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Abstract
Electrophysiological recordings of neuronal activity show spontaneous and task-dependent changes in their frequency-domain 
power spectra. These changes are conventionally interpreted as modulations in the amplitude of underlying oscillations. 
However, this overlooks the possibility of underlying transient spectral ‘bursts’ or events whose dynamics can map to changes 
in trial-average spectral power in numerous ways. Under this emerging perspective, a key challenge is to perform burst detec-
tion, i.e. to characterise single-trial transient spectral events, in a principled manner. Here, we describe how transient spectral 
events can be operationalised and estimated using Hidden Markov Models (HMMs). The HMM overcomes a number of 
the limitations of the standard amplitude-thresholding approach to burst detection; in that it is able to concurrently detect 
different types of bursts, each with distinct spectral content, without the need to predefine frequency bands of interest, and 
does so with less dependence on a priori threshold specification. We describe how the HMM can be used for burst detection 
and illustrate its benefits on simulated data. Finally, we apply this method to empirical data to detect multiple burst types in 
a task-MEG dataset, and illustrate how we can compute burst metrics, such as the task-evoked timecourse of burst duration.
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Introduction

A wide range of brain regions generate spectrally specific 
rhythmic signatures in electrophysiology recordings. Whilst 
some of these ‘rhythms’ reflect genuinely sustained oscil-
latory activity, it has been raised that others may be better 
described as spectrally specific transient events (Jones 2016; 
van Ede et al. 2018). In the latter case, the dynamics may 
be better characterised by measures of the duration, rate, 
or amplitude of transient events, as they occur at the level 
of single trials, rather than standard static or trial-averaged 
estimates of power.

The transient perspective suggests that the typical pic-
ture of a persistent oscillatory response to, for example, a 
stimulus or during working memory, may be an artefact of 
averaging temporally variable, short-lived events across 
many trials (Lundqvist et al. 2016; Stokes and Spaak 2016). 
In some cases, the temporal dynamics of these spectrally 
specific events, rather than overall amplitude or power, may 
be the crucial variable. This perspective is prominent in sev-
eral lines of research into the 13–30 Hz beta band. Visual 
attention is associated with increased beta activity consisting 
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of 300–1000 ms bursts propagating throughout the visual 
stream (Wróbel 2000). Similarly, in motor cortex, single-
trial analyses of 13–30 Hz beta power show motor task 
responses of several seconds that may be built from bursts 
of < 150 ms in both cortical and sub-cortical regions (Fein-
gold et al. 2015; Sherman et al. 2016). The rate and timing 
of these burst-events predict somatosensory and motor per-
formance (Little et al. 2018; Shin et al. 2017) suggesting that 
single-trial variability in these burst-parameters is likely to 
be more than noise. Finally, adaptive deep-brain stimulation 
targeted at reducing the duration of beta bursts, rather than 
continuous suppression of beta power in the subthalamic 
nucleus of patients with Parkinson’s Disease, may improve 
the efficacy and efficiency of DBS (Tinkhauser et al. 2017a, 
b). These converging findings provide evidence that the pre-
cise temporal dynamics underlying power changes in beta 
activity are functionally relevant across a range of brain 
regions, species and task contexts.

The temporal perspective that emphasises transient spec-
tral events thus has a recognised value, but the estimation 
of their temporal metrics comes with a range of technical 
challenges. Accurate analysis of transient spectral events, or 
burst detection, necessitates the detection of power changes 
against background noise at the single-trial level. This is typ-
ically performed by thresholding the amplitude distribution 
of a bandlimited signal. For instance in two recent examples, 
Shin et al. (2017) used a threshold of six times the median 
beta power derived by wavelets, and Tinkhauser et  al. 
(2017a) used the 75th percentile of the amplitude derived 
from the Hilbert transform. These thresholds are set to iden-
tify periods when a signal’s amplitude is in the long tail of a 
positively skewed amplitude distribution. However, a noisy 
signal is likely to have a near-Gaussian amplitude distribu-
tion with few outliers, which makes this threshold selection 
difficult or even arbitrary. In addition, the temporal dynamics 
of a signal are constrained by the time–frequency trade off in 
linear filters or time–frequency transforms (Aru et al. 2015; 
de Cheveigné and Nelken 2019). In other words, a high tem-
poral resolution is desirable when analysing dynamics, but 
this leads to smearing in frequency, which makes it difficult 
to disambiguate between (potentially) different dynamics in 
neighbouring frequency bands.

Here, we briefly outline the challenges associated with 
inferring bursting events in time-series and how the problem 
may be approached with a Hidden Markov Model (HMM) 
in a data-driven manner. The HMM has previously been 
applied to MEG data acquired during a range of simple 
motor (Vidaurre et al. 2016), motor learning (Zich et al. 
2018) and cognitive (Quinn et al. 2018) tasks. We expand on 
these papers by exploring the theory behind how an HMM 
might represent a transient spectral event in the context of 
the recent literature on bursting oscillations. We consider 
two HMM based methods which operationalise bursting 

phenomena in different ways and with different assumptions. 
The time-delay embedded HMM is then applied to a sim-
ple motor task to explore how temporal dynamics related to 
bursting might underlie electrophysiological power spectra. 
Firstly, in the case of between subject differences in beta 
power across a whole recording session and secondly for a 
contrast between pre-movement and post-movement time 
windows highlighting the post-movement beta rebound.

