gLINC: Identifying Composability using
Group Perturbation

David J. Coffin
Department of Computer Science
University College London
Gower Street, London, WC1E 6BT

d.coffin@cs.ucl.ac.uk

ABSTRACT

We present two novel perturbation-based linkage learning
algorithms that extend LINC [5]; a version of LINC opti-
mised for decomposition tasks (oLINC) and a hierarchical
version of oLINC (gLINC). We show how gLINC decom-
poses a fitness landscape significantly faster than both LINC
and oLINC.

We present details of LINC, oLINC and gLINC, an em-
pirical comparison of their speed, accuracy and sensitivity
to population size on a concatenated trap function, and a
discussion of their complexity and correctness.

Categories and Subject Descriptors

F.2 [Analysis of algorithms and problem complexity]:
General

General Terms

Algorithms, Experimentation

Keywords

Genetic Algorithms, Linkage Learning, Epistasis, Composi-
tion, Perturbation, Hierarchical

1. INTRODUCTION

Several forms of phenotypic linkage exist. They measure
interesting properties of the interactions of genes’ contribu-
tions to fitness (e.g. linearity, monotonicity). This contrasts
with what could be called inheritability linkage, which is in-
terdependence of the genes probability of being inherited.
Phenotypic linkage is a property of the fitness landscape,
whereas inheritability linkage is a property of the represen-
tation and genetic algorithm (GA).

Building blocks are groups of alleles that positively effect
fitness and whose genes are strongly phenotypically linked.
The schema theorem has shown that if building blocks do

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

GECCOQ'06,July 8-12, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/000755.00.

Christopher D. Clack
Financial Computing and Quantitative Finance
Department of Computer Science
University College London
Gower Street, London, WC1E 6BT

c.clack@cs.ucl.ac.uk

not also have inheritability linkage they are likely to be dis-
rupted and the problem will be difficult for the given GA and
representation [2]. However, if phenotypic linkage is known,
the GA or the representation may be altered to minimise
this disruption.

Particular cases of phenotypic linkage permit a decom-
position of the fitness landscape into sub-problems. If two
genes are not linked then they are separable. If, for two dis-
joint groups of genes, every gene in one group is separable
from every gene in the other, then those groups are separa-
ble. If those two groups partition the search space then the
search space is also separable!. For search algorithms that
run on linearly separable problems with greater than linear
complexity, decomposing the problem into sub-problems and
combining the sub-solutions will speed up search.

Linkage learning has implications for practical applica-
tions of GAs. Many real-world problems contain substan-
tial amounts of linkage — for example, in Financial Portfo-
lio Optimisation the inbound data streams are often either
strongly correlated or strongly contra-correlated (both ex-
amples of linkage). This example is particularly problematic
because the degrees of correlation are often not known in ad-
vance and may vary in time. However such problems may
also contain significant separable groups. For example, a
global portfolio may contain stocks from different political
regimes whose movements are entirely uncorrelated.

This paper extends and specialises an existing linkage
learning algorithm (linkage indentification by nonlinearity
check — LINC) that has previously been applied to decom-
posing search spaces based on separability? within a fitness
landscape [4]. As with the order-2 perturbation mechanism
used to detect non-linearity in LINC, the group perturbation
mechanism presented here could be used with alternative
measures of linkage without loss of generality.

Our new linkage learner gLINC (“greedy LINC”) is sig-
nificantly faster than LINC at this decomposition task.

1.1 Related Work

Implicit linkage learning techniques, where the represen-
tation or properties of the genetic operators have adapted

n other words, treating the loci as nodes and linkage as
edges, two partitions are separable if they are disconnected
graphs. This definition of ‘separability’ is stricter than nor-
mal — often two partitions are considered separable even if
a low number of loci are linked between them.

2In this paper we use ‘decomposition’ to refer to a partition-
ing of the search space.

together with individuals or alongside the population, were
considered at least as far back as Holland’s inversion opera-
tor [8]. The messy GA [3] uses a ‘messy’ phase to search for
useful representations before the search proper commences.
The linkage learning GA (LLGA) [7] uses value/loci tuples
rather than fixed loci representation throughout the evolu-
tionary run. These algorithms are thought of as implicit
linkage learners in that there is selective pressure for less
disruptive representations or operators, so that — if the
algorithm is successful — they become implicit representa-
tions of the phenotypic linkage.

