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ABSTRACT
We present a new mechanism for preserving phenotypic be-
havioural diversity in a Genetic Programming application
for hedge fund portfolio optimization, and provide experi-
mental results on real-world data that indicate the impor-
tance of phenotypic behavioural diversity both in achieving
higher fitness and in improving the adaptability of the GP
population for continuous learning.

Categories and Subject Descriptors
I.2.M [Artificial Intelligence]: Miscellaneous

General Terms
Algorithms, Experimentation

Keywords
Genetic Programming, Diversity, Phenotype, Finance, Adap-
tation, Dynamic Environment

1. INTRODUCTION
In the context of our research into the applicability of Ge-

netic Programming (GP) technology to the optimization of
Hedge Fund portfolios, we have constructed an automated
investment simulator that uses GP to derive a useful non-
linear relationship between a large number of factors relating
to equities. This non-linear factor model assists the system
in making buy/sell choices. Our system has been trained
on a basket of 24 equities from the Malaysian stock mar-
ket, and displays successful investment behaviour in out-
of-sample tests. Having trained the system, our intention is
that it should be used in a continuous learning mode so that
it can adapt to changes in the Malaysian economy by mod-
ifying (via retraining) the non-linear equation. However,
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standard GP systems are characterized by the fact that the
final trained population often has little diversity and this
could make it difficult to adapt to sudden changes in the
economy.

We have developed a new mechanism for preserving phe-
notypic behavioural diversity in a GP population, inspired
by the risk-management practices of fund managers. In this
paper we present that new system, together with the results
of experiments to determine:

• the efficacy of the new system — i.e. to what extent
it improves diversity, compared with a standard GP
system;

• the impact of increased diversity on the ability of the
GP population to adapt to a new economic environ-
ment; and

• the behaviour of an individual chromosome obtained
by such a system, compared with that obtained from
a standard GP system — in particular, the fitness of a
newly adapted individual after retraining on different
amounts of data from a new economic environment.

2. RELATED WORK
Numerous techniques have been developed to maintain

population diversity. These approaches have three main re-
search directions:

1. the preservation of genotype diversity based on formally-
defined structural distance measures;

2. the preservation of phenotype diversity based on the
unique individual fitness in a population;

3. the reintroduction of genetic material in various evo-
lutionary phases.

The great majority of existing work on diversity aims to
preserve genotype diversity using various measures of dis-
tance such as an edit distance [9] or a string edit distance for
linear GP [1]. Monsieur and Flerackers [15] detect identical
subtrees within a GP individual and delete individuals with
low diversity and “DGEA” [22] uses a distance-to-average-
point structure measure to alternate between decreasing and
increasing diversity. Another popular technique is Fitness
Sharing which smoothes the fitness landscape, initially used



for maintaining diversity in genetic algorithms [6] though
later applied to GP [5, 13, 14].

In contrast to the approach of preserving genotypic diver-
sity, there is very little work in the area of preserving phe-
notypic diversity. Two example techniques in this area are:
(i) using entropy (the amount of disorder of the population)
and free energy to measure phenotype diversity in terms of
the number of unique fitness values in the population [18,
17]; and (ii) using a selection method that is uniform over
the fitness values [11].

Three examples of work where genetic material is intro-
duced are: (i) random immigrants [7] where in every genera-
tion the population is partly replaced by randomly generated
individuals; (ii) hypermutation [4], which increases mutation
rate drastically whenever the average best individual per-
formance worsens, and (iii) the Restart approaches [8, 10],
which advocate a complete restart of the GP to maintain
diversity after a change in the environment has occurred.

2.1 Limitations of related work
None of the previously mentioned techniques are wholly

satisfactory. Studies have shown [2, 3] that genotype diver-
sity approaches “may not be useful for capturing the dy-
namics of a population” and phenotypic measures appear to
have better run performance. However, phenotype diversity
techniques do not explicitly consider behavioural diversity
of individuals, although they successfully spread individuals
across different fitness levels. In other words, by ignoring
the behaviour of individuals, the diversity in the same fit-
ness level is not maintained. Legg and Hutter [11] remarked
that “while the total population diversity was improved, the
diversity among the fit individuals was not.”