Materials and Methods

Temporal Dynamics and Spectral Power

Standard Fourier-based approaches describe times series 
with a set of pure sinusoids. This means that each frequency 
has a single amplitude and phase lag which is assumed to 
be constant over time. Following this, changes in spectral 
power are typically interpreted as a change in the magnitude 
or power of the underlying oscillation. This interpretation 
is unambiguous when comparing stationary sinusoids but 
can be misleading when the signals contain richer temporal 
dynamics. For instance, some oscillations particularly in the 
beta and gamma bands, may contain intermittent, ‘burst-
ing’ activity; therefore it may be more appropriate to con-
sider these as transient pulses of spectrally specific activity 
rather than tonic oscillations (van Ede et al. 2018). Crucially, 
changes in the temporal parameters of these spectral events, 
such as lifetime or rate of occurrence, may appear as changes 
in power in standard analyses. In comparing two signals, this 
may result in a false interpretation that one signal contains 
tonic oscillations with larger magnitude when instead it has 
longer or more frequent spectrally specific bursting events. 
Moreover, distinct changes in the underlying parameters 
(more bursts, longer bursts, or bursts with higher ampli-
tude) may yield equivalent changes in trial-average power. 
Targeting the changes in the underlying parameters could 
therefore enrich our understanding (and help distinguish 
between alternative models) of power changes in various 
experimental conditions and clinical disorder.

A range of methods, including the HMM approach being 
proposed here, have been developed to describe the tempo-
ral dynamics that might underlie spectral power changes. 
These approaches are expository in their nature and, on their 
own, cannot unambiguously resolve the deeper question of 
whether the underlying physiology is comprised of transient 
events or oscillations occurring within noise. However, they 
can provide insight into the rich temporal structure that is 
missed with static or trial-averaged approaches.

Figure 1 illustrates changes in three features of a dynamic 
oscillation (i.e. amplitude, duration and occurrences) and 
how these changes affect power estimates (also see Fig. 3 
in Shin et al. 2017). Figure 1a shows three short time-series 
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containing tonic oscillations with increasing amplitudes. 
Correspondingly, the Fourier based power spectrum for each 
of these time-series shows successively higher magnitude 
peaks, leading us to correctly conclude that the amplitude of 
these cases is changing. Figure 1b shows a brief oscillatory 
burst, i.e. a single transient event (a short-lived period of 
time with non-zero amplitude), with increasing amplitude. 
The power spectrum computed across the whole window 
again indicates that power is increasing, though in this case 
only the power of a brief event is changing. More generally, 

the power or amplitude of an oscillation might be influenced 
by a range of factors. Figure 1c shows a dynamic signal con-
taining a single transient event with a fixed amplitude but 
successively increasing duration. As with Fig. 1a, the power 
spectrum shows successively larger peaks around 4 Hz. 
Finally, the signals in Fig. 1d contain an increasing number 
of otherwise equivalent events, also resulting in increase of 
the total oscillatory power in the window. This brief simula-
tion shows that increasing event amplitude, duration, or rate 
of occurrence all lead to increased magnitude peaks in the 

Fig. 1  Illustration of how temporal dynamics can affect static power-
estimates. a A tonic oscillation which increases in amplitude. In this 
instance, the peak in the power spectrum increases with each ampli-
tude increase. Note that though the amplitude of the oscillations 
increases linearly, the peak in the power spectrum increases much 
faster. This is as power is related to the square of the amplitude of 
the oscillations. b A single burst which increases in amplitude. The 
increased amplitude leads to increases in the static power-spectrum 
even though only a single segment of the time-course is changing. c 

A single burst which increases in duration. The increased duration 
leads to large increases in the static power-spectrum which subjec-
tively resemble the increases in a. However, in this case we might 
prefer to describe this change as increased duration rather than an 
increase in frequency domain power. d Finally, a burst of fixed dura-
tion which occurs more frequently. More occurrences have higher 
frequency domain power. As with b, we might prefer the temporal 
description that a burst occurs more frequently rather than overall 
power increases
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power spectrum. As such, if we only saw their static power 
spectra computed over the full time-window, we might con-
clude that all three cases show an increase in the amplitude 
of the underlying oscillation. We have the same issue when 
interpreting trial average changes in power which could arise 
from differing single-trial dynamics. Note that the sides of 
the spectral peaks for the four cases are slightly different. If 
our signal was a noise-free and sinusoidal, we could extract 
some extra information about dynamics from the side-bands 
of the main spectral peak. However, in a noisy, dynamics or 
short signal, it is extremely challenging to separate whether 
oscillatory signals, temporal dynamics or a combination of 
both are contributing to frequency domain power.

The increases in power seen in Fig. 1b–d are not math-
ematically inaccurate, they are a complete representation 
of the data under the assumptions of the Fourier transform. 
However, our interpretation of the power change in this form 
is ambiguous; we cannot make a strong statement about the 
which feature lead to our power change from the (non-time-
resolved or trial-averaged) power spectrum alone. We need 
access to the temporal dynamics to resolve the difference 
between our three cases.

Dynamics in Spectrally‑Specific Events with Hidden 
Markov Models

One way to explore the temporal dynamics of transient 
events with specific spectral signatures, i.e. to do burst detec-
tion, is to use Hidden Markov Models. Our intention here is 
to provide an intuition into how the Hidden Markov Model 
can be used to operationalise and explore the temporal 
dynamics of transient spectral events, or bursts, rather than 
to make a formal comparison between all available alterna-
tive methodological approaches.

