
Inference on winners

Isaiah Andrews
Toru Kitagawa
Adam McCloskey

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP31/18



Inference on Winners∗

Isaiah Andrews† Toru Kitagawa‡ Adam McCloskey§

May 10, 2018

Abstract

Many questions in econometrics can be cast as inference on a parameter

selected through optimization. For example, researchers may be interested in

the effectiveness of the best policy found in a randomized trial, or the best-

performing investment strategy based on historical data. Such settings give

rise to a winner’s curse, where conventional estimates are biased and conven-

tional confidence intervals are unreliable. This paper develops optimal confi-

dence sets and median-unbiased estimators that are valid conditional on the

parameter selected and so overcome this winner’s curse. If one requires valid-

ity only on average over target parameters that might have been selected, we

develop hybrid procedures that combine conditional and projection confidence

sets and offer further performance gains that are attractive relative to existing

alternatives.
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1 Introduction

Many problems in econometrics can be cast as inference on target parameters selected

through optimization over a finite set. In a randomized trial considering multiple

treatments, one might want to learn about the true average effect of the treatment

that performed best in the experiment. In finance, one might want to learn about the

expected return of the trading strategy that performed best in a backtest. Perhaps

less obviously, in structural break and tipping point models, researchers first estimate

the location of a break or tipping point by minimizing the sum of squared residuals

and then seek to estimate the magnitude of the discontinuity taking the estimated

break location as given.

Estimators that do not account for data-driven selection of the target parame-

ters can be badly biased, and conventional confidence sets that add and subtract

a standard normal quantile times the standard error may severely under-cover. To

illustrate, consider inference on the true average effect of the treatment that per-

formed best in a randomized trial. Due to data-driven selection of the treatment of

interest, the conventional estimate for its average effect will be biased upwards, and

the usual confidence interval will under-cover, particularly when the number of treat-

ments considered is large. This gives rise to a form of winner’s curse, where follow-up

trials will be systematically disappointing relative to what we would expect based on

conventional estimates and confidence sets.

This paper develops estimators and confidence sets that eliminate these biases.

There are two distinct perspectives from which to consider bias and coverage. The

first conditions on the target parameter selected, for example on the identity of the

best-performing treatment, while the second is unconditional and averages over pos-

sible target parameters. Conditional validity is more demanding but, as we discuss

in the next section, may be desirable in some settings, for example when one wants

to ensure validity conditional on the recommendation made to a policymaker. Both

perspectives differ from inference on the effectiveness of the “true” best treatment

as in e.g. Chernozhukov et al. (2013), in that we consider inference on the effective-

ness of the (estimated) best-performing treatment in the experiment rather than the

(unknown) best-performing treatment in the population.

Considering first conditional inference, we derive optimal unbiased and equal-

tailed confidence sets. Our results build on the rapidly growing literature on selective
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inference (e.g. Fithian et al. (2017); Lee et al. (2016); Harris et al. (2016); Tian

and Taylor (2016)), which derives optimal conditional confidence sets in a range of

other settings. We further observe that the results of Pfanzagl (1994) imply optimal

median-unbiased estimators for conditional settings, which does not appear to have

been previously noted in the selective inference literature. Hence, for settings where

conditional validity is desired, we propose optimal inference procedures that eliminate

the winner’s curse noted above. We further show that in cases where this winner’s

curse does not arise (for instance because one treatment considered is vastly better

than the others) our conditional procedures coincide with conventional ones so our

corrections do not sacrifice efficiency in such cases.

A common alternative remedy for the biases we consider is sample splitting. In

settings with identically distributed data, choosing the target parameter using the first

part of the data and constructing estimates and confidence sets using the second part

ensures unbiasedness of estimates and validity of conventional confidence sets. Indeed,

split-sample confidence sets are valid conditional on the target parameter. Such

procedures have three undesirable properties, however. First, the target parameter

is generally more variable than if constructed using the full data. Second, only the

second part of the data is used for inference, which Fithian et al. (2017) show implies

that split-sample procedures are dominated by optimal conditional procedures applied

using the same sample split. Third, non-uniqueness of the sample split means that the

results are random or non-unique even conditional on the data. In work in progress,

we develop implementable procedures that dominate conventional sample splitting in

our setting.

We next turn to unconditional inference. One approach to constructing uncondi-

tional confidence sets is projection, which was previously used by e.g. Romano and

Wolf (2005) and Kitagawa and Tetenov (2018). To obtain a projection confidence

set, we form a simultaneous confidence band for all potential target parameters and

take the implied set of values for the target parameter of interest. The resulting con-

fidence sets have correct unconditional coverage but, unlike our conditional intervals,

are wider than conventional confidence intervals even when the latter are valid. On

the other hand, we find in simulations that projection intervals outperform conditional

intervals in cases where there is substantial randomness in the target parameter, e.g.

when there is not a clear best treatment.

Since neither conditional nor projection intervals perform well in all cases, we next
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introduce hybrid intervals which combine conditioning and projection. These main-

tain most of the good performance of our conditional procedures in cases for which

the winner’s curse does not arise, but are subsets of (conservative) projection intervals

by construction, and so limit the maximal under-performance relative to projection

confidence sets. We also introduce hybrid estimators which allow a controlled degree

of bias while limiting the deviation from the conventional estimate.

Since we are not aware of any other procedures with guaranteed validity condi-

tional on the target parameter and since our conditional procedures are optimal in this

class, our simulations focus on unconditional performance. The simulation designs

are based on empirical welfare maximization applications from Kitagawa and Tetenov

(2018) and tipping point applications from Card et al. (2008). In both settings, we

find that while our conditional procedures exhibit good unconditional performance

in cases where the objective function determining the target parameter has a clear,

well-separated optimum, their unconditional performance can be quite poor in other

cases, including in calibrations to the data. By contrast, our hybrid procedures per-

form quite well: our hybrid confidence sets are shorter than the previously available

alternative (projection intervals) in all specifications, and are shorter than conditional

intervals in all but the well-separated case (where they are nearly tied). Hybrid es-

timators eliminate nearly all the bias of conventional estimates, and are much less

dispersed than our exactly median unbiased estimates. These results show that while

optimal conditional inference is possible, conditional validity can come at the cost

of unconditional performance. By combining conditional and projection approaches

our hybrid procedures yield better performance than either, and offer a substantial

improvement over existing alternatives.

This paper is related to the literature on tests of superior predictive performance

(e.g. White (2000); Hansen (2005); Romano and Wolf (2005)). This literature studies

the problem of testing whether some strategy or policy beats a benchmark, while we

consider the complementary question of inference on the effectiveness of the estimated

“best” policy.1 Our conditional inference results combine naturally with the results of

this literature, allowing one to condition inference on e.g. rejecting the null hypothesis

that no policy outperforms a benchmark.

As suggested above, our results are also closely related to the growing literature

on selective inference. Fithian et al. (2017) describe a general conditioning approach

1As noted above, Romano and Wolf (2005) also propose a version of projection intervals.
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applicable to a wide range of settings, while a rapidly growing literature including e.g.

Lee et al. (2016); Harris et al. (2016); Tian and Taylor (2016) works out the details

of this approach for a range of settings. Likewise, our conditional confidence sets

examine the implications of the conditional approach in our setting. In a particularly

related paper, Tian et al. (2016) consider inference conditional on the solution to

a penalized convex optimization problem falling in a given set, though neither our

setting nor theirs nests the other.

Beyond the new setting considered, we make three main contributions relative to

the selective inference literature. First, we observe that the same structure used to

develop optimal conditional confidence sets also allows construction of optimal quan-

tile unbiased estimators using the results of Pfanzagl (1994). Second, we note that

conditional validity, as generally imposed in this literature, may come at a substantial

cost of unconditional performance, relative to unconditional alternatives. Finally, for

settings where unconditional validity is sufficient we introduce novel hybrid proce-

dures which outperform both conditional procedures and the available unconditional

alternatives.

In the next section, we begin by introducing the problem we consider, and the

techniques we propose, in the context of a toy example. Section 3 introduces the

normal model in which we develop our main results, and shows how it arises as an

asymptotic approximation to empirical welfare maximization and structural break

examples. Section 4 develops our optimal conditional procedures, discusses their

properties, and compares them to sample splitting. Section 5 introduces projection

confidence intervals and our hybrid procedures. Finally, Sections 6 and 7 report

results for simulations calibrated to empirical welfare maximization and tipping point

applications, respectively. All proofs, along with other supporting material, are given

in the supplement.

2 A Stylized Example

We begin by illustrating the problem we consider, along with the solutions we pro-

pose, in a stylized example based on Manski (2004). In the treatment choice problem

of Manski (2004) a treatment rule assigns treatments to subjects based on observ-

able characteristics. Given a social welfare criterion and (quasi-)experimental data,

Kitagawa and Tetenov (2018) propose what they call empirical welfare maximization
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(EWM), which selects the treatment rule that maximizes the sample analog of the

social welfare criterion over a class of candidate rules.

For simplicity suppose there are only two candidate policies: θ1 corresponding to

“treat everyone” and θ2 corresponding to “treat no one.” Suppose further that our

social welfare function is the average of an outcome variable Y. If we have a sample

of independent observations i ∈ {1, ..., n} from a randomized trial where a binary

treatment Di ∈ {0, 1} is randomly assigned to subjects with Pr{Di = 1} = d, then

as in Kitagawa and Tetenov (2018) the scaled empirical welfare under (θ1, θ2) is

(Xn(θ1), Xn(θ2)) =

(
1√
n

n∑
i=1

DiYi
d

,
1√
n

n∑
i=1

(1−Di)Yi
1− d

)
.

EWM selects the rule θ̂ = argmax θ∈{θ1,θ2}Xn(θ).2

Kitagawa and Tetenov (2018) show that the welfare from the policy selected by

EWM converges to the optimal social welfare at the minimax optimal rate, providing

a strong argument for this approach. As noted by Kitagawa and Tetenov (2018),

however, even after choosing a policy we often want estimates and confidence inter-

vals for its implied social welfare in order to learn about the size of policy impact

and to communicate with stakeholders (rather than finding or revising a policy rec-

ommendation). For a fixed policy θ, the empirical welfare Xn(θ) is unbiased for the

true (scaled) social welfare µn(θ) from the corresponding policy.3 By contrast, the

empirical welfare of the estimated optimal policy, Xn(θ̂), is biased upwards relative to

the true social welfare µn(θ̂) since we are more likely to select a given policy when the

empirical welfare overestimates the true welfare. Likewise confidence sets for µn(θ̂)

that ignore estimation of θ may cover µn(θ̂) less often than we intend. This is a form

of the winner’s curse: estimation error leads us to over-predict the benefits of our

chosen policy and to misstate our uncertainty about its effectiveness.

To simplify the analysis and develop corrected inference procedures we turn to

asymptotic approximations. Under mild conditions the central limit theorem implies

2If the summands are weighted by the sample propensity scores instead, we obtain Manski’s
conditional empirical success rule and the asymptotically optimal rules of Hirano and Porter (2009)
with a symmetric loss.

3Xn(θ) is exactly mean-unbiased, while the asymptotic approximation (1) below shows that it is
asymptotically median-unbiased.
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that our estimates of social welfare are asymptotically normal,(
Xn (θ1)− µn (θ1)

Xn (θ2)− µn (θ2)

)
⇒ N

(
0,

(
Σ(θ1) Σ(θ1, θ2)

Σ(θ1, θ2) Σ(θ2)

))
(1)

where the asymptotic variance can be consistently estimated, while the scaled social

welfare µn cannot be. To simplify the analysis, for this section we assume that

Σ(θ1, θ2) = 0.4 Motivated by (1), we abstract from approximation error and assume

that we observe(
X (θ1)

X (θ2)

)
∼ N

((
µ (θ1)

µ (θ2)

)
,

(
Σ(θ1) 0

0 Σ(θ2)

))

for Σ(θ1) and Σ(θ2) known, and that θ̂ = argmax θ∈ΘX(θ), Θ = {θ1, θ2}.
As suggested above, X(θ̂) is biased upwards as an estimator of µ(θ̂). Indeed, this

bias arises both conditional on θ̂ and unconditionally. To see this note that θ̂ = θ1 if

X(θ1) > X(θ2), where we ignore ties (which occur with zero probability). Conditional

on θ̂ = θ1 and X(θ2), X(θ1) follows a normal distribution truncated below at X(θ2).

Since this holds for all X(θ2), X(θ1) has positive median bias conditional on θ̂ = θ1,
5

Prµ

{
X(θ̂) ≥ µ(θ̂)|θ̂ = θ1

}
>

1

2
for all µ. (2)

Since the same argument holds for θ2, θ̂ is likewise biased upwards unconditionally

Prµ

{
X(θ̂) ≥ µ(θ̂)

}
>

1

2
for all µ. (3)

Note that (3) differs from (2) in that the target parameter is random, due to its

dependence on θ̂. Unsurprisingly given this bias, the conventional confidence set which

adds and subtracts a quantile of the standard normal distribution times the standard

error need not have correct coverage.

To illustrate these issues, Figure 1 plots the coverage of conventional confidence

sets as well as the median bias of conventional estimates, in an example with Σ(θ1) =

Σ(θ2) = 1. For comparison we also consider cases with ten and fifty policies, |Θ| = 10

4One can show that Σ(θ1, θ2) = −µ(θ1)µ(θ2), so this restriction arises naturally if one models µ
as shrinking with the sample size to keep it on the same order as sampling uncertainty, µn = 1√

n
µ∗.

5It also has positive mean bias, but we focus on median bias for consistency with our later results.
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and |Θ| = 50, where we again set Σ(θ) = 1 for all θ and for ease of reporting assume

that all the policies other than the first are equally effective, µ(θ2) = µ(θ3) = ... =

µ(θ−1). The first panel of Figure 1 shows that while the conventional confidence set

appears to have reasonable coverage when there are only two policies, its coverage

can fall substantially when |Θ| = 10 or |Θ| = 50.6 The second panel shows that the

median bias of the conventional estimator µ̂ = X(θ̂), measured as the deviation of the

exceedance probability Prµ{X(θ̂) ≥ µ(θ̂)} from 1
2
, can be quite large, and the third

panel shows that the same is true when we measure bias as the median of X(θ̂)−µ(θ̂).

In all cases we find that performance is worse when we consider a larger number of

policies, as is natural since a larger number of policies allows more scope for selection.

Our results correct these biases. Returning to the case with |Θ| = 2 for simplic-

ity, let FTN(x(θ1);µ(θ1), x(θ2)) denote the truncated normal distribution function for

X(θ1) truncated below at x(θ2) when the true social welfare for θ1 is µ(θ1). For fixed

(x(θ1), x(θ2)) this function is strictly decreasing in µ(θ1), and for µ̂α the solution to

FTN(X(θ1); µ̂α, x(θ2)) = 1− α, Proposition 1 below shows that

Prµ

{
µ̂α ≥ µ(θ̂)|θ̂ = θ1

}
= α for all µ.

Hence, µ̂α is α-quantile unbiased for µ(θ̂) conditional on θ̂ = θ1, and the analogous

statement likewise holds conditional on θ̂ = θ2. Indeed, Proposition 1 shows that µ̂α

is the optimal α-quantile unbiased estimator conditional on θ̂.

Using this result, we can eliminate the biases discussed above. The estimator µ̂1/2,

is median unbiased, and the equal-tailed confidence interval CSET =
[
µ̂α/2, µ̂1−α/2

]
has conditional coverage 1− α

Pr
{
µ(θ̂) ∈ CS|θ̂ = θj

}
≥ 1− α for j ∈ {1, 2} and all µ. (4)

While the equal-tailed confidence interval is easy to compute, there are other

confidence sets available in this setting. As in Lehmann and Scheffé (1955) and

Fithian et al. (2017) it is possible to construct a uniformly most accurate unbiased

(UMAU) confidence set, CSU , conditional on θ̂, i.e., the average length of CSU is

shortest among any unbiased confidence sets conditional on θ̂. To construct CSU , we

collect the parameter values not rejected by a uniformly most powerful unbiased test

6For example, these could correspond to cases where we consider “treat no one” along with nine
or forty-nine different treatments, respectively.
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Figure 1: Performance of conventional procedures in examples with 2, 10, and 50 policies.
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conditional on θ̂. While straightforward to implement, the exact form of this test is

somewhat involved and so is deferred to Section 4 below. The equal tailed confidence

set CSET is not unbiased, so there is not a clear ranking between CSET and CSU .

