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Abstract

Auditory cortex is required for discriminative fear conditioning beyond the classical

amygdala microcircuit, but its precise role is unknown. It has previously been

suggested that Heschl's gyrus, which includes primary auditory cortex (A1), but also

other auditory areas, encodes threat predictions during presentation of conditioned

stimuli (CS) consisting of monophones, or frequency sweeps. The latter resemble nat-

ural prosody and contain discriminative spectro-temporal information. Here, we use

functional magnetic resonance imaging (fMRI) in humans to address CS encoding in

A1 for stimuli that contain only spectral but no temporal discriminative information.

Two musical chords (complex) or two monophone tones (simple) were presented in a

signaled reinforcement context (reinforced CS+ and nonreinforced CS−), or in a dif-

ferent context without reinforcement (neutral sounds, NS1 and NS2), with an inci-

dental sound detection task. CS/US association encoding was quantified by the

increased discriminability of BOLD patterns evoked by CS+/CS−, compared to NS

pairs with similar physical stimulus differences and task demands. A1 was defined on

a single-participant level and based on individual anatomy. We find that in A1, dis-

criminability of CS+/CS− was higher than for NS1/NS2. This representation of

unconditioned stimulus (US) prediction was of comparable magnitude for both types

of sounds. We did not observe such encoding outside A1. Different from frequency

sweeps investigated previously, musical chords did not share representations of US

prediction with monophone sounds. To summarize, our findings suggest decodable

representation of US predictions in A1, for various types of CS, including musical

chords that contain no temporal discriminative information.
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1 | INTRODUCTION

After repeated coupling of neutral cues (conditioned stimuli, CS) with

an aversive event (unconditioned stimulus, US), an associative link

between the two stimuli is formed in a process termed fear condition-

ing (or threat conditioning). As a result, the conditioned stimulus

(CS) is predictive for the US and elicits a conditioned fear response. In

nonhuman animals, there is a body of evidence that this type of learn-

ing requires synaptic plasticity in at least two amygdala nuclei

(Herry & Johansen, 2014). In addition, auditory cortex (ACX) is cru-

cially required for fear conditioning when an animal has to discrimi-

nate CS+ and CS− (Teich et al., 1988), indicating that ACX may enable
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the inhibition of responding to the CS−. When CS+ differs from CS−

in its spectro-temporal features (Ohl, Wetzel, Wagner, Rech, &

Scheich, 1999), ACX is required to facilitate responding to the CS+

during acquisition. These studies demonstrate a differential involve-

ment of ACX in acquiring CS+ and CS− responding, possibly based on

a disinhibitory mechanism (Letzkus et al., 2011). For complex CS+

conditioning, disinhibitory input from the primary auditory cortex

(A1) to amygdala during and shortly after US presentation is

suggested to be part of the fear-conditioning macrocircuit (Letzkus

et al., 2011; Weible, Liu, Niell, & Wehr, 2014). In these two studies, a

frequency modulated sound (Letzkus et al., 2011) or a silent gap in a

continuous sound (Weible et al., 2014) served as a CS that co-

terminated with the US. When A1 was optogenetically inhibited dur-

ing US presentation, learning was disrupted.

Another line of evidence for ACX involvement in fear conditioning

comes from postconsolidation observations. After fear memory is con-

solidated (within 24 hr), a wealth of evidence indicates plastic

reconfiguration of ACX (Weinberger, 2007). For example, individual neu-

rons responded more to the CS+ frequency after fear memory consolida-

tion than before training, and the entire tuning curve shifted toward CS+

frequency (Bakin & Weinberger, 1990). Furthermore, ablation of ACX

after consolidation resulted in reduced fear responses while lesions

before learning did not impair fear acquisition (Romanski and LeDoux,

1992). This indicates that even for simple nondiscriminative fear learning,

ACX is involved and becomes necessary for expression of fear memory

after consolidation (Romanski et al., 1993), although it is not crucially

required during acquisition.

Bringing these findings together, it appears plausible that the ACX

should be involved in stimulus discrimination already during CS pre-

sentation, and send such information to the amygdala at the time

point of the US. Yet, until today it is unclear what exactly the ACX

encodes during CS presentation.

We have previously used multivariate functional magnetic reso-

nance imaging (fMRI) during discriminative fear conditioning in

humans to demonstrate encoding of US prediction, before US onset,

in Heschl's gyrus (Staib & Bach, 2018). This may indicate that A1 not

only extracts stimulus features and transmits this information to the

amygdala together with the US, but that it already computes the US

prediction during CS presentation. These results were unlikely to be

caused by postconsolidation synaptic plasticity since the experiment

was too short to include such changes. Crucially, this representation

of US predictions was found for simple monophone sine tone CS, and

for frequency sweep CS. For these particular two types of sounds, the

representation of US prediction was shared: fMRI patterns relating to

CS+ and CS− in Heschl's gyrus were the same for both types of

sounds, that is, they could be cross-decoded (Staib & Bach, 2018).

