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Perceptual Content, Not Physiological Signals, 
Determines Perceived Duration When Viewing Dynamic, 
Natural Scenes
Marta Suárez-Pinilla*,†,‡, Kyriacos Nikiforou§, Zafeirios Fountas‖,¶, Anil K. Seth*,† and 
Warrick Roseboom*,†

The neural basis of time perception remains unknown. A prominent account is the pacemaker-accumulator 
model, wherein regular ticks of some physiological or neural pacemaker are read out as time. Putative 
candidates for the pacemaker have been suggested in physiological processes (heartbeat), or dopaminergic 
mid-brain neurons, whose activity has been associated with spontaneous blinking. However, such proposals 
have difficulty accounting for observations that time perception varies systematically with perceptual 
content. We examined physiological influences on human duration estimates for naturalistic videos between 
1–64 seconds using cardiac and eye recordings. Duration estimates were biased by the amount of change 
in scene content. Contrary to previous claims, heart rate, and blinking were not related to duration 
estimates. Our results support a recent proposal that tracking change in perceptual classification networks 
provides a basis for human time perception, and suggest that previous assertions of the importance of 
physiological factors should be tempered.

Keywords: time perception; embodied cognition; pacemaker-accumulator model; vision; cognitive 
psychology

Introduction
Duration perception in the range of seconds to minutes is 
an essential feature of cognition and behaviour; however, its 
precise underlying neural mechanisms are still unclear. Most 
accounts rely on the assumption that there is a mechanism 
directly mapping physical time into perceived time, i.e. a 
neural ‘clock’ or ‘pacemaker’ (Block & Zakay, 1996; Matell 
& Meck, 2004; Treisman, 1963; Treisman, Faulkner, Naish, 
& Brogan, 1990). Among these, the prominent pacemaker-
accumulator model proposes that duration perception arises 
from a process wherein a pacemaker generates sequential 
neural pulses that are stored in an accumulator: according 
to this suggestion, the number of pulses accumulated over 
a certain interval constitutes the brain’s estimation of the 
duration of that interval (Church, 1984; Treisman et al., 
1990). A variation of this model proposed that perceived 
duration depends on the functioning of multiple neural 

oscillators, each with phasic activity operating on different 
timescales (Matell & Meck, 2004; Mauk & Buonomano, 
2004; Treisman et al., 1990; van Rijn, Gu, & Meck, 2014).

Several studies have now linked levels of striatal dopamine 
to duration perception (Allman & Meck, 2012a; Coull, 
Cheng, & Meck, 2011; Coull, Hwang, Leyton, & Dagher, 
2012; Matell & Meck, 2004; Meck, 2006; Soares, Atallah, & 
Paton, 2016). Specifically, increased dopaminergic activity 
has been related to overestimation of duration, and vice 
versa, for intervals in the region of one second (Coull et 
al., 2011; Terhune, Sullivan, & Simola, 2016). This has led 
several researchers to propose a fundamental role in time 
perception for neural oscillators that form a part of the 
ascending nigrostriatal dopamine pathway of the dorsal 
striatum (Coull et al., 2011; Matell & Meck, 2004; Meck, 
2006; van Rijn et al., 2014). Taking advantage of the link 
between increased striatal dopamine and spontaneous 
blinking (Groman et al., 2014; Karson, 1988), Terhune and 
colleagues reported an apparent behavioural correlate of 
the influence of dopaminergic activity in human reports of 
duration. They presented evidence for transient variations 
in duration estimation in the sub- and supra-second range, 
with participants systematically biased towards reporting 
durations as longer immediately after spontaneous 
blinking, as compared to when no prior blink was present 
(Terhune et al., 2016). This finding was interpreted as a 
demonstration of dopaminergic influence on neural ‘clock 
speed’ or temporal attention, implying that the results 
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provided evidence in favour of the existence of such a clock 
underlying duration perception (Terhune et al., 2016).

By contrast with neural clocks, a basis for human duration 
perception in broader physiological terms has a long history 
(Hoagland, 1933; Hoagland, 1935; Münsterberg, 1899; 
Pollack, Ochberg, & Meyer, 1965), and in recent years has again 
become popular (Craig, 2009a; Lernia et al., 2018; Meissner 
& Wittmann, 2011; Wittmann, Simmons, Aron, & Paulus, 
2010). This broad physiological basis may be linked with the 
pacemaker-accumulator model by interpreting physiological 
processes as sources of pacemaker pulses (Lernia et al., 
2018). Recent suggestions focus on the role of rhythmic 
interoceptive signals: in particular the heartbeat. Although 
researchers have long attempted to uncover a relationship 
between cardiac activity and duration perception, most 
attempts have been unsuccessful, or at best not easily 
interpreted (Bell & Provins, 1963; Ochberg, Pollack, & Meyer, 
1964; Osato, Ogawa, & Takaoka, 1995; Schaefer & Gilliland, 
1938; Schwarz, Winkler, & Sedlmeier, 2013; Surwillo, 1982). 
Only few studies have found suggestive changes in cardiac 
activity during the encoding of time intervals (Meissner & 
Wittmann, 2011; Pollatos, Yeldesbay, Pikovsky, & Rosenblum, 
2014), though a major confounding factor in some of these 
studies is the association of autonomic activity with variations 
in arousal or attention that may have non-specific effects on 
time perception (as well as other cognitive) tasks (Bradley, 
2009; Fernandes, Koji, Dixon, & Aquino, 2011; McConnell & 
Shore, 2011; Schwarz et al., 2013).