The Hidden Markov Model represents data as a system 
moving through a set of discrete states. Each state is an 
abstract representation linked to the data through a proba-
bilistic observation model (Baker et al. 2014; Vidaurre et al. 
2016). The observation model can take different forms to 
suit the data modality and features of interest (Vidaurre 
et al. 2018a). Previous applications of the HMM have used 
autoregressive models (Vidaurre et al. 2016) or multivari-
ate Gaussian distributions (Baker et al. 2014; Quinn et al. 
2018; Vidaurre et al. 2018a) as observation models describ-
ing multi-region or single-region data in human and animal 
data. This flexibility makes the HMM a practical choice for 
analysing a wide range of data types, by tuning the observa-
tion model whilst the essential mathematical framework and 
parameter inference remain the same.

In this paper, we will consider two HMM approaches 
to operationalise the detection of bursts of spectrally spe-
cific activity in single-channel (i.e. single-region electro-
physiological data). In these two approaches, we either 

conceptualise a burst as a period of high amplitude, or as a 
period with a distinct power spectra.

Periods of High Amplitude

In the first approach, we define a burst as a period of high 
instantaneous amplitude within a predefined frequency 
band. These can be identified using an HMM with a Gauss-
ian observation model inferred on amplitude envelope time-
courses of bandpass filtered data. We refer to this as the 
amplitude-envelope HMM (AE-HMM; Baker et al. 2014; 
Quinn et al. 2018). In this approach, we typically specify that 
there are two states, one corresponding to the ‘burst’ state 
(i.e. when there is high amplitude), and one corresponding 
to a low amplitude state. A specific visit to the burst state 
then equates to the occurrence of a burst event.

This HMM variant is the most similar to power threshold-
ing methods, in which a ‘burst’ occurs when the envelope 
exceeds a critical amplitude threshold. However, there are 
two key differences Firstly, the HMM does not threshold 
the amplitude envelope directly. Instead, each state has a 
probability of being ‘on’ at each moment in time. Switch-
ing between states can then be computed analytically by 
the Viterbi algorithm, or through a manual thresholding of 
the probabilities. The distributions of posterior probabili-
ties from a well-fitted HMM tend to be strongly bimodal 
with most samples having probabilities close to zero or one. 
When selecting a threshold for the posterior probabilities by 
hand, this means that a relatively wide range of thresholds 
(typically between .33 and .66) tend to give similar results.

Secondly, the HMM applies temporal regularisation to 
avoid overfitting to small changes in the envelope. That is, 
the effect of having a transition probability matrix discour-
ages too many spurious state transitions. This is particularly 
relevant when small changes in the envelope close to the 
threshold could lead to many small bursts being identified 
by a strict threshold. In contrast, brief dips during periods 
of otherwise high amplitude are less likely to lead to state 
changes in the HMM.

Periods with Distinct Power Spectra

We may also define a burst as a period of time with a dis-
tinct pattern of spectral properties (e.g. power). These can 
be identified using a time-delay embedded HMM (TDE-
HMM; Quinn et al. 2018; Vidaurre et al. 2018b), which 
uses an HMM with a multivariate Gaussian observation 
inferred on a time-delay embedding of the wide-band data 
(i.e. a cross-temporal Gaussian distribution over some pre-
specified window). Each state then captures periods of time 
that have distinct auto-covariance. Though defined in the 
time-domain, the auto-covariance of a time series is closely 
related to its frequency content; the Power Spectral Density 
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of a time-series can be computed from the discrete Fou-
rier transform or its autocovariance (as shown by the Wie-
ner–Khinchin theorem).

In this approach, we typically specify more than two 
states in the HMM. Where each state represents a particular 
type of spectral event, or bursting. For example, one state 
may detect bursts in the beta band, another in the alpha band. 
A specific visit to a state then equates to the occurrence of a 
burst event of the type represented by that state.

In contrast to the AE-HMM, the TDE-HMM states are 
defined by the magnitude and shape of an entire spectrum 
rather than the magnitude within a specified frequency band. 
Bursts can then be operationalised as short-lived states con-
taining clear spectral features. As the TDE-HMM works on 
the whole spectrum from raw time-courses, there is no need 
for the tight bandpass filtering needed prior to computing 
the Hilbert transform in envelope-based methods. These fil-
ters require a priori specification and can themselves affect 
the dynamics visible in the data (de Cheveigné and Nelken 
2019). As with the AE-HMM, the TDE-HMM is able to 
infer bursts without defining a priori thresholds.

HMM Estimation

The general theory of Hidden Markov Modelling is explored 
in Rabiner and Juang (1986) and Bishop (2006). The code 
to run the following simulations and real data analyses can 
be found on https ://githu b.com/OHBA-analy sis/Quinn 2019_
Burst HMM. These analyses were carried out in Matlab 
2019a using the Signal Processing and Wavelet toolboxes.

HMM analyses are carried out using the HMM-MAR 
toolbox (https ://githu b.com/OHBA-analy sis/HMM-MAR; 
Vidaurre et al. 2018a, 2016). Previous HMM applications 
have detected transient events in MEG (Baker et al. 2014; 
Quinn et al. 2018; Vidaurre et al. 2018b, 2016), fMRI (Vid-
aurre et al. 2017) and simultaneous EEG-fMRI (Hunyadi 
et al. 2019).

Simulated Examples

The AE- and TDE-HMMs are illustrated with a simulation. 
A noise time-course with a 1/f like profile is generated using 
direct-pole placement to define an order-1 AR model. Spec-
trally specific bursting events at either 20 or 35 Hz are added 
to this noise time-course at random intervals.

High amplitude burst events are detected using either a 
standard thresholding approach or a Gaussian HMM on the 
amplitude envelope estimated with the Hilbert transform 
after a narrow (15–20 Hz) or a wide (15–35 Hz) bandpass 
filter. For an informal comparison, a standard threshold 
is selected as twice the median amplitude envelope value 
in each example. The Gaussian HMM is specified to have 

two-states with the intention that the state with the higher 
mean amplitude reflects the bursting periods.

