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Abstract. In this article, we describe how to test for the presence of measure-
ment error in explanatory variables. First, we discuss the test of such hypotheses
in parametric models such as linear regressions and then introduce a new com-
mand, dgmtest, for a nonparametric test proposed in Wilhelm (2018, Working
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and an empirical application to testing for measurement error in administrative
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1 Introduction

In this article, we describe how to test for the presence of measurement error in ex-
planatory variables. Specifically, consider an outcome Y (for example, earnings) that
depends on an explanatory variable X∗ (for example, schooling). We do not observe
X∗ directly, but only two variables, X and Z, that are related to X∗. We suspect X
is an error-contaminated measurement of X∗ (for example, schooling as reported in a
survey) and Z is a variable related to X∗, perhaps an instrument (for example, distance
to college) or a repeated measurement (for example, schooling as reported in another
survey). The hypothesis of no measurement error in X is

H0 : P (X = X∗) = 1 (1)

In the schooling example, testing H0 could be useful as a first-step model specification
test to tell the researcher whether measurement error is an important feature of the
data that should be modeled. However, testing H0 may be of direct economic interest
because, for example, the null of no measurement error can often be shown to be implied
by the absence of frictions in a structural economic model (for example, Chetty [2012];
Wilhelm [2018]). Therefore, a test of H0 can be interpreted as a test of the absence of
such frictions.

In a finite sample, we may not be able to detect measurement error even though X is
in fact mismeasured, because measurement errors might be small relative to the overall
sampling noise. In this sense, we can interpret the test of H0 as finding out whether
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measurement error is severe enough for the data to tell the difference between models
with and without measurement error.

In this article, we describe how to test for the presence of measurement error without
imposing any parametric restrictions and, in fact, without requiring the model to be
identified. Both of these aspects are important for empirical practice. First, when one
tests for measurement error, it is important to allow for nonlinearities in the relationship
of Y and X∗ because measurement error in X can make the relationship appear nonlin-
ear when it is not and make it appear linear when it is not (Chesher 1991). Therefore, to
disentangle measurement error from nonlinearities requires a procedure that can allow
for nonlinearities. Second, nonparametric measurement error models are identified only
under fairly strong conditions, and their estimation involves complicated procedures
such as Fourier transforms and operator inversions (Schennach 2013, 2016; Hu 2017).
However, Wilhelm (2018) shows that testing for the presence of measurement error does
not require identification of the model and is thus possible without such strong assump-
tions. In particular, the test can detect many nonclassical measurement error models,
that is, models in which the measurement error depends on the true latent variable.
Another by-product of avoiding identification of the model is that complicated estima-
tion techniques are not necessary. In fact, the test we describe employs only standard
nonparametric regression techniques.

The null hypothesis depends on the latent variable X∗ and thus cannot directly be
tested. In section 2, therefore, we first describe how to convert the null hypothesis into
a testable restriction in terms of the observable variables Y,X,Z in a simple example,
a linear regression model. In this model, H0 can easily be tested using existing Stata
commands following Hausman (1978). Section 3 then describes the extension of such
ideas to the nonparametric framework as recently proposed by Wilhelm (2018). We also
introduce a new command, dgmtest, that implements a test of H0 without imposing
any parametric restrictions. Section 4 reports the results of Monte Carlo simulations
for dgmtest, and section 5 concludes with an empirical example in which we show how
to test for measurement error in administrative earnings data.

Related literature. Mahajan (2006) proposes a test for the presence of measurement
error when the explanatory variable X∗ and the observed measure X are binary. There
are some existing tests for the presence of measurement error in parametric models
that require identification and consistent estimators of the model: Hausman (1978);
Chesher (1990); Chesher, Dumangane, and Smith (2002); Hahn and Hausman (2002);
and Hu (2008). Related to Hausman (1978), in empirical work it is common to estimate
linear regressions by ordinary least squares (OLS) and instrumental variables (IV) and
then attribute a difference in the two estimates to the presence of measurement error,
treating the IV estimate as the consistent and unbiased one. Of course, this strategy is
valid only if the true relationship of interest is actually linear, the measurement error
is classical, and the model is identified. None of these assumptions is required in the
nonparametric approach described in this article.
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In principle, one could imagine constructing a test for the presence of measurement
error by comparing an estimator of the model that accounts for the possibility of mea-
surement error with one that ignores it, similar in spirit to the work by Durbin (1954),
Wu (1973), and Hausman (1978). If the difference between the two is statistically sig-
nificant, then one could conclude that this is evidence for the presence of measurement
error. However, this strategy would require identification and consistent estimation of
the measurement error model, which leads to overly strong assumptions, the necessity
of solving ill-posed inverse problems in the continuous variable case, and potentially
highly variable estimators. These difficulties can all be avoided by the nonparametric
approach described in this article.

