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Artificial neural networks (ANNs) have been extensively used for classification problems in many
areas such as gene, text and image recognition. Although ANNs are popular also to estimate the
probability of default in credit risk, they have drawbacks; a major one is their tendency to overfit the
data. Here we propose an improved Bayesian regularization approach to train ANNs and compare
it to the classical regularization that relies on the back-propagation algorithm for training feed-
forward networks. We investigate different network architectures and test the classification accuracy
on three data sets. Profitability, leverage and liquidity emerge as important financial default driver
categories.

Keywords: Artificial neural networks; Bayesian regularization; Credit risk; Probability of default

JEL Classification: C11, C13

1. Introduction

Credit scoring became popular in the USA during the 1950s.
The boosting economy in the next two decades required
the need for accessible credit and it was during this period
when the methods used for automated credit scoring became
more advanced (Tufféry 2011). However, the origin of credit
scoring goes back to the early 1940s in the USA, when it
was initially applied to differentiate between good and bad
customers (Durand 1941).

Among the many options offered and investigated in the
literature for credit scoring, artificial neural networks (ANNs)
are a flexible and rich concept to solve not only classification
problems but also to offer solutions to clustering, time series
and function approximation problems (Bell 2015). The flexi-
bility of ANNs inspired researchers to investigate their appli-
cability to classification tasks. Recently, an extensive research
has been conducted to utilize and apply ANNs for corporate
credit scoring given the large amount of financial data col-
lected. Heaton et al. (2016) and Pérez-Martín et al. (2018)
advocated the extensive use of ANNs with many layers, the
so-called deep learning approach. Furthermore, Bonini and
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Caivano (2018) showed that artificial intelligence methods
including ANNs outperform traditional statistical methods.
Nonetheless, the performance advantages of ANNs are ques-
tioned by Kalayci et al. (2018) and by Addo et al. (2018), who
show that ANNs underperform when compared to respec-
tively logistic regression and decision trees.

Here we focus on the overifitting issue of ANNs. Sev-
eral recent studies have been devoted to this problem. Zhang
et al. (2018) investigated various ways of detecting overfitting
in an ANN and advocated splitting the data into training and
validation as a main way of dealing with overfitting. Using
a genetic algorithm, Nicolae-Eugen (2016) prevented overfit-
ting in an ANN by encoding the weights of the ANN into
binary chromosomes and applying high-probability mutation
in the genetic algorithm. A different approach to avoid over-
fitting was proposed by Vincent et al. (2010). They applied a
drop-out strategy combined with a stacked denoising autoen-
coder to reduce overfitting. They found that this strategy
outperforms a single drop-out strategy and is computationally
more efficient. One of the reasons for overfitting is the noise in
the training data. In this context, Hindi and Al-Akhras (2011)
recommended smoothing the decision boundaries by elimi-
nating border instances from the training set before training
an ANN. This is achieved by using a variety of instance
reduction techniques.
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In contrast to these studies on overfitting in ANNs, we take
a Bayesian approach to solve the issue. Bayesian estimation
in ANNs has become applicable only since the advance-
ment of computational power has allowed its use. Initially,
Bayesian learning in ANNs was used to offer a solution
for creating an optimal network architecture. For example,
Neal (1992) explored the difficulties related to the selection
of the prior knowledge as well as the problems associated
with the computation of the posterior distribution. Neal (1996)
studied the effect of using different priors for the estima-
tion of the network weights. Rasmussen (1996) investigated
how to estimate the weights of a network using dynamic
simulation. Furthermore, Lampinen and Vehtari (2001)
applied an ANN with Bayesian learning to regression
and classification. Titterington (2004) reviewed the vari-
ous approaches taken to determine the network architecture,
involving the use of Gaussian approximations and of non-
Gaussian but deterministic approximations called variational
approximations.

The Bayesian estimation of an ANN for credit scoring
implies that the optimal architecture of the neural network is
important to the performance because the architecture greatly
impacts the estimation efficiency of the network (Heaton
et al. 2016). However, in this study, we focus on the Bayesian
regularization of the network in order to avoid overfitting. We
compare our approach to the classical regularization approach
examined in Ashiquzzaman et al. (2017). For that reason, we
report our results as an average performance over a range
of different network architectures, i.e. combinations of layers
and neurons. Overfitting is one of the main challenges faced
by statisticians today. The volume and the complexity of the
data increase every year, which requires special attention to
not overfit the classification algorithm. In this work, we use a
combination of different network architectures combined with
early stopping (ES) and regularization to tackle the problem
of overfitting. We define ES as the process where we monitor
the test error in n consecutive runs, while training the network.
If the test error increases n times then the training of the net-
work is terminated. We used n = 6, which is a typical choice
for most classification problems.

Drawing on the studies devoted to Bayesian learning,
in this paper, we improve an approach recommended by
MacKay (1992) to estimate the regularization parameters.
MacKay (1992) proposed a Gauss–Newton approximation
to the posterior distribution of the regularization parameters.
In this Gauss–Newton approximation, an objective function
with parameters α and β is maximized. MacKay (1992) pro-
posed an iterative solution for α and β by applying the
Levenberg–Marquardt algorithm. We on the other hand apply
a MCMC scheme to estimate the regularization parameters. In
our approach, α and β are considered random variables and
are based on the mean of a posterior distribution. Finally, we
compare the improved Bayesian regularization approach to
classical regularization and to Bayesian regularization based
on the Gauss–Newton approximation. With respect to the
above discussed articles on ANNs, we contribute to the lit-
erature first by proposing an update to the estimation of the
regularization parameters and secondly by exploring classi-
cal and Bayesian regularization in the estimation of a network
with different architectures.

The rest of the article is organized as follows. Section 2
presents the theoretical formulation of an ANN in a clas-
sical and in a Bayesian framework. Section 3 presents the
results from the regularized networks. Section 4 discusses the
policy implications of the selected default factors and their
business intuition. Finally, Section 5 concludes the paper by
summarizing the main findings.

2. Theoretical foundations

In theory, there are several neural network architectures. In
practice, most researchers (Demuth et al. 2014) focus on
three main types: feed-forward, competitive and recurrent
networks. While competitive and recurrent networks are defi-
nitely an interesting area of research, in this article, we explore
the most popular kind of network architecture, the feed-
forward network. It is called a feed-forward network because
data moves in forward direction only: initially, the data input
is processed in the first layer of the network, then it is pushed
forward to the next layer until it reaches the final output layer.
In a feed-forward network, data is not fed back from a layer to
the previous, which instead happens in a recurrent network. A
detailed description of a feed-forward network is given in the
next section.

2.1. Feed-forward neural network architecture

In this section, we briefly introduce the most basic theoretical
concepts behind an ANN. A detailed discussion is given in
Kim et al. (1996). A multilayer ANN can be described as a
system with the following elements:

(i) An input data vector x ∈ R
p and a categorical variable

y ∈ {0, 1}.
(ii) An output ŷ = P(Y = 1 | X = x).