The same simulated time-course is used to illustrate 
the use of the TDE-HMM. In contrast to the AE-HMM, 
the TDE-HMM works on the raw time-courses, adaptively 
learning the spectral content, and therefore does not require 
a priori specification of the frequency bands of interest. 
A time delay embedding with lags from − 7:7 (58 ms) is 
defined, which means that each state has a [15 × 15] auto-
covariance matrix as its observation model (the HMM 
state observation model means are set to zero). We fit the 
HMM with three states to reflect the periods of noise, low 
frequency bursts and high frequency bursts. State specific 
power spectra are computed for the TDE-HMM using a post 
hoc multi-taper spectral analysis (Vidaurre et al. 2016). The 
multitaper method computes the power spectrum multiply-
ing the raw data with a set of seven orthogonal two-second 
data tapers (discrete prolate spheroidal sequences with a 
time-bandwidth product of 4) and taking the average spec-
trum over all the tapers (www.chron ux.org; Mitra and Bokil 
2007). The HMM-based multitaper approach used extends 
this method by weighing the contribution of each data point 
to the final spectral estimation using the state probabilities 
that the HMM inference provides for each time point in the 
dataset.

Empirical Source‑Space MEG Data

The TDE-HMM is applied to MEG sensor-space data 
acquired from 33 participants whilst completing a Go-NoGo 
task [full experimental details can be found in (Nowak et al. 
2017)]. During each trial, participants prepare to make an 
abduction movement of the right index finger. On 80% of 
trials (Go trials) this movement is completed as expects and 
on the remaining 20% (NoGo trials) the prepared movement 
is no performed. Here we analysed the Go trials containing 
a valid finger movement. The sensor data were preprocessed 
with Signal-Space Separation Maxfilter before being con-
verted to SPM12 format for processing in the OSL toolbox 
in MatLab. Each session is bandpass filtered between 1 Hz 
and 48 Hz and downsampled to 500 Hz. Independent Com-
ponent Analysis (ICA) is used to identify and reject compo-
nents of the sensor data relating to ECG and EOG. A single 
time-course is taken from the first principal component of 12 
sensors over the left motor cortex as defined in (Nowak et al. 
2017). This time course is epoched to the offset of the finger 
movement (identified from concurrent EMG recordings) to 
focus the analysis on the beta rebound. Finally, outlier tri-
als are rejected from further analysis using an automated 
generalized extreme studentized deviate (GESD) algorithm.

Prior to HMM inference, the epoched data are downsam-
pled by a factor of six to 83.3 Hz. This is as the TDE spectra 
will span the whole range from zero to Nyquist frequency. 

https://github.com/OHBA-analysis/Quinn2019_BurstHMM
https://github.com/OHBA-analysis/Quinn2019_BurstHMM
https://github.com/OHBA-analysis/HMM-MAR
http://www.chronux.org
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Therefore, downsampling will ensure that this range is 
focused on the frequency range of the physiological oscilla-
tions of interest. The TDE-HMM is inferred on the epoched 
data with six states and an embedding window of 23 samples 
(276 ms). We use a longer window here than for the simula-
tions to allow the model to capture a greater range of auto-
covariance structures in the data.

Once the HMM state time-courses and observation model 
have been inferred, we compute a range of temporal statistics 
from the state time-courses and extract the auto-covariance 
matrices from the observation models. The state-specific 
power spectra are computed directly from the observation 
model by taking the fast-Fourier transform (fft) of the middle 
row of the inferred autocovariance matrix. Next, the state 
time-courses are averaged across trials to compute a task-
evoked fractional occupancy. HMM-regularised time–fre-
quency transforms are computed from the outer product 
of the task-evoked fractional occupancy and the state-wise 
power spectra. This provides an alternative time–frequency 
transform of the data as seen by the inferred HMM. Finally, 
other task dynamics describing the transient spectral events, 
or bursts, can be computed. For example, we computed the 
task-evoked change in lifetimes for a state by creating a vec-
tor containing ‘NaNs’ (i.e. Not-a-Numbers) when the state is 
off, and the lifetime of the state visit when the lifetime is on. 
The average of these lifetimes across trials then summarises 
how the duration of state visits change over a trial.

Results

Amplitude‑Envelope HMM (AE‑HMM) Simulation

The simulated signal is shown in Fig. 2a; periods of oscil-
latory activity (i.e. Burst 1 and Burst 2) can be seen against 
the background noise. The AE-HMM is inferred with two 
states using Gaussian observation models, i.e. each state has 
its own inferred Gaussian distribution to model the distribu-
tion (across time points) of the amplitude envelope of the 
band-pass filtered signal. The state with the highest expected 
amplitude is considered to be the bursting state and high-
lighted in red in Fig. 2b, d.

First, results are shown when a narrow-band filter is 
applied prior to computing the amplitude envelope, such that 
the 35 Hz bursts are excluded. Figure 2b shows how both 
the HMM and the amplitude threshold are correctly able 
to identify periods of oscillatory activity for the remaining 
20 Hz bursts, though the HMM’s performance does not criti-
cally depend on the pre-specification of a threshold value. 
The state-wise and thresholded amplitude distributions for 
the two approaches are shown in 2c. Whilst the amplitude 
threshold splits this distribution at a critical value (vertical 
dashed line), the two HMM state distributions (i.e. burst 

state in red, non-burst state in grey) are slightly overlapping 
reflecting the effects of the temporal regularisation in the 
HMM. This suggests that a brief period of lower amplitude 
during a high amplitude burst may not be enough for the 
AE-HMM to change state.

