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A B S T R A C T

Purpose: Accurate lesion segmentation is important for measurements of lesion load and atrophy in subjects with
multiple sclerosis (MS). International MS lesion challenges show a preference of convolutional neural networks
(CNN) strategies, such as nicMSlesions. However, since the software is trained on fairly homogenous training
data, we aimed to test the performance of nicMSlesions in an independent dataset with manual and other
automatic lesion segmentations to determine whether this method is suitable for larger, multi-center studies.
Methods: Manual lesion segmentation was performed in fourteen subjects with MS on sagittal 3D FLAIR images
from a 3T GE whole-body scanner with 8-channel head coil. We compared five different categories of automated
lesion segmentation methods for their volumetric and spatial agreement with manual segmentation: (i) un-
supervised, untrained (LesionTOADS); (ii) supervised, untrained (LST-LPA and nicMSlesions with default set-
tings); (iii) supervised, untrained with threshold adjustment (LST-LPA optimized for current data); (iv) su-
pervised, trained with leave-one-out cross-validation on fourteen subjects with MS (nicMSlesions and BIANCA);
and (v) supervised, trained on a single subject with MS (nicMSlesions). Volumetric accuracy was determined by
the intra-class correlation coefficient (ICC) and spatial accuracy by Dice's similarity index (SI). Volumes and SI
were compared between methods using repeated measures ANOVA or Friedman tests with post-hoc pairwise
comparison.
Results: The best volumetric and spatial agreement with manual was obtained with the supervised and trained
methods nicMSlesions and BIANCA (ICC absolute agreement > 0.968 and median SI > 0.643) and the worst
with the unsupervised, untrained method LesionTOADS (ICC absolute agreement = 0.140 and median
SI = 0.444). Agreement with manual in the single-subject network training of nicMSlesions was poor for input
with low lesion volumes (i.e. two subjects with lesion volumes ≤ 3.0 ml). For the other twelve subjects, ICC
varied from 0.593 to 0.973 and median SI varied from 0.535 to 0.606. In all cases, the single-subject trained
nicMSlesions segmentations outperformed LesionTOADS, and in almost all cases it also outperformed LST-LPA.
Conclusion: Input from only one subject to re-train the deep learning CNN nicMSlesions is sufficient for adequate
lesion segmentation, with on average higher volumetric and spatial agreement with manual than obtained with
the untrained methods LesionTOADS and LST-LPA.

1. Introduction

Multiple sclerosis (MS) is an autoimmune disorder of the central

nervous system, characterized by neurodegeneration and demyelina-
tion. To enable both atrophy and lesion load measurements in subjects
with MS, accurate lesion segmentation is necessary. However, manual
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lesion segmentation is labor intensive and highly time consuming.
Therefore, several automatic lesion segmentation methods have been
developed (Garcia-Lorenzo et al., 2013; Danelakis et al., 2018) with
varying amounts of manual input and output optimization possibilities.
In general, methods can be supervised and/or trained, i.e. based on a
previous set of training images that comes with the algorithm (su-
pervised) or based on a set of training images specific to the dataset in
which the method is to be applied (trained).

International MS lesion challenges have shown that especially
convolutional neural networks (CNN) deep learning strategies perform
well for MS lesion segmentation (Commowick et al., 2018). However,
CNN methods have the disadvantage that they still require a lot of
manual reference input data in order to construct the network in the
MR domain of choice. Recently, a method was published showing that
input from only one single subject could be sufficient for the cascaded
CNN method nicMSlesions to outperform manual delineation
(Valverde et al., 2019). The nicMSlesions software consists of an 11
layer CNN source model trained using the public MS databases of the
Medical Image Computing and Computer Assisted Intervention
(MICCAI) society (Valverde et al., 2017). Because that original training
data was fairly homogeneous, with most data acquired in 3T Siemens
systems, we aimed to test the performance of nicMSlesions in an in-
dependent dataset with manual lesion segmentations and to compare it
with other segmentation methods. In this way, we will be able to de-
termine whether this deep learning method is a reliable lesion seg-
mentation method when compared to other existing lesion segmenta-
tion methods, with special attention for the use of minimal input data
(i.e., few manual delineations available) for its applicability in real-
world data.