Explicit linkage learning techniques manipulate a model
of phenotypic linkage. Like implicit linkage learning, this
may also occur before or during search. The perturbation-
based linkage-learning algorithms (LINC being the canonical
example[5]) build this model based on systematic sampling
of the fitness landscape. Many varieties of perturbation-
based linkage learning algorithms have been proposed, in-
cluding use of different linkage measures [6], application to
real-valued problems [10] and incorporation into Estimation
of Distribution algorithms [12]. The hierarchical Linkage
Identification by Epistasis Measure algorithm uses the same
group perturbation mechanism as gLINC but does not use
it to perform any kind of optimisation [11]. LINC itself is
discussed in detail in the next section.

The Symbiogenic Evolutionary Adaptation Model (SEAM)
[9] and the Hierarchical GA (HGA) [1] are forms of perturb-
ation-based linkage-learning algorithms that share similari-
ties with gLINC. SEAM combines under-specified individu-
als, without replacement, if their combination is fitter than
either individual in a selection of contexts generated ran-
domly from the rest of the population. This ‘stability’ check
is similar to a group perturbation except the fitness of the
context alone is not measured. The HGA uses a similar
mechanism, combining loci (rather than loci values) into
modules where that will reduce the number of context-dep-
endent optima.

1.2 Linkage Indentification By Nonlinearity
Check

The ‘LINC’ linkage-learning algorithm[5] uses an order-2
perturbation operator.

An order-2 perturbation operator checks whether a par-
ticular relation — linear separability in LINC’s case — holds
between the variables at two loci by comparing the fitness
of a series of individuals with the values of those variables
changed. By inspecting how independent and combined per-
turbation alters the fitness, the perturbation operator can
determine whether or not that relation holds for a particu-
lar region of the search space. Since enumerating the entire
search space would beg the point of learning its linkage,
perturbation-based linkage learning algorithms typically act
on a null hypothesis basis over a smaller sample. If the
hypothesised relation holds over this sample, the algorithm
assumes it holds over the whole search space, or at least any
regions of the search space that might affect search.

For example, given the individual 001 (with a binary rep-
resentation) whose fitness is given by f(001), we may choose
to perturb loci 0 and 1. The fitnesses of 101 and 011 are
therefore evaluated. Finally, both loci are perturbed and the
fitness of 111 is evaluated. By reference to Fig. 1, loci ¢ and
j in individual s (where i # j) are not linearly separable if

101 111

perturb j perturb ij

perturb i —»

001 011

Figure 1: Examining fitness perturbations (i=0,
j=1).
Afij(s) # Afi(s) + Afi(s) (1)
where

Afi(s)=f(... ...

Afi(s)=f(...5...

Afii(s)=f(..8...8...)0—f(...85...8;...)

For noisy fitness landscapes we can replace the equality
with an error threshold e.

|Afij(s) = (Afi(s) + Afi(s))] > e (2)
The LINC algorithm and it’s variants use three nested
loops:

e The outer loop iterates over each individual in a pop-
ulation.

e The middle loop traverses the current individual’s chro-
mosome from start to finish, looking at each allele.

e The inner loop iterates over the alleles in the remainder
of the chromosome. This permits the algorithm to
investigate every pair of loci, in the context of every
individual in the population. If linkage is discovered
between a pair of loci, each loci is added to the other’s
linkage set.

The pseudocode for LINC is given in Fig. 2.

If this linkage information is exploited by decomposing the
search space, the linkage information must be used to gener-
ate partitionable sets. If linkage groups are non-overlapping,
then this simply involves removing duplicates from the link-
age set [4]. However if linkage groups overlap, then they
must be combined — otherwise at least two variables in dif-
ferent sub-problems would be linked, so the sub-problems
would not be linearly separable and optimising the sub-
problems would not guarantee an optimal solution overall.