Next, results are shown when a wider-band filter is 
applied prior to computing the amplitude envelope, such 
that the both burst types are included. Figure 2d shows how 
both the HMM and amplitude threshold are able to identify 
general bursting around the correct time-periods, though the 
simple threshold provides a noisier estimate than the HMM 
in this wider band case. In Fig. 2d more high-frequency 
dynamics are present in the filtered envelope as this filter 
has a wider pass-band. This leads to the simple thresholding 
approach detecting many short bursts, or burst-splits, when 
the amplitude envelope dips below threshold. In contrast, the 
HMM is able to identify these as continuous periods of high 
spectral amplitude. This is further illustrated in Fig. 2e, in 
which the HMM state amplitude distributions are overlap-
ping between the low and high-power states. This reflects 
the effects of the temporal regularisation within the HMM. 
When the envelope is close to the threshold, the HMM will 
not change state for a tiny fluctuation above or below it. This 
prevents a long but small amplitude event being split into 
several shorter events, which can occur when using standard 
thresholding methods.

While the AE-HMM approach does not require definition 
of the threshold a priori, neither AE-HMM nor amplitude 
thresholding is able to distinguish between the two different 
types of bursts, with their different carrier frequencies. This 
requirement of correctly specifying the frequency band(s) 
of interest a priori when using the AE-HMM is a limitation 
shared with standard thresholding methods.

Time Delay Embedded HMM (TDE‑HMM) Simulation

Figure 3a, b show a segment of the simulated signal and 
its wavelet transform respectively. The transient periods 
of spectrally specific activity are visible in the wavelet 
transform, but their amplitudes and carrier frequencies 
show subtle changes over time due to interaction with the 
noise time-course. The HMM state time-courses for the 
three inferred states are shown in Fig. 3c. Here, states 1 
and 2 identify the periods of low and high frequency activ-
ity and accurately reproduce the occurrence of the corre-
sponding ground-truth bursts of the two different types. As 
the TDE-HMM has access to the whole frequency spec-
trum, unlike the AE-HMM and the simple thresholding 
approach, it is able to disambiguate between burst events 
of different frequencies within a single model. This can 
be seen in the state-wise power spectra in Fig. 3d, which 
show clear peaks at 20 and 35 Hz in states 1 and 2 respec-
tively. State 3 reflects the 1/f background noise. Finally, 
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the auto-covariances in the observation models show how 
the TDE identifies spectrally-specific activity. The diago-
nal bands in states 2 and 3 correspond to the structure of 
the autocorrelation of 20 and 35 Hz activity respectively. 
State 1 shows a relatively monotonically decreasing auto-
correlation function with no sign of an oscillatory peak, 
consistent with the 1/f background noise.

The wider band state-specific spectra inferred with the 
time-delay embedded HMM allows us to extend the defini-
tion of a burst to a period with a distinct power spectrum 
rather than a period of high amplitude. This enables us to 
distinguish between events with different frequency profiles 
within the same model.

Application to Empirical Source‑Space MEG Data

TDE‑HMM States Describe Time‑Windows with Distinct 
Power Spectra

The state observation models are summarised in Fig. 4a. 
These show the autocovariance function, autocovariance 
matrix and power spectrum for each state. The power 
spectrum is computed directly from the fft of the auto-
covariance function and show wide variability between 
states. The states with most diagonal bands in the auto-
covariance matrices show relatively strong spectral peaks 
in the between 5 and 20 Hz. States 1 and 3 capture strong 

Fig. 2  Using the amplitude-envelope variant of the Hidden Markov 
Model (AE-HMM) to detect transient spectral events that have high 
oscillatory amplitude in a predefined frequency band. a A simulated 
time-course containing 1/f type noise alongside two types of burst-
ing: bursts of power at 20 Hz or 35 Hz. b The AE-HMM applied to a 
narrow-band amplitude envelope centred around 20 Hz. Burst events 
are estimated using amplitude threshold (blue) and AE-HMM-state 
time-courses (burst state in red). c The amplitude distribution of the 
time-course (black) with the simple threshold (dashed vertical line) 

and split by HMM states (grey and red). The temporal-regularisation 
of the HMM is apparent through the inference of overlapping ampli-
tude distributions. d The AE-HMM applied to a wider band ampli-
tude envelope containing both the 20  Hz and 35  Hz bursts. Burst 
events are detected by both the amplitude threshold and the HMM 
states. Both methods identify events around the correct times, though 
the amplitude threshold approach is noisier. Neither method can dis-
tinguish between the two types of bursts. e The amplitude distribution 
for the wider band signal, layout as in c 
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oscillatory peaks around 5 Hz and 10 Hz respectively 
whereas state 4 has a wide spectral peak covering both the 
alpha and beta bands (10–20 Hz) and state 5 has peaks in 
low frequencies (< 5 Hz) and the low beta bands (~ 20 Hz). 
Finally, states 2 and 6 have low variance 1/f type spectral 
shape. Figure 4b shows two trials alongside their wavelet 
transform and state time-courses. Several burst-like pat-
terns of alpha- and beta-like activity can be seen in the 
wavelet transform. The states rapidly switch throughout 
the time-course and we can qualitatively see that each state 
is likely to correspond to different spectral features. Note 
the alpha bursts captured by state 3 in the first trial and 
the ~ 20 Hz beta activity captured by states 4 and 5 in the 
second trial. Both trials have windows of low variance 

without prominent oscillations indicated by state 2 being 
‘on’.

