Object-Flow

Lee Braine* and Chris Clack

Department of Computer Science, University College London,

Gower Street, London, WC1E 6BT, UK

Abstract
The use of visual programming (VP) to assist
either functional programming (FP) or object-oriented
programming (OOP) has been extensively researched.
However, the use of VP to assist the integration of
FP and OOP has been largely neglected. This paper
presents the key aspects of object-flow, a new visual
notation that facilitates visual object-oriented func-

tional programming (VOOFP).

1 Introduction

There have been many attempts to integrate OOP
with FP [3], VP with OOP [4], and VP with FP [6].
However, to date we know of no language that
integrates OOP and FP with VP, and yet retains the
key features of both the functional and object-oriented
paradigms. Existing attempts, such as object-oriented
dataflow [7], typically sacrifice important features from
either OOP or FP. In this paper, we present the novel
visual aspects of object-flow, a VOOFP notation that
is 100% functional and 99% object-oriented. The key
contributions of this paper include:

1. an application of VP to the integration of OOP
and FP, giving a visual representation for OOFP;

2. a visual representation of type-safe curried
higher-order method sending.

2 Overview of CLOVER

We recently introduced CLOVER [3], an object-
oriented functional language that is 100% functional
and 99% object-oriented. CLOVER provides the FP
features of referential transparency, single-assignment
attributes, higher-order functions, curried partial
applications, lazy evaluation and complete type safety.
It also provides the traditional OOP features of a class
hierarchy with inheritance and pure encapsulation,
subsumption, subtyping, method overloading, method
overriding and dynamic method despatch. CLOVER
is intended for application development, particularly
the creation of ezecutable specifications [8].

3 Object-Flow

The object-oriented message send o.f(x) can be
represented visually using an object diagram [2], as
in Figure 1(a). The functional definition a = £(x,y)

*During the course of this work, Lee Braine was supported
by an EPSRC research studentship and a CASE award from

Andersen Consulting.

can be represented visually using a dataflow graph [5],
as in Figure 1(b).

f(x) X a

y

(a) Object diagram (b) Dataflow graph
Figure 1. Standard visual representations

Our goal is to provide a visual notation that
integrates the semantics of both the object-
oriented and functional representations, despite their
apparently-conflicting requirements. In particular,
we wish to integrate object identity with referential
transparency, and support higher-order methods,
curried partial applications and lazy evaluation. This
section presents object-flow, a new visual notation
which provides these features.

We follow CLOVER’s approach of extending FP
towards OOP, rather than the other way around.
This requires us to build upon a referentially trans-
parent dataflow base. We first note that standard
dataflow semantics do not provide support for key
object-oriented notions such as dynamic despatch. We
thus provide extra semantics to facilitate dynamic
despatch by identifying the final parameter to be
applied as the distinguished object.

Our next step is a notation change so that higher-
order methods can be handled naturally. In the tradi-
tional functional dataflow model, each node contains
a function name, and this function is applied to its
incoming arguments. In order to permit the function
itself to flow into a node, it is necessary to make each
node an application site (see Figure 2) that receives a
method, its arguments and a distinguished object.

f
X
o]
Figure 2. Application site

Object-flow does not permit fan-out; we use aggre-
gate types instead, with explicit selection. This re-
sults in an equally expressive and powerful, but less
concise, notation. However, a pleasant consequence is
that we can eliminate arrows indicating flow direction;
we merely work backwards from the result.



The semantics of lazy evaluation are captured and
visualised in object-flow by the use of a mechanical
winder (see Figure 3) that “pulls” wires through
application nodes from the left. Each method defini-
tion contains one winder — the result that is returned.

&

Figure 3. Object-flow winder

This visual metaphor can be extended with a node
represented as a stack of tubes, each tube open at the
appropriate end depending on whether it produces or
consumes. Object-flow places the result at the top,
followed by the method, its arguments and finally the
distinguished object to give nodes with structures like
Figure 4(a). We can also reduce visual clutter due
to a plethora of arcs by allowing named values, as in

Figure 4(b).

—h

o

(a) Basic node (b) Node with names

Figure 4. Object-flow nodes

Object-flow is naturally curried — adding another
pipe to an application node adds another argument.
To represent partial applications, we omit one or more
pipes. To aid identification of partial applications, the
editor automatically adds an exposed connector to the
bottom-most tube, indicating that further pipes are
required for full application. For example, we can par-
tially apply + to create the local definition inc (see
Figure 5) which increments a number.

i nc
+
1

Figure 5. Local definition for inc

As a final example, we can represent the function
definition incList self = map (+ 1) self, which
increments every element in a list by employing the
higher-order function map to apply (+ 1) to each ele-
ment, as the object-flow method in Figure 6.

i ncLi st

map +

sel f

Figure 6. Method definition for incList

In object-flow, each arc carries a single atomic ob-
ject or message, not a stream of objects or messages.

This benefits abstraction, formal analyses and pro-
vides clean object-oriented semantics. We thus adopt
the Actor model [1] view of sequences of behaviours
rather than state changes. Also note that recursion
is supported by simply naming a method within its
object-flow definition (space precludes an example).

4 Development Environment

In our current CLOVER prototype, the develop-
ment environment consists of a three pane Smalltalk-
like browser for class hierarchy, class attributes and
method types, and a graphical editor for defining
methods using object-flow notation.

5 Further Work

We are currently extending object-flow notation to
support file I/O and user interaction. Further work
includes extending CLOVER with incremental type
checking, algorithm animation and visual profiling.

6 Summary and Conclusion

Object-flow is a new visual notation that facilitates
the integration of OOP and FP. In particular, it in-
tegrates object identity with referential transparency,
and supports higher-order methods, curried partial
applications and lazy evaluation.

References

[1] G. Agha, C. Hewitt, “Actors: A Conceptual Founda-
tion for Concurrent Object-Oriented Programming,”
in B. Shriver, P. Wegner (Eds.), Research Directions
in Object-Oriented Programming, MIT Press, pp. 47-
74, 1987.

[2] G. Booch, Object-Oriented Analysis and Design with
Applications, 2nd Fdition, Benjamin Cummings, 1994.

[3] L. Braine, C. Clack, “Introducing CLOVER: an
Object-Oriented Functional Language,” Proc. 8th In-
ternational Workshop on Implementation of Func-
tional Programming Languages, pp. 21-38, 1996. Also
to appear in Springer-Verlag LNCS.

[4] M. Burnett, A. Goldberg, T. Lewis (Eds.), Visual
Object-Oriented Programming: Concepts and Fnviron-
ments, Manning Publications, 1995.

[5] A. Davis, R. Keller, “DataFlow Program Graph,”
IEEE Computer, 15(2), pp. 26-41, 1982.

[6] D. Hils, “Visual Languages and Computing Survey:
Data Flow Visual Programming Languages,” Journal
of Visual Languages and Computing, 3(1), pp. 69-101,
1992.

[7] T. Kimura, “Object-Oriented Dataflow,” Proc. 11th
IEEE Symposium on Visual Languages (VL’95), pp.
180-186, 1995.

[8] D. Turner, “Functional Programs as Executable Spec-
ifications,” in C. Hoare, J. Shepherdson (Eds.), Math-
ematical Logic and Programming Languages, Prentice-
Hall, 1987.