Both CSET and CSU have conditional coverage 1−α, and so by the law of iterated

expectations have unconditional coverage 1− α as well

Prµ

{
µ(θ̂) ∈ CS

}
≥ 1− α for all µ. (5)

Unconditional coverage is easier to attain, so relaxing the coverage requirement from

(4) to (5) may yield tighter confidence sets in some cases. Conditional and uncondi-

tional coverage requirements address different questions, however, and which is more

appropriate depends on the problem at hand. In the EWM problem, for instance, a

policy maker who is told the recommended policy θ̂ along with a confidence interval

may want the confidence interval to be valid conditional on the recommendation,

which is precisely the conditional coverage requirement (4). In particular, this en-

sures that if one considers repeated instances in which EWM recommends a particular

course of action (e.g. departure from the status quo), reported confidence sets will

in fact cover the true effects a fraction 1 − α of the time. On the other hand, if we

only want to ensure that our confidence sets cover the true value with probability at

least 1 − α on average across a range of recommendations, it suffices to impose the

unconditional requirement (5).

We are unaware of prior work which ensures conditional coverage (4).7 For un-

conditional coverage (5), however, Kitagawa and Tetenov (2018) propose an uncon-

ditional confidence set based on projecting a simultaneous confidence band for µ to

obtain a confidence set for µ(θ̂). In particular, let cα denote the 1 − α quantile of

maxj |ξj| for ξ = (ξ1, ξ2)′ ∼ N(0, I2) a two-dimensional standard normal random

vector. If we define CSP as

CSP =

[
Y (θ̂)− cα

√
Σ(θ̂), Y (θ̂) + cα

√
Σ(θ̂)

]
,

this set has correct unconditional coverage (5). Figure 2 plots the average (uncondi-

tional) length of 95% confidence sets CSET , CSU , CSP , along with the conventional

confidence set, again in cases with |Θ| ∈ {2, 10, 50}. As this figure illustrates, CSET

7As noted in the introduction and further discussed in Section 4.3 below, split-sample confidence
intervals also have conditional coverage, but change the definition of θ̂.
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and CSU are shorter than CSP when |µ(θ1)−µ(θ−1)| exceeds five, and in fact converge

to the conventional interval as |µ(θ1)−µ(θ−1)| tends to infinity. When |µ(θ1)−µ(θ−1)|
is small, on the other hand, CSET and CSU can be substantially wider than CSP .

Both features become more pronounced as we increase the number of policies con-

sidered. In Figure 3 we plot the mean absolute error Eµ

[
|µ̂− µ(θ̂)|

]
for different

estimators in this design, and find that the median-unbiased estimator likewise ex-

hibits substantially larger mean absolute error than the conventional estimator X(θ̂)

when |µ(θ1)− µ(θ−1)| is small.

Recall that CSU is the optimal unbiased confidence set, while the endpoints of

CSET are optimal quantile unbiased estimators. So long as we impose correct condi-

tional coverage (4) and unbiasedness, there is therefore no scope to improve uncon-

ditional performance. If, on the other hand, we require only correct unconditional

coverage (5), as for CSP , improved unconditional performance is possible.

To improve performance, we consider hybrid confidence sets CSHET and CSHU . As

detailed in Section 5.2 below, these confidence sets are constructed analogously to

CSET and CSU , but further condition on the event that the true social welfare falls

in the level 1 − β projection interval CSβP for β < α. This ensures that the hybrid

confidence sets are never longer than the level 1 − β unconditional interval, and so

limits the performance deterioration when |µ(θ1) − µ(θ2)| is small. These hybrid

confidence sets have correct unconditional coverage (5), but do not in general have

correct conditional coverage (4). By relaxing the conditional coverage requirement,

however, we obtain major improvements in unconditional performance, as illustrated

in Figure 2. In particular, we see that in the cases with 10 and 50 policies, the hybrid

confidence sets have shorter average length than the unconditional interval CSP for

all parameter values considered. In Figure 3 we report results for a hybrid estimation

procedure based on a similar approach (detailed in Section 5.3 below), and again find

substantial performance improvements.

The improved unconditional performance of the hybrid intervals is achieved by

requiring only unconditional rather than conditional, coverage. In particular, the

projection confidence set CSP and the hybrid confidence sets CSHET and CSHU do not

have correct conditional coverage (4). To illustrate, Figure 4 plots the conditional

coverage of the intervals CSU and CSET given θ̂ = θ1 in the case with two policies,

along with that of the projection and hybrid intervals. As expected, the conditional

intervals have correct conditional coverage, while the hybrid and projection intervals
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do not. Coverage distortions appear when µ(θ1) � µ(θ2). In this case θ̂ = θ2 with

high probability, but we will nonetheless sometimes have θ̂ = θ1, and conditional on

this event X(θ1) will be far away from µ(θ1) with high probability. Hence, conditional

on this event, projection and hybrid intervals under-cover.

3 Setting

This section introduces our general setting, which extends the stylized example of the

previous section in several directions. We assume that we observe normal random

vectors
(
X (θ)′ , Y (θ)

)′
for θ ∈ Θ with Θ a finite set, X (θ) ∈ RdX , and Y (θ) ∈

R1. In particular, for Θ =
{
θ1, ..., θ|Θ|

}
, let X =

(
X (θ1)′ , ..., X

(
θ|Θ|
)′)′

and Y =(
Y (θ1) , ..., Y

(
θ|Θ|
))′

. Then (
X

Y

)
∼ N (µ,Σ) (6)
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for

E

[(
X (θ)

Y (θ)

)]
= µ (θ) =

(
µX (θ)

µY (θ)

)
,

and

Cov

((
X (θ)

Y (θ)

)
,

(
X(θ̃)

Y (θ̃)

))
= Σ(θ, θ̃) =

(
ΣX(θ, θ̃) ΣXY (θ, θ̃)

ΣY X(θ, θ̃) ΣY (θ, θ̃)

)
.

We assume that the covariance function Σ is known, while the mean function µ is

unknown and unrestricted unless noted otherwise. As above, we will show that this

model arises naturally as an asymptotic approximation in a range of examples. For

simplicity of exposition we assume throughout that ΣY (θ) = ΣY (θ, θ) > 0 for all

θ ∈ Θ, since otherwise there is no inference problem conditional on θ̂ = θ.

We are interested in inference on µY (θ̂), where θ̂ is determined based on X. We

define θ̂ through either the level maximization problem where (for dX = 1)

θ̂ = argmax
θ∈ΘF

X (θ) , (7)

or the norm maximization problem where (for dX ≥ 1)

θ̂ = argmax
θ∈ΘF

‖X (θ)‖ , (8)

where ‖ · ‖ denotes the Eulidean norm.8 We will again be interested in constructing

confidence sets for µY (θ̂) that are valid either conditional on the value of θ̂ or uncon-

ditionally, as well as median-unbiased estimates. We may also want to condition on

some additional event γ̂ = γ̃, for γ̂ = γ(X) a function of X which takes values in the

finite set Γ. In such cases, we aim to construct confidence sets for µY (θ̂) which are

valid conditional on the pair (θ̂, γ̂). Examples of such additional conditioning events

are discussed in examples below.

In the remainder of this section, we show how this class of problems arises in

examples and discuss the choice between conditional and unconditional confidence

sets in each case. We first revisit the empirical welfare maximization problem in a

more general setting and show that it gives rise to the level maximization problem (7)

8For simplicity of notation we will assume θ̂ is unique unless noted otherwise. Our analysis does
not rely on this assumption, however: see footnote 13 below.

15



asymptotically. We then discuss structural break models, and show that they reduce

to the norm maximization problem (8) asymptotically. We also briefly discuss other

examples giving rise to level and norm maximization problems.

Empirical Welfare Maximization In the empirical welfare maximization prob-

lem of Kitagawa and Tetenov (2018), as in the last section we aim to select a welfare-

maximizing treatment rule from a set of policies Θ. Let us assume that we have a sam-

ple of independent observations i ∈ {1, ..., n} from a randomized trial where treatment

is randomly assigned conditional on observables Ci with Pr {Di = 1|Ci} = d(Ci). We

consider policies that assign units to treatment based on the observables, where rule

θ assigns i to treatment if and only if Ci ∈ Cθ. The scaled empirical welfare under

policy θ is9

Xn(θ) =
1√
n

n∑
i=1

(
YiDi

d(Ci)
1{Ci ∈ Cθ}+

Yi(1−Di)

1− d(Ci)
1{Ci 6∈ Cθ}

)
.

EWM again selects the policy that maximizes empirical welfare, θ̂ = argmax θ∈ΘF
Xn(θ).

The definition of Yn in this setting depends on the object of interest. We may

be interested in the overall social welfare, in which case we can define Yn = Xn.

Alternatively we could be interested in social welfare relative to the baseline of no

treatment, in which case we can define Yn(θ) as the difference in scaled empirical

welfare between policy θ and the policy that treats no one, which we denote by θ = 0,

Yn(θ) = Xn(θ)−Xn(0) =
1√
n

n∑
i=1

[
YiDi

d(Ci)
− Yi(1−Di)

1− d(Ci)

]
1{Ci ∈ Cθ}.

Likewise, we might be interested in the social welfare for a particular subgroup defined

by the observables, say S, in which case we can take

Yn(θ) =

√
n
∑n

i=1

(
YiDi
d(Ci)

1{Ci ∈ S ∩ Cθ}+ Yi(1−Di)
1−d(Ci)

1{Ci ∈ S \ Cθ}
)

∑n
i=1 1{Ci ∈ S}

.

9Kitagawa and Tetenov (2018) primarily consider welfare relative to the baseline of no treatment,
which yields the same optimal policy.
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For µX,n and µY,n the true scaled social welfare corresponding to Xn and Yn,(
Xn − µX,n
Yn − µY,n

)
⇒ N (0,Σ) (9)

under mild conditions, where the covariance Σ will depend on the data generating

process and the definition of Yn but is consistently estimable. By contrast, the scaling

of Xn and Yn means that µX,n and µY,n are not consistently estimable. As in the

last section, this suggests the asymptotic problem where we observe normal random

vectors (X, Y ) as in (6), Σ is known, and θ̂ is defined as in (7) so we consider the

level maximization problem.10

As argued in the last section, if a policy maker is told the recommended policy

θ̂ as well as a confidence set for µY (θ̂), it is natural to require that the confidence

set be valid conditional on the recommendation. It may also be natural to condition

on additional variables. For example, if a recommendation is made only when we

reject the null hypothesis that no policy in Θ improves outcomes over the base case

of no treatment, H0 : maxθ∈ΘF (µ(θ)− µ(0)) ≤ 0, then it is also natural to condition

inference on this rejection.11 To cover this case we can define γ̂ = γ(X) as a dummy

for rejection of H0. If on the other hand we care only about performance on average

across a range of recommendations we need only impose unconditional coverage. 4

The level maximization problem arises in a number of other settings as well. For

example, the literature on tests of superior predictive performance (c.f. White (2000);

Hansen (2005); Romano and Wolf (2005)) considers the problem of testing whether

some trading strategies or forecasting rules amongst a candiate set beat a benchmark.

If we define Xn = Yn as the vector of performance measures for different strategies, Xn

is asymptotically normal under mild conditions (see e.g. Romano and Wolf (2005)).

If one wants to form a confidence set for the performance of the “best” strategy based

on Xn (perhaps also conditioning on the result of a test for superior performance)

this reduces to our level maximization problem asymptotically.

Another example comes from Bhattacharya (2009) and Graham et al. (2014), who

10Under mild regularity conditions, property (9) also holds in settings where the empirical welfare
involves estimated propensity scores and/or estimated outcome regressions, e.g., the hybrid proce-
dures of Kitagawa and Tetenov (2018) and the doubly robust welfare estimators used in Athey and
Wager (2018).

11In case of |Θ| = 2, conditioning on this rejection can be interpreted as conditioning on that the
decision criterion of Tetenov (2012) supports the same policy.
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considers the problem of optimally dividing individuals into groups to maximize peer

effects. For Xn again a scaled objective function, the results of Bhattacharya (2009)

show that his problem reduces to our level maximization problem asymptotically

when one considers a finite set of assignments. More broadly, any time we consider

an m-estimation problem with a finite parameter space and are interested in the value

of the population objective or some other function at the estimated optimal value,

this falls into our level maximization framework under mild conditions.

We next discuss an example of structural break estimation, showing that it gives

rise to our level-maximization problem asymptotically.

Structural Break Estimation Suppose we observe time-series data on an out-

come Yt and a k-dimensional vector of regressors Ct for t ∈ {1, ..., T}. We assume

there is a linear but potentially time-varying relationship between Yt and Ct,

Yt = C ′t (β + ϕT (t/T )) + Ut (10)

where the residuals Ut are orthogonal to Ct. Similarly to Elliott and Müller (2014)

the function ϕT : [0, 1] → Rk determines the value of the time-varying coefficient

β+ϕT (t/T ). This model nests the traditional structural break model (see e.g. Hansen

(2001), Perron (2006), and references therein) by taking

ϕT (t/T ) = 1(t/T > θ)δ, (11)

where θ = τ/T ∈ [0, 1] is the true “break fraction” and τ is the true break date. The

model (10) is more general however, and allows the possibility that there are multiple

breaks, that the parameters change continuously at times, or both.

The structural break model is widely used in practice, so we consider a researcher

who fits the model (11). To allow the possibility of misspecification, however, we

assume only that the data is generated by (10). To provide a good asymptotic ap-

proximation to finite sample behavior, we follow Elliott and Müller (2007) and Elliott

and Müller (2014) and model parameter instability as on the same order as sampling

uncertainty, with ϕT (t/T ) = 1√
T
g(t/T ) for a fixed function g. We further assume that

1

T

[θT ]∑
t=1

CtC
′
t →p θΣC ,

1

T

[θT ]∑
t=1

CtC
′
tg(t/T )→p ΣCg(θ), (12)
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and

1√
T

[θT ]∑
t=1

CtUt ⇒ Ω1/2W (θ), (13)

all uniformly in 0 ≤ θ ≤ 1. Here ΣC is a full rank matrix, ΣCg : [0, 1] → Rk is a

vector-valued function, Ω is a symmetric positive definite matrix which we assume is

consistently estimable, and W (·) is a standard k-dimensional Wiener process. Condi-

tion (12) is a special case of Conditions 1(ii) and 1(iv) of Elliott and Müller (2007) and

can be relaxed to their conditions at the expense of extra notation, while condition

(13) is implied by a functional central limit theorem under mild assumptions.

The standard break-fraction estimator θ̂ chooses θ to minimize the sum of squared

residuals in an OLS regression of Yt on Ct and 1(t/T > θ)Ct. If we define

XT (θ) =


(∑[θT ]

t=1 CtC
′
t

)− 1
2
(∑[θT ]

t=1 Ctηt

)
(∑T

t=[θT ]+1 CtC
′
t

)− 1
2
(∑T

t=[θT ]+1Ctηt

)
 ,

for ηt ≡ Ut + T−1/2C ′tg(t/T ), the proof of Proposition 1 in Elliott and Müller (2007)

implies that

θ̂ = argmax
θ∈ΘT

‖XT (θ)‖+ op(1) (14)

for ΘT =
{
θ ∈ { 1

T
, 2
T
, ...1} : λ̃ ≤ θ ≤ 1− λ̃

}
, λ̃ ∈ (0, 1/2) a user-selected tuning pa-

rameter, and op(1) an asymptotically negligible term. Hence, θ̂ is asymptotically

equivalent to the solution to a norm-maximization problem analogous to (8).

Suppose we are interested in the break in the jth parameter, δj = e′jδ for ej

the jth standard basis vector.12 In practice it is common to estimate δ by least

squares imposing the estimated break date θ̂. When the structural break model

(11) is misspecified, however, there is neither a “true” break fraction θ nor a “true”

break coefficient δ. Instead, the population regression coefficient δ(θ) imposing break

fraction θ depends on θ. Thus, for break fraction θ, the coefficient of interest is δj(θ).

Denote the OLS estimate imposing break fraction θ by δ̂(θ), and define YT (θ) =√
T δ̂j(θ). If we define µY,T (θ) =

√
Tδj(θ) as the scaled coefficient of interest and

12By changing the definition of YT below, our results likewise apply to the pre-break parameters
βj and the post-break parameters βj + δj , amongst other possible objects of interest.
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µX,T (θ) as the asymptotic mean of XT (θ), Section B.2 of the Appendix shows that(
XT (θ)− µX,T (θ)

YT (θ)− µY,T (θ)

)
⇒ N (0,Σ(θ)) (15)

uniformly over the sequence of parameter spaces ΘT , where the covariance function

Σ is consistently estimable but µX,T (θ) and µY,T (θ) are not. As before, this suggests

the asymptotic problem (6), where we now define θ̂ through norm maximization (8).

Since the estimated break fraction θ̂ is random, and the parameter of interest

δj(θ) depends on θ, it is important to account for this randomness in our inference

procedures. In particular, it may be appealing to condition inference on the estimated

break date θ̂, since we only seek to conduct inference on δ(θ̃) when θ̂ = θ̃. It may

also be natural to condition inference on additional variables. For example, if we

report a confidence set for the break magnitude δ(θ̂) only when we reject the null

hypothesis of parameter constancy, H0 : ϕT (θ) = 0 for all θ, it is natural to condition

inference on this rejection. As above, this can be accomplished by defining γ̂ = γ(X)

as a dummy for rejection of H0, and conditioning inference on (θ̂, γ̂). Even if we only

desire coverage of δ(θ̂) on average over the distribution of θ̂, and so prefer to consider

unconditional confidence sets, accounting for the randomness of θ̂ remains important.