For example:

linkage_set = [[0]
for s in pop:
fs = £(s)
for i in [0 .. length-1]:
sl = perturb(s,i)
df1 = f(s1) - fs
for j in [i+1 .. length-1]:
s2 = perturb(s,j)
df2 = £(s2) - fs
s12 = perturb(s2,i)
df12 = £(s12) - fs
if abs(df12 - (dfl + df2)) > e:
linkage_set[i].add(j)
linkage_set[j].add(i)

[length-1]]

Figure 2: LINC pseudocode

1. Given an 4-variable fitness function where the loci {0, 1}
are epistatically linked and {2, 3} are epistatically linked,
the LINC algorithm initially assumes that each locus
is independent and therefore initialises the linkage vec-
tor as [[0], [1], [2], [3]]. Then for an individual abed each
pair of alleles is inspected; (a,b), (a,c), (a,d), (b,c),
(b,d), and (c,d). If linkage is detected via non-linear
fitness variations in perturbations, the linkage informa-
tion for both loci is updated. Assuming both non-linear
relations are detected perturbing this individual®, the
linkage vector would become [[0, 1], [1, 0], [2, 3], [3, 2]].

2. If the same example had linkage groups {0,1} and
{1, 2}, the linkage vector would become [[0, 1], [1, 0, 2],
(2, 1], [3]).

1.3 Optimised Linkage Indentification By Non-
linearity Check

Noting that LINC repeats perturbation-based linkage checks
between loci that are already known to be part of the same
composition group (because they are known to be linked or
indirectly connected), and that one instance of linkage is
enough to consider two loci as linked, an obvious optimisa-
tion presents itself. Our optimised LINC (oLINC) algorithm
incorporates a ‘no repetition’ rule — these unnecessary rep-
etitions are avoided.

e The outer loop iterates over each individual in a pop-
ulation.

e The middle loop traverses the current individual’s chro-
mosome from start to finish, looking at each allele.

e The inner loop iterates over the alleles in the remain-
der of the chromosome. If those alleles’ loci are both
in the same composition group, the algorithm moves
on to the next pair of alleles, otherwise, LINC linkage
learning proceeds as normal. If linkage is discovered
between a pair of loci, their composition sets are com-
bined.

The pseudocode for oLINC is given in Fig. 3.

3Non-linearity may hold between two variables without be-
ing present in all parts of the search space. Deceptive land-
scapes often contain non-linearity only in the region of the
search space surrounding the solution.

composability = [[0] [length-1]]

for s in pop:

fs = None
for ci in [0 .. length-1]:
fi = None

for cj in [ci+l, length-1]:
for i in composabilityl[cil:
for j in composability[cj]:
if composability[ci] and composability[cj]:

if fs == None:
fs = £(s)
if fi == None:
si = perturb(s, i)
fi = f(si)
sj = perturb(s, j)
fj = £(sj)
sij = perturb(si, j)
fij = £(sij)

if abs((fs + fij) - (fi + £j)) > e:
composability[cj] += composability[cil
composability[cil = []

Figure 3: oLINC pseudocode

1.4 Greedy Linkage Indentification By Non-
linearity Check

In the first example of the LINC algorithm (see section
1.2), there was no overlap in the linkage groups. However,
in the second example there was overlap between the two
linkage groups {0,1} and {1,2}. Note that linkage is not
transitive — although 0 and 1 are linked, and 1 and 2 are
linked, 0 and 2 are not linked. However, if this information
were to be exploited by decomposing the fitness function into
separable sub-problems, the separable sub-problems would
be determined by the loci sets {0, 1,2} and {3}.

An important general observation is that whilst linkage is
intransitive, composability is transitive. Exploiting linkage
information through decomposition involves partitioning a
search space. For this purpose, the LINC algorithm is inef-
ficient in that it identifies too much detail (linkage groups)
and must then post-process that information to determine
the final decomposition.