Alternative accounts for duration perception suggest 
that, rather than being (primarily) internally-driven 
by neural or physiological clocks or other rhythmic 
processes, the basis for duration perception lies in 
changes in perceptual content (Herbst, Javadi, Meer, & 
Busch, 2013; Kanai, Paffen, Hogendoorn, & Verstraten, 
2011; Linares & Gorea, 2015; Ornstein, 1969). Under these 
accounts, measurable exteroceptive stimulus attributes, 
rather than bodily signals, should best correlate with 
duration estimates. This simple approach has often been 
dismissed because changes in internal states, such as 
arousal or attention, can lead to the exact same perceptual 
content (stimulus) being reported as different in duration 
(Block & Zakay, 1996; Brown, 1985; Polti, Martin, & van 
Wassenhove, 2018; van de Ven, van Rijswijk, & Roy, 2011; 
Zakay & Block, 2004). However, a recent development 
(Roseboom et al., 2019) of this simple idea suggests that 
it is not how much perceptual stimulation itself changes 
that is key, but rather how much change in neural activity 
occurs in perceptual classification networks, in response to 
perceptual stimulation, that provides a basis for duration 
perception. This distinction allows changes in stimulation 
to drive changes in neural activity (based on changes in 
perceptual content), but further, that this neural activity is 
constrained by the state of the perceptual system during 
estimation, allowing for fluctuations in, for example, 
attention to time (or other task-dependent features).

A computational model based on this proposal 
successfully predicts human duration estimations for a 
wide range of durations and types of perceptual content 
(Roseboom et al., 2019). Using an artificial perceptual 
classification network, the model produced duration 

estimates from input videos of natural scenes (1–64 
seconds duration) based on frame-by-frame changes 
in network activation patterns in response to video 
content. Model-produced estimates were well-matched 
to human estimates made regarding the exact same 
scenes. Moreover, model estimates replicated qualitative 
biases in human reports by scene, with busy scenes (e.g., 
walking around a city) judged as longer in duration than 
less busy scenes (e.g., walking in the countryside or sitting 
in an office). Model performance was further improved 
when based on content from the area in the scene where 
human participants were looking (based on human 
gaze data), as opposed to the entire screen. That model 
estimates produced these qualitative biases provided 
strong evidence for a basis of human duration estimation 
in the dynamics of perceptual classification. Crucially, 
in achieving this outcome, the model made no use of 
autonomic or oscillatory neural processes.

Accompanying the behavioural reports of apparent 
duration by human participants, Roseboom et al (2019) 
recorded where in the scene participants were looking 
(using eye-tracking) and monitored their heartbeat (using 
blood-volume pulse measurements) throughout the 
experiment. In Roseboom et al., (2019), only the behavioural 
reports and computer modelling results were presented; 
results in the present study come from analyses conducted 
on the combination of behavioural reports, eye-movements 
(saccades, blinks, and pupil size), and heart rate data.

General Aim and Rationale of Analyses
Unlike most studies on duration perception, which typically 
use simple stimuli (circles on a screen (Terhune et al., 2016), 
auditory tones (Meissner & Wittmann, 2011)), or in some 
cases specifically interoceptive stimuli (Lernia et al., 2018), 
the present study used complex, naturalistic visual scenes, 
closer to everyday phenomenological experience, in which 
complexly changing visual information is prominent. In 
combination with the eye-tracking and heartbeat data, 
this dataset allows investigation of the different proposed 
contributors to human duration estimation; in particular 
a contrast between external (stimulus change) and internal 
(potentially striatal dopaminergic activity and fluctuations 
in heart rate) components.

We hypothesized that time perception would arise 
from changes in perceptual content and therefore, under 
exposure to naturalistic visual stimulation, the influence 
of internal processes would be negligible. To investigate 
this proposal, we analysed the participants’ data, 
partially presented in (Roseboom et al., 2019), to look for 
associations between duration estimates and external and 
internal events, specifically: i) visual content and saccades, 
ii) autonomic fluctuations and iii) dopaminergic phasic 
activity. The previously published analyses in Roseboom et 
al. (2019) presented only participants’ duration estimates 
and no other physiological or eye behaviour data.

Perceptual Change, Eye Movements and Duration Estimation
First, we looked at the relationship between visual content 
and duration estimation. An association between visual 
content (scene type: city, campus and outside, and office 
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or café) and duration estimation has previously been 
reported for this data, with scenes with greater perceptual 
change driving longer estimates (Roseboom et al., 2019). 
This result is in agreement with the proposal that time 
perception is related to changes in perceptual content.

However, this association could instead arise from a 
potential relationship between visual content and eye 
movements – specifically saccade density, defined as 
the number of saccades per second. Previous evidence 
indicates that stimulus-driven factors (Itti, 2005; Mital, 
Smith, Hill, & Henderson, 2011) influence eye movements, 
with results often consistent with minimising sensory 
prediction error (Friston, Adams, Perrinet, & Breakspear, 
2012; Gottlieb, Oudeyer, Lopes, & Baranes, 2013; Itti & 
Baldi, 2009; Tatler, Hayhoe, Land, & Ballard, 2011). In 
the context of a dynamic video, sensory prediction error 
might be, naïvely, expected to correlate with perceptual 
change between one time point and the next. A simple 
hypothesis might then be that saccade density would be 
greater for videos with greater perceptual change, showing 
a similar dependency of subjective duration as shown for 
visual content. This pattern of results would imply that an 
account of subjective time perception based on changes in 
perceptual content could instead be based on something 
far more trivial: tracking stimulus-driven eye movements. 
Aiming to rule out such trivial alternative interpretations, 
we analysed the threefold relationship between visual 
content, saccade density and duration estimates.