If on the other hand we are confident that the break model is correctly specified, so

(11) holds, it will typically be more appealing to focus on inference for the “true”

parameters as in Elliott and Müller (2014). 4

While our discussion of structural break estimation focuses on the linear model

(10), Elliott and Müller (2014) show that structural break estimation in nonlinear

GMM models with time-varying parameters gives rise to the same asymptotic prob-

lem. Hence, our results apply in that setting as well. Likewise, Wang (2017) shows

that the same asymptotic problem arises in threshold models, including the tipping-

point model of Card et al. (2008) that we study below. Further afield, one could gen-

eralize our approach to consider norm-minimzation rather than norm-maximization,

and so derive results for general GMM-type problems with finite parameter spaces.
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4 Conditional Inference

This section develops conditional inference procedures for our general setting. We

seek confidence sets with correct coverage conditional on θ̂, potentially along with

some other conditioning variable γ̂,

P r
{
µY (θ̂) ∈ CS|θ̂ = θ̃, γ̂ = γ̃

}
≥ 1− α for all θ̃ ∈ Θ, γ̃ ∈ Γ, and all µ. (16)

As in the stylized example of Section 2, we derive both equal tailed and uniformly

most powerful unbiased confidence sets.13 We also derive optimal conditionally α-

quantile unbiased estimators, which for α ∈ (0, 1) satisfy

Prµ

{
µ̂α ≥ µY (θ̂)|θ̂ = θ̃, γ̂ = γ̃

}
= α for all θ̃ ∈ Θ, γ̃ ∈ Γ, and all µ. (17)

To implement our conditional procedures we need to know the form of particular

conditioning events. We derive these conditioning events for our level and norm maxi-

mization settings, and illustrate in our empirical welfare maximization and structural

break examples. We then discuss sample splitting as an alternative conditional in-

ference approach, and following Fithian et al. (2017) note that conventional sample

splitting procedures are dominated.

4.1 Optimal Conditional Inference

Since θ̂ and γ̂ are functions of X, we can re-write the conditioning event as{
X : θ̂ = θ̃, γ̂ = γ̃

}
= X (θ̃, γ̃).

Thus, for conditional inference we are interested in the distribution of (X, Y ) con-

ditional on X ∈ X (θ̃, γ̃). Our results below imply that under mild conditions, the

elements of Y other than Y (θ̃) do not help in constructing a quantile unbiased esti-

mate or unbiased confidence set for µY (θ̂) once we condition on X ∈ X (θ̃, γ̃). Hence,

we limit attention to the conditional distribution of (X, Y (θ̃)) given X ∈ X (θ̃, γ̃).

Since (X, Y (θ̃)) is jointly normal unconditionally, it is truncated normal condi-

tional on X ∈ X (θ̃, γ̃). Correlation between X and Y (θ̃) implies that the conditional

13If θ̂ is not unique we change the conditioning event θ̂ = θ̃ to θ̃ ∈ argmax X(θ) or θ̃ ∈
argmax ‖X(θ)‖ for the level and norm maximization problems, respectively.
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distribution of Y (θ̃) depends on both the parameter of interest µY (θ̂) and µX . To

eliminate dependence on the nuisance parameter µX we condition on a sufficient

statistic. Without truncation, for any fixed µY (θ̃) a minimal sufficient statistic for

µX is

Zθ̃ = X −
(

ΣXY (·, θ̃)/ΣY (θ̃)
)
Y (θ̃), (18)

where we use ΣXY (·, θ̃) to denote Cov(X, Y (θ̃)). Zθ̃ corresponds to the part of X that

is (unconditionally) orthogonal to Y (θ̃) which, since (X, Y (θ̃)) are jointly normal,

means that Zθ̃ and Y (θ̃) are independent. Truncation breaks this independence,

but Zθ̃ remains minimal sufficient for µX . The conditional distribution of Y (θ̂) given{
θ̂ = θ̃, γ̂ = γ̃, Zθ̃ = z

}
is truncated normal:

Y (θ̂)|θ̂ = θ̃, γ̂ = γ̃, Z = z ∼ ξ|ξ ∈ Y(θ̃, γ̃, z), (19)

for ξ ∼ N
(
µY (θ̃),ΣY (θ̃)

)
normally distributed and

Y(θ̃, γ̃, z) =
{
y : z +

(
ΣXY (·, θ̃)/ΣY (θ̃)

)
y ∈ X (θ̃, γ̃)

}
(20)

the set of values for Y (θ̃) such that the implied X falls in X (θ̃, γ̃) given Zθ̃ = z. Thus,

conditional on θ̂ = θ̃, γ̂ = γ̃, and Zθ̃ = z, Y (θ̂) follows a one-dimensional truncated

normal distribution with truncation set Y(θ̃, γ̃, z).

Using this result, it is straightforward to construct quantile unbiased estimators

for µY (θ̂). Let FTN(y;µY (θ̃), θ̃, γ̃, z) denote the distribution function for the truncated

normal distribution (19). This distribution function is strictly decreasing in µY (θ̃).

Define µ̂α as the unique solution to

FTN(Y (θ̂); µ̂α, θ̃, γ̃, Zθ̃) = 1− α. (21)

Proposition 1 below shows that µ̂α is conditionally α-quantile unbiased in the sense of

(17), so µ̂ 1
2

is median-unbiased while the equal-tailed interval CSET =
[
µ̂α/2, µ̂1−α/2

]
has conditional coverage 1− α.

While we are interested in inference conditional on θ̂ = θ̃ and γ̂ = γ̃, our derivation

of the quantile unbiased estimator µ̂α further conditions on Zθ̃. Since conditioning

reduces the amount of information available for inference, we might be concerned

that this estimator is inefficient. Our next result, based on Pfanzagl (1979) and
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Pfanzagl (1994), shows that this is not the case, and that µ̂α is optimal in the class

of quantile unbiased estimators in a strong sense.

To establish optimality, we add the following assumption:

Assumption 1

If Σ = Cov((X ′, Y ′)′) has full rank, then the parameter space for µ is open and convex.

Otherwise, there exists some µ∗ such that the parameter space for µ is an open convex

subset of
{
µ∗ + Σ

1
2v : v ∈ Rdim(X,Y )

}
for Σ

1
2 the symmetric square root of Σ.

This assumption requires that the parameter space for µ be sufficiently rich, in the

sense of containing an open set in the appropriate space.14 When Σ is degenerate

(for example when X and Y are perfectly correlated as in the EWM example with

X = Y ), this assumption further implies that (X, Y ) have the same support for all

values of µ. This rules out that there exists a pair µ1, µ2 of parameter values which

can be perfectly distinguished based on the data. Under this assumption, µ̂α is an

optimal quantile unbiased estimator.

Proposition 1

Let µ̂α be the unique solution of (21). µ̂α is conditionally α-quantile unbiased in the

sense of (17). If Assumption 1 holds, then µ̂α is the uniformly most concentrated

α-quantile unbiased estimator, in that for any other conditionally α-quantile unbiased

estimator µ̂∗α and any loss function L
(
d, µY (θ̃)

)
that attains its minimum at d =

µY (θ̃) and is increasing as d moves away from µY (θ̃) for all fixed µY (θ̃),

Eµ

[
L
(
µ̂α, µY (θ̃)

)
|θ̂ = θ̃, γ̂ = γ̃

]
≤ Eµ

[
L
(
µ̂∗α, µY (θ̃)

)
|θ̂ = θ̃, γ̂ = γ̃

]
,

for all µ and all θ̃ ∈ Θ, γ̃ ∈ Γ.

Proposition 1 shows that µ̂α is optimal in the strong sense that it has lower risk

(expected loss) for any loss function which is quasiconvex in the estimate for every

true parameter value. Hence, the endpoints of CSET are optimal quantile unbiased

estimators.

Rather than considering equal-tailed intervals, we can alternatively consider un-

biased confidence sets. Following Lehmann and Romano (2005), we say that a level

14The assumption that the parameter space is open can be relaxed at the cost of complicating the
statements below.
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1− α two-sided confidence set CS is unbiased if its probability of covering any given

false parameter value is bounded above by 1 − α. Likewise, a one sided lower (up-

per) confidence set is unbiased if its probability of covering a false parameter value

above (below) the true value is bounded above by 1 − α. Using the duality between

tests and confidence sets, a level 1 − α confidence set CS is unbiased if and only if

φ = 1
{
µY (θ̃) ∈ CS

}
is an unbiased test for the corresponding family of hypotheses.15

The results of Lehmann and Scheffé (1955) applied in our setting imply that optimal

unbiased tests conditional on
{
θ̂ = θ̃, γ̂ = γ̃

}
are the same as the optimal unbiased

tests conditional on
{
θ̂ = θ̃, γ̂ = γ̃, Zθ̃ = zθ̃

}
. Thus, conditioning on Zθ̃ again does

not come at the cost of power.

Optimal unbiased tests take a simple form. Define a size α test of the two-sided

hypothesis H0 : µY (θ̃) = µY,0 as

φTS,α (µY,0) = 1
{
Y (θ̃) 6∈ [cl (Z) , cu (Z)]

}
(22)

where cl (z) , cu (z) solve

Pr {ζ ∈ [cl (z) , cu (z)]} = 1− α, E [ζ1 {ζ ∈ [cl (z) , cu (z)]}] = (1− α)E [ζ]

for ζ that follows a truncated normal distribution

ζ ∼ ξ|ξ ∈ Y(θ̃, γ̃, z), ξ ∼ N
(
µY,0,ΣY (θ̃)

)
.

Likewise, define a size α test of the one-sided hypothesis H0 : µY (θ̃) ≥ µY,0 as

φOS−,α(µY,0) = 1
{
FTN(Y (θ̃);µY,0, θ̃, γ̃, z) ≤ α

}
(23)

and a test of H0 : µY (θ̃) ≤ µY,0 as

φOS+,α(µY,0) = 1
{
FTN(Y (θ̃);µY,0, θ̃, γ̃, z) ≥ 1− α

}
. (24)

Proposition 2

If Assumption 1 holds, φTS,α, φOS−,α, and φOS+,α are uniformly most powerful unbi-

15That is, H0 : µY (θ̃) = µY,0 for a two-sided confidence set, H0 : µY (θ̃) ≥ µY,0 for a lower

confidence set and H0 : µY (θ̃) ≤ µY,0 for an upper confidence set.
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ased size α tests of their respective null hypotheses conditional on θ̂ = θ̃ and γ̂ = γ̃.

To form uniformly most accurate unbiased confidence sets we collect the values not

rejected by these tests. In particular, define the two-sided uniformly most accurate

unbiased confidence set as

CSU = {µY,0 : φTS,α (µY,0) = 0} ,

and note that CSU is unbiased and has conditional coverage 1 − α by construction.

Likewise, we can form lower and upper one-sided uniformly most accurate unbiased

confidence intervals as

CSU,− = {µY,0 : φOS−,α(µY,0) = 0} = (−∞, µ̂1−α],

CSU,+ = {µY,0 : φOS+,α(µY,0) = 0} = [µ̂α,∞),

where we have used the definition of the one-sided tests to express these in terms of

our quantile unbiased estimators. Hence, we can view CSET as the intersection of

level 1 − α
2

uniformly most accurate unbiased upper and lower confidence intervals.

Unfortunately, no such simplification is generally available for CSU , though Lemma

5.5.1 of Lehmann and Romano (2005) guarantees that this set is an interval.

4.2 Conditioning Sets

Thus far we have left the conditioning events X (θ̃, γ̃) and Y(θ̃, γ̃, z) unspecified. To

implement our conditional procedures we need tractable representations of both. We

first derive the form of these conditioning events for the level maximization problem

(7) and the norm maximization problem (8) without additional conditioning variables

γ̂. We then discuss the effect of adding additional conditioning variables and illustrate

in our EWM and structural break examples.

In level maximization problems without additional conditioning variables, we are

interested in inference conditional on X ∈ X (θ̃) for

X (θ̃) =

{
X : X(θ̃) = max

θ∈Θ
X(θ)

}
.

The following result, based on Lemma 5.1 of Lee et al. (2016), derives the form of
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Y(θ̃, z) in this setting.

Lemma 1

Let ΣXY (θ̃) = Cov(X(θ̃), Y (θ̃)). Define

L(θ̃, Zθ̃) = max
θ∈Θ:ΣXY (θ̃)>ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃ (θ)− Zθ̃(θ̃)

)
ΣXY (θ̃)− ΣXY (θ̃, θ)

,

U(θ̃, Zθ̃) = min
θ∈Θ:ΣXY (θ̃)<ΣXY (θ̃,θ)

ΣY (θ̃)
(
Zθ̃ (θ)− Zθ̃(θ̃)

)
ΣXY (θ̃)− ΣXY (θ̃, θ)

,

and

V(θ̃, Zθ̃) = min
θ∈Θ:ΣXY (θ̃)=ΣXY (θ̃,θ)

−
(
Zθ̃ (θ)− Zθ̃(θ̃)

)
.

If V(θ̃, z) ≥ 0, then

Y(θ̃, z) =
[
L(θ̃, z),U(θ̃, z)

]
.

If V(θ̃, z) < 0, then Y(θ̃, z) = ∅.

Thus, the conditioning event Y(θ̃, z) is an interval bounded above and below by

easy-to-calculate functions of z. While we must have V(θ̃, z) ≥ 0 for this interval to be

non-empty, Prµ

{
V(θ̂, Zθ̂) < 0

}
= 0 for all µ so this constraint holds almost surely

when we consider the value θ̂ observed in the data. Hence, in applications we can

safely ignore this constraint and calculate only L(θ̂, Zθ̂) and U(θ̂, Zθ̂).

In the norm maximization problem the conditioning event is

X (θ̃) =

{
X : ‖X(θ̃)‖ = max

θ∈Θ
‖X(θ)‖

}
.

This conditioning event involves nonlinear constraints so the results of Lee et al.

(2016) do not apply. The expression for Y(θ̃, z) is more involved, but remains easy

to calculate in applications.

Lemma 2

Define

A(θ̃, θ) = ΣY (θ̃)−2

dX∑
i=1

[
ΣXY,i(θ̃)

2 − ΣXY,i(θ, θ̃)
2
]
,
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BZ(θ̃, θ) = 2ΣY (θ̃)−1

dX∑
i=1

[
ΣXY,i(θ̃)Zθ̃,i(θ̃)− ΣXY,i(θ, θ̃)Zθ̃,i(θ)

]
,

and

CZ(θ̃, θ) =

dX∑
i=1

[
Zθ̃,i(θ̃)

2 − Zθ̃,i(θ)
2
]
.

For

DZ(θ̃, θ) = BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ),

GZ(θ̃, θ) =
−BZ(θ̃, θ) +

√
DZ(θ̃, θ)

2A(θ̃, θ)
, KZ(θ̃, θ) =

−BZ(θ̃, θ)−
√
DZ(θ̃, θ)

2A(θ̃, θ)

and HZ(θ̃, θ) =
−CZ(θ̃, θ)

BZ(θ̃, θ)
,

define

`1
Z(θ̃) = max

{
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃, θ), max

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0
HZ(θ̃, θ)

}
,

`2
Z(θ̃, θ) = max

{
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃, θ), max

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0
HZ(θ̃, θ), GZ(θ̃, θ)

}
,

u1
Z(θ̃, θ) = min

{
min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃, θ), min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃, θ), KZ(θ̃, θ)

}
,

u2
Z(θ̃) = min

{
min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃, θ), min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃, θ)

}
,

and

V(θ̃, Zθ̃) = min
θ∈Θ:A(θ̃,θ)=BZ(θ̃,θ)=0

CZ(θ̃, θ).

If V(θ̃, Zθ̃) ≥ 0 then

Y(θ̃, Zθ̃) =
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

[
`1
Z(θ̃), u1

Z(θ̃, θ)
]
∪
[
`2
Z(θ̃, θ), u2

Z(θ̃)
]
.

If V(θ̃, Zθ̃) < 0, then Y(θ̃, Zθ̃) = ∅.

While the expression for Y(θ̃, z) in this setting is long, it is easy to calculate in

practice, and can be expressed as a finite union of intervals using DeMorgan’s laws.
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Moreover, as in the level maximization case, Prµ

{
V(θ̂, Zθ̂) < 0

}
= 0 for all µ, so we

can ignore this constraint in applications.

Our derivations have so far assumed we have no additional conditioning vari-

ables γ̂. If we also condition on γ̂ = γ̃, then for Xγ(γ̃) = {X : γ(X) = γ̃} , we can

write X (θ̃, γ̃) = X (θ̃) ∩ Xγ(γ̃). Likewise, for Yγ(γ̃, z) defined analogously to (20),

Y(θ̃, γ̃, z) = Y(θ̃, z) ∩ Yγ(γ̃, z). The form of Xγ (γ̃) and Yγ(γ̃, z) depends on the con-

ditioning variables γ̂ considered. We next discuss the effect of conditioning on the

outcomes of pretests in our empirical welfare maximization and structural break ex-

amples.