(iii) Layers k = 1, . . . , l with m units per layer; the layers
with k < l are hidden, the layer l is the output layer.
Each layer has a bias bk ∈ R and each unit has an acti-
vation hk

i ∈ R. The units in layer k are connected to
those in the previous layer by weights wk

ij ∈ R, i, j =
1, . . . , m, k = 1, . . . , l.

(iv) A previous layer is defined as layer k − 1 with respect
to layer k.

(v) The individual inputs x ∈ R
p are each weighted

by weights wk
ij. Each neuron i is weighted in each

layer k.
(vi) The final output has a bias bl+1 ∈ R and is connected

to the units of the output layer by weights wl+1
j ∈ R.

(vii) An activation function sk
i (.) for layer k and unit i. An

activation function determines how each node reacts
in an ANN and what output each node generates. This
output is then used as input for the next node in an iter-
ative procedure until the estimation process converges
to a local or global optimum. The most popular choices
of activation functions are the logistic sigmoid and the
hyperbolic tangent (Farhadi 2017).

Below we present the sequence in which the estimation of the
network weights is performed. The first step in the estimation
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process of the network weights w is to feed data into the first
layer of the network. The unit activations of the first layer are
computed from the input data as

h1
i = s1

i

⎛
⎝b1 +

p∑
j=1

w1
ijxj

⎞
⎠ , (1)

where s1
i (·) is an activation function. After receiving the out-

put from the first layer, we can proceed with the estimation of
the second layer activation functions. The unit activations of
the next layer are computed from those of the previous layer
as

hk+1
i = sk+1

i

⎛
⎝bk+1 +

m∑
j=1

wk+1
ij hk

i

⎞
⎠ . (2)

After reaching the final output by sequentially moving
through each hidden layer k, the output probability is esti-
mated as

ŷ = bl+1 +
m∑

j=1

wl+1
j hl

i. (3)

In the estimation process described above the activation func-
tion s(·) plays a vital role. In our analysis, we apply the logistic
function which is the most common non-linear activation
function.

s(x) = 1

1 + exp(−x)
. (4)

The above estimation process can be described as a learn-
ing process where the weights of the network are estimated
through learning from the data. In particular, the weights
wk

ij for layer k and neuron i in the neural network are esti-
mated sequentially and iteratively. Afterwards, the network
performance with weights learned from the training data is
monitored on test data.

In order to estimate the network weights a cost function
is required. The purpose of the cost function is to serve as
an objective to be minimized during the learning process. A
typical choice of a cost function is the mean squared error
(MSE)

E = 1

N

N∑
i=1

(yi − ŷi)
2, (5)

where N is the number of observations, i.e. the number of
input data vectors and categorical variables. Another popular
cost function is the cross entropy (CE)

S = −
N∑

i=1

pi log qi, (6)

where pi and qi are discrete probabilities.
A common issue in estimating network weights is the

overfitting of the network, upon which the network cannot
generalize well and subsequently the network performance
on new data is poor. When overfitting occurs, the network
weights are calculated in a way that maximizes the network
performance on the training data but this is achieved through
significantly decreasing the performance on the test data. The

most common way of solving the overfitting issue that occurs
in the estimation process is applying regularization during the
estimation (Deng et al. 2014). Regularization can be applied
to penalize the cost function with the squared sum of the
weights so that the generalization performance of the network
is maintained. For the MSE cost function, this can be written
as

Ereg = γ

l∑
k=1

m∑
i,j=1

(wk
ij)

2 + (1 − γ )E = γ Ew + (1 − γ )E, (7)

where γ ∈ (0, 1) is a regularization constant. Usually the
backpropagation algorithm, Dreyfus (1990) is used to esti-
mate the weights. A common optimization algorithm used
to make the estimation procedure converge is the gradient
descent algorithm.

Although classical regularization as described above works
adequately, in this paper, we recommend a Bayesian approach
to regularization which we describe in the next section. We
advocate that the Bayesian approach to regularization allows
for more flexibility by reducing the bias inherent to classi-
cal regularization (through the choice of the regularization
constant) and therefore leading to a higher performance.

2.2. A Bayesian approach for feed-forward neural
networks

After we have explained what a feed-forward network is,
in this section, we present the theory behind our proposed
approach to regularization. The networks are trained using
supervised learning, with a training data set of inputs and
targets D = {(x1, y1), (x2, y2), . . . , (xN , yN )}. We choose an
interpolating function of the form

g(x) =
k∑

h=1

whφh(x), (8)

where φh(x) are basis functions and wh are coefficients
inferred from the data. We assume that the targets are gen-
erated by

yi = g(xi) + εi, (9)

where g(xi) is an unknown function and εi are independent
Gaussian random variables with average zero and variance
σ 2. The initial objective of the training process is to minimize
the sum of squared errors

ED =
N∑

i=1

1

2
(yi − ŷi)

2, (10)

where ŷi represents the neural network response to
observation i.

An extensive work on Bayesian estimation and regular-
ization has been done by MacKay (1992). In summary, the
Bayesian regularization requires the Hessian matrix of the
objective function. For the MSE cost function and regulariza-
tion by the sum of squared weights, it follows that the Hessian
matrix is a quadratic function and can be approximated using



4 E. Sariev and G. Germano

the Levenberg–Marquardt algorithm (Gill and Murray 1978).
The objective function becomes

F = αEW + βED, (11)

where EW was defined in equation (7), and α and β are
objective function parameters.

In the Bayesian framework (Foresee and Hagan 1997),
the weights of the network are considered random variables.
Given the data, the probability density function of an array w
of network weights is

f (w | D, α, β, M ) = f (D | w, β, M )f (w | α, M )

f (D | α, β, M )
, (12)

where M is the particular neural network model used;
f (w | α, M ) is the prior density, which represents our
knowledge of the weights before any data is collected;
f (D | w, β, M ) is the likelihood function, which is the prob-
ability of the data occurring given the weights; f (D | α, β, M )

is a normalization factor, which guarantees that the total
probability is 1.

Under the assumption of Gaussian noise, the probability of
the data given the parameters w is

f (D | w, β, M ) = exp(−βED)

ZD(β)
, (13)

where ZD(β) = (2π/β)N/2, β = 1/σ 2. The density of the
prior can be written as

f (w | α, M ) = exp(−αEW )

ZW (α)
, (14)

where ZW (α) = ∫
exp(−αEW ) dw. If equations (13) and (14)

are substituted into equation (12), we obtain

f (w | D, α, β, M ) = exp(−(βED + αEW ))

ZW (α)ZD(β)
= exp(−F(w))

ZF(α, β)
.

(15)
where ZF(α, β) = ∫

exp(−F) dw. In this Bayesian frame-
work, the optimal weights should maximize the posterior
probability.