In this study, we will focus on four different segmentation methods,
with different configurations splitting them in (i) unsupervised, un-
trained methods (Lesion-Topology preserving Anatomical Segmentation
(LesionTOADS) (Shiee et al., 2010)); (ii) supervised, untrained methods
(Lesion Segmentation Toolbox with Lesion Probability Algorithm (LST-
LPA) (Schmidt, 2017) and the default network of nicMSlesions
(Valverde et al., 2019)); (iii) supervised, untrained methods with
threshold adjustment (LST-LPA); (iv) supervised, trained methods
(FMRIB Software Library (FSL) Brain Intensity AbNormality Classifica-
tion Algorithm (BIANCA) (Griffanti et al., 2016) and the trained network
of nicMSlesions); and (v) supervised, trained method with minimal input
(single-subject trained network of nicMSlesions). We quantified volu-
metric and spatial agreement with manual for all methods and also tested
their performance in lesion-negative, healthy control images, in order to
determine which type of method is this most suitable (i.e., best perfor-
mance with least manual labor) for larger, multi-center studies.

2. Methods

2.1. Subjects

From a larger cohort of subjects with RRMS, a total of fourteen
subjects scanned between December 2016 and June 2017 were included
in this study. Subjects included were over 18 years of age, diagnosed with
RRMS for a maximum of five years with a maximum expanded disease
disability status scale (EDSS) score of 5.0, and received either first line
disease modifying therapy or no therapy at all. Patients were not eligible
for participation if they had switched medication in the 6 months prior to
their visit, if they had received second-line treatment in the past, or if
they had received steroid treatment in the 3 months prior to the MRI
examination. Further exclusion criteria were past or current neurological
or immunological syndromes other than MS, and inability to undergo
MRI examination. From the same cohort, data of five healthy controls
was also included in the present study.

This study was approved by the local institutional medical ethics
committee and written informed consent was obtained from all in-
dividuals, according to the Declaration of Helsinki.

2.2. MRI examination

Subjects underwent extensive MRI examination on a 3T whole-body
MR scanner (GE Discovery MR750) with an 8-channel phased-array
head coil. The protocol included a sagittal 3D T1-weighted fast spoiled
gradient echo sequence (FSPGR with TR/TE/TI = 8.2/3.2/450 ms and
voxel size 1.0 × 1.0 × 1.0 mm) and a sagittal 3D T2-weighted fluid
attenuated inversion recovery sequence (FLAIR with TR/TE/
TI = 8000/130/2338 ms with voxel size 1.0 × 1.0 × 1.2 mm).

2.3. MR imaging data analysis

For this research, we investigated the performance of four different
lesion segmentation methods in comparison to manual segmentation,
all with different levels of optimization and training possibilities, al-
lowing us to study the following five categories of lesion segmentation
methods: (i) unsupervised, untrained segmentation, without optimiza-
tion; (ii) supervised, untrained segmentation, without optimization;
(iii) supervised, untrained segmentation, with threshold adjustment;
(iv) supervised, fully trained segmentation, with optimization; and (v)
supervised, trained segmentation with minimal input. Details on the
different lesion segmentation methods are described below and an
overview of these methods is shown in Table 1 and Fig. 1.

2.3.1. Manual segmentation
An expert rater (MLV; experience > 10 years) manually delineated

the lesions on the 3D FLAIR images. For this, lesions were defined as
hyper-intense regions compared to the surrounding tissue with a size of
at least three voxels. The rater had access to the 3D T1 images for re-
ference. Three subjects were rated twice to calculate intra-rater agree-
ment.

