∞.
Let us note that every transition probability in the

multiplex model can be specified by a simple function
[102] defined over subsets of [0, 1). To be specific, we
construct

T̂L
isðyÞ ≔

XL
l¼1

1½l−1L ;lLÞðyÞT
ðlÞ
is ; ðG1Þ

where

1AðyÞ ¼
�
1 if y ∈ A

0 otherwise
ðG2Þ

is the set-indicator function,

M̂Lðyjy0Þ ¼
XL
l¼1

XL
j¼1

1½j−1L ;jLÞðy
0Þ1½l−1L ;lLÞðyÞRjl ðG3Þ

and

M̂L
0 ðyÞ ¼

XL
l¼1

1½l−1L ;lLÞðyÞP(lð0Þ ¼ l): ðG4Þ

The limits limL→∞T̂
L
isðyÞ, limL→∞M̂

Lðyjy0Þ and
limL→∞M̂

L
0 ðyÞ are well defined [because XLðtÞ yields

the same transition probabilities as XhðtÞ, for L ¼ Kh,

and limh→∞Xh ¼d X uniformly over t and Khþ1]. Therefore,
from Ref. [102] (see Theorem 5 in Chap. 8), the functions

TisðyÞ ≔ lim
L→∞

T̂L
isðyÞ;

M̄ðyjy0Þ ≔ lim
L→∞

M̂Lðyjy0Þ; and

M̄0ðyÞ ≔ lim
L→∞

M̂L
0 ðyÞ ðG5Þ

exist, and they are measurable w.r.t. the Lebesgue measure.
In particular, M̄ðyjy0Þ and M̄0ðyÞ are probability density
functions w.r.t. the Lebesgue measure, and we obtain
Mðdyjy0Þ ¼ M̄ðyjy0Þdy and M0ðdyÞ ¼ M̄0ðyÞdy. □
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