We aim to improve substantially the performance of de-
composition via perturbation-based linkage learning by di-
rectly detecting composability (rather than detecting link-
age and then post-processing to derive composition groups).
We do this via a new algorithm which identifies transitive
relationships and agglomerates separable groups on-the-fly
— we have implemented this algorithm as an extension to
LINC (though it is not restricted to this context) and we
call this the Greedy LINC (gLINC) algorithm. ‘Greedy’
is intended to suggest an accumulative process similar to
greedy search in regular expressions. The combination of
direct detection and inspection of group-to-group compos-
ability saves a significant number of evaluations in highly
linked fitness landscapes.

gLINC incorporates the ‘no repetition’ optimisation of
oLINC, and adds the following key difference:

e ¢LINC introduces a group perturbation linkage learn-
ing operator. By perturbing groups of loci simulta-
neously, multiple non-linearities can be tested concur-

0011000 1101000
A
perturb J perturb 1J
0010100 perturd L —4,40100
Figure 4: Examining fitness perturbations

(I={0,1,2}, J={3,4}).

rently. gLINC exploits this wherever possible, leading
to combinatorial savings in fitness evaluations.

For example, given the individual 0010100, we may al-
ready know that the loci {0, 1,2} are composed and that
loci {3,4} are composed. We wish to know whether the
two groups either belong to the composition group — i.e.
for linkage between any of the loci in {0, 1,2} with any of
the loci in {3,4}. The gLINC algorithm perturbs bits at
loci 0,1,and 2 concurrently, and then perturbs bits at loci 3
and 4 concurrently, evaluating the fitnesses of 1100100 and
0011000. Next, bits at loci 0,1,2,3,and 4 are perturbed and
the fitness of 1101000 is evaluated. By reference to Fig. 4,
if

IA fr0,1,2,3,43 (5) — (Afis,a3(8) + Af{o1,23(5))] > e

then there must be at least one non-linear relation be-
tween loci in both groups, so they must comprise a single
composition group {0,1,2,3,4}).

Formally, loci groups I = {I1...I,} and J ={J1...Jn}
(where I and J are disjoint sets), form a single composition
group if

Afri(s) # (Afi(s) + Afs(s)))

where

Afr(s)=f(st,---8Tn---)— f(...81, ... 81, --")

Afy(s)=f(-. 87, 8T o) — f(..85 - ST ")

Af[(](s) = f(..

—f(...S]l...S[n...S‘]l...S(]m...)

STy« STy -e STy oS8T -+-)

Again, for noisy fitness landscapes we can replace the
equality with an error threshold e.

|Afr(s) = (Afi(s) + Afs(s)) > e (4)

The cases in which I and J may form a single composition
group without the threshold being exceeded are discussed in
Section 3.2.

The gLINC algorithm modifies LINC’s three loops as fol-

lows:

e The outer loop iterates over each individual in a pop-
ulation.

e The middle loop traverses over a list of composed loci
(the same length as the chromosome) from start to
finish, looking at each set of composed loci in turn.

e The inner loop traverses the remainder of the list of
composed loci.

If both sets of composed loci are non-empty, the algo-
rithm performs a group-perturbation based non-linearity
check between these two groups of composed loci. If
the groups are linked, that composition is stored by
appending all the loci in the first group to the second,
and the first group is emptied.

The pseudocode for gLINC is given in Fig. 5. For example:

1. Given an individual chromosome with loci {0, 1,2, 3}
where 0 and 1 are epistatically linked and 2 and 3
are epistatically linked, the gLINC algorithm initially
assumes that each loci is independent and therefore
initialises the composability vector as [[0], [1], [2], [3]]-
If composability is detected via non-linear fitness vari-
ations in perturbations, the composability information
for the second allele is updated and the composability
information for the first allele is emptied. Hence, the
final composability vector in this example would be

[0, [0, 13, 1, 2, 3]}-

2. If the same example had linkage groups {0,1} and
{1,2}, the final composability vector would be [[],],
[0, 1,2], [3]].

2. EXPERIMENTS

Three key research questions arise from the oLINC and
gLINC algorithms discussed above:

1. is gLINC actually any faster than oLINC or LINC?

2. does gLINC require a different population size to oLINC
or LINC? and

3. how do the three algorithms compare in terms of ac-
curacy?

These three questions are investigated through two experi-
ments described in this section. The first primarily addresses
the issue of performance and also provides some information
about accuracy; the second directly addresses the issues of
accuracy and population size.