2.3.2. Unsupervised, untrained segmentation without optimization:
LesionTOADS

Lesion-Topology preserving Anatomical Segmentation (LesionTOADS)
(Shiee et al., 2010) uses a statistical lesion atlas based on a topology
preserving anatomical atlas. Preprocessing consisted of bias field correc-
tion and brain extraction from both T1 and FLAIR images, as well as
affine linear registration of the brain extracted images from T1 to FLAIR.
The method results in a binary lesion segmentation map.

2.3.3. Supervised, untrained segmentation without optimization: lst-LPA
and nicMSlesions default

LST-LPA default: Lesion Segmentation Toolbox with Lesion
Prediction Algorithm (LST-LPA) (Schmidt 2017) uses voxel-wise binary
regression with spatially varying intercepts. No preprocessing is ap-
plied, because the algorithm performs the necessary bias field correc-
tion and affine registration of T1 to FLAIR images as part of the pipe-
line. Because the output is a probabilistic map, a threshold has to be
defined to obtain binary segmentation files, with the default probability
threshold set to 0.5.

nicMSlesionsnic default: MSlesions is a deep learning method based
on cascaded convolutional neural networks that, in contrast to most

Table 1
Overview of the different lesion segmentation methods investigated in this
study for their performance to manual segmentation.

Supervision Training Optimization Method

no No no (1) LesionTOADS
yes No no (2) LST-LPA default (3) nicMSlesions

default
yes No yes (4) LST-LPA adjusted-threshold
yes yes (n= 14) yes (5) nicMSlesions optimized (6)

BIANCA
yes yes (n= 1) No (7) nicMSlesions single-subject
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trained or deep learning methods, can be used when limited amounts of
manual input data are available. For the supervised, untrained seg-
mentation, we segmented our data using the default parameters of the
network (called baseline 2ch) from nicMSlesions with the outcome
probability map thresholded at 0.5. No preprocessing was required.

2.3.4. Supervised, untrained segmentation with threshold adjustment: lst-
LPA adjusted-threshold

Threshold adjustment of LST-LPA output was performed by varying
the probability threshold from 0.10 to 0.80 with step-size 0.05 and
selecting the threshold that resulted in the highest mean similarity
index (SI) to manual across all fourteen subjects. Note that this con-
figuration of LST-LPA is dependent on the manual delineations, since
they are required for the probability threshold optimization.

2.3.5. Supervised, fully trained segmentation, with optimization:
nicMSlesions optimized and BIANCA

nicMSlesions optimized: Next to the default baseline 2ch trained seg-
mentation of nicMSlesions, the method allows full re-training of the
neural network (all 11 layers) with our own dataset, evaluating per-
formance by using a leave-one-out cross-validation approach (i.e. train
on thirteen subjects and apply on the fourteenth subject). No pre-
processing was required. From this output, we determined the optimal
probability threshold in the same way as for LST-LPA. Although the
minimal lesion size can be optimized for nicMSlesions as well, we chose
to keep this at the default value of five voxels, since optimization of this
parameter only has very limited effect on the performance of the seg-
mentation (Valverde et al., 2017).

BIANCA: BIANCA (Griffanti et al., 2016) is a trained segmentation
method based on the k-nearest neighbor algorithm. Preprocessing of the
data consisted of bias field correction and brain extraction from both T1
and FLAIR images, as well as affine registration of the brain extracted
images from T1 to FLAIR. Since BIANCA allows for many parameters to
be set, we first optimized BIANCA for our full (n= 14) dataset with
leave-one-out cross-validation. First, we optimized the optimal prob-
ability and cluster-size thresholds. Then, we optimized: (1) the number
of lesion and non-lesion training points; (2) the location of the non-
lesion training points; (3) use of patch and patch size; and (4) spatial
weighting.

2.3.6. Supervised, trained segmentation with minimal input: nicMSlesions
single-subject

Last, we tested a single-subject configuration of nicMSlesions, in
which the last 1 or 2 layers of the 11-layer neural network were re-
trained from single-subject input only, again using leave-one-out cross-
validation. In our data, nicMSlesions re-trains one layer for input lesion
volumes below 5 ml, and two layers for higher input lesion volume.
Here, the default probability threshold of 0.5 was used as well.

