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Abstract. This paper summarises a successful application of functional programming 
within a commercial environment. We report on experience at Accenture’s 
Financial Services Solution Centre in London with simulating an object-oriented 
financial system in order to assist analysis and design. The work was part of a large IT 
project for an international investment bank and provides a pragmatic case study. 

 
1  Introduction 
 

Functional languages such as Miranda‡ [Tur85,CMP94], Standard ML [MTH90], Haskell [PHA97] 
and Clean [Pla95] are used extensively in academia for research and teaching. These languages offer a 
number of well-known software engineering and formal methods benefits, including rapid 
development, clear and concise expression of algorithms, and complete type safety. However, despite 
these benefits, functional languages have experienced only limited acceptance by industry – mainly 
due to historical problems (such as inefficient compilers and limited input/output) that have been 
largely extenuated by research in the past decade. 

This paper summarises a recent successful application of functional programming within a large IT 
project (over 100 developers). The project was undertaken by Accenture's 
Financial Services Solution Centre in London in partnership with an international investment bank 
and included the construction of a large financial software system using object-oriented and 
component-based techniques. A functional language was employed in the analysis and design stages 
to specify complex algorithms precisely and to simulate the high-level behaviour of the entire system. 
Following successful simulation, the specifications provided validated algorithm designs for 
subsequent implementation in C++. In this paper, we highlight the benefits which resulted from the 
functional simulation and also identify aspects that proved difficult to simulate. 
 
2  Related Work 
 

Simulation techniques are used extensively to model complex system behaviour. A variety of 
languages and tools are applied to problems ranging from analysing the movement of data packets in 
a network to predicting the value of financial derivatives – see [LK98] for an introduction to 
simulation modelling and its applications. 

Functional programming has been applied to a wide range of problems ([RW95] summarises some 
recent applications). Illustrative examples of its use in simulation include: 
 

- [PM93] presents a case study of Amoco's use of Miranda to simulate oil reservoirs; 
- [GSW93] presents a functional programming solution to a fluid dynamics problem; 
- [EL83] describes a high-speed digital simulation using a functional language approach; 
- [PW93] and [Poh94] discuss the use of simulation programming in a functional language. 

                                                             
* This document is based on the paper “Simulating an Object-Oriented Financial System in a Functional 
Language”, L. Braine and C. Clack, in Proceedings of the 10th International Workshop on Implementation of 
Functional Languages (IFL’98), pages 487-496, September 1998. 
† Accenture was formerly known as Andersen Consulting. 
‡ Miranda is a trademark of Research Software Ltd. 



Functional languages are also used in the closely-related areas of prototyping and specification; 
examples include prototyping computer-aided design applications [DB85], specifying image 
processing primitives [PC94], specifying complex tree transformations [Hec88] and describing 
telecommunications systems [Dem89]. 

However, there is little in the literature on commercial applications of functional languages to 
simulate financial systems. One reason for this is the often-held view that real-world processes can be 
represented more naturally in simulations using an object-oriented approach, as first advocated by 
SIMULA [DN66], than using a standard functional approach. Subsequent object-oriented languages, 
such as Smalltalk [GR83] and Eiffel [Mey91], widened this gap as functional languages offered few 
object-oriented features – see [BC96] for a brief history of research into object-oriented functional 
programming. 
 
3  The Application 
 

The subject of simulation activities was a large financial system within an international investment 
bank. The system contained a number of complex business processes requiring novel optimisation and 
approximation algorithms in order to perform effectively. Full details are both proprietary and 
confidential but, for the purposes of this paper, we present a brief overview in this section. 

As an illustration of the level of program complexity, one key process involved partitioning a very 
large collection of data into two sets. A number of business constraints influenced, but not entirely 
determined, set eligibility for each datum; final eligibility was subsequently determined by the 
application using a custom optimisation algorithm. 
 
The application contained a number of key data representations: 
 

- Elements were organised into a partially-ordered set of queues, each queue itself a partial order. 
 

- Queues were grouped according to common business criteria and distinct processing rules were 
applied to each group depending upon reference data. 

 

- Many data elements contained cross-references to elements in other queues. These dependencies, 
when combined with the business constraints, introduced potential deadlocks into the system and 
required the construction of data groupings that spanned queues. 