2.3. Optimizing the regularization parameters

After we showed that the weights are a function of the
parameters α and β, we optimize the latter using Bayes’
theorem,

f (α, β | D, M ) = f (D | α, β, M )f (α, β | M )

f (D | M )
. (16)

If a uniform prior density f (α, β | M ) is taken for the reg-
ularization parameters α and β, then maximizing the pos-
terior is achieved by maximizing the likelihood function
f (D | α, β, M ). This likelihood function is the normalization
factor in equation (12). Since all probabilities have a Gaussian

form, the posterior can be expressed as

f (D | α, β, M ) = f (D | w, β, M )f (w | α, M )

f (w | D, α, β, M )
= ZF(α, β)

ZW (α)ZD(β)
.

(17)

ZD(β) and ZW (α) are known from equations (13) and (14).
ZF(α, β) can be expanded in a Taylor series. Since the objec-
tive function has a quadratic shape in the surrounding of the
minimum, we can expand ZF(w) around the minimum point
of the posterior density wMP, where the gradient is zero. We
refer to wMP as the most probable interpolant and therefore F
can be written as

F = F(wMP) + 1
2 (w − wMP)

TH(w − wMP), (18)

where ∇2ED = B, ∇2EW = C, H = αC + βB, wMP = H−1

BwML. It follows that ZF is a Gaussian integral that can be
expressed as

ZF = e−F(wMP)(2π)k/2(det H)−1/2. (19)

Thus we can rewrite the log evidence for α and β as

log f (D | α, β, A, R) = −αEW − βED + k

2
log(2π)

− 1

2
log detH− log ZW (α) − log ZD(β).

(20)

Notice that this expression contains the logarithm of the
Occam factor (2π)k/2(det H)−1/2/ZW (α), which can control
the overfitting. Substituting ZD from equation (13) and ZW

from equation (14),

log f (D | α, β, A, R) = −αEW − βED

− 1

2
log detH + k

2
log α + N

2
log β.

(21)

We differentiate the log evidence with respect to α and β to
find the condition that is satisfied at the maximum. Differen-
tiating with respect to α and setting the result equal to zero
gives

αMP = γ

2EW (wMP)
; (22)

differentiating with respect to β and setting the result equal to
zero gives

βMP = N − γ

2ED(wMP)
. (23)

One step of the calculation is (∂/∂α) log det H = tr (H−1(∂H/

∂α)) = tr (H−1I) = tr H−1 = (tr H)−1, where ∇∇TEW = I.
Here γ = k − 2αMP tr H−1

MP is the effective number of para-
meters and k is the total number of parameters in the network.
The parameter γ is a measure of how many parameters in
the neural network are effectively used in reducing the error
function; it can range from zero to k.
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Summarizing, the steps required for the Bayesian opti-
mization of the regularization parameters with a quadratic
approximation of the Hessian matrix are:

(i) Initialize the parameters α, β and the weights w.
(ii) Take one step of the Levenberg–Marquardt algorithm

to minimize the objective function F(w) = αEW +
βED.

(iii) Compute the effective number of parameters γ =
k − 2α tr H−1 using the Gauss–Newton approximation
of the Hessian available in the Levenberg–Marquardt
training algorithm, H = ∇2F(w) ≈ 2βJTJ + 2αIk ,
where J is the Jacobian matrix of the training set errors.

(iv) Compute new estimates of the objective function
parameters α = γ /2EW (w), β = (N − γ )/2ED(w).

(v) Iterate steps (ii) through (iv) until convergence.

2.4. Markov chain Monte Carlo estimation of α and β

We propose an improvement on the estimation of the regular-
ization parameters developed by MacKay (1992). We advo-
cate applying a Markov chain Monte Carlo (MCMC) scheme
to estimate α and β rather than approximating ZF(α, β) and
consequently approximating the Hessian matrix to estimate
the parameters α, β. Collecting these paramenters into the
two-dimensional vector x and indicating their estimate with
X, the MCMC method (Gelfand and Smith 1990) can be
described as

(i) Choose the target distribution of X with density π(x).
(ii) Choose the proposal distribution q: for any x ∈ R

2
+ we

have q(x | x) ≥ 0,
∫

q(x | x) dx = 1.
(iii) Starting with X1, for t = 2, 3, . . . , M , sample X∗ ∼

q(· | Xt−1).
(iv) Compute α(X∗ | Xt−1) = min{1, π(X∗)q(Xt−1 | X∗)/

π(Xt−1)q(X∗ | Xt−1)}.
(v) Sample U ∼ U(0,1). If U < α(X∗ | Xt−1), set Xt = X∗,

otherwise set Xt = Xt−1.

We apply a standard normal prior distribution to the MCMC
scheme.

3. Application of neural networks to financial data

As discussed in the literature, neural networks are a power-
ful concept that can be applied to different problems ranging
from function approximation to clustering. There are many
articles devoted to the comparison of neural networks to each
other or to other algorithms. Specht (1990) investigated prob-
abilistic neural networks; Wang and Peng (2000) explored
vector-quantization networks; Stallkamp et al. (2012) com-
pared convolutional neural networks with linear discriminant
analysis and decision trees. In contrast to the above studies,
in our analysis, we focus on the concept of regularization and
how it is applied in the context of neural networks. We test
the performance of feed-forward networks with and without
regularization. Furthermore, we combine the regularization
with ES. However, the main focus of the analysis is on the
Bayesian approach to regularization for neural networks. In

contrast to the classical approach to regularization, in the
Bayesian approach, the regularization parameters are inferred
from the data. We propose an improvement of the Bayesian
estimation over the one suggested by MacKay (1992). Our
estimation approach provides objectivity to the estimation and
reduces the bias.

We now apply the methodology proposed in Section 2 to
three different data sets on (1) corporate obligors based in
Eastern Europe, (2) corporate obligors based in Poland, and
(3) retail obligors based in Germany. We use data on cor-
porates from Poland and Eastern Europe because these are
developing markets where the relations between the risk fac-
tors and the default event are not yet well investigated. In
a developing market, the group of default drivers could be
significantly different from what is observed in a developed
market. By using data from developing markets, we try to find
out whether the default drivers in these markets are signifi-
cantly different from the default drivers in developed markets.
Finally, we examine retail data from a developed market
to check whether the default identification of our proposed
algorithm is adequate on a data set that is not corporate.

3.1. East-European data set

The data set contains information for 7996 observations on 33
independent variables (covariates or features) and on 1 binary
target variable which indicates whether a default occurred one
year after the issue of the financial statement. The 33 covari-
ates are constructed based on data from the entity’s financial
statements. These financial ratios are split into several groups
and further analysed. For the feature names and construction
refer to Appendix 1, table A1. The data are on an annual basis
from the period 2007 to 2012. The data set is not publicly
available, but the authors can share the data set if requested.