2.1 Experiment 1

The number of fitness evaluations that LINC, oLINC and
gLINC required to decompose a deceptive landscape — a
shuffled series of 5-bit trap functions — was compared in a
scale-up experiment.

For each " trap, the trap function is given below, where
u; 1s the number of 1’s.

composability = [[0]
for s in pop:
fs = None
for i in [0 .. length-1]:
gi = composability[i]
if gi 1= []:
df1 = None
for j in [i+1 .. length-1]:
gi = composability[i]
gj = composability[j]
if gi !'=[] and gj !'= [1:
if fs == None:
fs = f£(s)
if df1 == None:
sl = gperturb(s,gi)
df1 = £(s1) - fs
sl = gperturb(s,gi)
df1 = £(s1) - fs
s2 = gperturb(s,gj)
df2 f(s2) - fs
s12 = gperturb(s2,gi)
df12 = £(s12) - fs
if abs(df12 - (df1 + df2)) > e:
composability[j] += composabilityl[il]
composability[i] = []

[length-1]]

Figure 5: gLINC pseudocode

filwi) = { 5 otherwise

The traps were then shuffled by choosing a random one-
to-one mapping between loci in the representation, and loci
in the series of trap functions. Shuffling was used because
the contiguous nature of linkage in non-shuffled traps might
have unfairly benefited gLINC.

Because the trap functions are non-overlapping, extract-
ing composition information from LINC’s linkage sets just
involved removing duplicates.

The number of traps was scaled from 1 to 60 (bitstring
lengths from 5 to 300). The population size was constant
at 30, seeded with uniformly random individuals. At each
problem size, LINC was applied once, and oLINC and gLINC
were each applied 10 times; the number of evaluations LINC
makes is fully determined by the population and bitstring
size, so only one run at each problem size was necessary, but
for oLINC and gLINC, the number of evaluations made are
affected by the population and the order in which linkage
is discovered, so a larger sample was necessary. The results
are given in Fig. 6 and discussed in Section 3.

The number of decomposition sets found by LINC and
gLINC was also recorded. Although LINC always identified
all composition sets correctly, oLINC and gLINC sometimes
failed to correctly identify some groups as linked, as shown
in Fig. 7; this is further investigated in Experiment 2 and
an analysis is given in Section 3.

()

2.2 Experiment 2

In the second experiment the number of traps was kept
constant — at 5 traps (string size 25) — and in a single
run the population size was incrementally increased (one

3000 T T T T T

2500

2000

1500

1000

evaluations (1000s)

500

0 50 100 150 200 250 300
string size

Figure 6: Fitness evaluations against string size
(population size 30).

5 T T
gLINC ——
OLINC -~
a4l i
3 - -

extra groups (mean)

number of genuine groups

Figure 7: Number of additional composition groups
in oLINC and gLINC results against number of gen-
uine groups (population size 30).

individual at a time) from 1 to 100. After each new indi-
vidual was added, the linkage learning algorithm was run
and recordings made of the cumulative number of evalua-
tions and the number of composition groups found so far.
Ten runs were made for each of the three algorithms LINC,
oLINC and gLINC.

The aim of this experiment was to determine how these
algorithms respond to changes in population size in terms of
both performance (evaluations) and accuracy (extra groups
found). The results are given in Figs. 8, 9 and 10, and are
discussed in Section 3.

3. DISCUSSION OF RESULTS

Fig. 6 plots the number of fitness evaluations used by the
three algorithms LINC, oLINC and gLINC (in the case of
gLINC these are means, with the minimum and maximum
indicated by the error bars) against the size of the strings.
gLINC clearly outperforms LINC and oLINC at this task.

The failure of oLINC to provide any appreciable increase
in performance shows that the gLINC improvement can be
attributed to the group perturbation operator rather than

70 T T T T T T T T T
60

50

40
30

evaluations (1000s)

20
10

1 1
0O 10 20 30 40 50 60 70 80 90 100
population size

Figure 8: Mean evaluations for complete run against
population size for shuffled 5 5-bit trap function.