 

- By combining various data representations, the elements can be connected as a graph. Graph-
theoretic algorithms (such as Tarjan's algorithm [Tar72] identifying the strongly connected 
components of a graph) could then be used to manipulate the data. 

 
The above indicates an archetypal intractable problem – as the size of the input data set increases, 
there is a combinatorial explosion in the number of different allocation options to be explored and, for 
any useful size of input data set, a program might take millenia to find the optimal solution. 
Thus, it was essential to simulate different approximation techniques which would: (i) provide a good 
approximation to the optimal allocation, and (ii) provide an allocation that is guaranteed to obey the 
business constraints. 
 
Solving the overall problem required simulation of two key modes of processing that correspond 
closely to: (i) real-time processing, and (ii) batch processing. For real-time processing, standard 
discrete-event simulation techniques were employed, such as annotating data items with explicit time 
tags. For batch processing, the approach was to rapidly prototype the algorithms in a functional 
language, including simulation of some object-oriented aspects and system functionality. 
 
In summary, the goals for this simulation work were to: 
 

1. rapidly develop and evaluate complex algorithms; 
2. validate interactions between system components; 
3. specify algorithms in an object-oriented style (for subsequent implementation in C++). 



4  Simulation Language 
 

We now consider the rationale behind simulating in a functional language to meet the goals identified 
in the previous section. The first goal favours the use of a functional language, but the last two goals 
favour an object-oriented language. In particular, the project methodology was object-oriented and 
employed a component-based approach, requiring modelling of the system's object-oriented 
algorithms and components. 

Simply prototyping the algorithms in the final implementation language, C++, was not a viable 
option because it would have taken too long to develop underlying components before the high-level 
algorithms could be simulated. We decided to use a functional programming language rather than an 
object-oriented rapid application development language, such as Smalltalk, for the following reasons: 
 

- The speed and clarity with which the algorithms could be expressed and validated was the most 
important consideration. The language features offered by functional programming (e.g. higher-
order functions, lazy evaluation and complete type safety) provide benefits of clarity, conciseness 
and speed of expression in excess of many imperative languages. See [PM93] for illustrative 
metrics. 

 

- The only parts of the system design that required precise simulation of their object-oriented 
aspects were the high-level algorithms and their method calls via component interfaces. The 
internals of all other components could be simulated using a purely functional approach to speed 
development. Additionally, the extra work involved in coercing a functional language to simulate 
the object-oriented aspects (e.g. inheritance hierarchy, dynamic despatch and mutable state) could 
be minimised by applying techniques from recent object-oriented functional programming 
research (see Section 6.3). 

 

- Accenture's Financial Services Solution Centre in London has rapid application development 
expertise using functional programming and could utilise its academic links to obtain specialist 
input as required (e.g. functional programming simulation techniques). 

 

- The execution speed of the simulation was not important, so the relatively slow speed of 
functional languages was not a disadvantage. 

 
Miranda was the functional language of choice, mainly because it is commercially supported and 
provides an interpreted environment to assist rapid application development. If an interpreted 
environment were not as important, a compiled functional language such as Clean could have been 
used instead. 

 
5  Simulation Environment 
 

Simulation activities were performed by the Simulation Team over a period of 6 months. The 
software environment was the interpreted functional language Miranda running on the Solaris 
operating system. Multiple concurrent environments were executed on a SUN Enterprise 4000 server 
(8 UltraSPARC CPUs with 4GB shared RAM) accessed from networked PCs running Windows NT. 
Individual environments used between 100MB and 3GB RAM, depending on the complexity of the 
simulation. 

 
6  Simulation Methods 
 

Different levels of simulation fidelity were required for different parts of the system. For example, in 
order to provide algorithm specifications for subsequent implementation in C++, it was necessary to 
simulate those object-oriented algorithms precisely. Additionally, the use of component interfaces had 
to be simulated precisely in order to validate interactions between system components. However, only 
the behaviour (not the internal details) of those components had to be simulated, permitting the use of 
statistical approximation techniques in some cases. 

There are important semantic differences between the object-oriented and functional paradigms – 
[BC96] overviews the main theoretical differences. Some of the obvious mappings are sufficient (e.g. 



function signatures for modelling component interfaces), but others are insufficient (e.g. abstract data 
types for modelling classes). In order to simulate object-oriented designs using a purely functional 
language, it is necessary to resolve these semantic differences by applying techniques from object-
oriented functional programming research. 