Empirical Welfare Maximization (continued) Suppose that we report esti-

mates and confidence sets for welfare only if the improvement in empirical wel-

fare from the estimated optimal policy over a baseline policy θ = 0 exceeds a

threshold c, X(θ̂) − X(0) ≥ c. For instance, we might report results only when

the test of White (2000) rejects the null that no policy has performance exceed-

ing the baseline, H0 : maxΘ µX(θ) ≤ µX(0). This implies that we report results

if and only if X(θ̂) − X(0) ≥ c for c a critical value depending on Σ. We can set

γ(X) = 1
{
X(θ̂)−X(0) ≥ c

}
, and it is natural to condition inference on γ̂ = 1.

The conditioning event in this setting is Xγ(1) =
{
X : X(θ̂)−X(0) ≥ c

}
, and

one can show that, assuming ΣXY (θ̃)− ΣXY (0) > 0 for simplicity,

Yγ(1, Zθ̃) =

y : y ≥
ΣY (θ̃)

(
c− Zθ̃(θ̃) + Zθ̃(0)

)
ΣXY (θ̃)− ΣXY (0)

 .

See Section B.1 of the Supplement for details, as well as expressions for other val-

ues of ΣXY (θ̃) − ΣXY (0). In the present case, provided V(θ̃, Zθ̃) ≥ 0, Y(θ̃, 1, Zθ̃) =[
L∗(θ̃, Zθ̃),U(θ̃, Zθ̃)

]
where U(θ̃, Zθ̃) is the upper bound derived in Lemma 1, while

L∗(θ̃, Zθ̃) = max

L(θ̃, Zθ̃),
ΣY (θ̃)

(
c− Zθ̃(θ̃) + Zθ̃(0)

)
ΣXY (θ̃)− ΣXY (θ̃, 0)

 ,

for L(θ̃, Zθ̃) again as in Lemma 1. Hence, when ΣXY (θ̃)−ΣXY (0) > 0, conditoning on

γ̂ = 1 simply modifies the lower bound L(θ̃, Zθ̃). Likewise, when ΣXY (θ̃)−ΣXY (0) < 0
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or ΣXY (θ̃) − ΣXY (0) = 0, conditioning on γ̂ = 1 modifies U(θ̃, Zθ̃) and V(θ̃, Zθ̃),

respectively. 4

Structural Break Estimation (continued) Suppose we report estimates and

confidence sets for the break parameter δ(θ̂) only if we reject the null hypothesis of

no structural break, H0 : δ(θ) = 0 for all θ ∈ Θ. Suppose, in particular, that we

test this hypothesis with the sup-Wald test of Andrews (1993). As shown in Elliott

and Müller (2014), in our setting such a test rejects if and only if ‖X(θ̂)‖ > c for

a critical value c that depends on Σ. We can set γ(X) = 1
{
‖X(θ̂)‖ > c

}
, and it is

again natural to condition inference on γ̂ = 1.

In this setting Xγ(1) =
{
X : ‖X(θ̂)‖ > c

}
. As before the expressions for the

conditioning sets are involved but straightforward to compute. In particular, for

V̄(Zθ̃), L̄(Zθ̃), and Ū(Zθ̃) defined in Section B.2 of the Supplement, if V̄(Zθ̃) ≥ 0 then

Yγ(1, Zθ̃) =
[
L̄(Zθ̃), Ū(Zθ̃)

]
, while Yγ(1, Zθ̃) = ∅ otherwise. Thus,

Y(θ̃, 1, Zθ̃) =
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

[
`1∗
Z (θ̃), u1∗

Z (θ̃, θ)
]
∪
[
`2∗
Z (θ̃, θ), u2∗

Z (θ̃)
]

when V∗(θ̃, Zθ̃) ≥ 0, and Y(θ̃, 1, Zθ̃) = ∅ otherwise, where

(
`j∗Z , u

j∗
Z

)
=
(
max

{
`jZ , L̄(Zθ̃)

}
,min

{
ujZ , Ū(Zθ̃)

})
for j ∈ {1, 2},

and V∗(θ̃, Zθ̃) = min
{
V(θ̃, Zθ̃), V̄(Zθ̃)

}
. 4

As these example illustrate, it is straightforward to incorporate additional condi-

tioning variables γ̂ in both the level and norm maximization problems provided one

can characterize the set Yγ (γ̃, z) . While such characterizations are easy to obtain in

many cases, however, they depend on the conditioning variable considered and must

be derived on a case-by-case basis.

4.3 Comparison to Sample Splitting

A common remedy in practice for the problems we study is to split the sample. If we

have iid observations and calculate θ̂ based on the first half of the data, conventional

estimates and confidence intervals for µY (θ̂) that use only the second half of the data

will be (conditionally) valid. Hence it is natural to ask how our conditioning approach
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compares to sample splitting. Fithian et al. (2017) discuss this issue at length: here

we briefly summarize the implications of their results in our setting.

For ease of exposition we focus on even sample splits. Asymptotically, such splits

yield a pair of independent and identically distributed normal draws (X1, Y 1) and

(X2, Y 2) both of which follow (6).16 Sample splitting procedures calculate θ̂ as in

(7) and (8) for level and norm maximization, respectively, but replace X by X1.

Inference on µY (θ̂) is then conducted using (X2, Y 2). In particular, the conventional

95% sample-splitting confidence interval for µY (θ̂),[
Y 2(θ̂)− 1.96

√
ΣY (θ̂), Y 2(θ̂) + 1.96

√
ΣY (θ̂)

]
, (25)

has correct (conditional) coverage, and Y 2(θ̂) is a median-unbiased estimator for

µY (θ̂).

Empirical Welfare Maximization (continued) Suppose we split the sample in

half at random. Define (X1
n, Y

1
n ) and (X2

n, Y
2
n ) analogously to (Xn, Yn), now using

only the first and second halves of the data, respectively. (X1
n, Y

1
n ) and (X2

n, Y
2
n ) still

converge in distribution as in (9). Moreover, (X1
n, Y

1
n ) and (X2

n, Y
2
n ) are independent,

both in finite samples and asymptotically. Let θ̂ = argmax θ∈ΘX
1
n(θ). If we use Y 1

n

for inference, the same issues as discussed above arise due to dependence between X1
n

and Y 1
n . If we instead use only Y 2

n , then since θ̂ and Y 2
n are independent we can rely

on conventional estimates and confidence intervals. 4

While sample splitting resolves the inference problem this comes at a cost. First,

θ̂ is based on less data than in the full-sample case, which is unappealing since a

policy recommendation estimated with a smaller sample size leads to a larger ex-

pected welfare loss (see, e.g., Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2018)).

Moreover, even after conditioning on θ̂ the minimal sufficient statistic for µ is the the

full-sample average 1
2
(X1, Y 1) + 1

2
(X2, Y 2). Hence, using only (X2, Y 2) for inference

sacrifices information.

Fithian et al. (2017) formalize this point, and show that sample splitting tests are

inadmissible. Corollary 1 of Fithian et al. (2017), applied in our setting, shows that

for any sample splitting test there exists a test that uses the full data and has weakly

16Uneven sample splits still result in independent draws with the same mean but different vari-
ances.
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higher power against all alternatives and strictly higher power at some alternatives.

This result extends directly to quantile unbiased estimators, and shows that for any

quantile unbiased split-sample estimator, there exists a full-sample quantile unbiased

estimator which is more concentrated around the true parameter value in the sense

of Proposition 1.

Hence, while split-sample methods allow valid inference, they are dominated.

Splitting the sample changes the definition of θ̂ and the conditioning event
{
θ̂ = θ̃

}
,

however, so sample splitting approaches are not directly comparable to our condition-

ing approach developed above.

While conventional sample splitting methods are dominated, calculating θ̂ based

on only part of the data may increase the amount of information available for inference

on µY (θ̂) and so allow tighter confidence intervals. Thus, depending on how we weight

nosier values of θ̂ against more precise inference on µY (θ̂) it may be helpful to split

the sample, though we should continue to apply conditional inference procedures. See

Tian and Taylor (2016) and Tian et al. (2016) for related discussion.

4.4 Behavior When Prµ

{
θ̂ = θ̃, γ̂ = γ̃

}
is Large

As discussed in Section 2, if we ignore selection and compute the conventional (or

“naive”) estimator µ̂N = Y (θ̂) and the conventional confidence set

CSN =

[
Y (θ̂)− cα/2,N

√
ΣY (θ̂), Y (θ̂) + cα/2,N

√
ΣY (θ̂)

]
(26)

for cα,N the 1 − α-quantile of the standard normal distribution, µ̂N is biased and

CSN has incorrect coverage conditional on θ̂ = θ̃, γ̂ = γ̃. These biases are mild

when Prµ

{
θ̂ = θ̃, γ̂ = γ̃

}
is close to one, however, since in this case the conditional

distribution is close to the unconditional one. Intuitively, Prµ

{
θ̂ = θ̃

}
is close to one

for some θ̃ when µX(θ) or ‖µX(θ)‖ has a well-separated maximum in the level and

norm maximization problems, respectively. This section shows that our procedures

converge to conventional ones in this case.

In particular, suppose first that for some sequence of values µY,m and zθ̃,m the

conditional probability PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃|Zθ̃ = zθ̃,m

}
→ 1 as m → ∞. Then our

conditional confidence sets and estimates converge to the usual confidence sets and

estimates.
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Lemma 3

Consider any sequence of values µY,m and zθ̃,m such that

PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃|Zθ̃ = zθ̃,m

}
→ 1.

Then under µY,m, conditional on
{
θ̂ = θ̃, γ̂ = γ̃, Zθ̃ = zθ̃,m

}
we have CSU →p CSN ,

CSET →p CSN , and µ̂ 1
2
→p Y (θ̃), where for confidence sets →p denotes convergence

in probability of the endpoints.

Lemma 3 discusses probabilities conditional Zθ̃. If we consider a sequence of values

µY,m such that PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃

}
→p 1, however, the same result holds both

conditioning only on
{
θ̂ = θ̃, γ̂ = γ̃

}
and unconditionally.

Proposition 3

Consider any sequence of values µY,m such that PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃

}
→ 1. Then

under µY,m, we have CSU →p CSN , CSET →p CSN , and µ̂ 1
2
→p Y (θ̃) both conditional

on
{
θ̂ = θ̃, γ̂ = γ̃

}
and unconditionally.

These results provide an additional argument for using our procedures: they re-

main valid even when conventional procedures fail, but coincide with conventional

procedures when the latter are valid. On the other hand, as we saw in Section 2, there

are cases where our conditional procedures have poor unconditional performance.

5 Unconditional Inference

Rather than requiring validity conditional on (θ̂, γ̂) we can instead require coverage

only on average, yielding the unconditional coverage requirement

Pr
{
µ(θ̂) ∈ CS

}
≥ 1− α for all µ. (27)

All confidence sets with correct conditional coverage in the sense of (16) also have

correct unconditional provided θ̂ is unique with probability one.

Proposition 4

Suppose that θ̂ is unique with probability one for all µ. Then any confidence set CS

with correct conditional coverage (16) also has correct unconditional coverage (27).
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Uniqueness of θ̂ implies that the conditioning events X (θ̃, γ̃) partition the support

of X up to sets of measure zero. The result then follows from the law of iterated

expectations.

A sufficient condition for almost sure uniqueness of θ̂ is that ΣX has full rank. A

weaker sufficient condition is given in the next lemma. Cox (2018) gives sufficient

conditions for uniqueness of a global optimum in a much wider class of problems.

Lemma 4

Suppose that for all θ, θ̃ ∈ Θ such that θ 6= θ̃, either V ar
(
X(θ)|X(θ̃)

)
6= 0 or

V ar
(
X(θ̃)|X(θ)

)
6= 0. Then θ̂ is unique with probability one for all µ.

Proposition 4 shows that the conditional confidence sets derived in the last section

are valid unconditional confidence sets as well. As shown in Section 4.4, these con-

ditional confidence sets also converge to the usual confidence sets when (θ̂, γ̂) takes

some value (θ̃, γ̃) with high probability, and so perform well in this case. Uncondi-

tional coverage is less demanding than conditional coverage, however, so relaxing the

coverage requirement from (16) to (27) may allow us to obtain shorter confidence sets

in other cases.

In this section we explore the benefits of such a relaxation. We begin by intro-

ducing unconditional confidence sets based on projections of simultaneous confidence

bands for µY as in Kitagawa and Tetenov (2018). We then introduce hybrid confi-

dence sets that combine projection confidence sets with conditioning arguments. We

do not know of estimators for µY (θ̂) which are unconditionally α-quantile unbiased

but not conditionally unbiased, but introduce hybrid estimators which allow a small

unconditional bias.

5.1 Projection Confidence Sets

One approach to obtain an unconditional confidence set for µY (θ̂), used in Kitagawa

and Tetenov (2018) and, in the one-sided case, Romano and Wolf (2005), is to start

with a joint confidence set for µ and project on the dimension corresponding to θ̂.

Formally, let cα denote the 1 − α quantile of maxθ |ξ(θ)|/
√

ΣY (θ) for ξ ∼ N(0,ΣY ).

If we define

CSµ =
{
µ : |Y (θ)− µ(θ)| ≤ cα

√
ΣY (θ) for all θ ∈ Θ

}
,
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then Prµ{µ ∈ CSµ} = 1− α for all µ, so CSµ is a level 1− α confidence set for µ.17

If we then define

CSP =
{
µ̃(θ̂) : ∃µ ∈ CSµ such that µ(θ̂) = µ̃(θ̂)

}
=

[
Y (θ̂)− cα

√
ΣY (θ̂), Y (θ̂) + cα

√
ΣY (θ̂)

]
as the projection of CSµ on the parameter space for µ(θ̂), then since {µ ∈ CSµ}
implies µ(θ̂) ∈ CSP , CSP satisfies the unconditional coverage requirement (27). As

noted in Section 2, however, CSP does not generally have correct conditional coverage.

The width of the confidence set CSP depends on the variance ΣY (θ̂) but does not

otherwise depend on the data. To account for the randomness of θ̂, the critical value

cα is larger than the conventional two-sided normal critical value. This means that

CSP will be conservative in cases where θ̂ takes a given value θ̃ with high probability.

We next consider hybrid confidence sets, which combine projection and conditioning

arguments.

5.2 Hybrid Confidence Sets

Conditional confidence sets have coverage exactly 1− α and so are non-conservative.

We showed in Section 4.4 that these confidence sets converge to conventional confi-

dence sets when (θ̂, γ̂) takes a given value with high probability. On the other hand,

our simulation results in Section 2 also show that conditional confidence sets can

perform poorly in cases where the maximum is not well-separated (see also the dis-

cussion in Section 2.5 of Fithian et al. 2017). The simulation results of Section 2

suggest that the projection intervals introduced in the last section can perform better

in cases where the maximum is not well-separated, but these intervals are longer than

the conditional intervals in the case where the maximum is well-separated. Hence,

neither the conditional nor the projection intervals seem entirely satisfactory. To

bridge the gap between these procedures we introduce hybrid confidence sets, which

combine projection and conditioning arguments.

Hybrid confidence sets are constructed to be subsets of the level 1− β projection

17Note that we consider a studentized confidence band that adjusts the width based on ΣY (θ̂),
while Kitagawa and Tetenov (2018) consider an unstudentized band. Romano and Wolf (2005) argue
for studentization in a closely related problem.

34



confidence set for 0 ≤ β < α

CSβP =

[
Y (θ̂)− cβ

√
ΣY (θ̂), Y (θ̂) + cβ

√
ΣY (θ̂)

]
.

The hybrid confidence set collects the values µY,0 ∈ CSβP not rejected by a hybrid test.

Like our conditional tests, hybrid tests condition
{
θ̂ = θ̃, γ̂ = γ̃

}
but hybrid tests of

H0 : µY (θ̃) = µY,0 further condition on the event that the null value is contained in

the projection confidence set, µY,0 ∈ CSβP . This changes the conditioning event to

YH(θ̃, γ̃, µY,0, z) = Y(θ̃, γ̃, z) ∩
[
µY,0 − cβ

√
ΣY (θ̃), µY,0 + cβ

√
ΣY (θ̃)

]
.

Similar to our conditional confidence sets we construct hybrid confidence sets by

inverting both equal-tailed and uniformly most powerful unbiased hybrid tests. To

construct the conditional equal tailed test, we define φHOS−,α and φHOS+,α analogously to

φOS−,α and φOS+,α in (23) and (24), respectively, except that we use the conditioning

event YH(θ̃, γ̃, µY,0, Zθ̃) rather than Y(θ̃, γ̃, Zθ̃). The equal-tailed hybrid test of H0 :

µY (θ̃) = µY,0 is

φHET,α(µY,0) = max
{
φHOS−,α/2(µY,0), φHOS+,α/2(µY,0)

}
,

which rejects if either of the upper or lower size α/2 one-sided tests rejects. The level

1− α equal-tailed hybrid confidence set is

CSHET =

{
µY,0 ∈ CSβP : φH

ET,α−β
1−β

(µY,0) = 0

}
,

which collects the set of values in CSβP which are not rejected by φHET,α.