Cardiac Activity and Duration Estimation 
As mentioned, it has long been suggested that repetitive 
physiological signals may form the basis for human time 
perception. Craig (Craig, 2009a) postulated a key role for 
the accumulation of interoceptive visceral information in 
the anterior insula, which has been related to integration 
of autonomic signals and interoceptive awareness (Craig, 
2009b; Nguyen, Breakspear, Hu, & Guo, 2016). An fMRI 
study by Wittmann and colleagues (Wittmann et al., 2010) 
identified a pattern of accumulating neural activity in 
the bilateral posterior insula during the encoding of time 
intervals in the range of seconds. The authors suggested 
that this accumulation corresponded to a clock-type 
(pacemaker) pattern, recording sequential physiological 
states during the attended interval (Wittmann et al., 2010). 
Another study (Meissner & Wittmann, 2011) examined 
the evolution of cardiac activity throughout the encoding 
of time intervals and found a progressive increase in 
cardiac periods (slowing down of heart rate). Furthermore, 
in this study, individuals’ duration reproduction accuracy 
correlated positively both with the slope of cardiac 
slowing during encoding and with interoceptive accuracy, 
measured in a heartbeat counting task. The authors 
reasoned that such heart rate slowing could correspond 
an accumulation of parasympathetic activity, consistent 
with the proposed insular pacemaker.

In light of these claims, we looked for similar 
associations between cardiac activity and duration 
estimation or accuracy in our own data by assessing 
both average heart rate and progression of heart rate 
during video presentation. As an additional marker of 

autonomic activity, we also examined pupil size (Bradley, 
Miccoli, Escrig, & Lang, 2008; Laeng, Sirois, & Gredeback, 
2012; McDougal & Gamlin, 2015) – presented in the 
Supplementary Materials. Information on interoceptive 
accuracy or awareness was not collected in our experiment.

Dopaminergic Activity Indexed by Spontaneous Blinking and 
Duration Estimation
Finally, we examined evidence for the proposed 
association between striatal dopaminergic activity and 
duration estimation (Coull et al., 2011; Matell & Meck, 
2004; Mauk & Buonomano, 2004), following Terhune 
and colleagues’ approach (Terhune et al., 2016) of 
employing spontaneous blinking as a proxy for transient 
fluctuations in striatal dopamine (Groman et al., 2014; 
Karson, 1988). Terhune and colleagues claimed that 
subjective duration reports in both the sub- and supra-
second range (300–2600 milliseconds) were longer when 
the participant had blinked immediately before the trial 
(Terhune et al., 2016). In their experiment they employed 
simple auditory (white noise bursts) and visual stimuli 
(circles on a screen). We therefore decided to investigate 
whether the same association (particularly for the shorter 
videos, 1–3 seconds) was present while viewing dynamic, 
naturalistic visual stimuli.

Methods
The methods concerning data collection are as reported 
in (Roseboom et al., 2019); data analysis techniques are 
specific to the present study. Human participants watched 
a series of silent videos containing natural scenes with 
different amounts of ‘liveliness’ – which translated to 
different amounts of perceptual change. Their task 
was to report the estimated duration of each presented 
video. Eye-tracking recorded participants’ pupil size, 
gaze fixation, saccades and blinks. Blood-volume pulse 
recordings allowed us to measure cardiac activity.

Participants
Fifty-five human participants (40 female, average age 
21.4) took part in the experiment. All were recruited 
from the University of Sussex, over 18 and reported 
normal or corrected-to-normal vision. They provided 
informed consent and were awarded with course credits 
or, alternatively, £5 per hour for their participation. The 
study was granted ethical approval by the Research Ethics 
Committee of the University of Sussex.

Three (female) participants were excluded from the 
analysis because eye-tracking was not successfully 
recorded or substantially missing. After exclusion of those 
subjects, the remaining dataset totalled 4060 trials.

Stimuli
Stimuli were based on videos obtained in the city of 
Brighton (United Kingdom), the University of Sussex 
campus, and the local countryside. These videos were 
recorded with a GoPro Hero 4 camera at 60 Hz and 
1920 × 1080 pixels, and further processed at 30 Hz and 
1280 × 720 pixels. The brightness of the videos was not 
controlled. The stimulus employed in each experimental 
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trial was extracted from a pseudo-random list of 4290 
video fragments, comprising 330 repetitions of each of 13 
durations ranging from 1 to 64 seconds (1, 1.5, 2, 3, 4, 6, 
8, 12, 16, 24, 32, 48, 64 s).

The videos could be classified into three video types 
in terms of content: videos recorded while walking 
around the city, scenes recorded while walking around 
the campus and outside in the campus green zones, 
and quiet scenes in an office or café. Each video type 
has a greater amount of perceptual change than the 
next. Perceptual change can broadly be defined as the 
amount of change between consecutive video frames 
– more complex and dynamic videos will have greater 
perceptual change than static scenes involving inanimate 
objects. Although used only qualitatively in the present 
paper, the construct validity of ‘perceptual change’ for 
these stimuli was previously confirmed (Roseboom 
et al., 2019) by feeding the same videos into an image 
classification algorithm and quantifying the frame-
by-frame rate of change at different hierarchical levels 
of visual information: from pixel-wise to object-level 
changes. Within each layer of the image classification 
network, frame-by-frame change was calculated as 
the Euclidean distance between the neural activation 
pattern for one video frame and the next; whenever it 
exceeded a dynamic ‘saliency’ threshold, perceptual 
change was deemed to have occurred and one ‘change 
unit’ was accumulated over time. For all video durations 
the network determined that perceptual change, thus 
computed, was greater for city videos, intermediate for 
campus and outside scenes, and lower for office and café 
(Roseboom et al., 2019). Specifically, duration estimates 
produced by the network (which were a transformation 
of the accumulated perceptual change, converted from 
arbitrary ‘change units’ into seconds by support vector 
regression) deviated from the mean by +24%, –4% and 
–7% for city, campus/outside and office/café videos, 
respectively.