3.2. Polish data set

This data set is publicly available (Tomczak 2016) and was
collected from Emerging Markets Information Service, which
is a database containing information on emerging markets
around the world. The bankrupt companies are analysed in
the period 2000–2012, while the still operating companies
are evaluated from 2007 to 2013. The data set has 5910
observations on 64 independent variables. The default indi-
cator shows the bankruptcy status after 1 year. For the feature
names and construction, refer to Appendix 1, table A2.

3.3. German data set

Also this data set is freely available (Hofmann 1994). It
contains retail data for German credit borrowers with 1000
observations on 20 independent variables (covariates or fea-
tures) and on 1 binary target variable which indicates the
presence of default. The data set contains categorical and
numerical variables. Following Agresti (2019), who explains
that the choice of scores for the categorical variables has lit-
tle impact on the final result, for clarity and simplicity we
transform the categorical variables on a numerical scale by
mapping them to integer numbers corresponding to the level
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of each category. For example, a categorical variable with
categories small, medium and large is mapped to an integer
variable with values 1, 2 and 3, respectively. After that all the
variables (continuous and categorical) are standardized. There
are no missing values. For the feature names and construction
refer to Appendix 1, table A3.

3.4. Feature selection

The literature offers a variety of algorithms for variable selec-
tion such as filter and wrapper methods. However, the main
goal of our analysis is to examine the effect of Bayesian reg-
ularization on ANNs. Therefore, we apply a simple approach
to variable selection based on the 80% percentile of the vector
containing the absolute value of the correlation with the target
variable. We select only variables whose correlation is equal
or above the 80% percentile of the vector containing the abso-
lute value of the correlation with the target variable. This leads
to a balanced number of variables that are shown in table 1.
Nonetheless, not to bias our results based on a single combi-
nation of variables, we report our results for different number
of variables by changing the percentile value from 0% to 90%,
see Appendix 2. This is consistent with the principle applied
in Sariev and Germano (2019), where model performance is
assessed comparing a model on a different set of variables.

3.5. Results

Table 2 presents eight different feed-forward neural network
architectures. Prior to applying the networks on the data, we
need to make a choice on the number of neurons and the num-
ber of layers for each network. Determining the number of
neurons and layers is driven by many factors such as the num-
ber of variables in the model, the number of data points, etc. In
order to avoid reporting biased results, we run each network
on a range of different combinations of layers and neurons.
This allows us to monitor the performance of the network over
different network architectures and to summarize the network
performance. Although there is no clear rule on selecting the
number of neurons and layers, we follow Demuth et al. (2014)
who argue that the number of neurons should be lower than
the number of variables used in the network. Furthermore,

Table 1. Selected variables by data set based on the 80% percentile
of the correlation to the target variable.

Data set Selected variables

East-European data payables turnover, return on assets, cash
ratio, income from sales/total assets,
liquid assets/total assets, interest coverage

Polish data total costs/total sales, (sales − cost
of products sold)/sales, profit on
sales/sales, working capital, logarithm
of total assets, sales(n)/sales(n − 1),
sales/inventory, working capital/total
assets, sales/receivables, short-term
liabilities/total assets, total liabilities/total
assets, sales/total assets

German data duration in months of the account, credit
history, checking account status

Table 2. Performance of the ANN on the East-European; Polish and
German test data when using factors based on the 80% percentile of

the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini
CPU
time/s

East-European data
1 No No 0.66 0.59 0.73 0.59 1.2
2 No Yes 0.67 0.58 0.75 0.61 0.9
3 Classical No 0.66 0.58 0.73 0.59 0.9
4 Classical Yes 0.67 0.58 0.75 0.60 0.9
5 Bayesian No 0.66 0.59 0.73 0.55 1.6
6 Bayesian Yes 0.67 0.73 0.62 0.50 1.7
7 Bayesian

MCMC
No 0.71 0.69 0.74 0.61 19.1

8 Bayesian
MCMC

Yes 0.70 0.70 0.70 0.57 18.3

Polish data
1 No No 0.67 0.75 0.57 0.52 0.8
2 No Yes 0.65 0.75 0.56 0.52 0.8
3 Classical No 0.67 0.79 0.54 0.53 0.9
4 Classical Yes 0.65 0.76 0.55 0.52 0.8
5 Bayesian No 0.63 0.68 0.52 0.55 1.5
6 Bayesian Yes 0.64 0.87 0.39 0.53 1.6
7 Bayesian

MCMC
No 0.68 0.75 0.64 0.52 17.1

8 Bayesian
MCMC

Yes 0.68 0.66 0.69 0.56 16.4

German data
1 No No 0.68 0.63 0.72 0.60 1.2
2 No Yes 0.67 0.63 0.71 0.61 1.0
3 Classical No 0.68 0.61 0.74 0.61 1.3
4 Classical Yes 0.67 0.61 0.74 0.61 1.0
5 Bayesian No 0.66 0.67 0.65 0.57 2.0
6 Bayesian Yes 0.61 0.43 0.75 0.55 2.3
7 Bayesian

MCMC
No 0.68 0.65 0.70 0.57 20.6

8 Bayesian
MCMC

Yes 0.70 0.72 0.67 0.58 19.4

Notes: Correct: the percentage of overall correctly classified obligors;
Good: the percentage of correctly classified good obligors; Bad: the
percentage of correctly classified bad obligors; Gini: the Gini coeffi-
cient; CPU time/s: the CPU time in seconds needed for one run of the
network.

the number of hidden layers should not be more than two to
three because most problems are tackled even with one hid-
den layer. Adding many hidden layers on small data sets (less
than one million observations) does not result in a better per-
formance. Therefore, we decide to report the performance of
the network on a combination of neurons that range from 1 to
25 and hidden layers that range from 1 to 3. We investigate
combinations with more neurons than Demuth et al. (2014)
suggested so that our results are more comprehensive. How-
ever, we show that increasing the number of layers does not
lead to a higher performance; see Section 3.6.

We acknowledge that our decision on the number of neu-
rons and layers is subjective, but we aim to cover a wide
enough range of neurons and layers so that our results are less
biased than using just a single combination of hidden layers
and neurons. For classical regularization, the regularization
parameter should be determined before applying the network
to the data. Based on 10-fold cross-validation, we estimated
the parameter γ for classical regularization, see equation (7),
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to be 0.05. All networks are trained with the MSE loss func-
tion. One third of the data is left for testing the networks,
two-thirds of the data are allocated for training and validating.

Following the above logic, we report our results in table 2.
The first column shows the architecture type; the second
column shows the regularization type: classical, Bayesian
or Bayesian based on MCMC; the third column indicates
whether ES was applied or not. The fourth to seventh columns
give the mean percentage of correctly classified observations,
the percentage of non-defaulted obligors, the percentage of
defaulted obligors and the Gini coefficient on the grid of 1–
25 neurons and 1–3 hidden layers. All results are reported on
test data. Finally, the eighth column presents the average CPU
time in seconds to compute a network; the CPU was an Intel
Celeron N2840 with 2.16 GHz.