Notably, these frequency sweeps were modeled after rodent

experiments. For rodents, such sounds are part of species-specific

vocalization (Ohl et al., 1999), and similar frequency changes are also

common in human prosody. Here, CS+ and CS were discriminated by

complex spectro-temporal information. We sought to extend these

previous findings to sounds only discriminated by spectral but not

temporal features. To this end, we chose a class of artificial sounds

that do not form part of our natural sound environment, but which

most humans are familiar with, namely musical chords (here triads

composed of 3 sine tones). Together with our previous findings, this

approach allows investigating a differential involvement of A1 in

processing spectral and/or temporal features. Furthermore, our previ-

ous finding was based on a group-level representation of Heschl's

gyrus. This group-level definition provided only an imprecise approxi-

mation to individual Heschl's gyrus’ boundaries, due to high inter-

individual variability in gyrification patterns (Leonard, Puranik,

Kuldau, & Lombardino, 1998; Marie et al., 2015). Furthermore, within

Heschl's gyrus there is heterogeneity in A1 location, which in case of

duplication is exclusively situated in the most anterior gyrus

(Brodmann, 1909; Galaburda & Sanides, 1980; Shapleske, Rossell,

Woodruff, & David, 1999). Here, we used a more precise, participant-

level definition of A1, by capitalizing on the shape of Heschl's gyrus in

individual segmentation of MRI images. Thus, we investigated

whether fMRI patterns in A1 discriminated between CS+ and CS− to

a greater extent than they discriminated between similar pairs of neu-

tral sounds (NS) that were explicitly never coupled with a US, under

identical task demands. Furthermore, we sought to confirm that the

detectability of this encoding was not different between simple

monophone sine tones and complex triads. Finally, we sought to

examine whether the patterns representing the US prediction were

shared between simple and complex sounds, that is, whether they

were stimulus-invariant and cross-decodable between the two types

of sounds, as we have previously shown for monophones and fre-

quency sweeps (Staib & Bach, 2018).

2 | MATERIALS AND METHODS

2.1 | Participants and design

From the general and student population, we recruited 20 healthy,

right-handed participants (10 female, mean age: 24.8 years, age range

19–35) for the fMRI experiment. The fMRI experiment was preceded

by a behavioral control experiment to ensure that the musical sounds

were associable with an aversive US to the same extent as the mono-

phone sounds. To this end, we recruited 22 different participants

(15 female, mean age: 22.3, age range 18–32). The size of the fMRI

sample was based on a power analysis using Gpower (Erdfelder,

Faul, & Buchner, 1998) and data from our previous experiment

(Staib & Bach, 2018). For the effect of context on CS or NS discrimi-

nability, we had observed partial η2 = 0.153 (resulting in an effect size

of f = 0.426) and a correlation between measurements in the two con-

texts of r = .25. Thus, to detect an effect of context on stimulus dis-

criminability with 95% power and at an alpha level of .05 in a

repeated-measures ANOVA, a sample size of N = 20 was required.

Because discriminant fear conditioning requires sensory discrimi-

nation of the sounds, which we suspected could vary between individ-

uals, we included participants into the fMRI sample only if they met a

minimum requirement in a preceding sound discrimination task (see

details in task procedure). The experiment and the form of taking writ-

ten informed consent were in accordance with the Declaration of
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Helsinki and approved by the governmental ethics committee (KEK-

ZH 2013-0258). Both experiments used a 3-way factorial design with

the within-subjects factors stimulus (S1, S2), complexity (simple, com-

plex) and context (reinforcement, instructed nonreinforcement).

2.2 | Stimuli

Sounds were 4 s long and either monophone sine sounds (simple) or

the combination of three simultaneous monophone sine sounds (com-

plex, Figure 1). CS and NS were one octave apart. The assignment of

CS/NS to octave was balanced across participants. Simple sounds had

time-invariant frequencies of 370 and 415 Hz, or 740 and 830 Hz.

Each complex sound was a major chord of three sounds, that is, a

triad. The root of the triad, that is, the note that defines its musical

quality, was the discriminative feature, while the highest note was

kept constant. The triad was either in root position or in first inver-

sion. The frequencies were then slightly adapted such that the overall

pitch of pairs of chords was perceived as similar in the MR scanner,

rendering the root as the discriminative feature between two chords.

The triads were composed of [392.0 Hz, 466.2 Hz, 622.3 Hz] and

[410.0 Hz, 516.6 Hz, 614.3 Hz], or [784.0 Hz, 932.3 Hz, 1,244.5 Hz]

and [830.6 Hz, 1,046.5 Hz, 1,244.5 Hz], respectively. For the qualifier

task prior to the MRI experiment, different chords with frequencies of

[220.0 Hz, 261.6 Hz, 349.2 Hz] and [225.0 Hz, 283.5 Hz, 337.1 Hz]

were used. Details of sound creation, sound volume adjustment, and

sound delivery matched those described in Staib and Bach (2018).