2 Linear regression model

Consider the linear regression model for an outcome Y and an explanatory variable
X∗, assuming for simplicity that there are no further regressors (the extension to the
presence of additional controls is straightforward and discussed below),

Y = α+ βX∗ + ε E(εX∗) = 0 (2)

Instead of X∗, we observe a measurement X of X∗ and IV Z, which depends on X∗

[that is, E(X∗Z) 6= 0], but is excluded from the outcome equation [that is, E(εZ) =
0]. Testing for the presence of measurement error in this context is straightforward
(Hausman 1978). Under the null of no measurement error, OLS consistently estimates
β, but under the alternative of some measurement error, it is inconsistent. The IV

estimator, however, is consistent under both the null and the alternative. Therefore, one
can simply compute both estimators and compare them. If their difference is statistically
significant, that indicates the presence of measurement error.

To better understand the connection to the nonparametric test described in the
next section, note that the test based on the difference of OLS and IV estimators is
equivalent to testing significance in an expanded regression. To see this, suppose there
is no measurement error in X, then

Y = α+ βX + ε E(εX) = 0

Therefore, when we regress Y onto both X and Z, the exclusion of the IV implies that
the coefficient of Z must be zero;1 that is, we test the hypothesis of no measurement
error by instead testing

γ = 0 (3)

in the regression
Y = α+ βX + γZ + ε

In conclusion, we have shown that the null of no measurement error, (1), implies (3) in
the linear regression model. The only assumption for this to be true is that (2) holds

1. Hausman (1978) suggests running a regression of Y on X and the projection X̂ of X onto Z. Then,

H0 implies that the coefficient of X̂ must be zero.
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and that the IV is excluded from the outcome equation; that is, E(εZ) = 0. Therefore,
a rejection of the restriction (3) implies a rejection of the hypothesis of no measurement
error, (1).

However, without further assumptions, failing to reject (3) does not necessarily imply
failing to reject the null of no measurement error, (1). Suppose X = X∗ + ηX so that
ηX represents the measurement error in X. If the measurement error in X is assumed
to be classical [that is, it is uncorrelated with the latent regressor, E(X∗ηX) = 0]
and uncorrelated with the regression error, E(εηX) = 0, and if some further regularity
conditions hold, then it is easy to see that the null hypothesis H0 not only implies but
also is in fact implied by (3). Therefore, failing to reject (3) may be interpreted as
failing to reject H0, and rejecting (3) may be interpreted as rejecting H0.

Consider the following simulated example that illustrates the finite sample perfor-
mance of the test by Hausman (1978). First, we simulate data without measurement
error in the regressor (X = X∗),

. set obs 200
number of observations (_N) was 0, now 200

. set seed 982

. generate double z = rnormal(0,1)

. generate double u = rnormal(0,0.5)

. generate double e = rnormal(0,0.5)

. generate xs = 0.5*z + u

. generate x = xs

. generate y = xs + e

Then, we regress Y on X and Z (and a constant),

. regress y x z

Source SS df MS Number of obs = 200
F(2, 197) = 172.63

Model 89.3262231 2 44.6631115 Prob > F = 0.0000
Residual 50.9680314 197 .258720971 R-squared = 0.6367

Adj R-squared = 0.6330
Total 140.294254 199 .704996254 Root MSE = .50865

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x 1.061784 .0757504 14.02 0.000 .9123978 1.211169
z -.0311242 .0490469 -0.63 0.526 -.1278486 .0656002

_cons -.0275876 .0360182 -0.77 0.445 -.0986184 .0434431

to find that Z is not significant at any reasonable confidence level (p-value is 0.526).
Therefore, we fail to reject the null of no measurement error as expected. Now, we
generate a measurement error contaminated regressor (X 6= X∗),

. generate double eta = rnormal(0,0.5)

. drop x

. generate x = xs + eta
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Again, we regress Y on X and Z (and a constant),

. regress y x z

Source SS df MS Number of obs = 200
F(2, 197) = 83.07

Model 64.1865952 2 32.0932976 Prob > F = 0.0000
Residual 76.1076593 197 .386333296 R-squared = 0.4575

Adj R-squared = 0.4520
Total 140.294254 199 .704996254 Root MSE = .62156

y Coef. Std. Err. t P>|t| [95% Conf. Interval]

x .514337 .0630711 8.15 0.000 .3899559 .6387181
z .1963299 .0528932 3.71 0.000 .0920204 .3006393

_cons -.0329208 .0441275 -0.75 0.457 -.1199437 .0541021

to find that now Z is significant at every reasonable confidence level (p-value is 0.000).
Therefore, we strongly reject the null of no measurement error.