2.4. Statistics

Per segmentation method, true and false positives and negatives
were extracted from the native FLAIR images, and corresponding sen-
sitivity and 1-specificity were calculated. Furthermore, two-way
random intra-class correlation coefficient (ICC) for absolute agreement
and for consistency were calculated to determine volumetric accuracy.
Dice's similarity index (SI) compared to manual was calculated to
quantify spatial accuracy.

Statistical analysis was performed in IBM SPSS Statistics for
Windows, version 22.0 (IBM Corp., Armonk, N.Y., USA). Repeated
measures ANOVA was used for volumetric agreement with manual per
segmentation method and Friedman Tests for spatial agreement with
manual per segmentation method. For the single-subject analyses of
nicMSlesions, Wilcoxon Signed Ranks tests were used.

For the repeated measures ANOVA, Mauchly's test of sphericity was
performed to assess equal variances of the differences between all
within-subject factors. When the assumption of sphericity was violated,
degrees of freedom were corrected using Huyn–Feldt estimates of
sphericity. When appropriate, post-hoc analyses were conducted using
Mann–Whitney U tests (unpaired) or Wilcoxon Signed Ranks tests
(paired).

Inter quartile range was determined by the 25th and 75th percen-
tile. Results were considered statistically significant upon p-value <
0.05.

3. Results

3.1. Demographics

Five of the fourteen subjects with RRMS were male (36%). Mean age
was 37.1 ± 5.3 years (range 26.4–47.7) and mean disease duration

Fig. 1. Example lesion segmentation shown for the
different lesion segmentation methods on the original
3D FLAIR image of a 36 year old female with RRMS:
manual (red); LesionTOADS (green), BIANCA
(yellow), LST-LPA default (blue), LST-LPA adjusted-
threshold (turquoise), nicMSlesions default (pink), and
nicMSlesions optimized (purple). (For interpretation of
the references to color in this figure legend, the reader
is referred to the web version of this article.)
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3.1 ± 1.4 years (range 0.6–4.7 years). Disease modifying treatment
was used by ten subjects (dimethyl fumarate n= 3; glatiramer acetate
n= 2; interferon-β n= 3; teriflunomide n= 2) and median EDSS was
3.5 (range 1.0–4.0).

From the healthy controls, one of five subjects was male (20%) and
mean age was 34.3 ± 8.3 years (range 22.9–45.7).

3.2. Optimization of lesion segmentation methods

Optimization was performed on LST-LPA, nicMSlesions and BIANCA
based on the highest SI to manual segmentation volume. Results are
depicted in Supplemental Table 1 showing an optimal probability
threshold of 0.25 for LST-LPA and 0.40 for nicMSlesions. Optimization
of BIANCA (Supplemental Table 2) in our dataset resulted in the fol-
lowing settings: probability threshold 0.99; cluster size threshold 3;
2000 lesion points and equal number of non-lesion points in the
training set; any location of the non-lesion training points; 3D patch
with size 5; and spatial weighting 2.

3.3. Performance of lesion segmentation methods: untrained and trained on
n=14 subjects with MS

Volumetric and spatial reliability of the manual segmentations (i.e.,
intra-rater agreement) were good: for the three images that were seg-
mented twice, ICC for absolute agreement was 0.867 and mean SI was
0.76 ± 0.04.

The median lesion volume according to manual delineation was
7.91 ml (interquartile range [IQR]: 4.26–10.15 ml). The performance of
the different segmentation methods in subjects with RRMS is shown in
Table 2. Note that the single-subject trained nicMSlesions is added to
the table as an average over all fourteen configurations, but results from
these variants separately are described in Section 3.4. A scatter-plot
showing the lesion segmentation volumes compared to manual is de-
picted in Fig. 2.