US were applied for 500 ms and consisted of 3 square electric

pulses to the forearm of 200 μs duration and 100 ms onset asyn-

chrony (pin-cathode/ring-anode, Digitimer DS7A, Digitimer, Welwyn

Garden City, UK). Stimulation current was determined in two phases:

(1) staircase testing phase, to determine the maximum current toler-

ated by the participant; (2) random testing phase with 14 US intensi-

ties that were rated on a scale from 0 (not perceived) to 100 (clearly

painful). Phase (2) was repeated immediately after the experiment.

Final US current (mean ± SD: 7.40 ± 1.38 mA) was clearly uncomfort-

able but not painful (rating before entering the scanner: Mean ± SD:

85.6 ± 11.9; rating after leaving the scanner: Mean ± SD: 81.6 ± 22.6).

Participants in the fMRI experiments reported US habituation (exclud-

ing one subject due to loss of the electrode at the end of measure-

ment), t18 = 4.83, p < .001. In the behavioral control experiment, five

participants did not complete the re-evaluation. The remaining 17 par-

ticipants showed no habituation or sensitization to the US,

t16 = 1.00, p = .33.

Finally, reinforcement and nonreinforcement contexts were sig-

naled by yellow or blue screen background, with assignment balanced

across participants.

2.3 | Task procedure

For inclusion into the fMRI experiment, we required at least 75%

accuracy in a sound discrimination task (qualifier) presented via head-

phones outside the MRI and using sounds similar to the ones used

during fMRI. After a short training of five repetitions, participants

were asked to press the correct button in at least 15 out of

20 repetitions.

Next, in a training session without reinforcement, simple tones

and their corresponding complex tones were introduced. Each sound

was played twice and accompanied by a visual description, together

with the instruction which button to press for each sound. The same

sounds served as CS or NS during the subsequent acquisition phase.

In the main task, CS+ was only reinforced in a reinforcement con-

text, signaled by background color. In the nonreinforcement context,

different sounds were presented. We instructed participants that US

would never occur in the nonreinforcement context, while in rein-

forcement context, US probability depended on the type of CS but

not on their behavior.

The experiment was broken up into 8 blocks with average dura-

tion of 332 s, separated by short breaks. Each block of 24 trials took

place in either reinforcement or nonreinforcement context, in alter-

nating order (Figure 1b). The first 12 trials of each block were simple

sounds, and the second 12 trials complex sounds, or vice versa, bal-

anced across participants. Within these 12 trials, trial order was ran-

domly permuted, and the same order was used for all participants.

Inter-trial interval was randomly drawn from {7 s, 9 s, 11 s}. Across

the entire experiment, each of the eight stimuli was presented

24 times. The precise trial sequence, and the possible inter-trial inter-

vals, maximized the variance for the contrast CS+/CS− in the resulting

design matrix, thus optimizing power for the analysis of the BOLD sig-

nal (Ulmer & Jansen, 2010).

Participants were instructed to indicate the identity of each sound

with a key press, as trained beforehand. They received feedback

(change in fixation cross color) at the end of the CS/NS if they pressed

F IGURE 1 (a) We compared “simple” monophone sounds with
“complex” triads, in two different contexts: A reinforcement context
with CS+ (reinforced) and CS− (nonreinforced), and a
nonreinforcement context with neutral sounds (NS) in which
participants were explicitly instructed about the absence of the
US. Frequencies are shown for each bass tone. Dashed lines signify
the root of each triad that served as discriminative spectral feature
between two chords. (b) Block order in the fMRI experiment, and
intra-trial procedure
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a wrong button or did not respond within 3 s of CS/NS onset. In the

fMRI experiment, accuracy (hit rate) averaged per participant was

between 87% and 99%. As a manipulation check, accuracy per condition

was analyzed in a generalized linear mixed effects model with

Satterthwaite approximation to degrees of freedom (Luke, 2017). This

revealed that participants responded more accurately to CS+ and to

those NS that required the same key press (mean ± SEM 97.07%

± 3.77%) than to CS− and the other NS (95.28% ± 4.74%, F1,

3,795 = 5.79; p = .016). They also responded more accurately to simple

(96.86% ± 4.63%) than to complex stimuli (95.49% ± 3.90%, F1,

3,795 = 4.00; p = .046). Context had no effect on accuracy, and there were

no interactions. In a linear mixed-effects model with Satterthwaite

approximation to degrees of freedom (Luke, 2017), reaction times

(Table 1) were shorter during reinforcement than nonreinforcement con-

text (F1, 3,796 = 10.48; p = .001) and shorter for CS− and response-

matched NS than CS+ and response-matched NS sounds (F1, 3,796

= 43.42; p < .001). This was particularly pronounced in the reinforcement

context (interaction CS × context: F1, 3,796 = 8.86; p = .003). The fact that

responses were also slower for CS+ response matched NS than CS−

response matched NS may indicate some level of fear generalization via

the associated motor response. Also, the CS+/CS− difference was more

pronounced for simple sounds (interaction CS × complexity: F1, 3,796

= 15.64; p < .001).