In the presence of additional, correctly measured controls in the regression model,
we would proceed exactly as above except that we would include the additional controls
in the regression command.

3 Nonparametric model—The new dgmtest command

While the approach to testing H0 in the previous section is straightforward and intu-
itive, its validity relies on strong assumptions: linearity in the outcome equation and
classical measurement error in X. Because nonlinearities in the regression equation and
measurement error in X may manifest themselves similarly (Chesher 1991), it is impor-
tant to allow for nonlinearities in the relationship between Y and X∗ when testing for
measurement error. In addition, a large literature has documented that measurement
error in economic data is rarely classical (see the survey by Bound, Brown, and Math-
iowetz [2001], for example). In this section, we describe how to test H0 in nonlinear
models with nonclassical measurement error.

Suppose the variable Z is related to X∗, but the measurement X is excluded from
the outcome model in the sense that

E(Y |X∗, X, Z) = E(Y |X∗) a.s. (4)

That is, they can affect outcomes only through the true explanatory variable X∗. Then,
it is easy to see that, under H0, Z must be excluded from the outcome equation condi-
tional on the observed X,

E(Y |X,Z) = E(Y |X) a.s. (5)

Unlike H0, this is a restriction that depends only on observables and can directly be
tested without making any parametric assumptions about how the conditional mean
of Y depends on X∗. The test by Delgado and González Manteiga (2001) introduced
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in the next subsection and implemented in the new command, dgmtest, for instance,
directly tests the restriction (5). Because of the above argument, it can be interpreted
as a test of the original null of interest, the null of no measurement error in (1).

The exclusion restriction (4) is standard in the literature on identification and esti-
mation of measurement error models (Carroll et al. 2006; Chen, Hong, and Nekipelov
2011; Schennach 2013, 2016; Hu 2017) and has already been justified in many em-
pirical applications. Because the assumption is central to the validity of the test for
measurement error, we now provide a few examples.

Consider a generic production problem in which Y is an output that is produced
from a vector of inputs X∗. The inputs are measured by the vectors X and Z alterna-
tively. In this context, the exclusion restriction is often a natural assumption because
it requires the “true” inputs X∗ to be the factors that matter for production, not the
measurements (X,Z). Therefore, conditional on knowing X∗, the measurements X and
Z should not provide any additional information about the output Y . Cunha, Heckman,
and Schennach (2010); Heckman, Pinto, and Savelyev (2013); Attanasio et al. (2015);
and Attanasio, Meghir, and Nix (2017) are examples of empirical articles in the skill-
formation literature that have justified the exclusion restriction in this fashion. The
same argument applies to many other production problems in which inputs are difficult
to measure (for example, Olley and Pakes [1996]).

In the empirical part of Wilhelm (2018) and in section 5 below, Y , X, and Z are
three measurements of earnings, but Y and (X,Z) come from two different data sources,
one from a survey and the other from an administrative dataset. We then argue the
exclusion restriction holds because the error in Z has a different origin from the error
in Y , at least conditional on X∗.

There are many other empirical applications that impose the exclusion restriction
(4): For instance, Altonji (1986) studies labor supply; Kane and Rouse (1995) and Kane,
Rouse, and Staiger (1999) study the returns to education; Card (1996) studies the effect
of unions on the wage structure; Hu et al. (2013) study auctions with unobserved het-
erogeneity; Feng and Hu (2013) study unemployment dynamics; and Arellano, Blundell,
and Bonhomme (2017) study earnings dynamics.

Wilhelm (2018) actually shows that, under additional assumptions, H0 not only
implies but also is implied by the observable restriction (5). Therefore, failing to reject
(5) may be interpreted as failing to reject H0, and rejecting (5) may be interpreted as
rejecting H0.

The main assumptions required for this equivalence result are first, the exclusion re-
striction (4); second, a relevance condition that ensures Z is sufficiently strongly related
to X∗; and third, monotonicity of the conditional mean function x∗ 7→ E(Y |X∗ = x∗).