The two supervised and trained methods nicMSlesions optimized
and BIANCA showed the highest volumetric agreement (ICC absolute
agreement = 0.975 and 0.968, respectively), as well as the highest
sensitivity to lesions (0.698 and 0.639, respectively) and the best spatial
agreement with manual (SI = 0.660 and 0.643, respectively). From the
two supervised, untrained methods (i.e., LST-LPA default and adjusted-
threshold, and nicMSlesions default), LST-LPA showed the best volu-
metric and spatial agreement, as well as best sensitivity to lesions, both
for the default and for the probability threshold optimized configura-
tion. The unsupervised, untrained method LesionTOADS performed
worst on all volumetric and spatial measures, except for lesion speci-
ficity, which was higher than for the other methods.

Statistical analysis showed a significant effect of segmentation
method on lesion volumes (F(6,78)=35.435, p< 0.001), with post-hoc
testing showing this difference between manual and the methods
LesionTOADS (p= 0.001), LST-LPA default (p= 0.001), nicMSlesions
default (p= 0.022), but not for LST-LPA adjusted-threshold
(p= 0.778), nicMSlesions optimized (p= 0.300) or BIANCA
(p= 0.925). Friedman test for SI showed a main effect of method as
well (χ2(5) = 56.082, p< 0.001), with post-hoc testing showing that
these differences were significant between all combinations of methods
except between: (a) LesionTOADS and nicMSlesions default; and (b)
LST-LPA default and nicMSlesions default.

3.4. Performance of lesion segmentation methods: trained on n= 1 subject
with MS

Next, we looked at the results from nicMSlesions with single-subject
input. In this case, we excluded the subject that was used for training
from the volumetric outcomes, leading to fourteen different mean le-
sion volumes for manual and for nicMSlesions single-subject (Table 3).
Here, upon training with the single-subject with the lowest lesion Ta
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volume (2.68 ml), nicMSlesions failed in one of the thirteen remaining
subjects to segment the lesions; this was the only failure.

ICC for absolute agreement was lowest upon training single-subjects
with the two lowest and the two highest lesion volumes (ICC absolute
agreement ≤ 0.760). ICC consistency was also lower upon training
single-subjects with low lesion volume (ICC consistency ≤ 0.758), but
not upon input from subjects with higher lesion volumes. The best

volumetric agreement was seen upon training using data of the single-
subjects with lesion volumes of 4.19 or 4.29 ml (ICC absolute agree-
ment = 0.941 and 0.973, respectively, and ICC consistency = 0.937
and 0.971, respectively).

Spatial agreement for the single-subject configuration of
nicMSlesions was good, with median SI varying from 0.363 (input le-
sion volume: 2.68 ml) to 0.606 (input lesion volume: 10.31 ml) and an

Fig. 2. Scatter plots of the automated segmentation lesion volumes versus manual lesion volumes obtained from LesionTOADS (green), LST-LPA default (blue), LST-
LPA adjusted-threshold (turquoise), nicMSlesions default (pink), nicMSlesions optimized (purple), and BIANCA (yellow). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 3
Volumetric and spatial accuracy of the different single-subjects configuration of nicMSlesions, each evaluated on the remaining thirteen subjects.

Manual volume (ml) of single-
subject used for training i.e.,
subject excluded from analysis