2.4 | Skin conductance data acquisition

We recorded skin conductance on left thenar/hypothenar (MRI exper-

iment: Biopac MP150/ GSR-100C; behavioral control experiment:

LabLinc V71-23, Coulbourn; DI-149/Windaq, Dataq) as described

previously (Staib & Bach, 2018). Sampling rate was 1,000 Hz in the

MRI experiment and 200 Hz in the behavioral control experiment.

2.5 | MRI data acquisition

Data was recorded on a 3 T (Philips Achieva, Best, The Netherlands)

whole-body MRI scanner. We acquired two high-resolution

T1-weighted scans (field of view, 255 × 255 × 180 mm; matrix,

336 × 334; 237 sagittal slices [0.77 mm]). Functional images were

acquired using a 1.5 mm isotropic T2*-weighted echo-planar (EPI)

sequence (TR, 2.5 s; echo time, 30 ms; flip angle, 85�; in-plane field of

view, 216 × 216 mm; matrix, 144 × 144; slice thickness, 1.5 mm;

interleaved slices; slice tilt 30�) with partial brain coverage including

the entire auditory cortex. Field of view was centered on ACX. We

had no specific hypotheses about CS representation in the amygdala,

and due to a technical oversight, slice tilt/phase-encoding gradient

polarity was not optimized to reduce susceptibility artifacts in this

region. This is why our analysis focuses on A1, the primary region-of-

interest.

2.6 | MRI data analysis

We preprocessed MR images with the default procedures in SPM12

(Wellcome Centre for Human Neuroimaging, London, UK). Using a B0

scan for each participant, the SPM12 FieldMap toolbox, and the

realign & unwarp procedure, we corrected all BOLD images for static

distortions due to field inhomogeneities, for changes in these distor-

tions due to head motion, and for head motion itself (Andersson,

Hutton, Ashburner, Turner, & Friston, 2001; Hutton et al., 2002).

After slice time correction (Sladky et al., 2011), we coregistered BOLD

images to the native-space T1 image.

To estimate trial-by-trial amplitude of the BOLD response to audi-

tory stimuli in a general linear model (GLM), we constructed a design

matrix that contained one regressor per trial. To this end, a stick func-

tion for each event was convolved with the default canonical hemo-

dynamic response function. This procedure appropriately estimates

the trial-by-trial BOLD amplitude at the given inter-trial-interval

(Mumford, Turner, Ashby, & Poldrack, 2012). The design matrix con-

tained one further regressor per run for the US, constructed with a

stick function across all trials and convolved with the hemodynamic

response function, as well as a standard high-pass filter. We did not

analyze estimated BOLD responses from trials that were reinforced

with the US (Bach, Weiskopf, & Dolan, 2011; Staib & Bach, 2018), to

avoid contamination by residual motion artifacts due to the US.

For mass-univariate and searchlight analysis, we used the unified

segmentation procedure in SPM (Ashburner and Friston, 2005) to

estimate deformation parameters that map MNI space to each partici-

pant's native space.

2.7 | Region of interest definition

Automated parcellation of cortical structures on T1-weighted images

was performed in native space using the “recon-all” pipeline in

FreeSurfer Version 6.0 (http://surfer.nmr.mgh.harvard.edu/; Dale, Fis-

chl, & Sereno, 1999; Fischl et al., 2002; Fischl et al., 2008; Fischl,

Liu, & Dale, 2001; Fischl, Sereno, & Dale, 1999; Fischl, Sereno,

Tootell, & Dale, 1999; Segonne, Grimson, & Fischl, 2005). In this

approach, anatomical labels are assigned by combining local geometric

information and atlas data acquired from a manually segmented train-

ing set (Desikan et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010;

Fischl et al., 2004). The anterior transverse temporal gyrus (of Heschl)

parcellation (“G_temp_sup-G_T_transv”) as described in Destrieux

et al. (2010) was extracted. The FreeSurfer labeling takes care of the

TABLE 1 Reaction time statistics
Marginal means (SEM) in ms CS− CS+ NS1 NS2

Simple 737 (36) 852 (28) 782 (37) 868 (43)

Complex 776 (40) 844 (48) 850 (47) 832 (48)

Note: Participants were instructed to respond quickly, within a response time limit of 3 s.