Based on table 2, we observe that:

(i) The percentage of overall correctly classified obligors
is the highest for a network architecture where the reg-
ularization parameters are estimated by the Bayesian
approach with the proposed MCMC estimation rather
than the Gaussian approximation.

(ii) In some cases, the ES procedure can lead to a bet-
ter performance but in other cases ES undermines the
network performance.

(iii) The computational time needed for the MCMC esti-
mation of the network is significantly higher than for
the other networks but the Bayesian estimation auto-
matically estimates the regularization thus reducing the
bias.

The above observations are valid for all data sets. Below we
examine the results for each data set separately.

(i) For the East-European data Bayesian regularization
with MCMC leads to the highest overall performance.
The improvement in performance is 4% which is high
enough to make a difference from a practical point of
view. In terms of identification of bad obligors and
Gini coefficient, Bayesian regularization with MCMC
performs similarly to classical regularization.

(ii) For the Polish data Bayesian regularization with
MCMC leads to the highest overall performance. The
improvement in performance is 1%, which can be
ignored for practical purposes. However, in terms of
identification of bad obligors and Gini coefficient,
Bayesian regularization with MCMC performs signifi-
cantly better than the other methods.

(iii) For the German data, Bayesian regularization with
MCMC leads to the highest overall performance. The
improvement in performance is 2%, which may make
a difference in a situation where overall performance
is of utmost importance. However, in terms of identi-
fication of bad obligors and Gini coefficient, Baeysian
regularization with MCMC under-performs compared
to the other methods.

The results in table 2 are based on the 80% percentile of the
correlation to the target variable. In Appendix 2, one can see
the results for the other combinations of variables but the con-
clusion stays the same. In all cases, Bayesian regularization
with MCMC overall outperforms the other methods.

Finally, in table A4 in Appendix 2, we apply a two-sample
t-test on the overall performance of our proposed method
namely architectures 7 and 8. The two-sample t-test is a
parametric test that compares the location parameter of two
independent data samples. The statistics of the test follows
a Student’s t distribution. The null hypothesis states that the
means of two populations are equal. In table A4, 1 indicates a
rejection of the null hypothesis. Therefore, we can claim that
our results are statistically different for each data set.

Figure 1 presents distributions of the overall correctly clas-
sified obligors per data set and per network architecture that
are shown in table 2. We can see from figure 1 that the
distribution of the overall correctly classified obligors for
architectures 7 and 8 is right skewed for the East-European
and Polish data. The results in figure 1 are based on the
80% percentile of the correlation to the target variable. In
Appendix 2 one can see the results for the other combinations
of variables but the conclusion stays the same. In all cases,
Bayesian regularization with MCMC overall outperforms the
other methods.

3.6. Neural network performance on increasing the
number of layers

Inspired by the flexibility of the deep neural network
paradigm, we tried to increase the number of layers with the
goal of increasing the performance on the test data. How-
ever, contrary to our expectations, the generalization power
of the network decreased for each data set, as can be seen
from figure 2. The decrease in performance is different for
each data set. For the Polish and German, the decrease of
performance is not significant but for the East-European data
the decrease is significant. The reason is that our data sets
are not big enough to allow the application of many layers.
The networks with more than 4 layers significantly overfit
the data.

3.7. Comparison to other classification algorithms

The main objective of our research is to analyse the effect of
Bayesian regularization and compare it to classical regular-
ization for ANNs. We report our results as an average over
different combinations of layers and neurons. Therefore, we
do not report the maximum classification accuracy that can be
achieved rather we aim to present the effect of Bayesian regu-
larization with MCMC over different network architectures
and advocate that on average our proposed approach leads
to higher performance when compared to other regularization
approaches for ANNs. However, for the purpose of complete-
ness, we apply two other non-linear classification methods
to the three data sets. The first is a support vector machine
(SVM) and the second is k-nearest neighbours (KNN). The
results in terms of classification accuracy are shown in table 3.
Overall the performance is similar to our proposed method.
On the Polish corporate data SVM and KNN outperform but
as we emphasized before the results we report in table 2 are
averaged over a grid of different neurons and layers and there-
fore are not directly comparable to the results in table 3.
Therefore, the performance reported in table 2 is not the
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Figure 1. Distribution of the overall correctly classified obligors for the East-European (a), Polish (b) and German (c) data. Results are based
on the 80% percentile of the correlation to the target variable.
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Table 3. Overall accuracy (per cent of classified obligors) by SVM
and KNN.

East-European data Polish data German data

Percentile SVM KNN SVM KNN SVM KNN

0% 0.62 0.63 0.70 0.71 0.49 0.70
50% 0.65 0.63 0.73 0.74 0.63 0.62
60% 0.69 0.63 0.69 0.73 0.69 0.67
70% 0.67 0.62 0.69 0.73 0.71 0.63
80% 0.66 0.62 0.72 0.74 0.65 0.57
90% 0.66 0.61 0.72 0.69 0.62 0.65

Notes: The results are shown per variable selection combination
based on the 0%, 50%, 60%, 70%, 80% and 90% percentile of the
correlation to the target variable.

highest that could be achieved using Bayesian regularization
but this average performance is close to the maximum per-
formance we achieve when we apply SVM and KNN to the
data.
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4. Policy implications

Identifying a classification method to estimate the PD is an
important factor but equally important is deriving business
intuition from the selected default factors. Typically, PD mod-
els are used by a non-technical audience and the interpretation
of the default factors from an industry prospective is of utmost
importance. For that reason, we split the selected ratios into
three categories†

(i) Leverage category: ratios that signal how much debt
and debt-related costs a company utilizes against its
equity or assets. Effectively this category indicates the
level of indebtedness of a company.

(ii) Profitability category: ratios that signal the ability of
a company to generate income relative to its equity
or assets. Effectively this category indicates how effi-
ciently a company utilizes it assets.

(iii) Liquidity category: ratios that signal a company’s abil-
ity to meet the current liabilities when they become due
with its current assets. Effectively this category indi-
cates the ability of a company to pay off its short-term
obligations.

Table 4 presents the allocation of the selected ratios from the
variable selection method on the two corporate data sets (East-
European and Polish) to each of the above three categories.

As can be seen from table 4, the default risk in the Polish
data set is driven mainly by the profitability ratios, fol-
lowed by the leverage ratios. Liquidity ratios do not play
an important role in determining the default risk of the Pol-
ish obligors. We compare our approach with that of Liang
et al. (2016) where they split the financial ratios into sev-
eral groups namely: solvency (leverage) ratios, profitability
ratios, capital structure ratios, cash flow ratios, ownership
ratios, turnover ratios, and growth ratios. They found that
leverage and profitability ratios are the most important cat-
egories in identifying defaults. Interestingly, they have used
data from the Taiwan Stock Exchange. The fact that their
findings align with ours proofs the significance and the uni-
versality of the leverage and profitability ratios. Another study
by Al-Kassar and Soileau (2014) also indicates the impor-
tance of profitability and leverage ratios through the use of
factor analysis. However, they advocate that non-financial
data are also important in identifying and measuring default
risk. Furthermore, a study by Chen et al. (2011) emphasizes
the role of the profitability and leverage ratios. The analy-
sis is done on 20 000 solvent and 1000 insolvent companies.
Their study applies SVM on German companies and shows
the importance of profitability and leverage in identifying
defaults.