The remainder of this section discusses the three key simulation methods that were used. 
 
6.1  Real-Time Simulation at the Component Level 
 

At the most abstract level, the application consists of a number of concurrent communicating 
components. The requirement was to model the real-time behaviour of these components, specifically 
the timing of data interchange between the components and the operation of the internal algorithms 
according to the data arrival times. 

At this level, there was no requirement to model a complex class hierarchy (for example, 
components do not exhibit inheritance characteristics). Each component was concisely expressed as a 
lazily-evaluated “spinning function” – that is, a function which takes one or more infinite streams of 
data as input and produces one or more infinite streams of data as output (collected into a tuple). An 
additional accumulating parameter was used to hold the local state for each component. 

The input and output streams modelled the independent, buffered, communication channels 
between the components; each stream was implemented as a lazy list of time-tagged data items. 
Network starvation (and possible deadlock due to blocking reads of the input streams) was avoided 
through the use of hiatons [Sto85]; whenever a component has nothing to output on a stream, it 
explicitly outputs an empty data item together with an appropriate time tag. 
 
6.2  Behavioural Simulation of Component Internals 
 

For many components, it was only necessary to model the component behaviour and a straightforward 
style of functional programming was used. It was observed that the use of functional programming 
features such as higher-order functions led to a great reduction in code size; this was particularly 
beneficial when developing complex algorithms as the functional notation provided a very concise 
and understandable specification. Furthermore, Miranda's interpreted environment and static type 
inference strongly supported an exploratory programming style; the benefits were minimal build time 
and minimal run-time debugging. 

The functionality of some parts of this code was determined by the results of statistical 
approximation techniques. This enabled several parameters, such as event frequency, to be set 
explicitly and the resultant effects observed by executing the simulation. 
 
6.3  Specifying Object-Oriented Algorithms 
 

The most complex simulation task was to simulate the action of some algorithms at a sufficiently 
detailed level that the functional code could be used as an object-oriented specification of the 
algorithm to be subsequently implemented in C++. 

This required simulation of several object-oriented features that are not provided by Miranda. In 
this case, the coding style adopted by the Simulation Team was similar to the style of target code 
produced by the CLOVER compiler [BC96,BC97a], particularly in the areas of simulating classes 
with inheritance, overloading, overriding, and dynamic despatch. Full details can be found in the 
research literature, but we rehearse the essence of the technique here: 

 

- Classes, inheritance and the meta type system 
 

In order to simulate certain aspects of the object-oriented system, it was necessary to create a 
meta type system. For example, simulating subsumption (the notion of manipulating an object 
which could be one of several possible subtypes) required inheritance hierarchies to be 
flattened by creating a new type for each hierarchy that represented the root superclass, and 
then encoding each subclass as an alternative in an union type. 



- Dynamic method despatch 
 

The object-oriented notion of dynamic method despatch conflicts fundamentally with the 
functional notion of static type safety. However, by using the meta type system mentioned 
above, efficient method despatchers were constructed that simulated dynamic despatch. These 
simply pattern-matched on the type constructor to dynamically select the appropriate method. 
 

- Simulating assignment 
 

In order to provide detailed object-oriented specifications, it was necessary to simulate 
assignment. This included creating multiple single-assignment identifiers in order to represent 
multiple assignments to a single object. It should be noted, however, that recent functional 
research can ameliorate such a plethora of identifiers by applying suitable lexical scoping 
rules, for example the Clean language allows identifiers on the right-hand-side of an 
expression to be reused on the left-hand-side – they are then internally tagged with a number 
by the compiler (see [AP97] for further details). 

 
7  Results 
 

During the process of simulation, several algorithms were: 
 

1. developed using Miranda; 
2. validated through high-level simulations of the entire system; 
3. used as specifications for subsequent implementation in C++. 

 
These activities proved highly successful and the key results are reported below: 
 

- Rapid development 
 

Miranda code was produced far more rapidly than C++ code with similar functionality (this 
has been estimated as a factor of approximately 5 times). We expect that the productivity gain 
was mainly due to two key factors: (i) the often-expressed desirable language features of 
functional programming (higher-order functions, lazy evaluation, automatic memory 
management, etc.), and (ii) the traditional benefits of an interpreted environment (negligible 
build time, rapid turnaround cycle, interactive testing of individual functions, etc.). 
 