The reintroduction techniques also have their limitations:
“random immigrants” and “hypermutation” do not perform
well in continuously and abruptly changing environments,
and “Restart” techniques ignore the knowledge accumulated
by the population from previous learning. Restart tech-
niques explicitly re-introduce diversity following a change
in the environment, but may reconverge on a local opti-
mum, especially when retraining only on data from the new
environment where there are few new data points. Restart
retraining on a mixture of old and new data suffers from the
fact that it is very difficult to know a priori what mix of the
two would give the best results [19].

Using any one technique on its own appears not to pre-
serve useful diversity, implying that more elaborate tech-
niques should be explored.

3. BEHAVIOUR DIVERSITY
We present a new mechanism to preserve diversity in phe-

notypic behaviour, inspired by the risk management tech-
niques used by investment managers.

Investment managers often look for equities with contra-
correlated market behaviour — i.e. equities whose prices
move in opposite directions as economic factors change. A
diversified portfolio [20] will invest in both in order to re-
duce the overall risk of losing money (because if one drops in
price, the other will rise) whilst in many circumstances1 the
overall return is only slightly reduced [12]. Alternatively, a
Hedge Fund manager might find two highly correlated stocks

1In particular, where the upside gains are greater than the
downside losses.

and trade long in one, short in the other — a “market neu-
tral” strategy where returns are not dependent on market
movement but only on the relative behaviours of two stocks.

We treat a population of individuals in a similar manner
to a diversified portfolio of stocks. Retaining an individual
in the population is equivalent to investing in a stock; we
attempt to identify correlations (and contra-correlations) in
the phenotypic behaviour of those individuals, and attempt
to construct a non-correlated population.

Consider two individuals that differ in the fine detail of
their behaviour over time-series training data. If that de-
tailed behaviour were important for evolutionary selection,
then it would be part of the calculation of fitness and in-
dividuals with different detailed behaviour would differ in
fitness. However, where the detail is irrelevant for selection,
fitness can reflect general behaviour and two individuals who
differ in detailed behaviour might have identical fitness. In
this case, we propose that differences in detailed behaviour
be used to preserve diversity of phenotypic behaviour.2

Given an individual that has a detailed phenotypic be-
haviour that is different from others of similar fitness: dele-
tion of that individual would decrease the total population
diversity of phenotypic behaviour. Conversely, if a set of
individuals has entirely correlated behaviour and similar fit-
ness then we can delete all but one from this set without
comprising phenotypic behavioural population diversity.

Our new GP system preserves diversity at two levels:

1. Simple phenotypic fitness diversity.

2. Phenotypic behavioural diversity within groups of the
same fitness.

For the former we hold individuals in fitness segments
— each segment contains individuals of similar fitness. For
the latter, we establish the correlation of the phenotypic
behaviour of all individuals in a segment, partition them
into correlated groups and for each group we delete all but
one individual — this is repeated for each segment.

In practice, determining the correlation coefficients of GP
individuals is not always straightforward. However, in our
financial portfolio application it is achieved by comparing
the changes in Return on Investment (ROI) at particular
time periods. If one individual’s ROI drops and at the same
time another individual’s ROI increases at the same point
in time, then we define the two individuals to be contra-
correlated at that point. The degree of correlation can be
calculated using a metric such as the Spearman Correlation
test to compare behaviour at every time point — see Sec-
tion 3.1. Note that the overall fitness (Sharpe Ratio over
the whole time period) for two individuals might be iden-
tical yet the ROI behaviours of the individuals might be
contra-correlated.

3.1 Description of the algorithm
In our system, each individual has not only a fitness value

but also an individual behaviour vector storing its historical
behaviour (ROI performance). Let O(I) be the vector of
ROIs of an individual I during the whole time period and
pt(I) be the ROI of an individual at a particular time t.
Then, O(I) = {p1(I), ..., pt(I)}. We call O(I) the individual
behaviour vector.

2Note that this is not a multi-objective GP system.