HMM State Visits Show Rapid Dynamics Which Contribute 
to the Overall Power Spectrum

In the HMM framework, each state represents a distinct 
type of bursting with a specific power spectrum (Fig. 5a), 
and each state-visit represents an individual burst event. 
We can therefore use the inferred HMM state time-courses 
to estimate burst metrics associated with each state; such 
as the fractional occupancy, burst duration (state lifetime) 
and interval time (duration between state visits). Once 
computed, these can be contrasted between different time-
windows, brain-regions or participant groups as a test of 

Fig. 3  Using the time-delay embedded Hidden Markov Model (TDE-
HMM) to detect transient spectral events. a A segment of a simulated 
time-course containing 1/f type noise alongside two types of bursting: 
bursts of power at 20 Hz or 35 Hz. b The wavelet transform of the 
simulated time-course showing the bursts occurring at different fre-
quency bands. c The HMM state time-course from the inferred three 
states. States 2 and 3 correctly identify the periods of bursting activ-

ity. Crucially, the two types of bursts with their different frequency 
content are isolated into separate states. d The state-specific power 
spectra. States 2 and 3 have clear peaks reflecting the bursts associ-
ated with each state. State 1 reflects 1/f type noise. e The state-wise 
auto-covariance from the inferred HMM. The frequency content of 
each state (shown in d) is visible in the strong diagonal bands in the 
auto-covariances
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whether the temporal dynamics of spectrally-specific 
events might be changing. Taken alongside the standard 
power spectrum, these metrics allow us to disambiguate 
the different cases in Fig. 1. In our case, the fractional 
occupancy shows that each state is visited a roughly simi-
lar amount of time during the time-course (Fig. 5b). There 
are some differences between states, with the low variance 
1/f type state 2 having the largest occupancy. All states 
have average lifetimes around 100–300 ms (Fig. 5c) and 
interval times (duration between state visits) of around 
500–1000 ms (Fig. 5d). However, there is considerable 
variability in these metrics. Some state visits are as short 
at 50 ms, whilst a small number of visits last for closer to 
1 s. Finally, These distributions are close to those seen in 
previous applications to resting-state and task data (Quinn 
et al. 2018; Vidaurre et al. 2016, 2017).

As suggested by the simulation in Fig. 1, these tem-
poral statistics can directly relate to the standard power 
spectrum. Cross-subject variability in 15–30 Hz beta band 
power (Fig. 5e) is strongly correlated with cross-subject 
variability in the fractional occupancy of states 4 and 5 

(Fig. 5f, g respectively). This suggests that participants 
with the strongest overall beta power also spend the long-
est time in the states with strong beta power.

Task Evoked Dynamics in HMM States

Though the HMM inference was blind to task timings, we 
can look at any task dependent changes in the state dynam-
ics by averaging the state-time courses across trials as we 
would with the data during a typical evoked response 
(ERP/ERF) analysis (e.g. an evoked state response). An 
HMM-regularised time–frequency plot can then be con-
structed by the outer product of the evoked state-time 
course and the state-wise power spectrum (Vidaurre et al. 
2016). Figure 6A shows these HMM-regularised time–fre-
quency plot for each state. When averaged across trials, 
state shows clear time–frequency dynamics with a range 
of relatively transient (states 1 and 2) and more sustained 
responses (states 4 and 5). The raster-plots showing the 
occurrences of each state for all trials (Fig. 6b) reveal the 
trial-by-trial variability captured by the HMM. Though 

Fig. 4  The application of the time-delay embedded Hidden Markov 
Model (TDE-HMM) to detect transient spectral events in real sensor 
space MEG data. Results are obtained by combining data across all 
trials (epoched to movement offset) and runs. a The inferred obser-
vation models for the six HMM states. Each box contains three 
sub-figures. Top-Left—the state autocovariance function as a func-
tion of embedding lag, taken from the centre row of the autocovari-

ance matrix. Bottom-Left—the whole state autocovariance matrix. 
Right—the state power spectrum computed from the fft of the auto-
covariance function. b Two example Go trials. Each plot shows the 
movement duration (from onset to offset of abduction of right index 
finger), the trial time-course, time–frequency transform using wave-
lets and the HMM state posterior probabilities
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the broad patterns in the task evoked fractional occupancy 
time-courses are visible, all states show wide variability 
in the temporal onset and duration of state visits between 
trials.

The HMM-regularised time–frequency spectra are base-
line corrected (− 1500 to − 750 ms before movement off-
set) and summed across all states (Fig. 7a) to compare with 
a traditional wavelet time–frequency analysis (Fig. 7b). 
The HMM time–frequency transform is able to capture 
the dynamics shown by the wavelet transform. Both show 
a strong evoked response and 10–25 Hz decreased power 
after movement onset followed by a 15–25 Hz rebound 
after movement offset. Crucially, the HMM allows for fur-
ther investigation into the single trial dynamics (number 

of occurrences, event lifetime, event amplitude), which 
underly the power spectral changes observed in the HMM-
regularised time–frequency spectra and traditional wavelet 
time–frequency spectra.