Apparatus
Experiments were programmed in MATLAB 2012b 
(MathWorks Inc., Natick, US-MA), employing 
Psychtoolbox 3 and the Eyelink Toolbox, and presented 
on a LaCie Electron 22 BLUE II 22” with screen 
resolution of 1280 × 1024 pixels and refresh rate of 60 
Hz. Eye tracking was performed with Eyelink 1000 Plus 
(SR Research, Mississauga, Ontario, Canada) at 1000 
Hz sampling rate, using a desktop camera mount and 
a chin and forehead rest to stabilize head position at 
57 cm from the screen. Calibration of the eye-tracking 
system was performed at the beginning of each 20-trial 
block, with a standard 5-point grid and a maximal 
average error of 0.5 degrees of visual angle (dva). The 
thresholds for saccade detection were: 0.15 dva motion, 
22 dva/s speed, 4000 dva/s2 acceleration. Blood-volume 
pulse (BVP) measurements were obtained using a 
BVP-Flex/Pro (9308M) sensor and FlexComp System 
(T7550M) from Thought Technology (Montreal, Quebec, 
Canada). Heartbeats were detected by applying a peak 
detection algorithm on the BVP data.

Procedure
The experimental session lasted for one hour and typically 
comprised 80 trials completed in four 20-trial blocks. 
As detailed in (Roseboom et al., 2019), for logistical 
reasons some participants did not complete all 80 trials. 
The specific trials assigned to each participant were 
randomized, and neither their content nor duration 
was balanced or constant across participants. However, 
all subjects watched at least one video of each of the 13 
video durations – except one subject who lacked trials 
with three durations. The raw trial-by-trial data for each 
participant is available in the Supplementary Material. 
The task required a report of the estimated duration of 
each video in seconds, performed immediately after the 
video ending by using a visual analogue scale.

Statistical Analysis
Statistical analysis was conducted on Matlab 2016a 
(MathWorks Inc., Natick, US-MA), R 3.4.4 (The R Foundation 
for Statistical Computing, http://www.R-project.org) and 
JASP 0.8.5.1 (JASP Team 2017).

In our analyses we separately employed two dependent 
variables related to duration estimation: responses and 
error sizes. ‘Response’ was the estimate of duration (in 
seconds) provided by the participant in a given trial and 
was analysed for potential under or overestimation of time 
intervals in different conditions. ‘Error size’ represented 
the amount of deviation of responses from veridical 
magnitude, regardless of direction; it was calculated as 
the absolute value of the relative error, i.e. error size 
= |response-duration|/duration. Both measures, but 
critically error size (inaccuracy), depend not only of time 
perception but also more broadly on general processes 
involved in cognitive tasks (Livesey, Wall, & Smith, 2007). 
In our analyses, we systematically tested the potential 
association between different external and internal factors 
(scene type, saccades, pupil size, blinking, cardiac activity) 
with these two dependent variables, as discussed in the 
Introduction – see ‘General Aim and Rationale of Analyses’.

All tested factors were measured trial-wise. Saccade 
density and average heart rate were computed over 
video presentation. Heart rate progression through video 
presentation was calculated as described by Meissner 
and Wittmann in (Meissner & Wittmann, 2011): cardiac 
(inter-peak) periods were resampled at 5 Hz using cubic 
interpolation, averaged on a second-by-second basis and 
normalized per participant. The slope (linear regression 
coefficient) of the time series of cardiac period progression 
indicated the progression of heart rate throughout each 
trial’s video presentation: a positive slope implies that 
heart rate progressively slowed down (inter-peak periods 
increasing with seconds since video onset) and vice versa.

Pre-trial blinking was assessed for the 2000 ms 
immediately preceding trial onset. In separate analyses, 
only the period between 2000 ms and 1000 ms prior to trial 
onset was considered. The purpose of the second analysis, 
following Terhune and colleagues (see ‘Supplemental 
Experimental Procedures’ in (Terhune et al., 2016)), was to 
prevent confounding effects by saccades elicited by blinks 
around stimulus onset, as saccades are known to affect time 

http://www.R-project.org
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perception (Grossman, Gueta, Pesin, Malach, & Landau, 
2019; Yarrow, Haggard, Heal, Brown, & Rothwell, 2001). 
We considered that a blink was present when the ‘onset’ 
of a blink was identified in the eye-tracking recording 
within the period of interest. Thus, we defined two binary 
variables based on the occurrence (or lack) of a blink within 
those two time ranges: 2000 ms to trial onset and 2000 – 
1000 ms before trial onset. For brevity we will refer to these 
binary variables as B2000 and B1000, respectively.

Both dependent and quantitative independent variables 
were normalized within participant and video duration 
to make them independent of both these factors. Thus, 
normalized responses represent trial-by-trial variability of 
the estimates provided by the same participant for that 
specific duration. The other normalized variables are 
interpreted in an analogous manner.

Associations between (normalized) internal and external 
factors and duration estimation and accuracy were 
explored both for all video durations pooled and for each 
duration separately, considering that duration perception 
might depend on different mechanisms for shorter 
(~1 s) and longer (~1 min) intervals (Wiener, Turkeltaub, 
& Coslett, 2010). Results for individual video durations are 
presented in section S3 of the Supplementary Materials.

For Bayesian statistical analyses we employed the default 
JASP priors: for t-tests, a prior distribution Cauchy (0, √1/2); 
for Pearson correlations, a uniform distribution U(–1,1); 
for ANOVAs and repeated-measures ANOVAs, r scale prior 
width of 0.5 for fixed effects and 1 for random effects. The 
wording employed for describing the amount of evidence 
indicated by the Bayes factor corresponds to that suggested 
by Lee and Wagenmakers (Lee & Wagenmakers, 2013). 
We consider that evidence in favour of the alternative 
hypothesis is more than anecdotal when BF10 > 3; 
conversely, there is more than anecdotal evidence in favour 
of the null when BF10 < 1/3 (equivalently BF01 > 3).