Similarly the default risk in the East-European data set is
driven by profitability and leverage ratios but it is also driven
by liquidity ratios. We compare our approach with that of
Marilena and Alina (2015) where liquidity and leverage ratios
are identified as a major default driver. Their work applies

† Payables turnover = supply payables × 360/cost of goods sold
(East-European data) and working capital/total assets as well as log-
arithm of total assets (Polish data) cannot be allocated to these three
groups.

Table 4. Selected ratios based on the 80% percentile of the corre-
lation to the target, allocated into three main financial categories:
leverage, profitability and liquidity on the East-European (E) and on

the Polish (P) data.

Category Ratio

Leverage ratios interest coverage (E), short-term liabili-
ties/total assets (P), total liabilities/total
assets (P), total costs/total sales (P)

Profitability ratios return on assets (E), income from sales/total
assets (E), sales/total assets (P),
sales/inventory (P), sales/receivables
(P), sales(n)/sales(n − 1) (P), profit on
sales/sales (P), (sales − cost of products
sold)/sales (P)

Liquidity ratios cash ratio (E), liquid assets/total assets (E),
working capital (P)

multiple discriminant analysis, logistic regression and ANNs.
The data used are from the Bucharest Stock Exchange prin-
cipal market. Moreover, a study by Tian et al. (2015) also
indicates the importance of liquidity and leverage ratios. They
use North American financial data on corporate obligors and
apply the LASSO method for variable selection. Finally, Tian
et al. (2015) claim that their approach is superior to the one
given by the popular distance to default model proposed by
Merton (1974).

We note that the major difference in default drivers between
the East-European data and the Polish data is the higher
importance of liquidity ratios for the former, the reason being
that Polish companies are in general bigger and liquidity
is not a major indication of default risk. Practically, larger
companies have access to cheaper funding, whereas smaller
companies incur higher funding costs.

Due to the low number of selected features in the German
retail data set, we are not able to allocate them into differ-
ent groups. However, most of the variables in the German
retail data are based on the status and duration of the current
account. This is aligned with the study of Barrell et al. (2010),
which shows evidence that the status of the current account is
a major predictor of mortgage defaults.

5. Discussion and conclusions

In this paper, we propose an improvement of a Bayesian
approach to regularize feed-forward neural networks. The
Bayesian approach is attractive because it provides automatic
determination of the regularization parameters. Moreover,
we demonstrate that the improved Bayesian approach per-
forms well when compared to the classical regularization
approach for neural networks. We find that using a MCMC
scheme to estimate the Bayesian regularization parameters
leads to higher performance than using a Gauss–Newton
approximation. Furthermore, the application of early stopping
on the network does not guarantee higher performance.

We analysed three data sets; two are corporate and one
retail. From a policy prospective, three groups of financial
ratios are identified as major drivers of default risk: profitabil-
ity ratios, leverage ratios and liquidity ratios. The effect of
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liquidity ratios is higher on the East-European data and the
effect of profitability ratios is higher on the Polish data.

The findings of this paper yield promising insights into
the potential of Bayesian regularization to efficiently estimate
the network weights. Practically, this leads to making better
informed and less biased credit risk decisions.
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Appendices

Appendix 1

Table A1. Summary statistics on all ratios, East-European data.

Ratio name Mean Median

return on assets (ROA) 0.13 0.08
ROA before financial expenses 0.18 0.12
return on operating income − 0.07 0.08
return on sales income − 0.01 0.11
return on investment 0.06 0.03
cash ratio 0.45 0.01
quick ratio 2.06 0.50
operating cash flow ratio 4.21 1.16
liquid assets over total assets 0.03 0.00
working capital over total assets 0.49 0.48
financial autonomy 14.25 20.34
total funding ratio 0.76 0.83
long term funding ratio 0.20 0.39
total financial liabilities over total assets 0.39 0.22
supply payables over total assets 0.16 0.09
financial liabilities over total liabilities 0.39 0.35
equity over total liabilities 2.04 0.29
short term funding ratio 0.62 0.68
total liabilities coverage 1.37 0.17
financial liabilities coverage 11.45 0.41
current financial liabilities coverage 7.30 0.87
interest coverage 99.86 4.43
income from sales/total assets 1.73 1.00
employees’ expense / sales income 0.13 0.06
earnings on operating income 1.10 0.94
payables turnover 263.44 39.30
inventory turnover 251.29 66.41
receivables turnover 97.17 20.27
total sales income 5348.68 524.00
total assets 3365.22 531.00
relative annual change in total sales 4.62 0.14
relative annual change in total assets 1.34 0.15
relative annual change in profit from main activities 11.18 − 0.08
absolute annual change in total liabilities 0.03 0.00
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Table A2. Summary statistics on all ratios, Polish corporate data.

Ratio name Mean Median

net profit/total assets − 0.02 0.05
total liabilities/total assets 0.47 0.45
working capital/total assets 0.19 0.22
current assets/short-term liabilities 5.00 4.89
(cash+short-term securities+receivables-short-term liabilities)/(operating expenses- depreciation) × 365 19.41 0.57
retained earnings/total assets 0.02 0.00
EBIT/total assets − 0.11 0.06
book value of equity/total liabilities 5.74 1.16
sales/total assets 1.59 1.14
equity/total assets 0.55 0.52
(gross profit+extraordinary items+financial expenses)/total assets 0.07 0.00
gross profit/short-term liabilities 1.07 0.17
(gross profit + depreciation)/sales 0.35 0.07
gross profit + interest)/total assets − 0.11 0.06
(total liabilities × 365)/(gross profit + depreciation) 1033.62 875.25
(gross profit + depreciation)/total liabilities 1.19 0.24
total assets/total liabilities 6.83 2.21
gross profit/total assets − 0.10 0.06
gross profit/sales − 0.09 0.04
(inventory × 365)/sales 56.67 38.62
sales(n)/sales(n − 1) 2.46 1.12
profit on operating activities/total assets − 0.00 0.06
net profit/sales − 0.10 0.03
gross profit(in 3 years)/total assets 0.14 0.16
(equity – share capital)/total assets 0.38 0.42
(net profit + depreciation)/total liabilities 1.09 0.21
profit on operating activities/financial expenses 463.64 1.15
working capital/fixed assets 10.23 0.55
logarithm of total assets 4.15 4.17
(total liabilities,cash)/sales 0.85 0.22
(gross profit + interest)/sales − 0.07 0.04
(current liabilities × 365)/cost of products sold 2111.59 81.91
operating expenses/short-term liabilities 8.34 4.50
operating expenses/total liabilities 5.01 1.72
profit on sales/total assets − 0.01 0.06
total sales/total assets 2.05 1.56
(current assets,inventories)/long-term liabilities 67.02 5.00
constant capital/total assets 0.65 0.62
profit on sales/sales 0.02 0.04
(current assets,inventory/receivables)/short-term liabilities 2.21 0.18
total liabilities/((profit on operating activities + depreciation) × 12/365) 2.19 0.09
profit on operating activities/sales − 0.02 0.04
rotation receivables+inventory turnover in days 155.56 106.41
(receivables × 365)/sales 98.88 58.79
net profit/inventory 66.63 0.29
(current assets – inventory)/short-term liabilities 4.01 1.07
(inventory × 365)/cost of products sold 137.42 42.351
EBITDA/total assets − 0.09 0.02
EBITDA/sales − 0.07 0.01
current assets/total liabilities 4.17 1.29
short-term liabilities/total assets 0.43 0.33
(short-term liabilities × 365)/cost of products sold) 0.73 0.22
equity/fixed assets 11.20 1.30
constant capital/fixed assets 12.11 1.45
working capital 10817.31 1802.80
(sales, cost of products sold)/sales 0.06 0.05
(current assets – inventory – short-term liabilities)/(sales – gross profit – depreciation) − 0.26 0.11
total costs/total sales 0.96 0.950
long-term liabilities/equity 0.28 0.01
sales/inventory 911.03 9.45
sales/receivables 10.94 6.21
(short-term liabilities × 365)/sales 241.98 73.78
sales/short-term liabilities 9.13 4.94
sales/fixed assets 65.28 4.22
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Table A3. Summary statistics for all ratios, German retail data.