Temporal Dynamics in HMM States Contribute 
to Movement Induced Power Changes

The trial-wise dynamics of the temporal statistics estimated 
from the HMM allow us to probe the potential scenarios in 
Fig. 1 in a task setting. Here, we focus on how two states 
with peaks in the 15–30 Hz beta band (see Fig. 4a) change 
between a baseline (− 1500 to 750 ms, relative to movement 
offset) and post-movement beta rebound (500–1500 ms, 

Fig. 5  The non-task related temporal dynamics of HMM states. a 
The state power spectra computed from the fft of the autocovariance 
matrix. b The fractional occupancy of the six states. This is com-
puted as the total duration of all visits to a specific state divided by 
the total duration of the time course. c The distribution of state life-
times. d The distribution of state interval times, this is the duration 

of time between visits to a state. e The overall non-task related power 
spectrum for each participant. The grey box indicates a 15–30  Hz 
beta range. f The correlation of beta power (from e) with the frac-
tional occupancy of state 4 across all participants. g The correlation 
of beta power (from e) with the fractional occupancy of state 5 across 
all participants
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relative to movement offset) window. Figure 7a, b show 
a strong increase in beta power between these windows, 
though they do not tell us which dynamic features underly 
this change. Here, we explore the beta rebound, an increase 
in 15–30 Hz power after the offset of a movement typically 
described with trial-averaged wavelet transforms. Using the 
HMM states we look at whether this power change could 
arise from a change in the amplitude, duration or rate of 
occurrence of bursting events (see Fig. 1) described by the 
HMM.

The task evoked fractional occupancy is computed 
by averaging the state post-probabilities across trials 
(Fig. 7c). In this case, the evoked fractional occupancy 
tells us the proportion of trials in which each state was 
active at each given time point. Both states show a signifi-
cant increase in fractional occupancy in the rebound win-
dow compared to baseline, suggesting that an increased 
number of state events is contributing to the increased 
power in the beta rebound. Both states show a sharp drop 
in occupancy during the movement time itself. We further 
investigate how state lifetime changes over the trial by tak-
ing the state time course (containing ones when the state 
is ‘on’ and nans when the state is ‘off’) and replacing the 
ones in each state visit with the lifetime of that visit. We 

can then average this across trials to get a task-evoked 
state lifetime, similar to the evoked fractional occupancy. 
State 4 shows a sharp decrease in lifetime during move-
ment and a significant increase during the rebound. In 
contrast, state 5 has modest but not significant changes 
between the baseline and rebound windows. The trial aver-
age perspective shows that the beta rebound continues for 
1.5 s after movement offset (limited by the duration of our 
trial) the HMM suggests that this is built from brief state 
visits of 200–500 ms. Finally, we can compute a state-
amplitude time-course similar to the evoked lifetimes. 
Here we replace the ones in the state time course with the 
observed beta power from a wavelet transform during each 
visit. Neither state shows a significant change in amplitude 
between the baseline and rebound windows.

In sum, the HMM representation allows us to explore 
the temporal dynamics underlying change in power 
during a task response. In this case, we can show that 
increased 15-30 Hz power during the beta rebound arises 
from increased number of visits to states 4 and 5, and an 
increased lifetime of visits to state 4. This analysis, along-
side previous findings, shows that HMM state dynamics 
can describe complex task dynamics with transient spec-
trally-specific events such as the ones in this paper (Quinn 
et al. 2018; Vidaurre et al. 2016). Critically, by targeting 

Fig. 6  Task dynamics for each of the six inferred HMM states. 
Though the average time–frequency transform of each state presents 
a clear picture of its dynamics across each trial, the individual tri-
als show wide variability in the number, duration and interval time 
of each state. Each subfigure a–f contains two sub-figures. Top—the 
HMM regularised time–frequency response for the single state. This 

is computed from the outer product of the frequency response (left) 
and the task-evoked fractional occupancy (bottom). Bottom—the 
state visits for all trials across all participants. Times when the state 
are ‘on’ are marked in black. The task-evoked fractional occupancy is 
computed from the average of this matrix across all trials
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the single-trial events, they also allow an analysis of the 
single-trial parameters that constitute such dynamics, 
providing greater granularity at the individual trial level 
than conventional measures of time-resolved trial-average 
spectral power.

Discussion

The Hidden Markov Model provides a powerful approach 
for operationalising the detection of transient spectral 
events, or bursts of activity, in neuronal time-courses. The 
time-delay embedded (TDE) HMM is able to concurrently 
detect different types of bursting across a wide frequency 
range without the need to predefine a frequency bands of 

interest, and in general the HMM is able to detect events 
without a priori threshold specification. The model pro-
vides a rich description of both spectral content and tem-
poral dynamics, which can be interrogated to explore the 
single-trial constituents of trial-averaged neural activity 
and how they are modulated by different experimental and 
clinical conditions.

Selecting Between HMM Variants

Several factors affect the choice of which HMM variant 
to use for a given analysis. The AE-HMM is sufficient 
for cases when interrogating amplitude dynamics within 
a known frequency band, but the spectrally-resolved 
approach of the TDE-HMM case is preferred where the 

Fig. 7  The task-related HMM dynamics. The HMM is able to repro-
duce the key features of a standard time–frequency decomposition 
and shows that the beta rebound effect is driven by increased occur-
rences of states 4 and 5, and increased lifetimes of state 4. a The 
HMM regularised time–frequency transform of the task data, com-
puted from the outer product of the task-evoked fractional occu-
pancies (bottom) and the state power spectra (left). b The baseline-
corrected wavelet time–frequency transform of the task data. c 
Left—the fractional occupancy of states 4 and 5 across the trial. The 
shaded bars indicate the standard error of the mean across partici-
pants and the grey region indicates the baseline (− 1.5 to − .75 s) and 
beta rebound (.75 to 1.5) seconds. Right—t-statistics for a contrast 
between the baseline and rebound period for each state. Both states 
show a significant increase in occupancy during the rebound period 

relative to baseline (** indicates p < 0.01 and * indicates p < 0.05). 
d Left—the average lifetime of states 4 and 5 across the trial. The 
shaded bars indicate the standard error of the mean across partici-
pants and the grey region indicates the baseline (− 1.5 to − .75 s) and 
beta rebound (.75 to 1.5) seconds. Right—t-statistics for a contrast 
between the baseline and rebound period for each state. State 4 shows 
a significant increase in visit lifetime during the rebound compared 
to baseline. e Left—the average amplitude of states visits for states 4 
and 5 across the trial. The shaded bars indicate the standard error of 
the mean across participants and the grey region indicates the base-
line (− 1.5 to − .75 s) and beta rebound (.75 to 1.5) seconds. Right—
t-statistics for a contrast between the baseline and rebound period for 
each state. Neither state shows a significant difference in visit ampli-
tude compared to baseline