STAIB ET AL. 885

http://surfer.nmr.mgh.harvard.edu/


high interindividual variability and frequent duplications of the trans-

verse temporal gyrus (Leonard et al., 1998; Marie et al., 2015). It thus

separates the most anterior gyrus which exclusively contains A1

(Shapleske et al., 1999). Nevertheless, partial duplications and to

lesser extent complete duplications of the transverse temporal gyrus,

often remained undetected by the algorithm and hence were removed

by manually defining coordinates for a separating plane using

MATLAB. We note that on the lateral axis, the granular core field A1

is mainly located in the medial two-thirds of Heschl's gyrus according

to cytoarchitecture (Hackett, Preuss, & Kaas, 2001; von Economo &

Koskinas, 1925; Wallace, Johnston, & Palmer, 2002). Our parcellation

includes the entire gyrus and thus may possibly extend into other sub-

regions (e.g., primary subfields R/RT or lateral belt). Tonotopic map-

ping of ACX using high-resolution fMRI has been suggested as an

alternative localization technique of subfields (Da Costa et al., 2011;

Leaver & Rauschecker, 2016) revealing further organizational com-

plexity as well as variability in A1 location.

2.8 | Multivariate image analysis

BOLD response estimates from bilateral A1 were extracted from the

GLM output images with spm_searchlight. We then sought to discrim-

inate the two stimuli in each of four task conditions (simple CS, com-

plex CS, simple NS, complex NS) with a support vector machine (SVM;

Chang and Lin, 2011) following a threefold cross-validation scheme

established in our previous work (Staib & Bach, 2018).

Independently for each voxel, we z-scored BOLD response esti-

mates across all trials, in order to avoid numerical instability. For each

task condition, there were 48 stimuli: 24 CS− or NS1, and 24 CS+ or

NS2. Of the 24 CS+, 12 were reinforced and thus discarded from the

analysis. For the reinforcement context, we thus trained a SVM on

24 CS (16 CS−, 8 CS+) per complexity condition and tested it on the

remaining 12 CS (8 CS+, 4 CS−), for each of the three folds. Because

CS representations presumably change over time during learning, we

did so by creating a running index over each individual stimulus and

including every third stimulus into the test data set such that both

training and test data were drawn from the entire duration of experi-

ment. Because of the different numbers of CS− and unreinforced CS+

in the reinforced context, a binomial statistical test is not appropriate.

We estimated the SVM performance under the null hypothesis of

label exchangeability. To this end, we randomly permuted stimulus

labels 1,000 times and repeated the classification procedure (Bach

et al., 2011; Staib & Bach, 2018). The average classification accuracy

with permuted labels (chance level) was 59.9%, with a standard devia-

tion of 6.7% across participants, ROIs, and conditions. Averaging over

all random permutations, we could thus subtract, for each task condi-

tion, expected classification accuracy under the null hypothesis from

the classification accuracy with correct labels. For the non-

reinforcement context, different from CS, all 48 trials per condition

could potentially be used for fMRI analysis, since there was no US. To

render CS and NS analysis analogous in terms of the number of trials

in the SVM, we removed 12 random trials from one randomly selected

NS (NS1 or NS2) before MVPA. We averaged over 100 repetitions of

this procedure per permutation of the trial labels.

Cross-prediction was performed to investigate stimulus invariance of

CS representations (i.e., to interrogate whether monophone CS+/CS−

were discriminated by the same patterns as the triad CS+/CS−). For

cross-prediction, we used all simple CS or complex CS as training data

set, and all CS from the other category as test data set. We did the same

procedure for NS, where NS identities were matched between simple

and complex by the required key press, to rule out that CS cross-

prediction is due to motor responses.

Our main outcome measures are the difference in information

content between two conditions, and cross-prediction performance.

The true value for both of these values can be above or below zero

(Staib & Bach, 2018). In contradistinction, the absolute value of infor-

mation encoding cannot be negative, which motivates scrutinizing the

use of standard statistical tests in this situation (Allefeld et al., 2016).

However, this is not an issue here.

To investigate threat encoding outside A1, we used a searchlight

with 10 mm diameter in the function spm_searchlight (Kriegeskorte

et al., 2006). Individual results were mapped to MNI spaces and ana-

lyzed with one-sample t-tests across the group.

2.9 | Behavioral analysis

We estimated anticipatory sympathetic arousal after each CS or NS

(Bach et al., 2010a; Staib, Castegnetti, & Bach, 2015) with PsPM 3.0

(http://pspm.sourceforge.net/; Bach et al., 2018), using the canonical

skin conductance response function (Bach et al., 2010b). We used

standard settings optimized for fear learning (Staib et al., 2015). Esti-

mated sympathetic arousal for each participant was z-scored across all

trials (Staib et al., 2015; Staib & Bach, 2018)

2.10 | Inference statistics

For fMRI analysis, BOLD discriminability for each pair of CS or NS

was computed and analyzed in a complexity × context factorial model.

For behavioral analysis, levels of the stimulus factor were defined by

the required response, and data were analyzed in a stimulus × com-

plexity × context factorial model.