Ratio number and name Median Mean

1 status of existing checking account 2 2.58
2 duration in months of the account 18 20.9
3 credit history 3 3.6
4 credit purpose 2 2.9
5 credit amount 2320 3271
6 savings account/bonds 1 2.1
7 present employment since 3 3.9
8 installment rate in percentage of disposable

income
3 2.973

9 personal status and sex 3 2.7
10 other debtors/guarantors 1 1.2
11 present residence since 3 2.845
12 property indicator 2 2.4
13 age in years 33 35.55
14 other installment plans 3 2.7
15 housing indicator 2 1.9
16 number of existing credits at this bank 1 1.41
17 job status 3 2.9
18 number of people being liable to provide

maintenance for
1 1.2

19 telephone availability 1 1.4
20 foreign worker indicator 1 1

Notes: The median and the mean are shown before standardization
of the variable.

Appendix 2

Table A4. Statistical significance of Bayesian MCMC (architectures 7 and 8) on the overall accuracy per
data set: East-European data (E), Polish data (P), German data (G).

E MCMC1 E MCMC2 P MCMC1 P MCMC2 G MCMC1 G MCMC2

Architecture 7 8 7 8 7 8

1 1 1 1 1 0 1
2 1 1 1 1 1 1
3 1 1 1 1 0 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 0 1 0 0 0 1
8 1 0 0 0 1 0

Notes: 1 indicates statistical difference, 0 indicates no statistical difference. MCMC1 and MCMC2 stand
for Architectures 7 and 8 in table 2.

Table A5. Performance of the ANN on the East-European, Pol-
ish and German test data when using factors based on the 90%

percentile of the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini

East-European data
1 No No 0.67 0.56 0.77 0.58
2 No Yes 0.67 0.57 0.77 0.60
3 Classical No 0.67 0.56 0.77 0.58
4 Classical Yes 0.67 0.57 0.77 0.60
5 Bayesian No 0.66 0.54 0.77 0.59
6 Bayesian Yes 0.66 0.51 0.80 0.61
7 Bayesian MCMC No 0.67 0.58 0.77 0.62
8 Bayesian MCMC Yes 0.68 0.66 0.70 0.58

Polish data
1 No No 0.67 0.73 0.60 0.52
2 No Yes 0.67 0.66 0.67 0.59
3 Classical No 0.67 0.70 0.64 0.52
4 Classical Yes 0.67 0.68 0.66 0.59
5 Bayesian No 0.65 0.82 0.46 0.54
6 Bayesian Yes 0.68 0.66 0.70 0.56
7 Bayesian MCMC No 0.74 0.74 0.71 0.61
8 Bayesian MCMC Yes 0.74 0.73 0.75 0.66

German data
1 No No 0.68 0.63 0.72 0.60
2 No Yes 0.67 0.63 0.71 0.61
3 Classical No 0.68 0.61 0.74 0.61
4 Classical Yes 0.67 0.61 0.74 0.61
5 Bayesian No 0.66 0.67 0.65 0.57
6 Bayesian Yes 0.61 0.43 0.75 0.55
7 Bayesian MCMC No 0.68 0.65 0.70 0.57
8 Bayesian MCMC Yes 0.68 0.64 0.72 0.58

Notes: Correct: the percentage of overall correctly classified oblig-
ors; Good: the percentage of correctly classified good obligors; Bad:
the percentage of correctly classified bad obligors; Gini: the Gini
coefficient.
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Table A6. Performance of the ANN on the East-European, Pol-
ish and German test data when using factors based on the 70%

percentile of the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini

East-European data
1 No No 0.66 0.63 0.69 0.58
2 No Yes 0.66 0.59 0.73 0.60
3 Classical No 0.66 0.62 0.70 0.58
4 Classical Yes 0.66 0.60 0.73 0.60
5 Bayesian No 0.67 0.55 0.80 0.55
6 Bayesian Yes 0.67 0.63 0.71 0.54
7 Bayesian MCMC No 0.70 0.71 0.68 0.58
8 Bayesian MCMC Yes 0.69 0.72 0.66 0.56

Polish data
1 No No 0.66 0.78 0.55 0.51
2 No Yes 0.64 0.76 0.53 0.54
3 Classical No 0.66 0.76 0.57 0.50
4 Classical Yes 0.65 0.77 0.52 0.54
5 Bayesian No 0.66 0.71 0.59 0.53
6 Bayesian Yes 0.65 0.56 0.66 0.49
7 Bayesian MCMC No 0.69 0.73 0.62 0.51
8 Bayesian MCMC Yes 0.67 0.67 0.66 0.54

German data
1 No No 0.68 0.68 0.66 0.59
2 No Yes 0.67 0.65 0.68 0.59
3 Classical No 0.68 0.69 0.66 0.59
4 Classical Yes 0.67 0.65 0.69 0.59
5 Bayesian No 0.68 0.67 0.69 0.52
6 Bayesian Yes 0.60 0.65 0.53 0.54
7 Bayesian MCMC No 0.70 0.68 0.71 0.59
8 Bayesian MCMC Yes 0.69 0.70 0.69 0.60

Notes: Correct: the percentage of overall correctly classified oblig-
ors; Good: the percentage of correctly classified good obligors; Bad:
the percentage of correctly classified bad obligors; Gini: the Gini
coefficient.