To satisfy the relevance condition, we need to find two values of Z, say, z1, z2, such
that the probability mass functions of X∗|Z = z1 and X∗|Z = z2 do not cross more
than once. This assumption is testable under the additional assumption that X and X∗

are sufficiently strongly monotonically related because, in that case, we must have that
the probability mass functions of X|Z = z1 and X|Z = z2 do not cross more than once
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(see appendix A.3 in Wilhelm [2018]). Finally, monotonicity of the relationship between
the outcome and the explanatory variable is a weak assumption that is often directly
implied by economic theory, for example, when the conditional mean E(Y |X∗ = x∗)
is a production, cost, or utility function. Examples can be found in Matzkin (1994);
Olley and Pakes (1996); Cunha, Heckman, and Schennach (2010); Blundell, Horowitz,
and Parey (2012, 2017); Kasy (2014); Wilhelm (2015); Hoderlein et al. (2015); and
Chetverikov and Wilhelm (2017), among many others.

We now heuristically explain why the exclusion restriction, the relevance condition,
and the monotonicity condition together guarantee equivalence of H0 and (5). We have
already argued why H0 implies (5) under the exclusion restriction, so we need to show
only that the reverse holds as well.

Consider the special case when X∗ and X are continuously distributed and X∗, X,
and Z are scalars. Suppose the observable implication (5) holds. Then, for any two
values z1, z2, we have E(Y |X,Z = z1) = E(Y |X,Z = z2). Then, by the exclusion
restriction, ∫

E(Y |X∗) d(PX∗|X,Z=z1 − PX∗|X,Z=z2) = 0

if E(Y |X∗ = ·) is differentiable, then integration by parts yields∫ {
PX∗|X=x,Z=z1(x

∗)− PX∗|X=x,Z=z2(x
∗)
} ∂E(Y |X∗ = x∗)

∂x∗ dx∗ = 0 (6)

We want to show that this equation implies the null hypothesis H0. On the contrary,
assume that this is not the case. To generate a contradiction, we want to ensure that (6)
does not hold under the alternativeH1. This is the case, for example, when E(Y |X∗ = ·)
is monotone (and not constant) and PX∗|X=x,Z=z2 first-order stochastically dominates
PX∗|X=x,Z=z1 (and they are not equal) under H1. The relevance condition of Wilhelm
(2018) ensures that this first-order stochastic dominance holds. The monotonicity as-
sumption, on the other hand, implies that the derivative of the conditional expectation
does not change sign (and is nonzero somewhere), and the dominance condition implies
that the difference of the conditional distributions is nonnegative (and positive some-
where). In conclusion, the integral in (6) is nonzero under H1, yielding the desired
contradiction, so the null of no measurement error must hold. For more details on the
exact assumptions and arguments, see Wilhelm (2018).

In some applications, Z may be excluded from the outcome equation only after
conditioning on some additional, correctly measured controls W ; that is, the exclusion
restriction (4) is replaced by

E(Y |X∗,W, X, Z) = E(Y |X∗,W) a.s. (7)

This additional conditioning on W is necessary, for example, in cases in which W
determines both Y and (X,Z). Under (7), the null hypothesis H0 then implies

E(Y |X,W, Z) = E(Y |X,W) a.s. (8)
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The null hypothesis is, in fact, equivalent to (8) under conditions like those required for
the equivalence of H0 and (5). In the implementation of the test, we allow for two types
of additional controls, say, W = (W1,W2), where the vector W1 is included in the
conditional mean in a nonseparable fashion and the vector W2 is additively separable
and linear,

E(Y |X,W) = g(X,W1) + π′W2 (9)

for some function g and some vector of coefficients π.

There exist many nonparametric tests of the conditional mean independence in (5)
and (8), for example, Gozalo (1993); Fan and Li (1996); Delgado and González Manteiga
(2001); Mahajan (2006); and Huang, Sun, and White (2016). Therefore, any of those
could be used for nonparametrically testing for the presence of measurement error. In
the presence of several additional covariates W, however, the curse of dimensionality
may cause fully nonparametric tests to be infeasible. Therefore, we recommend the
semiparametric, partially linear model in (9) as a more practical approach in such cases.

In the following subsections, we introduce a new command, dgmtest, that imple-
ments the test by Delgado and González Manteiga (2001). This test has some desirable
properties such as relatively simple implementation and its ability to detect alternatives
at the

√
n-rate.

3.1 The test by Delgado and González Manteiga (2001)

We briefly describe the approach by Delgado and González Manteiga (2001) for testing
the conditional mean independence (5). There are many other reasons why one might
want to test such a restriction, and the test for the presence of measurement error as
described in this article is only one of these. To simplify the description, we focus on
the case in which there are no additional controls W .