Median manual lesion
volume (ml) with IQR

Median automated lesion
volume (ml) with IQR

ICC absolute agreement
with 95% CI

ICC consistency with
95% CI

Median Dice's similarity index
to manual labels with IQR

2.68 # 8.73 (6.40–10.25) 2.94 ** (2.45–4.24) 0.131 (−0.088–0.499) 0.396 (−0.201–0.779) 0.363 (0.311–0.417)
2.72 8.58 (5.27–10.20) 8.18 (5.17–9.71) 0.760 (0.397–0.919) 0.758 (0.379–0.919) 0.521 (0.462–0.581)
4.19 8.58 (5.27–10.20) 7.88 (4.63–10.79) 0.941 (0.819–0.982) 0.937 (0.806–0.980) 0.574 (0.500–0.640)
4.29 8.58 (5.22–10.20) 8.02 (4.94–10.24 0.973 (0.914–0.992) 0.971 (0.908–0.991) 0.595 0.564–0.663)
6.26 8.58 (4.34–10.20) 5.44 ** (2.44–7.20) 0.753 (−0.071–0.944) 0.927 (0.779–0.977) 0.596 (0.517–0.620)
6.85 8.58 (4.34–10.20) 5.48 ** (2.87–7.59) 0.856 (−0.014–0.969) 0.955 (0.861–0.986) 0.562 (0.520–0.635)
7.24 8.58 (4.34–10.20) 6.09 ** 2.78–7.74) 0.844 (−0.029–0.967) 0.953 (0.853–0.985) 0.599 (0.557–0.668)
8.58 7.24 (4.24–10.20) 6.15 ** (3.07–8.15) 0.930 (0.284–0.985) 0.972 (0.910–0.991) 0.595 (0.529–0.663)
8.88 7.24 (4.24–10.20) 4.68 ** (2.31–650) 0.727 (−0.072–0.938) 0.930 (0.787–0.978) 0.575 (0.439–0.630)
9.22 7.24 (4.24–10.20) 5.50 ** (2.19–7.34) 0.819 (−0.052–0.963) 0.963 (0.883–0.989) 0.535 (0.479–0.653)
10.09 7.24 (4.24–9.76) 5.45 ** (2.39–7.23) 0.855 (−0.034–0.970) 0.962 (0.881–0.988) 0.590 (0.513–0.648)
10.31 7.24 (4.24–9.66) 6.34 ** (2.58–8.09) 0.885 (0.073–0.975) 0.959 (0.870–0.987) 0.606 (0.524–0.676)
14.59 7.24 (4.24–9.66) 4.81 ** (2.37–6.68) 0.696 (−0.073–0.929) 0.923 (0.769–0.976) 0.571 (0.473–0.623)
15.79 7.24 (4.24–9.66) 3.86 ** (2.01–4.94) 0.593 (−0.066–0.896) 0.907 (0.723–0.971) 0.540 (0.427–0.561)

Abbreviations: IQR gives the interquartile range with the first and last quartile. Statistics from Wilcoxon Signed Ranks test; * p< 0.05; ⁎⁎ p< 0.01; ⁎⁎⁎ p< 0.001.
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average median SI of 0.559 (Table 3). Excluding the two subjects with
lesion volumes ≤ 3.0 ml (i.e., the minimum lesion volume re-
commended by nicMSlesions for single-subject training (Valverde et al.,
2019)), lowest median SI was 0.535 (input lesion volume: 9.22 ml) and
the average median SI over all remaining twelve subjects was 0.578.

# One subject's images could not be segmented by this single-subject
variant of nicMSlesions; therefore volume and Dice's similarity index
are determined over twelve instead of thirteen subjects.

Wilcoxon Signed Ranks tests showed that in eleven out of fourteen
cases, nicMSlesions single-subject volumetric output differed sig-
nificantly from manual volumes.

Compared to the other supervised, trained methods BIANCA and
nicMSlesions optimized, the single-subject trained nicMSlesions showed
worse volumetric and spatial (Fig. 3) agreement, although this was
highly dependent on the subject that was used for the training of the
network. However, the single-subject training of nicMSlesions showed
better volumetric and spatial agreement than the unsupervised,

untrained method LesionTOADS in all thirteen successfully segmented
cases; and also better than the supervised, untrained method LST-LPA
default in ten (volumetric) or nine (spatial) of thirteen cases. The other
two supervised, untrained methods (LST-LPA adjusted-threshold and
nicMSlesions default) generally also performed worse than the single-
subject nicMSlesions configuration.

3.5. Performance of lesion segmentation methods: healthy controls

Last, we tested the various methods in healthy controls. The mean
lesion volume measured in the five subjects, as well as the range from
min-to-max is shown in Table 4. Since the manual lesion volume was 0
in all subjects, no volumetric or spatial reliability could be calculated.