At the beginning of each evolutionary selection cycle, af-
ter the initial population fitness is calculated, we group in-
dividuals according to their fitness value into a number of
segments. Let Fmax, Fmin be the maximum and minimum
fitness values for a population. Segments {(Fmin, Fmin +
d), (Fmin + d + 1, Fmin + 2 ∗ d), ..., (Fmin + n ∗ d + 1, Fmax)}
are collections of fitness intervals of equal length with de-
fined lower and upper bounds.

Let averageS be a vector of average performance outputs
per time period of all n individuals IS1

...ISn
in a fitness

segment S. We call averageS the segment behaviour vector
given by

averageS = {average1(S), ..., averaget(S)}

where

averaget(S) =
1

n

n
X

i=1

pt(ISi
)

Behavioural diversity in each of the fitness segments can
be determined by measuring the correlation between an in-
dividual and its segment, as the segment behaviour vector
should be a good representative of the general behaviour
pattern of all the individuals in the segment. In this sense,
if the difference of behaviour pattern between an individual
and its segment is large, then it means that this individual
exhibits unique or largely different behaviour from other in-
dividuals. We measure the behaviour relationship between
the individual behaviour vector O(I) and the segment be-
haviour vector averageS based on the Spearman correlation
test. The Spearman correlation measure simply ranks the
two variables, and makes no assumption about the distri-
bution of the values. The Spearman correlation coefficient
ρ(O(I), averageS) is computed as follows:

1 −

6
N

X

i=1

d2

i

N3 − N

where N is the numbers of pairs , and di is the distance be-
tween (i) the rank of performance pi(I) (compared with all
other pj(I), j 6= i) in the individual behaviour vector and
(ii) the rank of averagei(S) (compared with all the other
averagej(S), j 6= i) in the segment behaviour vector. The
degree of correlation returned by this measure varies from
−1.0 representing negative correlation, through 0.0 indicat-
ing no correlation, to 1.0 representing positive correlation.3

If a segment contains a set of individuals that have corre-
lated or similar behaviour throughout the run, the behaviour
diversity of the segment would be compromised without
deleting individuals from this set. Conversely, if we keep
an individual whose reactions to the environment are very
different from other individuals, the diversity level of the
segment can be maintained. Therefore, we firstly check for
the correlation coefficient value ρ of each individual in each
segment and then we delete individuals with high ρ (higher
than a predefined correlation threshold, which we set at

3Alternatively, one could measure the correlation relation-
ship between each pair of individuals in the same segment;
in other words, create a correlation coefficient matrix for
the segment. The major drawback of this approach is the
computational cost (O(n2) rather than O(n)).

0.67). Additionally, in the case of domination of one or two
particular fitness segment(s), which means that the number
of individuals contained in the segment are higher than the
average (defined as P/s where P is the total population size
and s the number of the segments), we delete not only those
individuals with high correlation coefficient but also surplus
individuals in the order of decreasing correlation. In this
way, the algorithm encourages the creation of individuals
at all fitness levels throughout the evolutionary cycle and
also preserves diversity at the global population level. After
crossover and mutation, randomly generated individuals are
inserted into the population in order to keep the population
size constant.

4. HEDGE FUND SIMULATION
To test the efficacy of the new diversity-preservation algo-

rithm, we simulated a long/short market-neutral hedge fund
of Malaysian equities. The GP system evolved a non-linear
equation that used market data to determine whether each
stock should be selected to buy, or to sell.

4.1 System overview
Our test system comprised a GP subsystem utilizing the

new diversity-preservation algorithm (we call this NGP),
coupled with an investment simulator. The coupling be-
tween the two was the fitness function — the investment
simulator was called each time the GP subsystem needed to
determine the fitness of an individual, at which point the in-
dividual was used to control the simulation of an hedge fund
of Malaysian stocks. The simulator was applied to training
data giving monthly prices and other factors for a period of
41 months. Monthly returns on investment were calculated,
and at the end of each year the Sharpe ratio [21] was calcu-
lated. The simulator returned to the GP system both the
fitness calculated from the Sharpe Ratio and a correlation
vector of ROIs over the training period.