The authors rewrite the null hypothesis of conditional mean independence, (5), as

E{T (X,Z)} = 0

where
T (x, z) := E

[
fX(X)

{
Y − E(Y |X)

}
1{X ≤ x}1{Z ≤ z}

]
1{A} is equal to 1 if the event A holds, 0 otherwise, and fX is the density of X.
Given a random sample {(Yi, Xi, Zi)}ni=1 from the distribution of (Y,X,Z), consider
the empirical analogue Tn(x, z) of T (x, z),

Tn(x, z) :=
1

n2

∑
i

∑
j

1

h
K

(
Xi −Xj

h

)
(Yi − Yj) 1{Xi ≤ x}1{Zi ≤ z}

where h is a bandwidth parameter and K a kernel function. Delgado and González
Manteiga (2001) propose two test statistics: the Cramér–von Mises statistic Tn :=
n
∑n

i=1 Tn(Xi, Zi)
2 and the Kolmogorov–Smirnov statistic Tn := supx,z |

√
nTn(x, z)|.

Critical values of the test are computed using the bootstrap procedure described in
Delgado and González Manteiga (2001).
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Testing the version with additional controls, (8), is a simple extension of the above
test. In the presence of additively separable controls W2, we perform the test in two
steps. First, we compute an estimator π̂ of π as in Robinson (1988). Then, we apply
Delgado and González Manteiga’s (2001) test as described above, replacing Yi by Yi −
π̂′W2i.

3.2 Syntax

The dgmtest command implements the test by Delgado and González Manteiga (2001).
The syntax of the command is

dgmtest depvar expvar
[
if
] [

in
] [

, qz(#) qw2(#) teststat(string)

kernel(string) bootdist(string) bw(#) bootnum(#) ngrid(#) qgrid(#)
]

The two required arguments of the command are depvar (the outcome variable Y ) and
expvar (a list of variables containing all elements of X, W1, W2, and Z). Therefore,
expvar should consist of at least two variables, in which case the first is taken to be X
and the second to be Z. If there are more than two variables, then the options qz()

and qw2() determine which variables in the list are X, W1, W2, and Z. For instance,
if expvar contains 6 variables, qz() equals the default value of 1, and qw2() is equal to
2, then the first 3 variables in the list are interpreted as (X,W1) (which one is X and
which one is W1 does not matter because the test treats both types of variables exactly
the same), the fourth and fifth variables are interpreted as W2, and the sixth variable
as Z.

3.3 Options

qz(#) is the dimension of Z. The default is qz(1).

qw2(#) is the dimension of W2. The default is qw2(0), which means there are no
additional controls W2.

teststat(string) is the type of test statistic to be used: CvM and KS represent the
Cramér–von Mises and Kolmogorov–Smirnov statistics, respectively. The default is
teststat(CvM).

kernel(string) is the kernel function. The default kernel is the Epanechnikov kernel
(epanechnikov). Alternatively, we can choose one among two other Epanechnikov
kernels order of 2 and 4 with the support [−1, 1] (epan2 and epan4), biweight kernel
(biweight), Gaussian kernel (normal), rectangle kernel (rectangle), and triangular
kernel (triangular).

bootdist(string) is the distribution of the bootstrap multiplier variable. Following
Delgado and González Manteiga (2001), it should have a zero mean and unit vari-
ance. The default is bootdist(mammen) in Härdle and Mammen (1993), which is
the two-point distribution attaching masses

(√
5 + 1

)
/2
√
5 and

(√
5− 1

)
/2
√
5 to
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the points −
(√

5− 1
)
/2 and

(√
5 + 1

)
/2, respectively. Alternatively, we can choose

the Rademacher distribution (rademacher) or the continuous uniform distribution
on
(
−
√
3,
√
3
)
(uniform).

bw(#) is the bandwidth h, taken to be the same for every component of (X,W1). The
default is n−1/3q, which is a rule of thumb in Delgado and González Manteiga (2001),
where n is the sample size and q is the dimension of (X,W1).

bootnum(#) is the number of bootstrap samples for the computation of the test’s critical
value. The default is bootnum(500).

ngrid(#) is the number of equally spaced grid points used to compute the supremum
of the Kolmogorov–Smirnov statistic if that statistic is chosen via the option test-

stat(). The default is ngrid(0), which means that the sample serves as the grid.
ngrid(0) is required for calculating the exact Kolmogorov–Smirnov statistic, but it
is a burden when we perform a simulation with a large sample, so one might want to
choose a positive number smaller than the sample size in that case. The user need
not specify this if teststat(CvM) is used.

qgrid(#) is a quantile probability between 0 and 1 to set the minimum and maxi-
mum values of the grid points in the previous option. If qgrid() is smaller than
0.5, the minimum value is the qgrid() quantile, and the maximum value is the
1-qgrid() quantile. The default is grid(0), so in that case, the grid ranges from
the minimum to the maximum value in the sample. The user need not specify this
if teststat(CvM) is used.