Inference statistics were done in R 3.4.3 (www.r-project.org) using

linear mixed-effects models (lme4; Pinheiro & Bates, 2006). Degrees

of freedom were estimated using the Sattertwaithe approximation

(lmerTest; Luke, 2017). Fixed factors were CS, context, and complex-

ity for sympathetic arousal, as well as context, complexity and hemi-

sphere for MVPA classification results, and context and direction of

cross-prediction for cross-classification results. We modeled a random

intercept for each subject. For post hoc tests on smaller number of

data points, we used Wilcoxon tests.

Mass-univariate results and searchlight-results were performed in

SPM. Group-space images were smoothed with an 8 mm FWHM

Gaussian kernel. For mass-univariate analysis, we examined the

planned contrasts (CS+ > CS−) > (NS1 > NS2) [analogous to the main

effect of context in MVPA], (CS+ > CS−) > (NS1 > NS2) complex,
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(CS+ > CS−) > (NS1 > NS2) simple, (CS+ > CS−), (CS+ > CS−) com-

plex, (CS+ > CS−) simple, (NS1 > NS2), (NS1 > NS2) complex, and

(NS1 > NS2) simple. As a plausibility check, we furthermore report

the contrast CS versus baseline and US/CS+ versus no US/CS+. We

corrected for family-wise error with a random field theory approach,

a voxel-inclusion threshold of p < .001, and a reporting threshold of

p < .05 (Worsley et al., 1992). The random field theory-based

approach appropriately controls the false positive rate when used

with these p values (Eklund et al., 2016).

3 | RESULTS

3.1 | Fear acquisition is similar for complex and
simple sounds

Fear learning occurred in the reinforcement context (CS × context

interaction) in both experiments (Figure 2, Table 2). There was no

three-way interaction with complexity, indicating similar learning for

both simple and complex stimuli. In the reinforcement context, fear

learning could be demonstrated for simple (t21 = 3.8, p < .001) and for

complex sounds (t21 = 3.6, p = .002) in the behavioral sample, as well

as in the fMRI sample (simple: t19 = 2.5, p = .02; complex: t19 = 2.9,

p = .008). Furthermore, in both experiments, stimulus-associated

arousal was overall stronger in the reinforcement context than in the

nonreinforcement context (main effect context) and for complex than

for simple sounds (main effect complexity). In the fMRI experiment,

arousal during complex sound presentation was higher than for simple

sounds only in the reinforcement context (interaction context ×

complexity).

3.2 | Mass-univariate effects of CS and US

In a contrast of all sounds against baseline, we observed BOLD

responses across the entire ACX and in the thalamus (Figure 3). The

US, compared to omission of US, activated a region within the insula

and amygdala. We observed no significant effects of stimulus, con-

text, or complexity, or any interaction in the mass-univariate analysis,

that is, all p > .05 FWE-corrected on cluster level and peak level

across the whole brain, consistent with previous work (Staib & Bach,

2018). In particular, we found no indication of global auditory atten-

tion in terms of increased BOLD signal for the CS+, or for stimuli in

the reinforcement as opposed to nonreinforcement context. Also, no

significant mass-univariate results were found in a ROI analysis in A1.

3.3 | Threat representation in A1

Confirming our primary hypothesis, classification of CS+/CS− was sig-

nificantly higher than for NS (main effect of context) in A1 (Figure 4,

Table 3). Because the physical stimulus difference between the NS

pairs is comparable to the CS pairs, this suggests that the higher CS

classification accuracy reflects a representation of the CS–US associa-

tion, or threat anticipation, of the CS. Simple sounds could be

F IGURE 2 Fear learning strength,
quantified as CS/NS-associated
sympathetic arousal, that is, amplitude
of estimated central input into the
sudomotor/sweat gland system,
measured by skin conductance
responses. Error bars: Group-
level SEM

TABLE 2 ANOVA on CS/NS-
associated sympathetic arousal

Behavioral experiment fMRI experiment

df F p df F p

CS 1, 3,261 84.1 <.001 1, 3,352 43.8 <.001

Context 1, 3,261 997.1 <.001 1, 3,352 183.9 <.001

Complexity 1, 3,261 5.0 .026 1, 3,352 46.6 <.001

CS × context 1, 3,261 68.4 <.001 1, 3,352 14.4 <.001

CS × complexity 1, 3,261 <1 .37 1, 3,352 2.3 .12

Context × complexity 1, 3,261 <1 .51 1, 3,352 12.7 <.001

CS × context × complexity 1, 3,261 <1 .43 1, 3,352 <1 .48

Note: The CS factor has levels CS+/response matched NS, and CS−/response-matched NS. Results

demonstrate similar fear learning (main effect CS and CS × context interaction) in both complexity

conditions.
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classified better than complex sounds (main effect complexity), but

notably, and as in our previous work, CS discriminability was compara-

ble for both types of sounds, that is, there was no complexity × con-

text interaction.