Fitness
The fitness f for an individual is given by Equation 1.

f =
1

1 − |1.5 − S|
where S =

1

4

4
X

i=1

x̄i − RFRi

σi

(1)

In Equation 1, S is the average Sharpe Ratio over the
training period (comprising 4 sub-periods), x̄i is the aver-
age monthly ROI over the sub-period i, σi is the standard
deviation of monthly ROIs over the sub-period i, and RFRi

is the average monthly Risk Free Rate for sub-period i. We
set RFRi to 0.003 for all i (equivalent to 3.6% per annum).
Fund managers often set a target Sharpe Ratio, as do we
— our target is 1.5, and the absolute difference between the
measured Sharpe Ratio and the target is then normalized to
provide a fitness value that varies between 0 and 1.

Correlation
The vector of ROIs returned by the simulator was used by
the GP system to assess correlation with other individuals.
This correlation data was then used to guide the preser-
vation of phenotypic behavioural diversity as explained in
Section 3.1.



4.2 The Investment Simulator
We simulated a market-neutral long/short Hedge Fund

of Malaysian equities. The fund focused on a basket of 24
Malaysian stocks, which it could buy (“go long”) or sell
(even if it didn’t own any — “go short”). Since all the
stocks in this basket were quite well correlated, the market-
neutral strategy simply entailed buying the profitable stocks
and selling short those stocks that were performing poorly.

The training data was monthly prices (and other technical
and fundamental data) over a period of 41 months. Since we
had only monthly data, all trading occured at the beginning
of each month and the resulting stock mix was held for the
duration of the month. At the beginning of each month, we
used the individual provided by the GP system as a stock
selection model that quantitatively measured the attractive-
ness of each stock; this model was a non-linear combination
of technical and fundamental factors to predict the return
expectation for each stock over a 4-week forward horizon.

For each month, we applied the stock selection model to
the current month data — this was a table per stock with
about 20 factors and 7,680 data points. A return prediction
was assigned to each stock.

Stocks were grouped into 4 sectors; within each sector all
stocks were ranked according to expected return. The sim-
ulator then made the following fund management decisions:

• The long/short portfolio was both dollar neutral and
sector neutral. Thus, at all times, 24 stocks were main-
tained in the portfolio with 12 long positions and 12
short positions equally distributed across all the sec-
tors. According to the ranking, the top 3 stocks in
each sector became the top fractile and the bottom 3
became the bottom fractile. The top fractile of each
sector and the bottom fractile of each sector were cho-
sen to hold long positions and short positions respec-
tively in the portfolio.

• Sectors were equally weighted and each stock was given
equal weight in the portfolio. Thus, each position ac-
counted for approximately 4% of total portfolio value.

• CFDs (Contract for Differences) were used instead of
conventional shares to trade on stocks. We assumed
20% notional trading requirement (margin), 0.25% trad-
ing commission, and 5% financing rate.

At the end of each month, all of the positions held in the
portfolio were closed and the profit or loss of the portfolio
during the month was calculated. At the beginning of the
next monthly trading cycle, the simulator updated the ex-
pected return based on the new “current” data and a new
desired long/short portfolio was formed.

5. METHOD
The motivation for our research is to develop a system

that can be used in a continuous-learning context, where the
economic environment is dynamic and unpredictable (and so
the most successful non-linear factor model will vary).

Following a shift in economic context it will be necessary
to continue to use the previously trained “best” individual
while new data is being accumulated for retraining — we
are interested in the behaviour of this previously-trained
“best” solution, and how well it performs in the context of
a new economic environment. When sufficient new data has

been accumulated for re-training, we require that the system
should re-train effectively on the new data — our expecta-
tion is that shifts in context will not normally be excessive
and therefore retraining should start from the previously
trained population (rather than from a random population)
since the system is then less likely to converge on a local
optimum, especially when there are few data points avail-
able for the new environment [16]. Initial training will use
an “in-sample” data set: subsequent retraining will be on
data that was “out-of-sample” in the context of the original
training.

We performed experiments to answer the following three
research questions:

1. Does the new technique really improve population di-
versity when compared with a standard GP system,
and how does this affect fitness?

2. When retraining on data that comes from a different
economic context, how quickly and how well does the
diverse population adapt to a new environment?