The main analyses were concerned with independent 
hypothesis testing for the potential effect of each 
considered factor on duration perception. However, in the 
Supplementary Materials we report the effect size of each 
factor by means of Bayesian multilevel regression. See 
section S1 of the Supplementary Materials.

Results
Perceptual Change, Eye Movements, and Duration 
Estimation
Perceptual Change and duration estimation
Figure 1a depicts participants’ responses per video 
duration. As expected, veridical duration is strongly 
associated with subjective duration estimates, albeit 
showing an apparent effect of regression to the mean in 
responses (often referred to in the temporal domain as 
Vierordt’s law) as suggested by a slope of less than one 
between veridical and estimated durations.

As reported in (Roseboom et al., 2019), videos with 
greater perceptual change were estimated as longer 
in duration, such that, in terms of scene type, duration 
reports followed the order: city > campus/outside > 
office/café. Specifically, in terms of z-scores (normalized 
reports within participant and video duration), 

average responses for video type were city z = 0.14, 
campus/outside z = 0.036, office/café z = –0.091. We ran 
a Bayesian ANOVA on the effect of scene type on duration 
estimates and found extreme evidence in favour of such 
effect, with a Bayes factor BF10 = 8.561 * 106. Figure 1b 
depicts the average and 95% credible intervals of the 
normalized responses per scene type. Examining all 
pairwise comparisons between scene types, we found only 
anecdotal evidence for a difference in responses between 
city scenes and campus/outside (BF10 = 1.378), but at 
least very strong evidence for a difference between the 
other pairs: BF10 = 3.621 * 107 for city versus office/café, 
BF10 = 34.789 for campus/outside versus office/café.

Relationship of Saccade Density With Perceptual 
Change and Duration Estimates
Saccade density and perceptual change
We ran a Bayesian ANOVA to test for differences in 
(normalized) average saccade density by video type (urban, 
campus/outside, office/café), obtaining extreme evidence 
for difference between all three types (BF10 > 100). 
However, the association between saccade density and 
perceptual change was not straightforward, as average 
saccade density was highest for city scenes (z = 0.218), 
smallest in campus/outside scenes (z = –0.216), and 
intermediate for office/café scenes (z = 0.012) (Figure 2b).

These results rule out trivial interpretations of the 
interaction of perceptual change and duration estimation 
in terms of differences in saccade density. Specifically, the 
relationship between perceptual change and duration 
estimation cannot be explained simply by tracking 
stimulus-driven eye movements, because saccade density 
is non-monotonically related to duration estimation 
(compare Figures 1B and 2B). This interpretation is in 
line with the modelling results reported in Roseboom and 
colleagues’ study (Roseboom et al., 2019).

Saccade density and duration estimates
We performed a Bayesian bivariate correlation between 
trial-by-trial normalized saccade density and response – see 
scatter plot in Figure 2D. Pearson’s coefficient and 95% 
credible intervals were r = 0.042 (0.011 – 0.073), suggesting 
a weak positive correlation; the Bayes factor was insensitive, 
anecdotally in the direction of the null hypothesis: BF10 = 
0.621. Thus, there was no support for either the existence 
or absence of a correlation between saccade density and 
duration estimates, when considering the entire sample – 
a result consistent with the non-monotonic relationship 
between saccade density and video type reported above.

We further assessed whether an association between 
saccade density and responses could be present only for 
certain video durations and split the dataset according to 
the latter variable. We ran a Bayesian correlation between 
normalized saccade density and response for each of the 
13 resulting datasets. Only for the longest duration (64 
seconds) did we find evidence for an effect of saccade 
density on response (r = 0.190, BF10 = 16.879) – a positive 
correlation – though the meaning of this isolated finding 
is unclear. Scatterplots for all separate durations are 
presented in the Supplementary Materials, section S3.
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Since the scatterplots for the performed correlations 
are difficult to interpret visually, we also provide a plot 
(Figure 2C) showing the pattern of descriptive results for 
the relationship between trial-by-trial saccade density and 
duration estimates. The error bars represent normalized 
responses per video duration, split into trials with below 
and above-average saccade density, compared with other 
trials from the same participant and with the same 
duration. No overall pattern is observed that in any way 
suggests a different distribution of reports for trials with 
different saccade density. Note that the dichotomization of 
saccade density has been adopted for graphical purposes 

only and all statistical analyses employ saccade density in 
its continuous, non-dichotomized form.

In summary, our data suggests a relationship between 
perceptual change and duration estimates, as well as 
(less straightforwardly) between perceptual change and 
saccade density. However, there is no clear global effect of 
saccade density on duration estimates.

Saccade density and accuracy
In a Bayesian bivariate correlation between normalized 
saccade density and error size (Figure 2F), Pearson’s 
correlation coefficient and 95% credible intervals were 

Figure 1: Duration estimation by video duration and type. 1A. Average response across participants (in seconds) per 
video duration. The error bars represent between-participant standard error. Both axes are represented in logarith-
mic scale for clearer depiction of short durations. Comparing with the reference line of veridical responding, the 
relationship between stimulus and response has a slope of less than 1, which suggests an effect of regression to the 
mean. Response dispersion is larger for longer durations, roughly following a power law – in logarithmic scale, the 
size of the error bars remains approximately constant. 1B. Normalized response per video type: city, campus/outside, 
office/café. Error bars represent 95% credible intervals for a Bayesian ANOVA on the effect of video type on responses. 
The graph shows that subjective duration is positively associated with perceptual change. 1C. Average response 
across participants (in seconds) per video duration, divided by video type. The error bars represent between-partici-
pant standard error. Note that the horizontal axis is not to scale.
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r = –0.061 (–0.093, –0.030), with the Bayes factor 
indicating strong evidence in favour of the existence 
of a correlation: BF10 = 29.07. The negative sign of the 
correlation indicates that participants were more accurate 
(made smaller errors) in trials where their saccade 
density was greater. Considering that saccade density 
was not directly associated with duration estimates, it 
seems likely that its correlation with accuracy does not 
necessarily imply a link between saccades and the neural 
basis of time perception. Instead, it could indicate an 
unspecified effect on task performance – perhaps as 
an index of the level of attention or engagement with a 
visual task.