To compare this result with our previous work, we examined

whether these results were specific to A1. We had previously investi-

gated CS discriminability within a probabilistic definition of Heschl's

gyrus (Staib & Bach, 2018), which is likely to contain tissue outside

the native-space A1 definition used here. Hence, we repeated our

analysis for a probabilistic group-level definition of Heschl's gyrus (see

white outlines in Figure 4b). This yielded the same main effect of con-

text, although much less pronounced (Table 3). This might indicate

that CS encoding is indeed tied to A1, rather than extra-A1 parts of

ACX also contained in Heschl's gyrus. As expected, we did not

observe an interaction with complexity, that is, also in the broader

definition of HG, CS discriminability was not different between simple

and complex sounds.

To examine whether CS/US association was represented in a simi-

lar way for both types of sounds, we used cross-classification and

investigated whether CS+/CS− patterns derived from simple sounds

also predicted complex CS+/CS− identity, and vice versa. Because ini-

tiation of motor responses may influence this result, we compared

F IGURE 3 Mass-univariate contrast of all stimuli versus baseline
(main effect of sound) and US+ > US− after CS+ (p < .05 FWE-
corrected). Within the field of view, sounds evoke BOLD signal across
temporal plane and superior temporal gyrus as well as in thalamic
structures, and US evoke BOLD signal in insula and amygdala

F IGURE 4 (a) Discriminability (mean ± between-participant SEM above baseline performance estimated in a random permutation test) of
multivoxel BOLD patterns to CS+/CS− or NS1/NS2 within A1. CS is better distinguished than NS across simple (monophone) and complex
(triads) sounds. (b) Region of interest definition within Heschl's gyrus: Probability map of MNI-normalized mask across participants, projected
onto flattened cortex template. White dashed boundaries outline the atlas-based mask of Heschl's gyrus for comparison

TABLE 3 ANOVA results for
classification of CS+/CS−

A1 Heschl's gyrus

Effect df F p df F p

Context 1, 119 30.9 <.001 1, 133 6.2 .014

Complexity 1, 119 10.8 .001 1, 133 10.6 .001

Hemisphere 1, 119 1.9 .17 1, 133 <1 .42

Context × complexity 1, 119 <1 .39 1, 133 1.5 .29

Context × hemisphere 1, 119 2.4 .12 1, 133 <1 .72

Complexity × hemisphere 1, 119 <1 .70 1, 133 <1 .69

Context × complexity × hemisphere 1, 119 <1 .73 1, 133 <1 .30

Note: A1: native-space definition of A1 from individual anatomy. Heschl's gyrus: Probabilistic atlas-based

mask for comparison with previous work.
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these values against cross-prediction of NS, matched for the motor

response, as in our previous work. Different from our expectation

derived from or previous experiment with frequency sweeps, we did

not find that similar patterns distinguished CS+ and CS− for the two

types of sounds: Simple CS+/CS− separation was not predicted from

complex CS+/CS− separation or the other way around (main effect

context: F1, 133 = 2.32, p = .13). Thus, there was no evidence for

stimulus-invariant encoding with the specific types of sounds used

here. As we had previously found such stimulus-invariant encoding

particularly in the left hemisphere, we repeated this analysis for the left

hemisphere only, but did not find a significant cross-classification

(main effect context within left hemisphere: F1, 57 = 5.47, p = .088). In

the right hemisphere, there was no significant cross-classification

either (main effect context within right hemisphere: F1, 57 < 1, p = .86).

3.4 | Threat representation beyond A1

Finally, we investigated CS discriminability in the superior temporal

gyrus excluding A1, using searchlight analysis. This revealed no clus-

ters with a significant effect of context or context × complexity inter-

action. In a previous study, encoding of the CS/US association was

found in a small cluster outside A1. Using this cluster as region of

interest, there was no impact of context on classification performance,

that is, no evidence for encoding of the CS/US association.

4 | DISCUSSION

Auditory cortex is required for discriminative fear conditioning with

sound CS, but its precise role is unclear until today. In our previous

work (Staib & Bach, 2018), we addressed monophone sine sounds and

frequency sweeps and suggested that ACX encodes not only (sum-

mary statistics of) physical stimulus properties for relay to amygdala,

but indeed encodes the CS/US-association itself. Here, we investigate

whether this is restricted to the particular types of sounds standardly

used in cross-species auditory fear conditioning that can be discrimi-

nated based on spectro-temporal features. In contrast to our previous

study, the sounds used here are discriminated only by spectral fea-

tures, that is, multiple frequency components. To allow for a con-

strained investigation of acoustic complexity, and to distinguish the

sound set from the sweeps used in previous studies (Letzkus et al.,

2011; Ohl et al., 1999; Staib & Bach, 2018), all temporal features were

removed.