3. Are trained individuals from the new system more ro-
bust when exposed to a new economic environment?

We ran three experiments, presented below. In each case,
a standard GP system (SGP) was compared with our new
GP system (NGP). The training data and validation data
was in all cases identical for both SGP and NGP.

5.1 In-sample population dynamics
The aim of Experiment 1 was to see if NGP improved

diversity, and what effect it had on fitness. Both SGP and
NGP were trained (separately) using 41 months of financial
time-series data for 24 Malaysian stocks, taken from the
period 31/7/97 to 31/12/2000.

The following measurements were made each generation:

1. the fitness of the best (fittest) chromosome, the fitness
of the worst chromosome, the average fitness across all
chromosomes, and the standard deviation of all chro-
mosome fitnesses;

2. the distribution of chromosomes in the segment vector
in terms of (i) fitness and (ii) phenotypic behaviour.

After repeating the experiment 5 times, the average value
(across 5 runs) of each measurement was plotted for each
generation (see Fig. 1); in each case the best run and the
worst run were indicated by error bars.

5.2 Retraining population dynamics
The aim of Experiment 2 was to see how well the pop-

ulation as a whole adapted to a new environment; in each
case we started with a population that had previously been
trained on the 41 months of training data (Experiment 1
above) and then retrained SGP and NGP separately on new
training data that reflected a different economic climate.
We used three sets of new training data and investigated
the population behaviour for each:

Period a: 31/12/2000 - 31/4/2002 (16 months).

Period b: 31/4/2002 - 31/1/2002 (9 months)

Period c: 31/1/2002 - 31/12/2003 (11 months)



As with Experiment 1, this experiment was repeated five
times and for each generation the best, average and worst fit-
nesses, and standard deviation, were measured (see Figs. 2, 3,
and 4). Convergence characteristics were compared by in-
spection of the graph.

5.3 Retraining individual behaviour
The aim of Experiment 3 was to simulate a continuous-

learning context and investigate the fitness behaviour of in-
dividuals after retraining on successively larger amounts of
new-context data. Specifically, we were interested to learn
how many data points of new data were needed to get a ro-
bust chromosome that behaved well on the rest of the new
data. This experiment utilised Period a (the largest pe-
riod), divided into four consecutive phases (i.e. the initial
25%, the initial 50%, the initial 75%, and the whole period).
The experiment proceeded as follows:

1. Using the best trained individual from Experiment 1,
a validation test was run on the whole of Period a.
First the best trained individual from the SGP system
was used, and then the best trained individual from
the NGP system was used.

2. For both SGP and NGP separately, starting with the
previously trained population from Experiment 1, re-
training was performed using the phase 1 data (i.e.
the initial 25% of the Period a data). In each case the
best chromosome was obtained and a validation test
was run on the remaining 75% of Period a.

3. For both SGP and NGP separately, starting with the
previously trained population from Experiment 1, re-
training was performed using the phase 2 data (i.e.
the initial 50% of the Period a data). In each case the
best chromosome was obtained and a validation test
was run on the remaining 50% of Period a.

4. For both SGP and NGP separately, starting with the
previously trained population from Experiment 1, re-
training was performed using the phase 3 data (i.e.
the initial 75% of the Period a data). In each case the
best chromosome was obtained and a validation test
was run on the remaining 25% of Period a.

In all cases (for both SGP and NGP) the monthly Re-
turn on Investment (ROI) was measured and recorded, the
Sharpe Ratio for the entire test period was calculated, and
the experiments were repeated five times.

The results for Experiment 3 are shown in Fig. 5. The
figure plots the average across 5 runs for ROI for both SGP
and NGP and separately shows the Sharpe Ratio compar-
ison. Error bars are included for the Sharpe Ratio, but
excluded for the ROI for clarity. At the bottom right of the
figure, a Sharpe Ratio comparison is provided to indicate in-
creasing success as the amount of retraining data from the
new economic context increases. As before, error bars are
included for the Sharpe Ratio.

6. DISCUSSION OF RESULTS

6.1 In-sample population dynamics
Our first research question was “Does the new technique

really improve population diversity when compared with a
standard GP system, and how does this affect fitness?”.