Cardiac Activity and Duration Estimation
Heart Rate and Duration Estimates
The trial-wise relationships between both mean heart rate 
and response, and mean heart rate and error size were 
assessed by two Bayesian bivariate correlations. In both 
cases we found very strong evidence against the existence 
of a correlation. Concerning response (Figure 3B), 
the Pearson’s correlation coefficient and 95% credible 
intervals were r = 0.008 (–0.025, 0.042), with a Bayes 
factor BF10 = 0.024. Results for accuracy (Figure 3D) were 
r = –0.013 (–0.047, 0.020), BF10 = 0.029. This absence of 
any clear overall relationship between mean heart rate 
and either response or error size is evident in Figures 3A 

Figure 2: Relationship between video duration, perceptual change, saccades and duration estimates. 2A. Average 
saccade density across participants, by video duration, split by scene type. Error bars represent the between-partic-
ipant standard error. Saccade density appears consistently higher for city scenes (for durations over 2 seconds) and 
decreases with video duration for all scene types. 2B. Normalized saccade density by scene type: city, campus/outside, 
office/café. Error bars represent 95% credible intervals for a Bayesian ANOVA on the effect of scene type on sac-
cade density. As expected, saccade density is highest in city scenes, but its association with perceptual change is 
not straightforward for the other two scene types. 2C. Aggregated responses by video duration, split by saccade 
density. Error bars represent the average normalized response and between-participant standard error, according 
to video duration (horizontal axis). Each participant’s trials corresponding to each video duration are split into two 
categories, according to whether saccade density was below or above its average for that participant and video dura-
tion. Thus, the plot is split according to within-participant and duration statistics. No overall dependency between 
saccade density and response can be seen. 2D. Scatterplot for trial-by-trial normalized saccade density and response. 
According to Bayesian Pearson’s correlation, there is a weak positive association, although the Bayes factor does not 
provide support for either the alternative or the null hypothesis. 2E. Aggregated error size by video duration, split by 
dichotomized saccade density. Although not consistent, response error appears smaller in trials with more saccades 
(particularly clear for 12 and 16-second videos). This possible association was confirmed by a Bayesian correlation 
showing a negative trend between normalized saccade density and error size (2F).
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and 3C, which depict aggregated responses (3A) and error 
sizes (3C), split by average heart rate. Scatterplots for each 
separate video duration are supplied in the Supplementary 
Materials.

Heart Rate Progression
Heart Rate Progression Throughout Video Presentation
After obtaining normalized second-by-second cardiac 
periods for each trial, as described in the Methods section, we 
split the dataset into 11 video durations – only considering 
durations over 2 seconds in order to allow second-by-
second cardiac progression to be calculated. We tested 
whether there was any effect of time since video onset on 
cardiac periods by Bayesian repeated-measures ANOVA, run 
separately for each video duration. The dependent variable 
was the average normalized cardiac period measured at 
each second since video onset. The only within-participant 
factor was time (in seconds) since video onset. Thus, the 
ANOVA had as many levels as seconds of video duration.

Evidence for an effect of time from onset on second-by-
second cardiac periods was at least moderate (BF10 > 3) 
for videos of 4s, 8s, 12s and 48s, with BF10 = 23, 95589, 
230 and 11, respectively. Conversely, there was also at 
least moderate evidence for the null (no different cardiac 
periods at different time points, with BF10 < 1/3) for 2s, 3s, 
6s, 16s, 32s and 64s. Figure 4 presents the average cardiac 
periods and 95% credible intervals at each time point 
(seconds since onset) for six different video durations. The 
ascending slope indicates that the effect of time (when it 
exists) involves a slowing-down of heart rate throughout 

the presentation of the video (i.e. increasing cardiac 
periods), consistent with the results reported by Meissner 
and Wittmann during the ‘encoding phase’ of time intervals 
of 8, 14 and 20 seconds (Meissner & Wittmann, 2011). 
As shown in lower panels of Figure 4, the deceleration 
of cardiac periods reaches a plateau after the first 5–10 
seconds; this stabilization might be the reason why weak 
or no evidence in favour of the alternative hypothesis is 
found for the longest video durations.

Heart rate progression and duration estimates
Our finding of a reduction in heart rate throughout video 
presentation is in agreement with the results reported 
by Meissner and Wittmann (Meissner & Wittmann, 2011), 
who additionally found a positive correlation between 
heart rate reduction and accuracy in reproduction of 
the presented interval. This reduction was explained in 
terms of a hypothetical pacemaker-type accumulating 
mechanism related to an increase in parasympathetic 
activity that would track duration perception. We sought 
to test this hypothesis in our own data by analysing the 
relationship between cardiac period slope (linear slope 
for the second-by-second progression in cardiac periods 
throughout the trial) and duration estimation (response) 
and accuracy (error size). In a Bayesian bivariate 
correlation between cardiac period slope and response 
we obtained a Pearson’s r = –0.030 with 95% credible 
intervals (–0.066, 0.005), and a Bayes factor BF10 = 0.094, 
indicating strong evidence against the existence of a 
correlation (Figures 5A–5B).

Figure 3: Relationship between mean heart rate (computed trial-wise) and behavioural results. 3A–3B. Heart rate and 
response. 3A presents the pattern of responses by video duration, split into trials with below or above-average heart 
rate compared to other trials of the same participant and duration. 3B presents the bivariate correlation between 
(normalized) mean heart rate and response. 3C–3D show analogous results concerning error size: descriptive pattern 
with dichotomized heart rate (3C) and scatter plot with Pearson’s correlation (3D).
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Heart rate progression and accuracy
We approached the relationship between heart rate 
progression and accuracy in two ways: First, by analysing 
trial-wise associations within each participant, and second, 
following Meissner and Wittmann (Meissner & Wittmann, 
2011), by looking for differences in participant’s average 
cardiac period slope between good and poor duration 
estimators.