To form a hybrid confidence set based on inverting unbiased tests, we likewise de-

fine φHTS,α analogously to φTS,α in (22), using the conditioning event YH(θ̃, γ̃, µY,0, Zθ̃)

rather than Y(θ̃, γ̃, Zθ̃). By the results of Proposition 2, we know that φHTS,α(µY,0)

is the uniformly most powerful unbiased test of H0 : µY (θ̃) = µY,0 conditional on{
θ̂ = θ̃, γ̂ = γ̃, µY,0 ∈ CSβP

}
. The corresponding level 1− α confidence set is then

CSHU =

{
µY,0 ∈ CSβP : φH

U,α−β
1−β

(µY,0) = 0

}
.
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For β = 0 the hybrid confidence sets coincide with the conditional confidence sets

CSET and CSU . For β > 0, on the other hand, the hybrid confidence sets are contained

in CSβP , and the size of the hybrid tests are correspondingly adjusted downwards. This

adjustment is necessary because the true value µY (θ̂) sometimes falls outside CSβP ,

so if we did not account for this our hybrid confidence sets would under-cover. With

this adjustment, however, hybrid confidence sets have coverage at least 1 − α both

conditionally and unconditionally.

Proposition 5

The hybrid confidence sets CSHET and CSHU have conditional coverage 1−α
1−β

Prµ

{
µ(θ̃) ∈ CSHET |θ̂ = θ̃, γ̂ = γ̃, µY (θ̃) ∈ CSβP

}
=

1− α
1− β

,

Prµ

{
µ(θ̃) ∈ CSHU |θ̂ = θ̃, γ̂ = γ̃, µY (θ̃) ∈ CSβP

}
=

1− α
1− β

,

for all θ̃ ∈ Θ, γ̃ ∈ Γ, and all µ. Moreover, provided θ̂ is unique with probability one

for all µ, both confidence sets have unconditional coverage at least 1− α,

inf
µ
Prµ

{
µ(θ̂) ∈ CSHET

}
≥ 1− α, inf

µ
Prµ

{
µ(θ̂) ∈ CSHU

}
≥ 1− α.

Hybrid confidence sets strike a balance between the conditional and projection

approaches. The maximal length of hybrid intervals is bounded above by the length

of CSβP . For β small hybrid confidence sets will be close to conditional confidence

sets and thus, to the conventional confidence set, when
{
θ̂ = θ̃, γ̂ = γ̃

}
with high

probability, though for β > 0 hybrid confidence intervals do not fully converge to

conventional confidence sets as Prµ

{
θ̂ = θ̃, γ̂ = γ̃

}
→ 1.18 In our simulations we

find that the performance of the hybrid and conditional approaches is quite similar

in these well-separated cases. Hence, while one could modify the definition of hybrid

confidence sets to restore full equivalence in the well-separated case, for simplicity we

do not pursue this extension here.

While hybrid intervals combine the conditional and projection approaches, they

18Indeed, one can directly choose β to yield a given maximal power loss for the hybrid tests relative
to conditional tests in the well-separated case. Such a choice of β will depend on Σ, however, so
for simplicity we instead use β = α/10 in our simulations. For similar reasons, both Romano et al.
(2014) and McCloskey (2017) find this choice to perform well in two different settings when using a
Bonferroni correction.
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can yield performance more appealing than either. Specifically, recall that in Section

2 we found that hybrid confidence intervals had a shorter average length for many

parameter values than did either the conditional or projection approaches used in

isolation. Our simulation results in Sections 6 and 7 below provide further evidence

of out-performance in realistic settings.

It is worth contrasting our hybrid approach with more conventional Bonferroni

corrections as in e.g. Romano et al. (2014); McCloskey (2017). A simple Bonferroni

approach for our setting intersects a level 1 − β projection confidence interval CSβP
with a level 1 − α + β conditional interval that conditions only on

{
θ̂ = θ̃, γ̂ = γ̃

}
.

Bonferroni intervals differ from our hybrid intervals in two respects. First, they use a

level 1− α + β conditional confidence interval, while that of hybrid approach uses a

level 1−α
1−β conditional interval, where 1−α

1−β < 1−α+β. Second, the conditional interval

used by the Bonferroni approach does not condition on µY (θ̃) ∈ CSβP , while that used

by the hybrid approach does. Consequently, the hybrid interval never contains the

endpoints of CSβP , while the same is not true of Bonferroni intervals.

5.3 Hybrid Estimators

The simulation results of Section 2 showed that our median unbiased estimator can

sometimes be much more dispersed than the conventional estimator µ̂ = Y (θ̂). While

we do not know of an alternative approach to construct exactly median unbiased

estimators in our setting, a version of our hybrid approach yields estimators which

control both median bias and mean absolute error relative to µ̂ = Y (θ̂).

To construct hybrid estimators we again condition on both
{
θ̂ = θ̃, γ̂ = γ̃

}
and

µY (θ̃) ∈ CSβP . Conditional on these events and Zθ̃ we know that Y (θ̃) again lies

in YH(θ̃, γ̃, µY (θ̃), Zθ̃). Let FH
TN(y;µY (θ̃), θ̃, γ̃, Zθ̃) denote the conditional distribution

function of Y (θ̃), and define µ̂Hα to solve

FH
TN(Y (θ̂); µ̂Hα , θ̂, γ̂, Zθ̃) = 1− α.

Proposition 6

For α ∈ (0, 1), µ̂Hα is uniquely defined, and µ̂Hα ∈ CS
β
P . If θ̂ is unique almost surely

for all µ, µ̂Hα is α-quantile unbiased conditional on µY (θ̂) ∈ CSβP ,

P rµ

{
µ̂Hα ≥ µY (θ̂)|µY (θ̂) ∈ CSβP

}
= α for all µ.
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Proposition 6 implies several notable properties for the hybrid estimator. First,

since Prµ

{
µY (θ̂) ∈ CSβP

}
≥ 1− β by construction,

∣∣∣Prµ {µ̂α ≥ µY (θ̂)
}
− α

∣∣∣ ≤ Prµ

{
µY (θ̂) 6∈ CSβP

}
≤ β for all µ.

Hence, the absolute median bias of µ̂H1
2

(measured as the deviation of the exceedance

probability from 1/2) is bounded above by β, and goes to zero as β → 0. On the

other hand, since µ̂H1
2

∈ CSβP we have
∣∣∣µ̂H1

2

− Y (θ̂)
∣∣∣ ≤ cβ

√
ΣY (θ̃), so the difference

between µ̂H1
2

and the conventional estimator Y (θ̂) is bounded above by half the width

of CSβP . Hence, the mean absolute error of µ̂H1
2

can likewise differ from that of Y (θ̂)

by no more than this amount, which tends to zero as β → 1. Hence, as β varies

the hybrid estimator interpolates between the median unbiased estimator µ̂ 1
2

and the

conventional estimator Y (θ̂).

6 Simulations: Empirical Welfare Maximization

Our first set of simulations considers the EWM setting introduced in Section 3. We

calibrate our simulations to experimental data from the National Job Training Part-

nership Act (JTPA) Study, which was previously used by Kitagawa and Tetenov

(2018) to study empirical welfare maximization. A detailed description of the study

can be found in Bloom et al. (1997).

We have data on n = 11, 204 individuals i and the treatment Di is binary; Di = 1

indicates assignment to a job training program and Di = 0 indicates non-assignment.

The probability of assignment is constant, d(c) = Pr(Di = 1|Ci = c) = 2/3. We

consider rules that assign treatment based on years of education Ci. In the data, C

takes integer values ranging from 6 to 18 years. As in Section 3, rule θ assigns i to

treatment if and only if Ci ∈ Cθ.
We consider two classes of policies. The first, which we call threshold policies,

treat all individuals with fewer than θ years of education, Cθ = {C : C ≤ θ}. The

second, which we call interval policies, treat all individuals with between θl and θu

years of education, Cθ = {C : θl ≤ C ≤ θu}, where a policy θ consists of a (θl, θu)

pair. The total number of policies |Θ| is equal to 13 and 91 for the threshold and

interval cases, respectively. We define Xn(θ) as a scaled estimate for the increase

in income from policy θ relative to the baseline of no treatment. For Yi individual
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income measured in hundreds of thousands of dollars,

Xn(θ) =
1√
n

n∑
i=1

(
YiDi

d(Ci)
1{Ci ∈ Cθ} −

Yi(1−Di)

1− d(Ci)
1{Ci 6∈ Cθ}

)
,

and we consider inference on the average increase in income, so Yn = Xn.

For our simulations, we draw normal vectors X with known variance ΣX equal

to a (consistent) estimate for the asymptotic variance of Xn based on the JTPA

data, and take θ̂ = argmax θX(θ). The mean vector µX,n of Xn is not consistently

estimable due to the
√
n scaling, so we consider three specifications for the mean

µX of X. Specification (i) sets µX = 0, so all policies yield the same welfare as the

baseline of no treatment. Specification (ii) sets µX = (0,−105, ...,−105), so one policy

is much more effective than the others. Finally, specification (iii) sets µX = Xn for

Xn calculated in the JTPA data. Intuitively, we expect that specification (i) will

be unfavorable to conditional confidence sets, since in Section 2 these performed

poorly when all policies were equally effective. Specification (ii) should be favorable

to conditional confidence sets, since in this case one policy is much more effective

than the others and θ̂ selects this policy with high probability. Hence, we are in the

“well-separated” case and the results of Section 4.4 apply. Finally, specification (iii)

is calibrated to the data, and it is not obvious which approaches will perform well in

this setting.

To the best of our knowledge our conditional confidence sets are the only pro-

cedures available with correct conditional coverage given θ̂.19 Hence, we focus on

unconditional performance, and compare the conditional confidence sets CSET and

CSU , the hybrid confidence sets CSHET and CSHU , and the projection confidence set

CSP . The conditional and hybrid confidence sets are novel to this paper, but (unstu-

dentized) projection confidence sets were previously considered for this problem by

Kitagawa and Tetenov (2018). We take α = 0.05 in all cases and so consider 95%

confidence sets. For hybrid confidence sets we set β = α/10 = .005. All reported

results are based on 104 simulation draws.

Table 1 reports the unconditional coverage Prµ{µ(θ̂) ∈ CS} of all five confidence

sets, along with the conventional confidence set CSN as in (26). As expected, all

confidence sets other than CSN have correct coverage in all settings considered. The

19As noted in Section 4.3, if we instead calculated θ̂ based on only part of the data one could use
sample-splitting to obtain confidence sets with conditional coverage.
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conditional confidence sets are exact, with coverage equal to 95% up to simulation

error. By contrast, hybrid confidence sets tend to be slightly conservative though

generally by no more than β = .005, and projection confidence sets are often quite

conservative, with coverage approaching one when we consider interval policies.

Table 1: Unconditional Coverage Probability

DGP CSET CSU CSHET CSHU CSP CSN
Class of Threshold Policies

(i) 0.952 0.951 0.955 0.953 0.987 0.921
(ii) 0.95 0.951 0.952 0.952 0.993 0.949
(iii) 0.952 0.951 0.951 0.953 0.992 0.951

Class of Interval Policies
(i) 0.948 0.948 0.955 0.955 0.993 0.827
(ii) 0.947 0.947 0.956 0.955 0.998 0.947
(iii) 0.946 0.945 0.953 0.952 0.998 0.947

We next compare the length of confidence sets. Projection confidence sets were

proposed in the previous literature, and their length is proportional to the standard

error

√
ΣX(θ̂) for the welfare of the estimated optimal policy. Hence, CSP provides

a natural benchmark against which to compare the length of our new confidence sets.

In Table 2 we compare our new confidence sets to this benchmark in two ways, first

reporting the average length of CSET , CSU , CS
H
ET , and CSHU relative to CSP (that

is, the ratio of the average of their lengths), and then reporting in what fraction of

simulation draws our new confidence sets are longer than CSP .

Focusing first on specification (i), where µX = 0, we see that conditional confi-

dence sets are longer than CSP on average and in most simulation draws for both

the threshold and interval policy specifications. Hence, as expected this case is unfa-

vorable to these confidence sets. By contrast, our hybrid confidence sets are shorter

than the projection sets both on average and in the substantial majority of simulation

draws. Turning next to specification (ii), where µX has a well-separated maximum,

we see that as expected conditional confidence sets are much shorter than projection

confidence sets and are shorter on average and in all simulation draws. Hybrid confi-

dence sets perform nearly as well. Finally in (iii), where µX is calibrated to the data,

we see that the performance of the conditional confidence sets is between cases (i)

and (ii) for the threshold policy specification, but even worse than case (i) (in terms

of average length) for the interval policy specification. By contrast, hybrid confidence
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sets again perform well.

Overall, these simulation results strongly favor the hybrid confidence sets relative

to both the conditional and projection sets. We do not find a strong advantage for

either CSHET or CSHU , though when the two differ CSHET generally performs better.

Since CSHET is also typically easier to calculated, these simulation results thus suggest

using CSHET in this setting.

Table 2: Length of Confidence Sets Relative to CSP in EWM Simulations

DGP Average Length Relative to CSP Probability Longer than CSP
CSET CSU CSHET CSHU CSET CSU CSHET CSHU

Class of Threshold Policies
(i) 6.49 5.55 0.91 0.91 0.699 0.779 0 0.119
(ii) 0.75 0.75 0.75 0.75 0 0 0 0
(iii) 2.78 2.51 0.87 0.9 0.324 0.433 0.045 0.275

Class of Interval Policies
(i) 10.77 8.97 0.83 0.83 0.782 0.876 0 0
(ii) 0.63 0.63 0.65 0.65 0 0 0 0
(iii) 25.75 21.42 0.78 0.81 0.33 0.427 0 0

We next consider the properties of our point estimators. The initial columns

of Table 3 report the simulated median bias of our median unbiased estimator µ̂ 1
2
,

our hybrid estimator µ̂H1
2

, and the conventional estimator X(θ̂), measured both as

the difference in the exceedance probability from 1
2

and as the studentized median

estimation error. The hybrid estimator is quite close to being median unbiased.

The final three columns of Table 3 report the mean absolute studentized error for

the estimators considered. These results show that the median unbiased estimator

µ̂ 1
2

has a much larger mean absolute error than the conventional estimator X(θ̂) in

all designs except the well-separated case (ii), where all three estimators perform

similarly. The hybrid estimator µ̂H1
2

likewise has a larger mean absolute error than

the conventional estimator, but the difference is much smaller. Hence, we see that our

hybrid estimator greatly reduces MAE relative to the median unbiased estimator, at

the cost of only a very small increase in median bias. The choice between the hybrid

and conventional estimator in this setting is less clear, however, and depends on one’s

relative dislike of bias and mean absolute error.

Overall, the results of this section confirm our theoretical results. Conditional con-

fidence sets and estimators perform well when the optimal policy is well-separated
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Table 3: Bias and Mean Absolute Error of Point Estimators

DGP Prµ

{
µ̂ > µX(θ̂)

}
− 1

2
Medµ

(
µ̂−µX(θ̂)√

ΣX(θ̂)

)
Eµ

[
|µ̂−µX(θ̂)|√

ΣX(θ̂)

]
µ̂ 1

2
µ̂H1

2

X(θ̂) µ̂ 1
2

µ̂H1
2

X(θ̂) µ̂ 1
2

µ̂H1
2

X
(
θ̂
)

Class of Threshold Policies
(i) -0.007 -0.007 0.391 -0.02 -0.02 0.82 5.02 1.28 0.96
(ii) -0.001 0.001 0.001 0 0 0 0.79 0.79 0.79
(iii) -0.001 -0.001 0.104 0 0 0.25 2.02 1.03 0.78

Class of Interval Policies
(i) 0 0.003 0.5 0 0.02 1.3 10.36 1.46 1.38
(ii) -0.002 0.001 0.001 0 0 0 0.81 0.81 0.82
(iii) 0 0.001 0.148 0 0 0.35 4.1 1.14 0.8

but can otherwise underperform existing alternatives. Hybrid confidence sets outper-

form existing alternatives in all cases, nearly matching conditional confidence sets in

the well-separated case and maintaining much better performance in other settings.

Hybrid estimators eliminate almost all median bias while obtaining a substantially

smaller mean absolute error than the exact median-unbiased estimator. Hence, we

find strong evidence favoring our hybrid confidence sets relative to the available al-

ternatives, and evidence favoring our hybrid estimators if bias reduction is desired.

7 Simulations: Tipping Point Estimation

Our second set of simulation results is based on the tipping point model of Card et al.