Figure 1: Experiment 1, in-sample training (population

dynamics).

Figure 2: Experiment 2, retraining Period a (popula-

tion dynamics).

Figure 3: Experiment 2, retraining Period b (popula-

tion dynamics).



Figure 4: Experiment 2, retraining Period c (popula-

tion dynamics).
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Figure 5: Validation of successive retraining of indi-

vidual

Fig.1 illustrates how the fitness of individuals in the pop-
ulation evolved over 100 generations while being trained on
the base data of 41 months. Whilst the mean fitness dif-
ference between SGP and NGP is negligible, and remains
negligible as the population evolves, the difference in stan-
dard deviation of fitnesses clearly increases as the population
evolves, with NGP developing a substantially greater diver-
sity of fitness. It is interesting to note a corollary of these
two statements, which is that the fitness of the best individ-
ual is much greater for the NGP system — this in itself is
a compelling reason to use diversity-preserving techniques,
regardless of other possible benefits in terms of adaptability.

Fig. 6 gives the distribution of individuals across the fit-
ness segments at three points during evolution (after 0, 50
and 100 generations), indicating a slight bi-modal charac-
teristic for both SGP and NGP which may merit further
investigation. Of more importance from the point of view of
phenotypic behavioural fitness, Fig. 7 investigates the corre-
lation coefficent of individuals in the highest fitness segment
(since this is the segment from which the final solution(s)
will be drawn). The Figure illustrates how phenotypic be-
havioural diversity increases as the population evolves — on
the left is a graph of correlations from a single run of NGP
showing the mean, best and worst correlations of individual
behaviour vectors with the segment behaviour vector; on the
right is a graph comparing the mean correlations (with error
bars for 5 runs) for NGP and SGP.4
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Figure 6: Phenotypic diversity for SGP and NGP

The results indicate that the new algorithm NGP pro-
vides a substantial improvement in diversity of phenotypic
behaviour, when compared with SGP on this data. To anal-
yse this further we used Student’s T-test (since the number
of data points is small). The T-test results (less than 0.00002

4To obtain the corresponding data for SGP, it was neces-
sary to save population snapshots for generations 0, 20, 50,
80 and 100, and determine which individuals would have
been in the highest fitness segment if NGP were being run;
then each such individual was used in the investment simu-
lator and its individual behaviour vector obtained; finally, a
segment behaviour vector was calulated and the correlations
measured (this was repeated for each “snapshot”).



NGP

SGP

Figure 7: Evolution of behavioural phenotypic diver-

sity for SGP and NGP

for Generations 80 and 100) confirm that for the later gen-
erations NGP provides a highly significant improvement.

6.2 Retraining population dynamics
Our second research question was “When retraining on

data that comes from a different economic context, how quickly
and how well does the diverse population adapt to a new en-
vironment?”

Figs. 2, 3 and 4 illustrate how the populations for SGP
and NGP evolve during re-training on data from different
economic climates. In all three cases (Periods a, b and c)
the standard deviation of fitness for NGP is significantly
better for NGP than for SGP after about 20 generations.
NGP always starts with a “best” fitness that is higher than
SGP (indicating that the NGP individual is already better
able to cope with the new economic climate than the SGP
individual), and that superiority is retained as the popula-
tion retrains — in fact, in all cases NGP quickly finds the
“ideal” Sharpe Ratio of 1.5 (giving the best adjusted fitness
of 1.0) whereas SGP never finds that ideal individal.

When retraining, both SGP and NGP appear to converge
on their respective “best” individuals at about the same
rate, though SGP has the edge for Period c.

An interesting result from Figs. 2, 3 and 4 is the fact
that the NGP standard deviation decreases for the first ten
generations of re-training, before then rising strongly. The
initial generation comprises individuals trained for a differ-
ent economic context, and these individuals do not have a
normal distribution of fitnesses in the context of the new
data. In particular, (i) the fitness peak for the highest seg-
ment that is observed at the end of the original training is
unlikely to occur in the context of the new data, and it is
much more likely that a peak will occur in the middle seg-
ments, and (ii) the behavioural diversity of individuals in
the highest segment is likely to be low. In the early gen-
erations, the NGP algorithm will discard many individuals
whose behaviours are too well correlated with others, and
replacements will be drawn from random samples — the
overall effect will be to increase the numbers of individu-
als in the middle segments (i.e. producing a more peaked
distribution). The NGP standard deviation therefore dips
towards that of SGP, then rises strongly after the distribu-
tion has normalised and the diversity-preserving algorithm
has a stronger effect.