20
18
16
14
12
10

extra groups

O N MO O

0 2 4 6 8 10 12 14
evaluations (1000s)

Figure 9: Mean additional groups against evalua-
tions on shuffled 5 5-bit trap function.

o A T vrog—
L Br OLINC - T
g 16, gLINC .
S 14p 1
§ 10 _
3 8 _
>
g ° :
£ 4]

2 _

0 L L 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14 16 18 20

extra groups

Figure 10: Population size required to achieve a
given accuracy.

the no-repetition enhancement of oLINC. Section 3.1 con-
tains an analysis of the time complexity of LINC and gLINC.

Although LINC uses far more evaluations, Fig. 7 shows
that gLINC does not accurately join all non-separable groups
when compared to oLINC with the same population size.
This initially appears problematic. However, the results of
Experiment 2 show that gLINC can be applied to a larger
population to obtain an accuracy equivalent to LINC, and
still use less evaluations.

Consider Fig. 9, which indicates that gLINC will have
on average zero extra groups (i.e. is fully accurate) when
it makes at least 4,000 evaluations (for our test problem).
By reference to Fig. 8, gLINC will perform 4,000 evalua-
tions when the population size is at least 100. Compare
this with LINC: Fig. 9 indicates that in order to obtain full
accuracy LINC must perform at least 12,000 evaluations,
and Fig. 8 shows that this number of evaluations will be
performed when the population size is at least 20. Thus,
for this problem, for full accuracy on a string of length 25,
gLINC requires a population size that is about 5 times big-
ger yet requires 3 times fewer evaluations (the performance
difference increases as the string size increases).

The population size that is required by gLINC, oLINC
and LINC in order to achieve a given accuracy (in terms
of mean number of extra groups reported) is illustrated in
Fig. 10, and the cases in which LINC and gLINC may fail
to detect linkage are analysed further in Section 3.2.

3.1 Complexity

Fitting the observed number of evaluations of oLINC and
gLINC against a quadratic function gives (where [is string
size):

fit(oLINC) = 30I* (6)

fit(gLINC) ~ 4.3 (7)

The number of evaluations LINC takes can be obtained
exactly by inspection of the code:

fit(LINC) = 30 4 301° ~ 301° (8)

oLINCs enhancements are in themselves insignifant. How-
ever gLINC is approximately seven times faster than LINC.

The computational complexity for gLINC depends on the
order in which it discovers linkage, but is bounded by the
best-case in which it discovers linkage between each group
for the first individual it permutes, and the worst-case in
which there is no linkage.

This theoretical best-case complexity for gLINC is linear,
and the worst-case just under that of LINC. However note
that although the theoretical best-case is linear, the number
of evaluations will always scale quadratically as the number
of composition groups are increased, because of the comina-
torial nature of the checks for linkage between groups that
have to be made.*

Obest (JLINC) = 3(1 = 1) + 1 = Opes: (1) ©)

Oworst (gLINC) = nl2 = Oworst (nl2) (10)

AThese also apply to any other order-2 perturbation-based
linkage learner.

3.2 Accuracy

If groups are incorrectly identified as linearly separable
then linear combination of the fittest solutions to those sub-
groups may not be optimal, even if all the sub-solutions are
optimal.

Both gLINC and LINC will fail to correctly compose linked
groups without enough individuals, if linkage is confined to a
particular region of the fitness landscape and the population
does not contain any individuals that allow them to inves-
tigate it. The group perturbation mechanism introduces a
second possibility of error; when there are several instances
of linkage between to composition groups that cancel each
other out.

Both these cases are discussed below.

Higher-Order Linkage

gLINC and LINC/oLINC may all fail to identify linkage with
order > 2 if the population is not large enough.

If linkage has order > 2, it can be detected between two
loci, but only if the individual being perturbed has the cor-
rect bits. For example in the case of one 5-bit trap func-
tion, if no individual in the population matches the schema
##111, then linkage between the loci 0 and 1 (as part of
the linkage set {0, 1,2, 3,4}), cannot be identified.

However the population was large enough in our experi-
ment that LINC could detect every instance of linkage cor-
rectly.