(2008). Card et al. study the evolution of neighborhood composition as a function of

minority population share. In particular, for Yi the normalized change in the white

population of census tract i between 1980 and 1990, Ci,1 a vector of controls, and Ci,2

the minority share in 1980, Card et al. consider the specification

Yi = β + C ′i,1α + δ1{Ci,2 > θ}+ Ui,

which allows the white population share to change discontinuously when the minority

share exceeds some threshold θ. They then fit this model, including the break point

θ, by least squares. See Card et al. (2008) for details on the data and motivation.
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Wang (2017) shows that if we model the coefficient δ as on the same order as

sampling uncertainty, the model of Card et al. (2008) is asymptotically equivalent to

a version of the structural breaks model we introduced in Section 3. Hence, we can

immediately apply our results for that model to the present setting. For details on

this equivalence result, see Wang (2017). Following Wang (2017), we consider data

from Chicago and Los Angeles, estimating the model separately in each city.

We define Xn as discussed in Section 3, and θ̂ is again asymptotically equivalent

to the solution to the norm-maximization problem argmax θ∈Θ ‖Xn(θ)‖. We define

Yn(θ) =
√
nδ̂(θ) to be proportional to the estimated break coefficient imposing tipping

point θ, so we again consider the problem of inference on the break coefficient while

acknowledging randomness in the estimated breakdate.

Our simulations draw normal random vectors (X, Y ), now from the limiting nor-

mal model derived in Section 3. This model depends on matrices analagous to ΣC

and Ω in Section 3 which we (consistently) estimate from the Card et al. (2008) data.

It also depends on the analog of the function Σcg(·). Since this is not consistently

estimable, we consider four specifications. Specification (i) assumes there is no break,

corresponding to δ = 0. Specification (ii) assumes that there is a single large break,

setting δ = −100% (the largest possible break in the context of this model) and

taking the true break point θ̂ to equal the estimate in the Card et al. (2008) data.

Finally, specification (iii) calibrates (the analog of) Σcg(·) to the data, corresponding

to analog of model (10) where the intercept term in the regression may depend ar-

bitrarily upon a neighborhood’s minority share. This specification implies that the

break model is misspecified, but as discussed above our approach remain applicable in

this case, unlike the results of Wang (2017). Indeed, Card et al. (2008) acknowledge

that the tipping point model only approximates their underlying theoretical model of

neighborhood ethnic composition, so misspecification seems likely in this setting.

We again focus on the unconditional performance of our proposed procedures,

along with existing alternatives. All reported results are based on 104 simulation

draws. Table 4 reports coverage for the confidence sets CSET , CSU , CS
H
ET , CS

H
U ,

and CSP , along with the conventional confidence set CSN . As for the simulations

calibrated to the EWM application, we see that all confidence sets other than CSN

have correct coverage, CSP often over-covers, the conditional confidence sets have

exact coverage and the hybrid confidence sets exhibit minimal over-coverage. In this

application, the conventional confidence set CSN can be seen to exhibit severe under-

43



coverage for some simulation designs.

Table 4: Unconditional Coverage Probability

DGP CSET CSU CSHET CSHU CSP CSN
Chicago Data Calibration

(i) 0.949 0.947 0.949 0.95 0.95 0.704
(ii) 0.949 0.952 0.954 0.955 0.995 0.95
(iii) 0.952 0.949 0.957 0.958 0.992 0.932
Los Angeles Data Calibration
(i) 0.954 0.95 0.954 0.953 0.95 0.49
(ii) 0.948 0.948 0.953 0.953 0.998 0.948
(iii) 0.949 0.947 0.955 0.954 0.998 0.944

Table 5 compares the lengths of our confidence sets to that of CSP . For each

confidence set we again report both average length relative to CSP and the frequency

with which the confidence set is longer than CSP . Here we see that the conditional

confidence sets can be relatively long on average. We also see that the use of hybrid

confidence sets provides marked performance improvements across the specifications

considered. Remarkably, neither of the hybrid confidence sets is longer than CSP in

any simulation draw across all specifications examined. The overall message is similar

to that of the previous section: hybrid confidence sets possess clear advantages for

unconditional inference and CSHET seems to be the most compelling option, especially

given its computational simplicity.

Table 5: Length of Confidence Sets Relative to CSP in Tipping Point Simulations

Average Length Relative to CSP Probability Longer than CSP
CSET CSU CSHET CSHU CSET CSU CSHET CSHU

Chicago Data Calibration
(i) 2.54 2.65 0.89 0.88 0.896 0.978 0 0
(ii) 0.73 0.75 0.72 0.72 0.012 0.019 0 0
(iii) 1.45 1.73 0.83 0.85 0.377 0.541 0 0

Los Angeles Data Calibration
(i) 1.8 1.97 0.84 0.82 0.863 0.965 0 0
(ii) 0.67 0.7 0.66 0.66 0.015 0.027 0 0
(iii) 1.06 1.22 0.73 0.75 0.201 0.323 0 0

Finally, we consider the properties of our point estimators. The initial columns

of Table 6 report median bias measured both with the deviation of the exceedance
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probability from 1
2

and with the studentized median estimation error. We again see

that µ̂ 1
2

is median-unbiased (up to simulation error) and that µ̂H1
2

exhibits minimal

median bias. By contrast, the conventional estimator Y (θ̂) has substantial median

bias as measured by the studentized median estimation error, though very little as

measured by the exceedance probability in specification (i). This latter feature reflects

the fact that the density of Y (θ̂) in this specification has very little mass at zero.

Turning to mean absolute studentized error, we see that all estimators perform

similarly when the series has a single large break. By contrast, in specifications (i)

(no break) and (iii) (fully data-calibrated model that does not impose a break), the

median unbiased estimator µ̂ 1
2

has a substantially larger mean absolute error than

the conventional estimator Y (θ̂). The hybrid estimator has a smaller mean absolute

studentized error than the median unbiased estimator across these specifications. Its

mean absolute error is the smallest of the three estimators in specification (i) and lies

between those of the other estimators in specification (iii).

Table 6: Bias and Mean Absolute Error in Tipping Point Simulations

Pr
{
µ̂ > µY (θ̂)

}
− 1

2
Med

(
µ̂−µY (θ̂)√

ΣY (θ̂)

)
E

[∣∣∣∣ µ̂−µY (θ̂)√
ΣY (θ̂)

∣∣∣∣]
µ̂ 1

2
µ̂H1

2

Y (θ̂) µ̂ 1
2

µ̂H1
2

Y (θ̂) µ̂ 1
2

µ̂H1
2

Y (θ̂)

Chicago Data Calibration
(i) 0.002 0.002 -0.003 0.01 0.01 -0.69 3.59 1.4 1.69
(ii) -0.003 -0.003 -0.007 -0.01 -0.01 -0.01 0.84 0.82 0.81
(iii) 0.002 0.002 -0.16 0.01 0 -0.41 1.93 1.11 0.85

Los Angeles Data Calibration
(i) 0.003 0.004 -0.005 0.02 0.02 -1.05 3.44 1.44 2.04
(ii) -0.003 -0.003 -0.001 -0.01 -0.01 -0.02 0.83 0.81 0.8
(iii) -0.005 -0.005 -0.098 -0.01 -0.01 -0.23 1.46 1 0.81

Overall, the results of this section again suggest excellent performance for our

hybrid confidence sets and estimators relative to existing alternatives.

8 Conclusion

This paper considers a form of the winners’ curse that arises when we select a tar-

get parameter for inference based on optimization. We propose confidence sets and

quantile unbiased estimators for the target parameter that are optimal conditional
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on its selection. We hence recommend our conditional inference procedure when it

is appropriate to remove uncertainty about the choice of target parameters from in-

ferential statements. The conditionally valid procedures are indeed unconditionally

valid, but we find that these conditionally valid procedures can have unappealing

(unconditional) performance relative to existing alternatives. If one is satisfied with

unconditional coverage and (in the case of estimation) a small, controlled degree of

bias, we propose hybrid inference procedures which combine conditioning with pro-

jection confidence sets. Examining performance in simulations calibrated to empirical

welfare maximization and tipping point applications, we find that our hybrid approach

performs well in both cases.
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Supplement to the paper

Inference on Winners

Isaiah Andrews Toru Kitagawa Adam McCloskey

May 10, 2018

This appendix contains proofs and supplementary results for the paper “Inference

on Winners.” Section A collects proofs for the results stated in the main text. Section

B contains additional details and derivations for the Empirical Welfare Maximization

and structural break examples.

A Proofs

Proof of Proposition 1 For ease of reference, let us abbreviate (Y (θ̃), µY (θ̃), Zθ̃)

by (Ỹ , µ̃Y , Z̃). Let Y (−θ̃) collect the elements of Y other than Y (θ̃) and define µY (−θ)
analagously. Let

Y ∗ = Y (−θ̃)− Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
Ỹ

X

)
,

µ∗Y = µY (−θ̃)− Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+(
µ̃Y

µX

)
,

and

µ̃Z = µX −
(

ΣXY (·, θ̃)/ΣY (θ̃)
)
µY .

Here we use A+ to denote the Moore-Penrose pseudoinverse of a matrix A. Note

that (Z̃, Ỹ , Y ∗) is a one-to-one transformation of (X, Y ), and thus that observing

(Z̃, Ỹ , Y ∗) is equivalent to observing (X, Y ). Likewise, (µ̃Z , µ̃Y , µ
∗
Y ) is a one-to-one

linear transformation of (µX , µY ), so if the set of possible values for the latter contains

an open set, that for the former does as well.

Note, next, that since (Z̃, Ỹ , Y ∗) is a linear transformation of (X, Y ), (Z̃, Ỹ , Y ∗)

is jointly normal (albeit with a degenerate distribution). Note next that (Z̃, Ỹ , Y ∗)
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are mutually uncorrelated, and thus independent. That Z̃ and Ỹ are uncorrelated

is straightforward to verify. To show that Y ∗ is likewise uncorrelated with the other

elements, note that we can write Cov
(
Y ∗, (Ỹ , X ′)′

)
as

Cov

(
Y (−θ̃),

(
Ỹ

X

))
−Cov

(
Y (−θ̃),

(
Ỹ

X

))
V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
.

For V ΛV ′ an eigendecomposition of V ar
(

(Ỹ , X ′)′
)

, however, note that we can write

V ar

((
Ỹ

X

))+

V ar

((
Ỹ

X

))
= V DV ′

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries

of Λ and zeros everywhere else. However, for any column v of V corresponding to a

zero entry of D, v′V ar

((
Ỹ , X ′

)′)
v = 0, so the Cauchy-Schwarz inequality implies

that

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
v = 0.

Thus,

Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
V DV ′ = Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
V V ′ = Cov

(
Y
(
−θ̃
)
,

(
Ỹ

X

))
,

so Y ∗ is uncorrelated with
(
Ỹ , X ′

)′
.

Using independence, the joint density of (Z̃, Ỹ , Y ∗) absent truncation is given by

fN,Z̃(z̃; µ̃Z)fN,Ỹ (ỹ; µ̃Y )fN,Y ∗(ỹ∗;µ∗Y )

for fN normal densities with respect to potentially degenerate base measures:

fN,Z̃(z̃; µ̃Z) = d̃et(2πΣZ̃)−
1
2 exp

(
−1

2
(z̃ − µ̃Z)′Σ+

Z̃
(z̃ − µ̃Z)

)

fN,Ỹ (ỹ; µ̃Y ) = (2πΣỸ )−
1
2 exp

(
−(ỹ − µ̃Y )2

2ΣỸ

)
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fN,Y ∗(y∗;µ∗Y ) = d̃et(2πΣY ∗)−
1
2 exp

(
−1

2
(y∗ − µ̃∗Y )′Σ+

Y ∗(y∗ − µ∗Y )

)
where d̃et(A) denotes the pseudodeterminant of a matrix A, ΣZ̃ = V ar(Z̃), ΣỸ =

ΣY (θ̃), and ΣY ∗ = V ar (Y ∗) .

The event
{
X ∈ X (θ̃, γ̃)

}
depends only on (Z̃, Ỹ ) since it can be expressed as{(

Z̃ + ΣXY (·,θ̃)
ΣY (θ̃)

Ỹ
)
∈ X (θ̃, γ̃)

}
, so conditional on this event Y ∗ remains independent

of (Z̃, Ỹ ). In particular, we can write the joint density conditional on
{
X ∈ X (θ̃, γ̃)

}
as

1
{(
z̃ + ΣXY (·, θ̃)ΣY (θ̃)−1ỹ

)
∈ X (θ̃, γ̃)

}
Prµ̃Z ,µ̃Y

{
X ∈ X (θ̃, γ̃)

} fN,Z̃(z̃; µ̃Z)fN,Ỹ (ỹ; µ̃Y )fN,Y ∗(ỹ∗;µ∗Y ). (28)

The density (28) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies

properties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the theorem then

follows immediately Theorem 5.5.9 of Pfanzagl (1994). Part 2 of the theorem follows

by using Theorem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15

of Pfanzagl (1994). �

Proof of Proposition 2 In the proof of Proposition 1, we showed that the joint

density of (Z̃, Ỹ , Y ∗) (defined in that proof) has the exponential family structure

assumed in equation 4.10 of Lehmann and Romano (2005). Moreover, if we restrict

attention to the linear space
{
µ∗ + Σ

1
2v : v ∈ Rdim(X,Y )

}
, we see that the parameter

space for (µX , µY ) is convex and is not contained in any proper linear subspace.

Thus, the parameter space for (µ̃Z , µ̃Y , µ
∗
Y ) inherits the same property, and satisfies

the conditions of Theorem 4.4.1 of Lehmann and Romano (2005). The result then

follows immediately. �

Proof of Lemma 1 Let us number the elements of Θ as
{
θ1, θ2, ..., θ|Θ|

}
, where

X(θ1) is the first element of X, X(θ2) is the second element, and so on. Let us

further assume without loss of generality that θ̃ = θ1. Note that the conditioning
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event {maxθ∈ΘX(θ) = X1} is equivalent to {MX ≥ 0}, where

M ≡


1 −1 0 0 . . . 0

1 0 −1 0 . . . 0
...

...
...

...
...

...

1 0 0 0 . . . −1


is a (|Θ| − 1) × |Θ| matrix and the inequality is taken element-wise. Let A =[
− M 0(|Θ|−1)×|Θ|

]
where 0(|Θ|−1)×|Θ| denotes the (|Θ| − 1)×|Θ|matrix of zeros. Let

W = (X ′, Y ′)′ and note that we can re-write the event of interest as {W : AW ≤ 0}
and that we are interested in inference on η′µ for η the 2|Θ| × 1 vector with one in

the (|Θ|+ 1)st entry and zeros everywhere else. Define

Z∗
θ̃

= W − cY (θ̃),

for c = Cov(W,Y (θ̃))/ΣY Y (θ̃), noting that the definition of Zθ̃ in (18) corresponds

to extracting the elements of Z∗
θ̃

corresponding to X. By Lemma 5.1 of Lee et al.

(2016),

{W : AW ≤ 0} =
{
W : L(θ̃, Z∗

θ̃
) ≤ Y (θ̃) ≤ U(θ̃, Z∗

θ̃
),V(θ̃, Z∗

θ̃
) ≥ 0

}
where for (v)j the jth element of a vector v,

L(θ̃, z) = max
j:(Ac)j<0

− (Az)j
(Ac)j

U(θ̃, z) = min
j:(Ac)j>0

− (Az)j
(Ac)j

V(θ̃, z) = min
j:(Ac)j=0

− (Az)j .

Note, however, that (
AZ∗

θ̃

)
j

= Z∗
θ̃

(θj)− Z∗θ̃ (θ1)

and

(Ac)j = −ΣXY (θ1, θ1)− ΣXY (θ1, θj)

ΣY (θ1)
.
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Hence, we can re-write

−(AZ∗
θ̃
)j

(Ac)j
=

ΣY (θ1)
(
Z∗
θ̃

(θj)− Z∗θ̃ (θ1)
)

ΣXY (θ1, θ1)− ΣXY (θ1, θj)
,

L(θ̃, Z∗
θ̃
) = max

j:ΣXY (θ1,θ1)>ΣXY (θ1,θj)

ΣY (θ1)
(
Z∗
θ̃

(θj)− Z∗θ̃ (θ1)
)

ΣXY (θ1, θ1)− ΣXY (θ1, θj)
,

U(θ̃, Z∗
θ̃
) = min

j:ΣXY (θ1,θ1)<ΣXY (θ1,θj)

ΣY (θ1)
(
Z∗
θ̃

(θj)− Z∗θ̃ (θ1)
)

ΣXY (θ1, θ1)− ΣXY (θ1, θj)
,

and

V(θ̃, Z∗
θ̃
) = min

j:ΣXY (θ1,θ1)=ΣXY (θ1,θj)
−
(
Z∗
θ̃

(θj)− Z∗θ̃ (θ1)
)
.