Three main findings emerge. First, encoding of a CS/US associa-

tion for monophone sounds is demonstrated in a region of interest

consistent with A1 on a single-participant level, using a multivariate

approach. This finding is replicated but much less pronounced when

investigating a probabilistic definition of Heschl's gyrus, containing A1

but also other parts of ACX. This suggests that indeed CS/US associa-

tion is encoded in, and possibly limited to, A1. A previous finding of

CS encoding outside Heschl's gyrus was not replicated here. At the

same time, univariate analysis revealed no CS+/CS− differences

within our limited brain coverage, which notably excluded a number

of areas previously reported in a meta-analysis of CS+/CS− differ-

ences (Fullana et al., 2016). Next, a similar level of CS/US association

encoding is seen for musical chords, which are discriminated by spec-

tral features only and do not form part of our natural sound environ-

ment. This may suggest that A1 CS/US association encoding is not

restricted to sounds that contain temporal discriminative features

(Letzkus et al., 2011; Ohl et al., 1999; Weible et al., 2014). We did not

directly compare musical chords to the frequency sweeps used in pre-

vious cross-species work (Letzkus et al., 2011; Ohl et al., 1999; Staib &

Bach, 2018). However, both in this study on musical chords and in our

previous study on frequency sweeps we did not observe different

CS/US association encoding for these complex sounds as contrasted

with the common comparator, monophone sounds. Nevertheless, the

third finding is that the patterns of CS/US association encoding were

different between monophone sounds and musical chords, that is,

they could not be cross-decoded. This is different from our

previous report (Staib & Bach, 2018) where the patterns dis-

tinguishing CS+/CS− were similar for monophone sounds and fre-

quency sweeps and could be cross-decoded significantly better than

between response-matched NS. As a limitation, sample size and stim-

ulus number for the current study were chosen based on our previous

effect size for CS discriminability. In contrast, cross-decoding perfor-

mance in this previous study was much lower, and so it is alternatively

possible that the current null finding may be a false negative or the

previous one a false-positive. Indeed, we here observed a near-

significant cross-decoding in the left hemisphere, consistent with par-

ticularly pronounced cross-decoding in the left hemisphere in our pre-

vious report. It would be desirable to replicate these findings in a

common design using all three kinds of stimuli, and in a larger sample.

It has previously been shown for nondiscriminative fear condition-

ing with frequency sweeps that A1 relays US information during and

shortly after the US occurrence to amygdala, and optogenetic inhibi-

tion of this information relay precludes fear conditioning (Letzkus

et al., 2011; Weible et al., 2014). While this could suggest a passive

role of A1, our present findings speak in favor of an active role in

which A1 separately forms US predictions, which may or may not be

signaled to amygdala as well. Whether these US predictions are also

causally involved in fear learning remains unknown. To investigate the

causal role of A1 function during CS presentation, it would be neces-

sary to perturb the formation of these predictions, for example by

transcranial magnetic stimulation during CS presentation.

It is possible, however, that the current findings are not specific to

fear conditioning. A role of early sensory areas in representing value

properties of physical stimuli has become more apparent over the past

years, including a representation of reward predictions and reward

variance (Bach, Symmonds, Barnes, & Dolan, 2017). The current study

cannot disentangle associative learning processes in general from

threat conditioning in particular, and this would motivate a direct

comparison of threat and reward predictions.

Two alternative interpretations for enhanced discrimination of

CS-evoked BOLD patterns appear unlikely to account for our results.

First, ACX activity is known to be influenced by postconditioning

receptive field mapping. However, this process is reported to start
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after about 20 min and to last for several hours (Froemke, Mer-

zenich, & Schreiner, 2007; Schreiner & Polley, 2014), such that we

deem it less likely to account for our current results. A second inter-

pretation is top-down attention. CS+ detection or reinforcement con-

text detection by amygdala may induce resource prioritization (Bach,

Hurlemann, & Dolan, 2015), which could increase global auditory

attention. Notably, we found no evidence of globally increased BOLD

responses in ACX during CS versus NS, or CS+ versus CS− presenta-

tion. While A1 receptive fields are thought to be altered by top-down

selective attention (Fritz, David, Radtke-Schuller, Yin, & Shamma,

2010), and indeed identity of attended-to-stimuli can be decoded

from BOLD patterns (Riecke et al., 2017), this is usually investigated

by presenting competing sounds, whereas in our case, there was no

requirement to, and no benefit from, specifically attending to CS. In

terms of the task instructions, both contexts required sound identifi-

cation to the same extent. Furthermore, we previously found that CS-

evoked patterns were similar for monophone sounds and frequency

sweeps (Staib & Bach, 2018), and this directly contradicts an underly-

ing mechanism that involves receptive fields. Because there is no rea-

son to expect a difference between the monophone-CS-evoked

patterns in the previous and current study, this renders an explanation

based on selective attention unlikely.

Taken together, we demonstrate auditory CS encoding in an ana-

tomically defined A1 for monophone and musical sounds without

temporal discriminative features. This extends a network perspective

on fear conditioning (Herry & Johansen, 2014) and motivates future

work on the causal role of A1 in this network.
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