Equal and Opposite Non-Linearities

gLINC may also fail to identify linkage if there are two or

more instances of linkage between loci in the perturbation

groups such that the non-linearities cancel each other out.
A minimal example is;

schema | A fitness
11# +10
141 +1
#00 -1

Assume the loci {0, 1} have been identified as one compo-
sition group (e.g. due to the linkage shown in the first row),
so that I = {0,1} and J = {2} and the current individual is
000. The group perturbations will result in the evaluation
of individuals 110, 001 and 111 (see Fig. 11). Since the
loci 0 and 1 are changed concurrently, the linkage between
loci 0 and 2 as well as between loci 1 and 2 (shown in the
second and third rows) cannot be tested for independently.

Noting that the group non-linearity detection rule given
in Equation 3 can be rewritten as:

Afri(s) = Afi(s) + Afs(s)
fra(s) = f(s) = fi(s) + fs(s) — 2f(s)
fra(s) + f(s) = fi(s) + fs(s)

(11)

if two or more non-linearities alter fr;(s) and f(s) such
that the sum of their changes equals 0, they will not be
detected by group perturbation. The same reasoning applies
to fr(s) and fr(s).

In this fitness landscape, the sum of the non-linearities
between loci 0 and 2 and between loci 1 and 2 equals 0, and

001 111
f:O lel
Afy=1 Afp=12
= —>
000 Afp=11 110
=-1 f=10

Figure 11: Hidden non-linearity for s=000 (I={0,1},

J={2}).

for this individual they apply to fr; and f respectively, so
neither non-linearity will be detected:

£17(000) + £(000) = f(111) + £(000)
=11+-1=10

£1(000) + £7(000) = f(110) + £,(001)
=0+10=10

. f17(000) + £(000) = £7(000) 4 f.7(000)

In the example given above gLINC would have discovered
the linkage given any other individual. However a fully de-
ceptive case can be created that will be insoluble by gLINC
for all individuals, by adding non-linearities to an other-
wise linearly separable fitness landscape a pair at a time,
where each pair of non-linearities are two alterations to fit-
ness whose sum is zero and that apply to inversely-related
schemata®.

To see why this is the case consider the process by which
gLINC creates it’s composed groups of loci. For any genuine
composition group, at some point gLINC will have found two
subsets of that group that together would form the complete
group. Assume (without loss of generality) that in fact every
loci in the string is linked, so that the genuine group in
this example is every loci. In this case since I contains
every loci not in J, and I.J contains all loci, s; must be
the inverse of s;, and s;; must be the inverse of s. So by
adding non-linearities in pairs to inversely-related schemata,
we can guarantee that at this point in gLINCs run, for any
non-linearity that effects s, there will have an equal and
opposite non-linearity that effects it’s inverse, sy, and vice
versa. Equally for ; and ;, any non-linearity that alters the
fitness of s; will have a pair that alters the fitness of it’s
inverse, sy, such that together both non-linearites cancel

SWhere a inverse of a schemata is the schemata that contains
the inverse of all individuals in S. For example, if S = #01,

ST = #10.

each other out.
For these fully deceptive cases, gLINC will never be able
to detect linkage between the final pair of groups.

Caveats

Given these two additional sources of inaccuracy in gLINC,
one that can be solved by perturbing additional individuals,
and one that can’t, it’s worth considering how artificial these
situations are.

For non-binary representations, perturbations would not
simply invert alleles, so s;s can never be fully determined
from s at any point during the run of gLINC (equally for sy
and sy). The fully deceptive case presented above exploits
the fact that s;; must always be the inverse of s in particular
circumstances, so it would be impossible to construct such
a problem for non-binary representations.

For real-valued fitness functions, the probability of non-
linearites cancelling each other out is likely to be smaller.

Finally, if the number of instances of linkage within com-

position groups is increased, we suggest the more non-linearities

there are, the less likely they are to cancel each other out.

3.3 Future Work

Like order-2 perturbation and LINC, group perturbation
and gLINC are generic linkage learning algorithms that could
be applied to other specific linkage measures. One obvious
extension of the work presented in this paper is to apply
group perturbation to other linkage measures, such as non-
monotonicity. With other measures the probability of two
or more instances of linkage cancelling each other out will
differ.