Note, however, that these depend only on the first |Θ| terms of Z∗
θ̃
, and thus are

functions of Zθ̃, as expected. The result follows immediately. �

Proof of Lemma 2 Note the following equivalence of events:

{θ̂ = θ̃} =

{
dX∑
i=1

Xi(θ̃)
2 ≥

dX∑
i=1

Xi(θ)
2 ∀θ ∈ Θ

}

=

{
dX∑
i=1

[
Zθ̃,i(θ̃) + ΣXY,i(θ̃)ΣY (θ̃)−1Y (θ̃)

]2

≥
dX∑
i=1

[
Zθ̃,i(θ) + ΣXY,i(θ, θ̃)ΣY (θ̃)−1Y (θ̃)

]2

∀θ ∈ Θ

}
=
{
A(θ̃, θ)Y (θ̃)2 +BZ(θ̃, θ)Y (θ̃) + CZ(θ̃, θ) ≥ 0 ∀θ ∈ Θ

}
, (29)

for A(θ̃, θ), BZ(θ̃, θ), and CZ(θ̃, θ) as defined in the statement of the lemma.

By the quadratic formula, (29) is equivalent to the event−BZ(θ̃, θ) +
√
BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ)

2A(θ̃, θ)
≤ Y (θ̃)

≤
−BZ(θ̃, θ)−

√
BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ)

2A(θ̃, θ)
∀θ ∈ Θ s.th. A(θ̃, θ) < 0

53



and BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ) ≥ 0,

Y (θ̃) ≤
−BZ(θ̃, θ)−

√
BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ)

2A(θ̃, θ)
or

Y (θ̃) ≥
−BZ(θ̃, θ) +

√
BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ)

2A(θ̃, θ)
∀θ ∈ Θ s.th. A(θ̃, θ) > 0

and BZ(θ̃, θ)2 − 4A(θ̃, θ)CZ(θ̃, θ) ≥ 0,

Y (θ̃) ≥ −CZ(θ̃, θ)

BZ(θ̃, θ)
∀θ ∈ Θ s.th. A(θ̃, θ) = 0 and BZ(θ̃, θ) > 0,

Y (θ̃) ≤ −CZ(θ̃, θ)

BZ(θ̃, θ)
∀θ ∈ Θ s.th. A(θ̃, θ) = 0 and BZ(θ̃, θ) < 0,

CZ(θ̃, θ) ≥ 0 ∀θ ∈ Θ s.th. A(θ̃, θ) = 0 and BZ(θ̃, θ) = 0
}

=

Y (θ̃) ∈
⋂

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0

−BZ(θ̃, θ) +
√
DZ(θ̃, θ)

2A(θ̃, θ)
,
−BZ(θ̃, θ)−

√
DZ(θ̃, θ)

2A(θ̃, θ)


∩

⋂
θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

−∞, −BZ(θ̃, θ)−
√
DZ(θ̃, θ)

2A(θ̃, θ)

 ∪
−BZ(θ̃, θ) +

√
DZ(θ̃, θ)

2A(θ̃, θ)
,∞


∩

⋂
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0

[
HZ(θ̃, θ),∞

)
∩

⋂
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0

(
−∞, HZ(θ̃, θ)

]
∩
{

min
θ∈Θ:A(θ̃,θ)=BZ(θ̃,θ)=0

CZ(θ̃, θ) ≥ 0

}
=

{
Y (θ̃) ∈

[
max

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
GZ(θ̃, θ), min

θ∈Θ:A(θ̃,θ)<0,DZ(θ̃,θ)≥0
KZ(θ̃, θ)

]
∩
[

max
θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)>0

HZ(θ̃, θ),∞
)
∩
(
−∞, min

θ∈Θ:A(θ̃,θ)=0,BZ(θ̃,θ)<0
HZ(θ̃, θ)

]

∩
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

(
−∞, KZ(θ̃, θ)

]
∪
[
GZ(θ̃, θ),∞

) ∩ {V(θ̃, Zθ̃) ≥ 0
}

=

Y (θ̃) ∈
⋂

θ∈Θ:A(θ̃,θ)>0,DZ(θ̃,θ)≥0

[
`1
Z(θ̃, θ), u1

Z(θ̃, θ)
]
∪
[
`2
Z(θ̃, θ), u2

Z(θ̃, θ)
] ∩ {V(θ̃, Zθ̃) ≥ 0

}

for `1
Z(θ̃), `2

Z(θ̃, θ), u1
Z(θ̃, θ), u2

Z(θ̃), and V(θ̃, Zθ̃) again defined in the statement of the
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lemma. The result follows immediately. �

Proof of Lemma 3 Recall that conditional on Zθ̃ = zθ̃, θ̂ = θ̃, γ̂ = γ̃ only if

Y (θ̃) ∈ Y(θ̃, γ̃, zθ̃), and the reverse holds almost surely. Hence, the assumptions of

the proposition imply that

PrµY,m

{
Y (θ̃) ∈ Y(θ̃, γ̃, Zθ̃)|Zθ̃ = zθ̃,m

}
→ 1.

Note, next, that both the conventional and conditional confidence sets are equiv-

ariant under shifts, in the sense that the conditional confidence set for µY (θ̃) based

on observing Y (θ̃) conditional on Y (θ̃) ∈ Y(θ̃, γ̃, Zθ̃) is equal to the conditional con-

fidence set for µY (θ̃) based on observing Y (θ̃)−µ∗Y (θ̃) conditional on Y (θ̃)−µ∗Y (θ̃) ∈
Y(θ̃, γ̃, Zθ̃)−µ∗Y (θ̃) for any constant µ∗Y (θ̃). Hence, rather than considering a sequence

of values µY,m, we can fix some µ∗Y and note that

Prµ∗Y

{
Y (θ̃) ∈ Y∗m|Zθ̃ = zθ̃,m

}
→ 1,

where Y∗m = Y(θ̃, γ̃, Zθ̃)−µY,m(θ̃) +µ∗Y (θ̃). Confidence sets for µY,m(θ̃) in the original

problem are equal to those for µ∗Y (θ̃) in the new problem, shifted by µY,m(θ̃)−µ∗Y (θ̃).

Hence, to prove the result it suffices to prove the equivalence of conditional and con-

ventional confidence sets in the problem with µY fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved below.

Lemma 5

Suppose that we observe Y (θ̃) ∼ N
(
µY (θ̃),ΣY (θ̃)

)
conditional on Y (θ̃) falling in a

set Y. If we hold
(

ΣY (θ̃), µY,0

)
fixed and consider a sequence of sets Ym such that

Pr
{
Y (θ̃) ∈ Ym

}
→ 1, we have that for

φET (µY,0) = 1
{
Y (θ̃) 6∈ [cl,ET (µY,0,Ym) , cu,ET (µY,0,Ym)]

}
, (30)

and

φU(µY,0) = 1
{
Y (θ̃) 6∈ [cl,U (µY,0,Ym) , cu,U (µY,0,Ym)]

}
, (31)

(cl,ET (µY,0,Ym) , cu,ET (µY,0,Ym))→
(
µY,0 − cN,α

2

√
ΣY (θ̃), µY,0 + cN,α

2

√
ΣY (θ̃)

)
,
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and

(cl,U (µY,0,Ym) , cu,U (µY,0,Ym))→
(
µY,0 − cN,α

2

√
ΣY (θ̃), µY,0 + cN,α

2

√
ΣY (θ̃)

)
for cN,α

2
the 1− α

2
quantile of a standard normal distribution.

To complete the proof, let CSm denote a generic conditional confidence set formed

by inverting a family of tests

φm (µY,0) = 1
{
Y (θ̃) 6∈ [cl (µY,0,Y∗m) , cu (µY,0,Y∗m)]

}
.

We want to show that

CSm →p

[
Y (θ̃)− cN,α

2
, Y (θ̃) + cN,α

2

]
, (32)

as m→∞, for CSm formed by inverting either (30) or (31).

We assume that CSm is a finite interval for all m, which holds trivially for the

equal-tailed confidence set CSET , and holds for CU by Lemma 5.5.1 of Lehmann and

Romano. Since we consider intervals, by convergence in probability we will mean

convergence in probability of the endpoints. For each value µY,0 our Lemma 5 implies

that

φm (µY,0)→p 1
{
Y
(
θ̃
)
∈
[
µY,0 − cN,α

2
, µY,0 + cN,α

2

]}
for φm equal to either (30) or (31). This convergence in probability holds jointly for

all finite collections of values µY,0, however, which implies (32). The same argument

works for the median unbiased estimator µ̂ 1
2
, which can also be viewed as the upper

endpoint of a one-sided 50% confidence interval. �

Proof of Proposition 3 We prove this result for the unconditional case, noting

that since Prµm

{
θ̂ = θ̃, γ̂ = γ̃

}
→ 1, the result conditional on

{
θ̂ = θ̃, γ̂ = γ̃

}
follows

immediately.

Note that by the law of iterated expectations, PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃

}
→ 1 implies

that PrµY,m

{
θ̂ = θ̃, γ̂ = γ̃|Zθ̃

}
→p 1. Hence, if we define

g(µY , z) = PrµY

{
θ̂ = θ̃, γ̂ = γ̃|Zθ̃ = z

}
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we see that g(µY,m, Zθ̃)→p 1.

Note, next, that if for any metric d for the difference between confidence intervals

(e.g. the sum of the distances between the endpoints) if we define

hε(µY , z) = PrµY {d(CSU , CSN) > ε|Zθ̃ = z} ,

Lemma 3 states that for any sequence (µY,m, zm) such that g(µY,m, zm)→ 1, hε(µY,m, zm)→
0. Hence, if we define G(δ) = {(µY , z) : g(µY , z) > 1− δ} andH(ε) = {(µY , z) : h(µY , z) < ε} ,
we see that for all ε > 0 there exists δ(ε) > 0 such that G(δ(ε)) ⊆ H(ε).

Hence, since our argument above implies that for all δ > 0,

P rµY,m {(µy,m, Zθ̃) ∈ G(δ)} → 1,

we see that for all ε > 0,

P rµY,m {(µy,m, Zθ̃) ∈ H(ε)} → 1,

as well, which suffices to prove the desired claim for confidence sets. The same

argument likewise implies the result for our median unbiased estimator. �

Proof of Proposition 4 Provided θ̂ is unique with probability one, we can write

Prµ

{
µ(θ̂) ∈ CS

}
=

∑
θ̃∈Θ,γ̃∈Γ

Prµ

{
θ̂ = θ̃, γ̂ = γ̃

}
Prµ

{
µ(θ̃) ∈ CS|θ̂ = θ̃, γ̂ = γ̃

}
.

Since
∑

θ̃∈Θ,γ̃∈Γ Prµ

{
θ̂ = θ̃, γ̂ = γ̃

}
= 1, the result of the lemma follows immediately.

�

Proof of Lemma 4 Consider first the level-maximization case. Note that the

assumption of the lemma implies that X(θ̃)−X(θ) has a non-degenerate normal dis-

tribution for all µ. Since Θ is finite, almost-sure uniqueness of θ̂ follows immediately.

For norm-maximization, assume without loss of generality that V ar
(
X (θ) |X(θ̃)

)
6=

0. Note that ‖X(θ)‖ is continuously distributed conditional on X(θ̃) = x(θ̃) for all

x(θ̃) and all µ, so Prµ

{
‖X(θ)‖ = ‖X(θ̃)‖

}
= 0. Almost-sure uniqueness of θ̂ again

follows immediately from finiteness of Θ. �
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Proof of Proposition 5 The first part of the proposition follows immediately from

Proposition 2. For the second part of the proposition, note that for CSH either of

the hybrid confidence sets,

Prµ

{
µY (θ̂) ∈ CSH

}
= Prµ

{
µY (θ̂) ∈ CSβP

}
×

∑
θ̃∈Θ,γ̃∈Γ

Prµ

{
θ̂ = θ̃, γ̂ = γ̃|µY (θ̂) ∈ CSβP

}
Prµ

{
µY (θ̃) ∈ CSH |θ̂ = θ̃, γ̂ = γ̃, µY (θ̃) ∈ CSβP

}

= Prµ

{
µY (θ̂) ∈ CSβP

} 1− α
1− β

≥ (1− β)
1− α
1− β

= 1− α.

where the second equality follows from the first part of the proposition. �

Proof of Proposition 6 We first establish uniqueness of µ̂Hα . To do so, it suffices to

show that FH
TN(Y (θ̃);µY (θ̃), θ̃, γ̃, Zθ̃) is strictly decreasing in µY (θ̃). Note first that this

holds for the truncated normal assuming truncation that does not depend on µY (θ̃) by

Lemma A.1 of Lee et al. (2016). When we instead consider FH
TN(Y (θ̃);µY (θ̃), θ̃, γ̃, Zθ̃),

we impose truncation to

Y (θ̃) ∈
[
µY (θ̃)− cβ

√
ΣY (θ̃), µY (θ̃) + cβ

√
ΣY (θ̃)

]
.

Since this interval shifts upwards as we increase µY (θ̃), FH
TN(Y (θ̂);µY (θ̃), θ̃, γ̃, Zθ̃) is a

fortiori decreasing in µY (θ̃). Uniqueness of µ̂Hα for α ∈ (0, 1) follows. Moreover, we see

that µ̂HY is strictly increasing in Y (θ̃) conditional on
{
θ̂ = θ̃, γ̂ = γ̃, Zθ̂ = zθ̃, µY (θ̃) ∈ CSβP

}
.

Note, next, that FH
TN(Y (θ̃);µY (θ̃), θ̃, γ̃, Zθ̃) ∈ {0, 1} for µY (θ̃) 6∈ CSβP from which we

immediately see that µ̂Hα ∈ CS
β
P .

Finally, note that for µY (θ̃) the true value,

FH
TN(Y (θ̂);µY (θ̃), θ̃, γ̃, Zθ̃) ∼ U [0, 1]

conditional on
{
θ̂ = θ̃, γ̂ = γ̃, Zθ̂ = zθ̃, µY (θ̃) ∈ CSβP

}
. Monotonicity of µ̂HY in Y (θ̃)

implies that

Prµ

{
µ̂Hα ≥ µY (θ̃)|θ̂ = θ̃, γ̂ = γ̃, Zθ̂ = zθ̃, µY (θ̃) ∈ CSβP

}
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= Prµ

{
FH
TN(Y (θ̂);µY (θ̃), θ̃, γ̃, Zθ̃) ≥ 1− α|θ̂ = θ̃, γ̂ = γ̃, Zθ̂ = zθ̃, µY (θ̃) ∈ CSβP

}
= α,

and thus that µ̂Hα is α-quantile unbiased conditional on
{
θ̂ = θ̃, γ̂ = γ̃, Zθ̂ = zθ̃, µY (θ̃) ∈ CSβP

}
.

We can drop the conditioning on Zθ̃ by the law of iterated expectations, and α-quantile

unbiasedness conditional on µY (θ̃) ∈ CSβP follows by the same argument as in the

proof of Proposition 4.

Proof of Lemma 5 Note that we can assume without loss of generality that µY,0 =

0 and ΣY (θ̃) = 1, since we can define Y ∗(θ̃) =
(
Y (θ̃)− µY,0

)
/
√

ΣY (θ̃) and consider

the problem of testing that the mean of Y ∗(θ̃) is zero (transforming the set Ym
accordingly). After deriving critical values (c∗l , c

∗
u) in this transformed problem, we

can recover critical values for our original problem as (cl, cu) =
√

ΣY (θ̃) (c∗l , c
∗
u)+µY,0.

Hence, for the remainder of the proof we assume that µY,0 = 0 and ΣY (θ̃) = 1.

Equal-Tailed Test We consider first the equal-tailed test. Recall that the equal

tailed test rejects if and only if

FTN

(
Y (θ̃),Y

)
6∈
[α

2
, 1− α

2

]
, (33)

for FTN(y,Y) the standard normal density truncated to Y . Note, however, that (33)

is equivalent to

Y (θ̃) 6∈ [cl,ET (Y) , cu,ET (Y)]

where we suppress the dependence of the critical values on µY,0 = 0 for simplicity,

and (cl,ET (Y) , cu,ET (Y)) solve

FTN (cl,ET (Y) ,Y) =
α

2

FTN (cu,ET (Y) ,Y) = 1− α

2
.

Recall that we can write the density of FTN (y,Y) as 1{y∈Y}
Pr{ξ∈Y}fN (y) where fN is

the standard normal density and Pr {ξ ∈ Y} is the probability that ξ ∈ Y for

ξ ∼ N (0, 1) . Hence, we can write

FTN (y,Y) =

∫ y
−∞ 1 {ỹ ∈ Y} fN (ỹ) dỹ

Pr {ξ ∈ Y}
.
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Note that that for all y we can write

FTN (y,Ym) = am (y) + FN (y) ,

where FN is the standard normal distribution function and

am (y) =

∫ y
−∞ 1 {ỹ ∈ Ym} fN (ỹ) dỹ

Pr {ξ ∈ Ym}
− FN (y) .