- Concise expression 
 

Miranda specifications were substantially more concise than C++ code with similar 
functionality and were therefore much more understandable. As an illustrative example, a key 
algorithm expressible in 6 pages of Miranda code translated into approximately 25 pages of 
C++ code. The conciseness of functional programs is often reported in the research literature 
and as a result of scientific applications; here it has been validated for a financial application. 
 

- Simulation as executable specification 
 

By employing a functional language at the analysis and design stages, complex processes were 
simulated in advance, allowing designs to be optimised early in the project lifecycle. The 
functional programs also served as executable specifications [Tur85a] – the algorithms were 
tested on actual data and, once confident of correctness, used as validated specifications for the 
final designs. Unit testing of the actual system found that fewer errors existed in C++ code that 
had been first simulated. Considering that this included many of the most complex algorithms 
in the system, we believe that this result is one of the most important justifications for using 
simulation work early in the lifecycle of a complex project. 
 

- Limitations 
 

Simulations required extensive computing resources. The most notable was a very large 
memory space – up to 3GB of heap space in some simulations. The reasons are both 
application-specific (e.g. the requirement for full and complete traces of events, used later for 
analyses into the operational behaviour of the algorithms) and functional language-specific 
(e.g. the maintenance of closures during lazy evaluation). Although execution time of 
simulations was not important, the most complex took approximately 2 hours. 



8  Further Work 
 

There is potential for further application of simulation and specification techniques within this current 
project and we are also liaising with Accenture’s “Centre for Process Simulation and Modeling” on 
the opportunity for novel simulation techniques in other projects. 

We have also identified several ways in which current functional language implementations could 
be improved in order to support simulation and specification activities for financial applications: 
 

- Our experience indicates that functional programming would benefit from the incorporation of 
more object-oriented features. Not only do general simulation activities benefit naturally from 
an object-oriented approach but, with many actual software systems being built using 
component/object-oriented techniques, simulations can more accurately specify the actual 
system. However, incorporating object-oriented features into functional programming is not 
trivial and should be regarded as on-going research. 
 

- On a large project, many specifications are delivered as part of a set of documents created 
using a standard wordprocessor, such as Word or WordPerfect. This necessitates cutting-and-
pasting executed specifications into project documentation; the procedure is potentially error-
prone and could be resolved by executing the wordprocessing documents themselves. This 
“literate script” programming style is available in Miranda for the LaTeX typesetting system; 
we would like to see other languages adopt this style and extend it to Word as well as LaTeX. 

 

- A link with object-oriented design tools, such as Rational Rose, could allow preliminary high-
level designs to be generated automatically from validated simulation code. This may require 
code annotations to guide the generator, but would be particularly useful for creating top-level 
components and component interface diagrams from simulation classes. 

 

- Many simulation tools permit process execution to be visualised through the use of graphical 
animation. This allows the behaviour of complex algorithms to be understood by a wider 
audience (such as at the proposal stage and during training) and can often provide additional 
insights (such as identifying bottlenecks). Animation could be added to functional simulations 
by extending state classes to capture event information and output it for post-simulation 
animation. 
 

- We would like to explore the use of other functional languages in order to benefit from both 
additional language features and from greater execution speed. However, our experience 
indicates that for rapid simulation and specification purposes one of the most useful system 
features is an interpretive environment. We urge functional language implementors to provide 
both interpreted and compiled modes of execution. 

 
9  Summary and Conclusion 
 

In this paper, we have presented a successful application of functional programming to the simulation 
and specification of an object-oriented financial system. A variety of simulation methods were 
employed to model the different parts of the system at appropriate levels of detail. This included 
simulation of a real-time system at the component level, behavioural simulation of component 
internals and detailed specification of core object-oriented algorithms. 

The results were highly successful and highlighted the key benefits of using a functional language. 
These included very rapid development (we estimate 5 times faster than prototyping in C++), concise 
expression (a validated design in 6 pages of Miranda translated to about 20 pages of C++ code) and 
use as an executable specification which can be tested with real data. Subsequent phases of the project 
demonstrated that a functional language can serve as a design language for the object-oriented 
implementation, with the validated Miranda designs resulting in high quality C++ code. 

In conclusion, this project has demonstrated the great worth of including simulation activities early 
in the lifecycle of a complex financial project and, in particular, identified some key benefits obtained 
by specifying and simulating in a functional language. 
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