3.4 Stored results

dgmtest stores the following in e():

Scalars
e(N) number of observations
e(dimXW1) dimension of (X,W1)
e(dimW2) dimension of W2

e(dimZ) dimension of Z
e(stat) test statistic value
e(btcv1) 1% bootstrap critical value
e(btcv5) 5% bootstrap critical value
e(btcv10) 10% bootstrap critical value
e(btpv) bootstrap p-value
e(bw) bandwidth h
e(bootnum) number of bootstrap samples
e(ngrid) number of grid points
e(qgrid) quantile probability for minimum or maximum values of grid points

Macros
e(cmd) dgmtest
e(title) Nonparametric Significance Test
e(teststat) type of test statistic
e(kernel) type of kernel function
e(bootdist) distribution of bootstrap multiplier variable
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3.5 A simple example

Consider again the simple simulated example from section 2. First, perform the non-
parametric test for measurement error on the correctly measured explanatory variable,
using the default settings of the dgmtest command:

. dgmtest y xs z
-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----

Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 200
bandwidth: .17099759
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 500

----- test results -----

CvM = .00769912
bootstrap critical value at 1%: .02114236
bootstrap critical value at 5%: .017298
bootstrap critical value at 10%: .01347117
p(CvM < CvM*) = .314

The p-value of the Cramér–von Mises version of the test is 0.314, which means we fail
to reject the null of no measurement error at all reasonable confidence levels.
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Now, we perform the test on the mismeasured explanatory variable, again using the
default settings of the command:

. dgmtest y x z
-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----

Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 200
bandwidth: .17099759
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 500

----- test results -----

CvM = .02530518
bootstrap critical value at 1%: .01854303
bootstrap critical value at 5%: .01139063
bootstrap critical value at 10%: .00871101
p(CvM < CvM*) = .004

As expected, the nonparametric test detects the measurement error and strongly rejects
the null of no measurement error (p-value is 0.004) at all reasonable confidence levels.

4 Monte Carlo simulation

In this section, we present a small simulation study investigating the finite sample
performance of the measurement error test.
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We consider the outcome equation

Y = X∗2 +
1

2
X∗ +N

(
0, σ2

ε

)
with different models for the measurement system:

Model I : X = X∗ +D ×N
(
0, σ2

ME

)
, Z = X∗ +N

(
0, 0.32

)
Model II : X = X∗ +D ×N

(
0, σ2

ME

)
e−|X∗−0.5|, Z = X∗ +N

(
0, 0.32

)
Model III : X = X∗ +D ×N

(
0, σ2

ME

)
e−|X∗−0.5|, Z = X∗ +N

(
0, 0.32

)
e−|X∗−0.5|

Model IV : X = X∗ +D ×N
(
0, σ2

ME

)
, Z = − (X∗ − 1)

2
+N

(
0, 0.22

)
The value for σε is 0.5 for models I, II, and III and 0.2 for model IV. In all four
models, X∗ ∼ U [0, 1], and the random variable D is Bernoulli(1− λ), where 1 − λ is
the probability of measurement error (ME) in X occurring. 1−λ = 0 means there is no
measurement error in X, which represents the null hypothesis. To generate alternatives,
we increase 1−λ on a grid up to 1. We vary the standard deviation of the measurement
error in X, σME, in {0.2, 0.5, 1}. Therefore, alternatives get closer to the null as we
decrease 1− λ or σME, or both. We vary the sample size n ∈ {200, 500}, but all models
are simulated on 1,000 Monte Carlo samples (we set the seed at 1234). Following
Delgado and González Manteiga (2001), we use the bandwidth rule-of-thumb value
n−1/3. Simulation results for different choices of bandwidths, which are not presented
here, are similar.

The Cramér–von Mises statistics are generated by

. dgmtest Y X Z, kernel(epan2) bootnum(100)

The Kolmogorov–Smirnov test statistics with 10 grid points are generated by

. dgmtest Y X Z, teststat(KS) kernel(epan2) bootnum(100) ngrid(10) qgrid(0.05)
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Table 1 shows the rejection frequencies of the test. Overall, the test controls size
well and possesses power against all alternatives. These findings are consistent with the
Monte Carlo simulation results in Wilhelm (2018).