Recall, however, that Pr {ξ ∈ Ym} → 1 and∣∣∣∣∫ y

−∞
1 {ỹ ∈ Ym} fN (ỹ) dỹ − FN (y)

∣∣∣∣ =

∣∣∣∣∫ y

−∞
[1 {ỹ ∈ Ym} − 1]fN (ỹ) dỹ

∣∣∣∣
=

∫ y

−∞
1 {ỹ 6∈ Ym} fN (ỹ) dỹ ≤ Pr {ξ 6∈ Ym} → 0

for all y, so am (y)→ 0 for all y. Theorem 2.11 in Van der Vaart (1998) then implies

that am (y)→ 0 uniformly in y as well.

Note next that

FTN (cl,ET (Ym) ,Ym) = am (cl,ET (Ym)) + FN (cl,ET (Ym)) =
α

2

implies

cl,ET (Ym) = F−1
N

(α
2
− am (cl,ET (Ym))

)
,

and thus that cl,ET (Ym) → F−1
N

(
α
2

)
. Using the same argument, we can show that

cu,ET (Ym)→ F−1
N

(
1− α

2

)
, as desired.

Unbiased Test We next consider the unbiased test. Recall that critical values

cl,U (Y) , cu,U (Y) for the unbiased test solve

Pr {ζ ∈ [cl,U (Y) , cu,U (Y)]} = 1− α

E [ζ1 {ζ ∈ [cl,U (Y) , cu,U (Y)]}] = (1− α)E [ζ]

for ζ ∼ ξ|ξ ∈ Y where ξ ∼ N (0, 1) .
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Note that for ζm the truncated random variable corresponding to Ym we can write

Pr {ζm ∈ [cl, cu]} = am (cl, cu) + (FN (cu)− FN (cl))

for

am (cl, cu) = (FN (cl)− Pr {ζm ≤ cl})− (FN (cu)− Pr {ζm ≤ cu}) .

As in the argument for equal-tailed tests above, we see that both FN (cu)−Pr {ζm ≤ cu}
and FN (cl)− Pr {ζm ≤ cl} converge to zero pointwise, and thus uniformly in cu and

cl by Theorem 2.11 in Van der Vaart (1998). Hence, am (cl, cu) → 0 uniformly in

(cl, cu) .

Note, next, that we can write

E [ζm1 {ζm ∈ [cl, cu]}] = [ξ1 {ξ ∈ [cl, cu]}] + bm (cl, cu)

for

bm (cl, cu) = E [ζm1 {ζm ∈ [cl, cu]}]− [ξ1 {ξ ∈ [cl, cu]}]

=

∫ cu

cl

(
1 {y ∈ Ym}
Pr {ξ ∈ Ym}

− 1

)
yfN (y) dy.

Note, however, that∫ cu

cl

(1 {y ∈ Ym} − 1) yfN (y) dy ≤ E [|ξ| 1 {ξ 6∈ Ym}] .

Hence, since∣∣∣∣∫ cu

cl

(
1 {y ∈ Ym}
Pr {ξ ∈ Ym}

− 1 {y ∈ Ym}
)
yfN (y) dy

∣∣∣∣
≤
∣∣∣∣( 1

Pr {ξ ∈ Ym}
− 1

)∣∣∣∣E [|ξ| 1 {ξ 6∈ Ym}] ≤
∣∣∣∣( 1

Pr {ξ ∈ Ym}
− 1

)∣∣∣∣√P (ξ 6∈ Ym)

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and

doesn’t depend on (cl, cu), bm (cl, cu) converges to zero uniformly in (cl, cu) .

Next, let us define (cl,m, cu,m) as the solutions to

Pr {ζm ∈ [cl, cu]} = 1− α
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E [ζm1 {ζm ∈ [cl, cu]}] = (1− α)E [ζm] .

From our results above, we can re-write the problem solved by (cl,m, cu,m) as

FN (cu)− FN (cl) = 1− α− am (cl, cu)

E [ξ1 {ξ ∈ [cl, cu]}] = (1− α)E [ζm]− (1− α) bm (cl, cu) .

Letting

ām = sup
cl,cu

|am (cl, cu)| ,

b̄m = (1− α) sup
cl,cu

|bm (cl,cu)|

we thus see that (cl,m, cu,m) solves

FN (cu)− FN (cl) = 1− α− a∗m

E [ξ1 {ξ ∈ [cl, cu]}] = (1− α)E [ζm]− b∗m

for some a∗m ∈ [−ām, ām], b∗m ∈
[
−b̄m, b̄m

]
. We will next show that for any sequence

of values (a∗m, b
∗
m) such that a∗m ∈ [−ām, ām] and b∗m ∈

[
−b̄m, b̄m

]
for all m, the

implied solutions cl,m (a∗m, b
∗
m) , cu,m (a∗m, b

∗
m) converge to F−1

N

(
α
2

)
and F−1

N

(
1− α

2

)
.

This follows from the next lemma, which is proved below.

Lemma 6

Suppose that cl,m and cu,m solve

Pr {ξ ∈ [cl, cu]} = 1− α + am

E [ξ1 {ξ ∈ [cl, cu]}] = dm

for am, dm → 0. Then (cl,m, cu,m)→
(
−cN,α

2
, cN,α

2

)
.

Using this lemma, since E[ζm] → 0 as m → ∞ we see that for any sequence of

values (a∗m, b
∗
m)→ 0,

(cl,m (a∗m, b
∗
m) , cu,m (a∗m, b

∗
m))→

(
−cN,α

2
, cN,α

2

)
.

However, since ām, b̄m → 0 we know that the values a∗m and b∗m corresponding to

the true cl,m, cu,m must converge to zero. Hence (cl,m, cu,m) →
(
−cN,α

2
, cN,α

2

)
as we
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wanted to show. �

Proof of Lemma 6 Note that the critical values solve

f (am, dm, c) =

(
FN (cu)− FN (cl)− (1− α)− am∫ cu

cl
yfN (y) dy − dm

)
= 0,

for fN and FN the standard normal density and distribution function, respectively.

We can simplify this expression, since ∂
∂y
fN (y) = −yfN (y), so∫ cu

cl

yfN (y) dy = fN (cl)− fN (cu) .

We thus must solve the system of equations

FN (cu)− FN (cl) = (1− α)− am

fN (cl)− fN (cu) = dm

or more compactly g (c)− vm = 0, for

g (c) =

(
FN (cu)− FN (cl)

fN (cl)− fN (cu)

)
, vm =

(
am + (1− α)

dm

)
.

Note that for vm = (1− α, 0)′ this system is solved by c =
(
−cN,α

2
, cN,α

2

)
. Further,

∂

∂c
g (c) =

(
−fN (cl) fN (cu)

−clfN (cl) cufN (cu)

)
,

which evaluated at c =
(
−cN,α

2
, cN,α

2

)
is equal to(

−fN
(
cN,α

2

)
fN
(
cN,α

2

)
cN,α

2
fN
(
cN,α

2

)
cN,α

2
fN
(
cN,α

2

) )

which has full rank for all α ∈ (0, 1). Thus, by the implicit function theorem there

exists an open neighborhood V of v∞ = (1− α, 0) such that g (c)−v = 0 has a unique

solution c (v) for v ∈ V and c (v) is continuously differentiable. Hence, if we consider
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any sequence of values vm → (1− α, 0) , we see that

c(vm)→

(
−cN,α

2

cN,α
2

)
,

again as we wanted to show. �

B Additional Results

B.1 Details for Empirical Welfare Maximization Example

We derive the form of the conditioning event Yγ (1, Zθ̃) discussed in Section 4.2, and

including for cases when ΣXY (θ̃)− ΣXY (θ̃, 0) ≤ 0. Note that we can write

{
X(θ̃)−X (0) ≥ c

}
=

{
Zθ̃(θ̃)− Zθ̃ (0) +

ΣXY (θ̃)− ΣXY (θ̃, 0)

ΣY (θ̃)
Y (θ̃) ≥ c

}
.

Rearranging, we see that

Yγ (1, Zθ̃) =



{
y : y ≥ ΣY (θ̃)(c−Zθ̃(θ̃)+Zθ̃(0))

ΣXY (θ̃)−ΣXY (θ̃,0)

}
if ΣXY (θ̃)− ΣXY (θ̃, 0) > 0{

y : y ≤ ΣY (θ̃)(c−Zθ̃(θ̃)+Zθ̃(0))
ΣXY (θ̃)−ΣXY (θ̃,0)

}
if ΣXY (θ̃)− ΣXY (θ̃, 0) < 0

R
if ΣXY (θ̃)− ΣXY (θ̃, 0) = 0

and Zθ̃(θ̃)− Zθ̃(0) ≥ c

∅
if ΣXY (θ̃)− ΣXY (θ̃, 0) = 0

and Zθ̃(θ̃)− Zθ̃ (0) < c.

.

B.2 Details for Structural Break Estimation Example

This section provides additional results to supplement our discussion of the structural

break example in the text.

We begin by establishing the weak convergence (15). To do so, we show uniform

convergence over all of [0, 1], which implies uniform convergence over ΘT . Note, in
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particular, that under (12) and (13), the continuous mapping theorem implies that

XT (θ)⇒ X(θ)

=

(
θ−

1
2 Σ
− 1

2
C ΣCg(θ)

(1− θ)− 1
2 Σ
− 1

2
C (ΣCg(1)− ΣCg(θ))

)
+

(
θ−

1
2 Σ
− 1

2
C Ω

1
2W (θ)

(1− θ)− 1
2 Σ
− 1

2
C Ω

1
2 (W (1)−W (θ))

)
uniformly on [0, 1]. Hence, if we define µX,T (θ) = µX(θ) to equal the first term, we

obtain the convergence (15) for XT .

Likewise, standard regression algebra (e.g. the FWL theorem) shows that

√
T δ̂(θ) ≡ AT (θ)−1[BT (θ) + CT (θ)],

for

AT (θ) ≡ T−1

T∑
t=[θT ]+1

CtC
′
t −

T−1

T∑
t=[θT ]+1

CtC
′
t

(T−1

T∑
t=1

CtC
′
t

)−1
T−1

T∑
t=[θT ]+1

CtC
′
t


BT (θ) ≡ T−1

T∑
t=[θT ]+1

CtC
′
tg(t/T )−

T−1

T∑
t=[θT ]+1

CtC
′
t

(T−1

T∑
t=1

CtC
′
t

)−1(
T−1

T∑
t=1

CtC
′
tg(t/T )

)

CT (θ) ≡ T−1/2

T∑
t=[θT ]+1

CtUt −

T−1

T∑
t=[θT ]+1

CtC
′
t

(T−1

T∑
t=1

CtC
′
t

)−1(
T−1/2

T∑
t=1

CtUt

)
.

Under (12) and (13), however, the continuous mapping theorem implies that

AT (θ)→p (1− θ)ΣC − (1− θ)2ΣCΣ−1
C ΣC = θ(1− θ)ΣC ,

BT (θ)→p [ΣCg(1)− ΣCg(θ)]− (1− θ)ΣCΣ−1
C ΣCg(1) = θΣCg(1)− ΣCg(θ)

CT (θ)⇒ Ω1/2(W (1)−W (θ))− (1− θ)ΣCΣ−1
C Ω1/2W (1) = Ω1/2(θW (1)−W (θ))

all uniformly over [0,1], where this convergence holds jointly with that for XT . Hence,

by another application of the continuous mapping theorem,

YT (θ) = e′j
√
T δ̂(θ)⇒ Y (θ) =

e′jΣ
−1
C [θΣCg(1)− ΣCg(θ) + Ω1/2(θW (1)−W (θ))]

θ(1− θ)
.
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Hence, if we define

µY (θ) =
e′jΣ

−1
C [θΣCg(1)− ΣCg(θ)]

θ(1− θ)

then µY,T (θ)→ µY (θ) uniformly in θ and we obtain the convergence (15), as desired.

Note that if the structural break model is correctly specified, so g(t/T ) = 1(t/T >

θ0)d and ΣCg(θ) = 1(θ > θ0)(θ − θ0)ΣCd, then

µY (θ) =
dj[θ(1− θ0)− 1(θ > θ0)(θ − θ0)]

θ(1− θ)
=

{
dj

θ0
θ

if θ > θ0,

dj
1−θ0
1−θ if θ ≤ θ0.

In particular, µY (θ0) = dj, as desired. Given this structure, one can use our confi-

dence interval constructions for µY (θ̂) to test for the presence of a structural break

in parameter j under the maintained hypothesis that the structural break model is

correctly specified. In particular, our confidence sets satisfy

inf
d
Pd(µY (θ̂) ∈ CS) ≥ 1− α

so that a test defined as

φ(CS) =

{
1 if 0 /∈ CI
0 if 0 ∈ CI

has correct size under the (unconditional) null hypothesis H0 : dj = 0:

P(d1,...,dj−1,0,dj+1,...,dk)(φ(CI) = 1) = P(d1,...,dj−1,0,dj+1,...,dk)(0 /∈ CS)

= 1− P(d1,...,dj−1,0,dj+1,...,dk)(0 ∈ CS)

= 1− P(d1,...,dj−1,0,dj+1,...,dk)(µY (θ̂) ∈ CS) ≤ α

for all d1, . . . , dj−1, dj+1, . . . , dk.

Additional Conditioning Events Arguments as in the proof of Lemma 2 show

that if we define

Ā(θ̃) ≡ ΣY (θ̃)−2

dX∑
i=1

ΣXY,i(θ̃)
2,

B̄Z(θ̃) ≡ 2ΣY (θ̃)−1

dX∑
i=1

ΣXY,i(θ̃)Zθ̃,i(θ̃),
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C̄Z(θ̃) ≡
dX∑
i=1

Zθ̃,i(θ̃)
2 − c, D̄Z(θ̃) ≡ B̄Z(θ̃)2 − 4Ā(θ̃)C̄Z(θ̃),

then for

L̄1(Zθ̃) ≡


−B̄Z(θ̃)+

√
D̄Z(θ̃)

2Ā(θ̃)
if Ā(θ̃) 6= 0 and D̄Z(θ̃) ≥ 0

−C̄Z(θ̃)

B̄Z(θ̃)
if Ā(θ̃) = 0 and B̄Z(θ̃) > 0

−∞ otherwise,

L̄2(Zθ̃) ≡


−B̄Z(θ̃)+

√
D̄Z(θ̃)

2Ā(θ̃)
if Ā(θ̃) < 0 and D̄Z(θ̃) ≥ 0

−C̄Z(θ̃)

B̄Z(θ̃)
if Ā(θ̃) = 0 and B̄Z(θ̃) > 0

−∞ otherwise,

Ū1(Zθ̃) ≡


−B̄Z(θ̃)−

√
D̄Z(θ̃)

2Ā(θ̃)
if Ā(θ̃) < 0 and D̄Z(θ̃) ≥ 0

−C̄Z(θ̃)

B̄Z(θ̃)
if Ā(θ̃) = 0 and B̄Z(θ̃) < 0

∞ otherwise,

Ū2(Zθ̃) ≡


−B̄Z(θ̃)−

√
D̄Z(θ̃)

2Ā(θ̃)
if Ā(θ̃) 6= 0 and D̄Z(θ̃) ≥ 0

−C̃Z(θ̃)

B̄Z(θ̃)
if Ā(θ̃) = 0 and B̄Z(θ̃) < 0

∞ otherwise.

and

V̄(Zθ̃) ≡ 1
{

(Ā(θ̃) = B̄Z(θ̃) = 0)
}
C̃Z(θ̃)

we can write

{‖X(θ̃)‖2 ≥ c} = {Y (θ̃) ∈ [L̄1(Zθ̃), Ū1(Zθ̃)], V̄(Zθ̃) ≥ 0}

∪ {Y (θ̃) ∈ [L̄2(Zθ̃), Ū2(Zθ̃)], V̄(Zθ̃) ≥ 0},

However, Ã(θ̃) ≥ 0 by definition, and Ã(θ̃) = 0 implies B̃Z(θ̃) = 0, so we can take

L̄1(Zθ̃) =


−B̄Z(θ̃)+

√
DZ(θ̃)

2Ā(θ̃)
if Ā(θ̃) 6= 0 and DZ

(
θ̃
)
≥ 0

−∞ otherwise,

L̄2(Zθ̃) = −∞

Ū1(Zθ̃) =∞
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Ū2(Zθ̃) =

 −B̄Z(θ̃)−
√
DZ(θ̃)

2Ā(θ̃)
if Ā(θ̃) 6= 0 and DZ(θ̃) ≥ 0

∞ otherwise.

Therefore we can drop L̄2(Zθ̃) and Ū1(Zθ̃) and define L̄(Zθ̃) ≡ L̄1(Zθ̃), Ū(Zθ̃) ≡
Ū2(Zθ̃). In this case, we see that if V̄(Zθ̃) ≥ 0 then Yγ(1, Zθ̃) =

[
L̄(Zθ̃), Ū(Zθ̃)

]
, while

Yγ(1, Zθ̃) = ∅ otherwise. The result stated in the text follows immediately.
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