Brain Topography 

1 3

precise spectral content of interest is not known and where 
there may be multiple burst types. The present applications 
are limited to detecting events in the 1–48 Hz frequency 
range as higher frequency gamma oscillations can be chal-
lenging to detect. Future work will extend the use of the 
TDE-HMM and HMM-MAR to detect transient events in 
the gamma range from broadband signals.

As an alternative, the autoregressive HMM can also be 
used to explore spectrally specific state dynamics (HMM-
MAR; Vidaurre et al. 2016). This defines observed states 
with distinct autoregressive coefficients (AR). Like the 
auto-covariance, the AR coefficients are closely related to 
the power spectrum of the data and can be used to directly 
compute the Power Spectral Density (PSD). As the HMM-
MAR states are defined by distinct autoregressive models, 
they will also have distinct power spectra. We would expect 
similar results from the HMM-AR approach. We have used 
the TDE as it typically performs more robustly, in particu-
lar with the shorter time-courses that we have in the MEG 
dataset used here.

HMM Hyperparameter Selection

A few parameters need to be pre-specified prior to HMM 
inference. Firstly, a fixed number of states to infer must be 
defined. A larger number of states provides a finer-grained 
description of the data but may be more difficult for the 
software to infer and for us to interpret. This choice should 
be informed by the question at hand and the level of detail 
required by the analysis. For instance, two states are suf-
ficient and provide the most straightforward approach for 
describing changes in narrow-band amplitude envelopes 
(as in the case of the AE-HMM), treating these like ‘on’ 
and ‘off’ states. However, allowing only two states would 
be limiting for the more complex full-spectrum states in the 
TDE-HMM (in our example we used six). The number of 
delay-embeddings in the auto-covariance to include in the 
TDE states must also be defined. Larger auto-covariance 
matrices allow for more time lags and therefore more struc-
ture in the data to be revealed.

The HMM can be sensitive to relatively subtle noise 
sources. Change in non-neuronal noise or variance in the 
time-course are likely to be modelled by one or more HMM 
states. Therefore, particular care should be taken during data 
pre-processing to ensure that the HMM states are character-
ising the interesting, neuronal variance in the signal (Quinn 
et al. 2018). Finally, as it happens with other models (e.g. 
ICA), the HMM inference has some stochasticity; therefore, 
the results can slightly vary between inference runs. It is 
advised to repeat the HMM inference several times to ensure 
that specific results are consistent.

Statistical Assessment

Statistical testing of the HMM derived burst features can 
be carried out straightforwardly. Typically focusing on 
either group differences or task evoked changes in temporal 
dynamics. Group differences in temporal dynamics can be 
computed between different scan sessions or subjects within 
the dataset. Single subject features such as fractional occu-
pancy or state lifetime can be computed from the inferred 
HMM and carried forward into group level statistics in the 
same way as standard between-subject variables. For exam-
ple, this approach has been applied to identify group differ-
ences between patients with Alzheimer’s disease and healthy 
controls in a whole-brain AE-HMM (Sitnikova et al. 2018). 
Secondly, task or stimulus evoked changes can be computed 
by epoching the state time-courses and computing evoked 
state features. Group level GLM analysis of task evoked-
fractional occupancies computed from MEG data during a 
face-perception task show rapid task responses which distin-
guish between face and non-face stimuli (Quinn et al. 2018).

Summary and Conclusions

We have illustrated the use of an amplitude-envelope HMM 
to detect periods of high amplitude without pre-specification 
of an a priori amplitude threshold. Further, the time-delay 
embedded HMM was shown to be able to concurrently 
detect multiple types of bursting, each with distinct spec-
tral profiles. Each of these methods estimate the temporal 
dynamics of spectrally specific events as a state time-course, 
where each state represents a distinct type of bursting, and 
each state-visit represents an individual burst event. This can 
then be used to estimate task response time-courses of burst 
metrics such as the rate of burst occurrence, burst duration, 
burst amplitude and interval time.

Whether this temporal dynamic perspective resembles 
underlying neuronal physiology more closely than sus-
tained oscillation is the subject of ongoing research (van 
Ede et al. 2018). Nevertheless, there is utility in character-
ising the rapid temporal features of underlying frequency 
domain effects with models assuming transient state-visits 
rather than sustained effects (Quinn et al. 2018; Vidaurre 
et al. 2016). Novel burst-specific parameters such as rate 
of occurrence, duration and amplitude are being shown to 
have clinical (Tinkhauser et al. 2017a) and cognitive (Fein-
gold et al. 2015; Shin et al. 2017) relevance. Finally, the 
spectrally-resolved HMM variants allow us to compute 
HMM-regularised time–frequency transforms which recre-
ate reasonable time–frequency responses build from tran-
sient spectrally-specific events.

The HMM provides an effective technique for characteris-
ing such transient spectrally-specific events, bypassing some 
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of the limitations of amplitude-thresholding approaches. 
Here, we have presented the relevant theory and motivations 
behind the use of the HMM as a potential ‘burst-detector’, 
and have presented an introduction to the available analysis 
scripts associated with this approach using the HMM-MAR 
toolbox.
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