Table 1. Rejection frequencies from the simulation experiment

n = 200 n = 500

σME 1− λ 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1

Model I

0.2 0.158 0.371 0.602 0.767 0.266 0.673 0.919 0.983

0.5 CvM 0.049 0.394 0.857 0.981 0.995 0.049 0.772 0.996 1.000 1.000

1.0 0.322 0.846 0.994 0.999 0.680 0.996 1.000 1.000

0.2 0.140 0.317 0.546 0.691 0.243 0.610 0.870 0.973

0.5 KS 0.054 0.374 0.836 0.974 0.994 0.053 0.703 0.995 1.000 1.000

1.0 0.322 0.813 0.988 0.998 0.653 0.995 1.000 1.000

Model II

0.2 0.123 0.245 0.382 0.520 0.185 0.430 0.710 0.886

0.5 CvM 0.049 0.316 0.765 0.956 0.991 0.049 0.625 0.985 1.000 1.000

1.0 0.366 0.878 0.996 0.998 0.745 0.999 1.000 1.000

0.2 0.105 0.214 0.330 0.475 0.162 0.378 0.641 0.855

0.5 KS 0.054 0.292 0.714 0.936 0.987 0.053 0.562 0.973 1.000 1.000

1.0 0.353 0.842 0.990 0.998 0.693 0.995 1.000 1.000

Model III

0.2 0.147 0.310 0.518 0.689 0.234 0.589 0.851 0.963

0.5 CvM 0.049 0.400 0.875 0.986 1.000 0.055 0.779 0.997 1.000 1.000

1.0 0.463 0.954 1.000 1.000 0.869 1.000 1.000 1.000

0.2 0.127 0.284 0.439 0.622 0.200 0.521 0.818 0.950

0.5 KS 0.051 0.379 0.852 0.985 0.998 0.052 0.738 0.996 1.000 1.000

1.0 0.443 0.953 0.999 1.000 0.843 1.000 1.000 1.000

Model IV

0.2 0.582 0.942 0.997 1.000 0.940 1.000 1.000 1.000

0.5 CvM 0.074 0.910 1.000 1.000 1.000 0.061 1.000 1.000 1.000 1.000

1.0 0.830 1.000 1.000 1.000 0.999 1.000 1.000 1.000

0.2 0.457 0.890 0.991 0.998 0.846 0.999 1.000 1.000

0.5 KS 0.061 0.903 1.000 1.000 1.000 0.053 0.998 1.000 1.000 1.000

1.0 0.809 1.000 1.000 1.000 0.998 1.000 1.000 1.000
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5 Example: Testing for the presence of measurement
error in administrative earnings data

In this section, we test for measurement error in the U.S. Social Security Administra-
tion’s measure of earnings. While measurement error in survey responses is a widespread
concern that has occupied a large literature (Bound, Brown, and Mathiowetz 2001), only
recently empirical researchers have emphasized concerns about the reliability of admin-
istrative data (for example, Fitzenberger, Osikominu, and Völter [2006]; Kapteyn and
Ypma [2007]; Abowd and Stinson [2007]; Groen [2012]).

The data come from the March 1978 Current Population Survey/Social Security
Summary Earnings (U.S. Census Bureau 2009). The sample selection is similar to
Wilhelm (2018), except that we consider only white singles between ages 25 and 60
who work full time the full year. The sample size is 2,683 individuals. The dataset
contains a survey measure of earnings in 1977 (repearn77) from the Current Population
Survey and two administrative measures of earnings in 1977 and in 1976 (ssearn77 and
ssearn76), the earnings records of the social security administration. We denote by
Y the survey measure and by X and Z the administrative measures in 1977 and 1976,
respectively. A test for the presence of measurement error in X as in H0 is then a test
of the presence of measurement error in administrative earnings in 1977.