This work was motivated by the belief that a faster linkage-
learner could be applied cost-effectively during GA runs. We
envisage an algorithm that cycles between GA and linkage
learning phases, searching composition groups with inde-
pendent GAs. In such an algorithm accuracy would be less
important than in a pre-search linkage learner, since com-
position groups could be joined, or broken apart, later on.

4. CONCLUSIONS

We have presented group perturbation, a linkage-learning
perturbation mechanism applicable to strict decomposition
problems, and gLINC — a modification of the LINC linkage-
learning algorithm that exploits the group perturbation with
a ‘greedy’ amalgamation of linked loci. This, together with
a 'no repetition’ mechanism, allows it to perform far faster
than LINC at decomposition tasks.

A scale-up experiment on the shuffled 5-bit trap fitness
function shows that gLINC performs significantly faster than
LINC. A second experiment showed that this was true even
when increasing the population size to maintain comparable
accuracy. Additionally, comparison with oLINC shows that
this improvement can be attributed to group perturbation
rather than simply avoiding needless perturbations. Com-
plexity analysis of the algorithm confirms that gLINC will
never perform worse than LINC, but will perform linearly
in the best-case.

An analysis of group perturbation for non-linearity de-
tection exposes a fully deceptive case which gLINC could
never fully solve. However, the probability of such cases oc-
curring in real-world problems seems small since it depends
on non-linearities localised to specific regions of a binary

fitness landscape (inversely related schemata), that cancel
each other out.

5. ACKNOWLEDGMENTS

David Coffin’s research is partially funded by two EPSRC
awards, CLHB GR/P03247/01 and CLGN EP/P500559/1.

6. REFERENCES

[1] E. D. de Jong, R. A. Watson, and D. Thierens. On the
complexity of hierarchical problem solving. In
Proceedings of the 2005 conference on Genetic and
evolutionary computation, volume 2, pages 1201-1208.
ACM Press, 2005.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison Wesley,
1989.

[3] D. E. Goldberg. Messy genetic algorithms:
Motivation, analysis, and first results. Complex
Systems, 3:493-530, 1989.

[4] D. E. Goldberg and M. Munetomo. Designing a
Genetic Algorithm Using the Linkage Identification by
Nonlinearity Check, IIliGAL Report No. 98014, Illinois
Genetic Algorithm Laboratory, 1998.

[5] M. Munetomo and D. E. Goldberg. Identifying linkage
by Nonlinearity Check, IlliGAL Report No. 98012,
Illinois Genetic Algorithm Laboratory, 1998.

[6] M. Munetomo and D. E. Goldberg. Linkage
Identification by Non-Monotonicity Detection for
Overlapping Functions, IlliGAL Report No. 99005,
Illinois Genetic Algorithm Laboratory, 1999.

[7] G. R. Harik and D. E. Goldberg. Learning linkage. In
Proceedings of Foundations of Genetic Algorithms 4,
pages 247-262. Morgan Kaufmann, 1997.

[8] J. H. Holland. Adaptation in natural artificial systems.
University of Michigan Press, 1975.

[9] R. A. Watson and J. B. Pollack. A computational
model of symbiotic composition in evolutionary
transitions. BioSystems 69(2-3):187-209, 2003.

[10] M. Tezuka, M. Munetomo, and K. Akama. Linkage
identification by nonlinearity check for real-coded
genetic algorithms. In Proceedings of the 200/
conference on Genetic and evolutionary computation,
volume 2, pages 222-233. Kluwer Academic
Publishers, 2004.

[11] M. Tsuji, M. Munetomo, and K. Akama. Metropolitan
Area Network Design Using GA Based on Hierarchical
Linkage Identification, Genetic and Evolutionary
Computation. In Proceedings of the 2003 conference
on Genetic and evolutionary computation, volume 2,
pages 1616-1617. Springer, 2003.

[12] M. Tsuji, M. Munetomo, and K. Akama. Modeling
dependencies of loci with string classification
according to fitness differences. In Proceedings of the
2004 conference on Genetic and evolutionary
computation, volume 2, pages 246-257. Kluwer
Academic Publishers, 2004.