Trial-by-trial association between cardiac period slope and 
accuracy
Bayesian correlation between trial-wise cardiac period 
slope and error size yielded Pearson’s r = 0.005 (–0.030, 
0.040), with Bayes factor (BF10 = 0.023) indicating very 
strong evidence against any effect of cardiac period slope 
on accuracy on the overall dataset (Figures 5C–5D). 
Similar results were obtained when assessing trials 
of each video duration separately: the Bayes factor 
indicated at least moderate evidence against the 
existence of a correlation (BF10 < 1/3) for all video 
durations, with the exception of 2-second videos, where 
evidence for the null was anecdotal (BF10 = 0.693, with 
a Pearson’s coefficient of –0.277 (–0.548, 0.073)). 
See Supplementary Materials, section S3, for further  
detail.

Cardiac period slopes in good versus poor performers
Although we failed to find an association between heart 
rate progression and accuracy in duration estimation on 
a trial-by-trial basis, we enquired whether this association 
could be present at the participant, rather than the 
trial level. We classified participants into good or poor 
performers, depending on whether their average error 
size was below or above the sample median. We analysed 
the effect of time since video onset on cardiac period 
progression in good and poor performers, considering 
each participant’s time-series of average second-by-second 
cardiac periods for all 11 video durations over 2 seconds, 
taken separately. We performed a Bayesian repeated-
measures ANOVA for each duration – Figures 5E–5H 
show four of them (8, 12, 16 and 24s – the periods most 
similar to those used in Meissner & Wittmann, 2011). The 
dependent variable was the average cardiac period at each 
time point (seconds since video onset). We employed time 
since onset as the only within-participant factor (with as 
many levels as seconds of video duration) and the binary 
classification on performance (good or poor) as between-
participant factor. If there was any difference in cardiac 
period progression between good and poor performers, we 
should find evidence for the inclusion of the interaction 
term (time since onset * performance) in the model.

Figure 4: Average second-by-second cardiac periods for six video durations: 4, 8, 12, 24, 48 and 64 seconds – each 
video duration is presented in a separate plot. Within a plot, each data point represents the average cardiac period at 
a specific time point (seconds since video onset). The error bars represent the 95% credible intervals according to a 
Bayesian RM ANOVA on the effect of time since onset in cardiac periods. An ascending slope can be observed during 
the first 5–10 seconds in all cases, indicative of a slowing down of heart rate at the beginning of video presentation, 
although for long durations a plateau is reached later in the trial.
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In all analyses, the best model was either the one 
containing only time from onset, or the null model. 
This indicated that in some cases (specifically for 4, 8, 
12 and 48 seconds) there was an effect of time since 
video onset on second-by-second cardiac periods, 
while in the remaining cases there was no evidence 
for a time-related difference. In any case, neither the 
cardiac periods at each time point (main effect) nor 
their progression throughout the trial (interaction 
with time) were different between good and poor 
performers. The Bayes Factor for inclusion of the 
interaction term (the one relevant to our question) 
was always at least moderately against its inclusion 
(BFinclusion < 1/3), except for duration of 3 seconds 
(BFInclusion = 0.367). Furthermore, it was extremely 
against inclusion (BFinclusion < 1/100) in all cases except 
for 2–4 and 8 seconds. Thus, evidence consistently 
opposed any supposed difference in cardiac period 

progression during video presentation in good versus 
poor performers in a duration estimation task.

In Supplementary Materials (S2) we explore the 
association between another autonomic marker, pupil 
size, and duration estimation. As with cardiac activity, 
we find no association with either the magnitude or the 
accuracy of duration estimates.

Spontaneous Blinking and Duration Estimation
Trials were dichotomized according to the presence or 
absence of blinking in the 2000 ms leading to video onset 
(B2000), or in the pretrial period 2000–1000 ms (B1000). 
Considering that for long video durations pre-trial blinking 
may not be an accurate index of dopaminergic activity 
throughout the entire interval, we restricted the analyses to 
durations up to 3 seconds – comprising 1248 trials in total. 
Responses for those durations, split according to presence 
or absence of a pre-trial blink, are presented in Figure 6. We 

Figure 5: Relationship between cardiac period progression and behavioural results. Figures 5A–5D assess the rela-
tionship on a trial-by-trial basis, whereas 5E–5H compare between participants. 5A–5B: Cardiac period slope and 
response. 5A. Normalized responses by video duration, split into trials with below or above-average cardiac period 
slope compared to other trials for the same participant and duration. An above-average slope indicates a more pro-
nounced slowing-down of heart rate throughout video presentation, and vice versa. No clear overall pattern is observ-
able. 5B. Scatter plot showing the bivariate correlation between trial-wise cardiac period slope and response. 5C: Error 
sizes by video duration, split by dichotomized cardiac period slope. 5D: Scatter plot showing the correlation between 
trial-by-trial cardiac period slope and error size. 5E–5H: Second-by-second cardiac periods and 95% credible intervals 
as a function of time since video onset, for durations of 8, 12, 16 and 24 seconds, split by good and poor performers. 
Performance classification was made by calculating the average error size (regardless of direction) of each participant 
and dividing participants according to whether their average error size was above or below the sample median.
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ran a Bayesian one-way ANOVA on short-video trials (1–3 s 
duration), with normalized response as dependent variable 
and B2000 as fixed factor. We repeated the same analysis 
using B1000 as fixed factor instead. The Bayes factor 
indicated strong evidence against the effect of B2000 on 
duration estimates (BF10 = 0.068), and moderate evidence 
against B1000 (BF10 = 0.150).