Figure 1 shows nonparametric density estimates of survey and administrative earn-
ings. Figure 2 plots the nonparametric density estimate of the difference between admin-
istrative and survey earnings. There is substantial probability mass within USD ±1,000,
which is a large deviation relative to the maximum earnings in the sample (USD 16,500).
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Figure 1. Nonparametric density estimates of administrative earnings (ssearn77) and
survey earnings (repearn77) in 1977, using cross-validated bandwidths
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Figure 2. Nonparametric density estimate of the difference in administrative and survey
earnings in 1977, using a cross-validated bandwidth

The exclusion restriction (4) is likely to hold in this context because the measure-
ment errors in survey and administrative earnings come from different sources (see
the more detailed discussion in Wilhelm [2018]). To assess the relevance of the second
measurement Z, which here is lagged administrative earnings, we plot the density of ad-
ministrative earnings in 1977 given those in 1976. Figure 3 shows this density for those
individuals with lagged earnings in the 10th and 90th percentile of the 1976 earnings
distribution. The graph shows that the second measurement Z, lagged administrative
earnings, shifts the earnings distribution in the next period to the right as we go from
the 10th to the 90th percentile. In particular, the two densities seem to cross only once,
which is consistent with the relevance condition that is needed for the equivalence of
H0 and the observable restriction (5).



398 The dgmtest command

0
.0

00
1

.0
00

2
.0

00
3

.0
00

4
kd

en
si

ty
 s

se
ar

n7
7

0 5000 10000 15000 20000
x

10th pctile 90th pctile

pdf of admin given past admin earnings

Figure 3. Nonparametric estimate of the conditional density of administrative earn-
ings in 1977 given lagged administrative earnings being in the 10th or 90th percentile.
Bandwidths are chosen by cross-validation.

Figure 4 shows nonparametric estimates of the conditional mean E(Y |X = x,Z = z)
as a function of z for three values of x. If there was no measurement error in X, then
(5) implies that this conditional mean should not vary with z. The graph suggests that
there is some variation in that dimension, particularly for small and large values of
earnings, but the graph does not contain any information about whether this variation
is statistically significant, so we will now discuss the results of the formal test of H0.
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Figure 4. Nonparametric estimate of E(Y |X,Z), where Y is survey earnings in 1977
and X and Z are administrative earnings in 1977 and 1976, respectively. Bandwidths
are chosen by cross-validation.

The test is performed using the new command, dgmtest, with its default settings,
except we increase the number of bootstrap samples to 5,000:

. set seed 1977

. dgmtest repearn77 ssearn77 ssearn76, bootnum(5000)
-----------------------------------------------------
Delgado and Manteiga test

-----------------------------------------------------

H0: E[Y | X,W1,Z] = E[Y | X,W1]

----- parameter settings -----

Test statistic: CvM (default)
Kernel: epanechnikov (default)
bw = n^(1/3q) (default)
bootstrap multiplier distribution: mammen (default)

number of observations: 2682
bandwidth: .07197479
dimension of (X,W1): 1
dimension of W2: 0
dimension of Z: 1
number of bootstrap samples: 5000

----- test results -----

CvM = .51238949
bootstrap critical value at 1%: .62569854
bootstrap critical value at 5%: .42202155
bootstrap critical value at 10%: .33858164
p(CvM < CvM*) = .0238
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The test produces a p-value of 0.0238, so we reject the null of no measurement error
in administrative earnings at high confidence levels. Table 2 shows the test results
for the full sample as well as for subsamples with the same gender and education. The
p-values for the low and high education groups are about 8%, which is some evidence for
the presence of measurement error but is weaker than in the full sample. For individuals
in the middle education group, there is no evidence of measurement error. Similarly, we
cannot reject the null on the subsamples of males and females. Of course, the sample
sizes on the subsamples are significantly smaller than on the full sample, so it may be
harder to reject the null for that reason.

Table 2. Test results

test cval cval cval sample
p-value stat. 1% 5% 10% h size

full sample 0.024 0.512 0.626 0.422 0.339 0.072 2,682

males 0.131 0.276 0.571 0.400 0.307 0.102 944
females 0.109 0.318 0.640 0.424 0.327 0.083 1,738

< high school 0.081 0.290 0.759 0.759 0.111 0.169 206
high school 0.203 0.143 0.615 0.455 0.208 0.091 1,329
> high school 0.082 0.818 1.466 0.979 0.753 0.096 1,147

6 Conclusion

This article describes how to test for the presence of measurement error in covariates.
While in linear regression models with classical measurement error, testing the null of
no measurement error can be carried out using simple linear regression techniques, we
introduce the dgmtest command, which implements a nonparametric test that does not
rely on linearity nor on the measurement error (if there is any) to be classical.

The command is an implementation of the Delgado and González Manteiga (2001)
test of conditional mean independence, a hypothesis that might be of interest in appli-
cations other than testing for the presence of measurement error.

7 Programs and supplemental materials

To install a snapshot of the corresponding software files as they existed at the time of
publication of this article, type

. net sj 20-2

. net install st0600 (to install program files, if available)

. net get st0600 (to install ancillary files, if available)
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