6.3 Retraining individual behaviour
Our third research question was “Are trained individuals

resulting from the new system more robust when exposed to
a new economic environment?”

Fig. 5 illustrates how the best trained individual performs
when the economic context changes. The monthly ROI in
the new economic climate is plotted for both the best NGP
individual and the best SGP individual. The Sharpe Ratio
over the test period is also calculated and compared. We
did this for four cases:

The best individual from the 41-month training

period, tested over the whole of Period a. Whilst the
plot of monthly returns shows that both SGP and NGP have
months with poor performance, the comparison of Sharpe
Ratios indicates that NGP has significantly superior per-
formance on this test data, giving an overall positive risk-
adjusted return whereas SGP gives an overall negative risk-
adusted return. This suggests that NGP might produce in-
dividuals that are more robust to changes in economic cli-
mate — though of course we need to conduct further tests
on different kinds of change in the economy before making
any firm claim of this nature.

The best individual after retraining on three suc-

cessively larger amounts of new data, tested on the

remainder of the new data. Once again we use Period
a as our test case. First retraining was carried out on 4
months data (tested on 12 months data), then retraining
on 8 months data (tested on 8 months data) and finally
retraining on 12 months data (tested on 4 months data).
This was intended to simulate a continuous-learning con-
text where the GP system would be periodially retrained
in order to accommodate changes in the economy. As with
the first case (above), the monthly ROI plot indicates that
both NGP-trained and SGP-trained individuals have poor
performance in some months. However, the plot of Sharpe
Ratio evolution for these three cases shows that both NGP
and SGP performance improves as more data from the new
economy becomes available for training, and that the NGP
individual starts with a higher Sharpe Ratio,

Of course, a GP system would be expected to improve
performance if it has more data points in the training data.
However, in practice the upper bound on the size of the
training data is not as important as the lower bound — i.e.
how small can the training set be in order for retraining to
be effective? This lower bound determines how quickly an
automated investment algorithm will recover from an abrupt
change in the market. The plot of Sharpe Ration evolution
shows that on this data NGP adapts more quickly to the
change: NGP improves its Sharp Ratio from -0.2 to just
over +0.2 (an increase of 0.4) whereas SGP in the same
time and on the same data improves its Sharpe Ratio from
just under -0.4 to -0.1 (an increase of 0.3).

7. CONCLUSION
We have presented a new Genetic Programming algorithm

for preserving diversity of phenotypic behaviour, and pre-
sented results of experiments based on simulation of a market-
neutral long/short hedge fund of Malaysian stocks. The
technique is applicable to problems that have time-series
data as input and that are subject to a changing environ-
ment.

Our results confirm that, on our test data, the new algo-



rithm does what it says — it increases population diversity
of phenotypic behaviour. It also increases diversity of stan-
dard fitness. Furthermore, analysis indicates that the dif-
ference from a standard GP algorithm is statistically highly
significant.

Our results also provide an insight into the utility of the
new algorithm (NGP) compared with a standard GP algo-
rithm (SGP):

1. On our test data, NGP consistently produced a “best”
individual with higher fitness than SGP.

2. On our test data, NGP consistently retrained (in the
context of a sudden shift in the environment) faster
and better than SGP.

We conclude that (i) there is good evidence to recom-
mend the use of NGP for preserving diversity of phenotypic
behaviour in any GP context, and (ii) there is encouraging
initial evidence to recommend the use of NGP for retrain-
ing contexts where the environment is continually chang-
ing. Further work is now required: to investigate the use
of different correlation measures; to undertake a parameter
sensitivity analysis of our system; to establish that these
results are repeatable for a much wider range of test cases
and over more runs; and to obtain empirical data from a
continuous-learning system.
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