Results show that the measured lesion volumes in the healthy
controls were generally low in all segmentation methods. However, the
supervised, untrained method LST-LPA with threshold adjustment, the
supervised, untrained version of nicMSlesions and the supervised and
trained method BIANCA showed relatively higher false positive lesion
volumes in these healthy controls, which was also seen in the subjects
with MS (Table 2). The lowest false positive rate was seen when the
single-subject trained network of nicMSlesions was used to segment the
healthy control subjects.

4. Discussion

In this research, we compared four different lesion segmentation
methods in different configurations to investigate the suitability of the
deep learning cascaded CNN method nicMSlesions with input from only
one manually delineated subject for multi-center trials. Although the
supervised and trained methods nicMSlesions (re-train of full 11-layer

Fig. 3. Box-and-whiskers plot (min-to-max, line at median) showing Dice's similarity index (SI) in comparison to the manual lesion segmentation for LesionTOADS
(green), LST-LPA default (blue), LST-LPA adjusted-threshold (turquoise), nicMSlesions default (pink), nicMSlesions optimized (purple), BIANCA (yellow), and the
fourteen different nicMSlesions single-subject variants (orange). Horizontal dotted lines indicate the medians of the other automated lesion segmentation methods.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
Volumetric accuracy of the various grouped lesion segmentation methods
compared to manual in the five healthy control subjects.

HC n= 5 Mean lesion volume ± SD (range min-to-max)

LesionToads 0.81 ± 0.23 (0.45–1.08)
LST-LPA default 0.40 ± 0.22 (0.07–0.67)
LST-LPA adjusted-threshold 1.36 ± 0.11 (0.40–2.49)
NicMSlesions default 2.23 ± 1.77 (0.00–5.18)
NicMSlesions optimized 0.32 ± 0.43 (0.00–1.53)
NicMSlesions single-subject 0.27 ± 0.34 (0.00–0.94)
BIANCA 1.81 ± 0.83 (0.86–3.38)
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cascaded CNN with own data) and BIANCA (optimized for own data)
show the best volumetric and spatial agreement with manual, the
single-subject configuration of nicMSlesions outperformed the un-
supervised, untrained method LesionTOADS and the supervised, un-
trained method LST-LPA for both volumetric and spatial agreement
with manual. Furthermore, the single-subject trained network of
nicMSlesions showed the least false positives when tested on healthy
controls.

There is a need for automatic lesion segmentation in MS, not only to
assess lesion accrual itself, but also to assess structural brain changes
such as atrophy, because the presence of MS lesions significantly
hampers accurate brain segmentation (Gonzalez-Villa et al., 2017).
Several reviews have been published showing an abundance of avail-
able MS lesion segmentation methods(Mortazavi et al., 2012; Garcia-
Lorenzo et al., 2013) and since the emergence of machine learning even
more methods have surfaced, as becomes evident in the various inter-
national MS lesion segmentation challenges (Carass et al., 2017;
Commowick et al., 2018; Scully et al., 2008). An important feature of
automated and accurate lesion segmentation, is robustness to new data
from “unseen” centers, with potentially different MR vendors and ac-
quisition protocols than those used during development (de Sitter et al.,
2017). In this study, we show that re-training of the nicMSlesions
network with data from an unseen center is possible with as little as one
manual delineated subject as input data, showing the potential of this
method for multi-center studies in MS. Important to note is that a
cluster size threshold can be customized for this single-subject trained
network of nicMSlesions as well, which may even further decrease the
false positive rate of the segmentation.