Table A7. Performance of the ANN on the East-European, Pol-
ish and German test data when using factors based on the 60%

percentile of the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini

East-European data
1 No No 0.67 0.63 0.70 0.59
2 No Yes 0.65 0.57 0.73 0.60
3 Classical No 0.66 0.61 0.71 0.58
4 Classical Yes 0.65 0.57 0.73 0.60
5 Bayesian No 0.68 0.61 0.74 0.53
6 Bayesian Yes 0.67 0.62 0.70 0.55
7 Bayesian MCMC No 0.70 0.69 0.70 0.59
8 Bayesian MCMC Yes 0.71 0.67 0.75 0.63

Polish data
1 No No 0.66 0.74 0.57 0.51
2 No Yes 0.62 0.79 0.45 0.53
3 Classical No 0.66 0.76 0.56 0.51
4 Classical Yes 0.63 0.82 0.42 0.54
5 Bayesian No 0.63 0.64 0.59 0.53
6 Bayesian Yes 0.63 0.59 0.64 0.48
7 Bayesian MCMC No 0.67 0.72 0.64 0.53
8 Bayesian MCMC Yes 0.66 0.68 0.64 0.52

German data
1 No No 0.70 0.66 0.73 0.59
2 No Yes 0.68 0.67 0.68 0.58
3 Classical No 0.70 0.66 0.72 0.59
4 Classical Yes 0.68 0.67 0.68 0.58
5 Bayesian No 0.69 0.73 0.65 0.52
6 Bayesian Yes 0.62 0.52 0.68 0.50
7 Bayesian MCMC No 0.69 0.69 0.69 0.58
8 Bayesian MCMC Yes 0.70 0.71 0.69 0.59

Notes: Correct: the percentage of overall correctly classified oblig-
ors; Good: the percentage of correctly classified good obligors; Bad:
the percentage of correctly classified bad obligors; Gini: the Gini
coefficient.



Bayesian regularized artificial neural networks for the estimation 15

Table A8. Performance of the ANN on the East-European, Pol-
ish and German test data when using factors based on the 50%

percentile of the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini

East-European data
1 No No 0.66 0.62 0.69 0.59
2 No Yes 0.66 0.61 0.71 0.59
3 Classical No 0.66 0.62 0.69 0.59
4 Classical Yes 0.66 0.61 0.71 0.59
5 Bayesian No 0.66 0.58 0.74 0.54
6 Bayesian Yes 0.67 0.74 0.60 0.56
7 Bayesian MCMC No 0.69 0.72 0.66 0.58
8 Bayesian MCMC Yes 0.70 0.73 0.67 0.58

Polish data
1 No No 0.68 0.78 0.57 0.51
2 No Yes 0.64 0.73 0.54 0.54
3 Classical No 0.67 0.77 0.57 0.51
4 Classical Yes 0.64 0.75 0.53 0.54
5 Bayesian No 0.64 0.45 0.81 0.53
6 Bayesian Yes 0.65 0.57 0.73 0.49
7 Bayesian MCMC No 0.69 0.74 0.56 0.52
8 Bayesian MCMC Yes 0.67 0.67 0.68 0.53

German data
1 No No 0.66 0.65 0.67 0.56
2 No Yes 0.66 0.67 0.65 0.59
3 Classical No 0.66 0.65 0.67 0.56
4 Classical Yes 0.66 0.68 0.64 0.58
5 Bayesian No 0.68 0.65 0.70 0.55
6 Bayesian Yes 0.61 0.44 0.72 0.50
7 Bayesian MCMC No 0.69 0.70 0.68 0.59
8 Bayesian MCMC Yes 0.70 0.69 0.70 0.61

Notes: Correct: the percentage of overall correctly classified oblig-
ors; Good: the percentage of correctly classified good obligors; Bad:
the percentage of correctly classified bad obligors; Gini: the Gini
coefficient.

Table A9. Performance of the ANN on the East-European, Polish
and German test data when using factors based on the 0% percentile

of the correlation to the target variable.

Architecture Regularization ES Correct Good Bad Gini

East-European data
1 No No 0.65 0.60 0.70 0.60
2 No Yes 0.65 0.60 0.71 0.60
3 Classical No 0.65 0.60 0.70 0.60
4 Classical Yes 0.65 0.60 0.71 0.60
5 Bayesian No 0.65 0.65 0.66 0.55
6 Bayesian Yes 0.67 0.66 0.67 0.56
7 Bayesian MCMC No 0.71 0.67 0.75 0.61
8 Bayesian MCMC Yes 0.69 0.68 0.70 0.60

Polish data
1 No No 0.65 0.76 0.52 0.51
2 No Yes 0.62 0.74 0.49 0.54
3 Classical No 0.66 0.80 0.50 0.51
4 Classical Yes 0.62 0.78 0.44 0.54
5 Bayesian No 0.63 0.67 0.55 0.51
6 Bayesian Yes 0.64 0.87 0.39 0.53
7 Bayesian MCMC No 0.67 0.79 0.56 0.52
8 Bayesian MCMC Yes 0.64 0.65 0.60 0.51

German data
1 No No 0.65 0.68 0.62 0.56
2 No Yes 0.66 0.68 0.64 0.57
3 Classical No 0.65 0.67 0.62 0.56
4 Classical Yes 0.66 0.68 0.64 0.57
5 Bayesian No 0.68 0.76 0.59 0.53
6 Bayesian Yes 0.67 0.67 0.62 0.54
7 Bayesian MCMC No 0.68 0.66 0.69 0.61
8 Bayesian MCMC Yes 0.67 0.62 0.72 0.58

Notes: Correct: the percentage of overall correctly classified oblig-
ors; Good: the percentage of correctly classified good obligors; Bad:
the percentage of correctly classified bad obligors; Gini: the Gini
coefficient.
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Figure A1. Clockwise, distribution of the overall correctly classified obligors for the East-European data. Results are based on the 0%, 50%,
60%, 70%, 80% and 90% percentile of the correlation to the target variable. (a) 0% percentile. (b) 50% percentile. (c) 60% percentile. (d)
70% percentile. (e) 80% percentile and (f) 90% percentile.
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Figure A2. Clockwise, distribution of the overall correctly classified obligors for the Polish data. Results are based on the 0%, 50%, 60%,
70%, 80% and 90% percentile of the correlation to the target variable. (a) 0% percentile. (b) 50% percentile. (c) 60% percentile. (d) 70%
percentile. (e) 80% percentile and (f) 90% percentile.
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Figure A3. Clockwise, distribution of the overall correctly classified obligors for the German data. Results are based on the 0%, 50%, 60%,
70%, 80% and 90% percentile of the correlation to the target variable. (a) 0% percentile. (b) 50% percentile. (c) 60% percentile. (d) 70%
percentile. (e) 80% percentile and (f) 90% percentile.
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