One limitation of nicMSlesions is that for input lesion volumes
below a certain threshold (in our dataset 5.0 ml), nicMSlesions has not
enough data points to re-train the last two layers of the network, and
therefore it only re-trains the last layer. Segmentation problems for low
input lesion volumes are present in other automated lesion segmenta-
tion methods as well (Khayati et al., 2008; Schmidt et al., 2012;
Steenwijk et al., 2013), although none of these methods use single-
subject input. In our data, we see that training on subjects with lesion
volumes below 3.0 ml yields less accurate segmentations than training
on subjects with higher lesion volumes. However, training on subjects
with lesion volumes between 3.0 and 5.0 ml shows good performance,
even though only the last layer of the network was re-trained in these
cases. Valverde et al. (2019) propose that this may be due to the im-
portance of higher lesion numbers over higher lesion load, suggesting
that input for re-training of the method should be chosen carefully in
order to obtain the best results with the cascaded CNN method. The
other configurations of nicMSlesions tested here (i.e., the default 11-
layer CNN and the 11-layer re-trained CNN with probability threshold
optimization) show no problems with the segmentation when four out
of the fourteen subjects had lesion volumes below 5.0 ml, but we have
no data when the network is re-trained with input from subjects with
lesion volumes below 5.0 ml only, which should be tested in future
work to assess the suitability of the method for cohorts with low lesion
load or few lesions.

Our results as shown in Fig. 3 also seem to suggest that choosing
training subjects that are most similar to a large part of the study po-
pulation may be advantageous: while performance is roughly stable
across the central part of the lesion volume distribution, partial re-
training with subjects with an extreme lesion volume (i.e., very low or
very high) appears to lead to reduced SI compared to manual.

We have shown that the default configuration of nicMSlesions can
be optimized for protocols from an individual scanner. Even in a har-
monized multi-center study with scanners from the same vendor, con-
siderable differences in lesion volume in the same subject have been
described (Shinohara et al., 2017). Hardware differences such as coil
configuration, gradient and radio frequency amplifiers, and other dif-
ferences such as acquisition parameters, spatial resolution, and filters
used in image reconstruction, can have substantial effects on the

appearance of lesion in FLAIR images and on their quantification using
automated software. Therefore it is not unreasonable to suspect that
training on one's own specific type of images could improve perfor-
mance of the nicMSlesions segmentation, and our results suggest that
this is indeed the case.

As in comparable papers on image analysis methods, while the main
message can be appreciated visually from inspecting the graphs and
tables reflecting measured data, we did include some statistical ana-
lyses. It should be noted that such statistical testing results are reported
in this paper as auxiliary information. Given the relatively small
number of subjects and the fact that quite a number of comparisons are
of interest, as well as the more general debate on null hypothesis testing
and the legitimacy of p-values (McShane et al., 2019), the resulting p-
values should be interpreted with caution and are by no means intended
to suggest any definitive answers to the questions posed.

This study has some limitations. First, manual delineation was
performed by one single rater, thereby the gold standard presented here
may be biased towards the individual rater. Furthermore, the data
presented here is from one MR vendor, thereby no information on
multi-center data could be included. However, the main objective of
this study was to investigate the performance of the single-subject
configuration of the deep learning cascaded CNN of nicMSlesions in
comparison to other methods, while varying the amount of manual
input and optimization possibilities, since this has not yet been re-
ported. Of course, although all methods have already shown their
multi-vendor validity in their separate proof-of-concept papers, these
data should be replicated in other datasets to further prove that single-
subject nicMSlesions outperforms the untrained methods LesionTOADS
and LST-LPA. Because this paper focused on the nicMSlesions software,
and because retraining is not as readily available for LST-LPA as for
nicMSlesions, we did not also retrain LST-LPA using our own data. Such
retraining could improve performance of LST-LPA which may affect the
reported comparisons. However, it should be noted that the retraining
of LST-LPA would require a group of patients rather than a single
subject. Last, longitudinal performance of the single-subject config-
uration of nicMSlesions has not yet been shown, which should be fur-
ther investigated.

In conclusion, the cascaded CNN lesion segmentation method
nicMSlesions can be successfully re-trained with a limited amount of
manual input, e.g., with only one manual delineation from new data,
showing higher volumetric and spatial agreement with manual lesion
segmentation than obtained with the commonly used untrained lesion
segmentation methods LST-LPA and LesionTOADS. The method should
be further optimized for cohorts with low lesion loads and in long-
itudinal, multi-center studies.
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