Discussion
This study aimed to shed light on the mechanisms of 
human duration perception by assessing the contribution 
of internal physiological and neural signals to the biases 
in human duration estimates for naturalistic videos. As 
previously reported (Roseboom et al., 2019), human 
participants’ estimates were longer for more dynamic 
videos, such as city scenes, than for less dynamic videos 
of a quiet office. That study presented a model of human 
duration perception that could reproduce these human 
biases by computing perceived video duration on the basis 
of frame-by-frame perceptual change, without appealing 
to previously hypothesised pacemaker processes. In the 
present analyses, we could not find any evidence to support 
the potential influence of hypothesised pacemakers on 
our participants’ duration reports – whether driven by 
autonomic processes (revealed by cardiac activity and 
pupil size) or by dopaminergic phasic activity (indexed by 
spontaneous blinking).

First, our analyses ruled out trivial interpretations for 
the previously reported association between perceptual 
change and duration estimation, namely the possibility 
that time perception was produced by tracking saccadic 
movements. We found that there was evidence for some 
relationship between saccadic density and stimulus change 
in that longer video durations were associated with lower 
average density – likely reflecting a decrease in saccade 
frequency as a video progresses, possibly due to waning 
in novelty. However, average saccade density was greater 

for office/café scenes (with lowest amount of perceptual 
change, as computed in Roseboom et al., 2019) than for 
campus/outside videos, making any naïve novelty-based 
interpretation less than straightforward. Whatever the 
reason for the obtained pattern of results, the relationship 
between perceptual change and saccade density does not 
follow the same pattern as with duration estimates. In 
light of this, the observed association between saccade 
density and greater accuracy in duration estimation (but 
not estimated duration magnitude, according to the Bayes 
factor for the correlation) likely reflects greater general 
engagement, highlighting the caveat that associations 
between physiological signals and accuracy may indicate a 
non-specific attentional effect on cognitive performance, 
without any specific relation to the mechanism(s) of 
duration estimation.

Consistent with previous findings (Meissner & 
Wittmann, 2011) we found evidence for an initial change in 
cardiac rate at the beginning of a new video presentation, 
consisting of a progressive cardiac deceleration during the 
first 5–10 seconds of video presentation, compatible with 
parasympathetic activation (Bradley et al., 2008; Laeng 
et al., 2012). Cardiac deceleration (reportedly lasting up 
to the end of the presented intervals, ranging from 8 to 
20 seconds) has been described as an indication of an 
accumulating pattern of autonomic activity working as a 
clock-type system, consistent with an interoception-based 
pacemaker-accumulator model (Meissner & Wittmann, 
2011); in that study, cardiac deceleration was more 
pronounced in good performers (i.e., participants showing 
greater accuracy in duration reproduction). In our case, 
heart rate deceleration happened only at the beginning 
of video presentation, although for short videos this 
could comprise most or all of their duration, stabilizing 
thereafter: we therefore suppose that it reflects an initial 
arousal response in relation with a new video/task 
(Bradley, 2009), rather than a process specifically related 

Figure 6: Average response by video duration according to presence or absence of a pre-trial blink, in the 2000 ms 
(6A) or 2000–1000 ms (6B) preceding the video onset. Responses (duration estimates) are expressed in seconds. The 
error bars represent between-participant standard error. The large error bar observed for 2-second videos is due to a 
single outlier: specifically, a participant who reported ‘68.2 seconds’ as estimated duration of a 2-second video; the 
participant blinked within the last 1000 ms before the onset of that trial. In the Supplementary Materials (section S4) 
we present the same plot after exclusion of the outlier.
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to time perception. All of our analyses failed to reveal 
any statistical association between cardiac activity (heart 
rate or heart rate progression) and duration estimation or 
accuracy, with the vast majority indicating evidence for 
the null hypothesis.

Interestingly, when examining putative group 
differences in cardiac period progression in good versus 
poor performers, we found no difference in overall 
progression in both groups (contrary to findings in 
(Meissner & Wittmann, 2011)), but, on visual inspection, a 
more pronounced ascending slope was observed in good 
performers, only for the first 3–5 seconds of the video, 
in several video durations: see Figures 5E, 5G and 5H. 
This might indicate a more pronounced arousal response 
in good performers, related to greater engagement at the 
beginning of the video presentation, but the fact that the 
putative difference only affects the very early seconds of 
the presentation, and does not extend up to the end of the 
video, does not fit with the proposal of an accumulating 
pacemaker-type role involving cardiac period.

Regarding the purported association between striatal 
dopamine and duration perception, our results based 
on pre-trial blinking, following Terhune and colleagues’ 
analyses (Terhune et al., 2016), were not consistent with 
the conclusions reported in their study. Nevertheless, 
several differences in the experiments must be considered. 
First, regarding the stimuli, our experiment used videos 
of natural scenes over a broad range of durations, while 
Terhune and colleagues (Terhune et al., 2016) used basic 
auditory noise bursts or visual flashes. Another difference 
was task. Our experiment required participants to directly 
estimate the observed duration in seconds. Terhune and 
colleagues (Terhune et al., 2016) used a temporal bisection 
task wherein participants reported whether the observed 
duration was closer to long or short anchor durations on 
which they had been trained. While a large literature has 
linked striatal dopamine to duration estimation and time 
perception generally (Allman & Meck, 2012b; Coull et al., 
2011; Gu, Jurkowski, Lake, Malapani, & Meck, 2015; Jones, 
Malone, Dirnberger, Edwards, & Jahanshahi, 2008; Matell 
& Meck, 2004; Mauk & Buonomano, 2004; Rammsayer, 
1999; Wiener, Lee, Lohoff, & Coslett, 2014), it is also well 
known that striatal dopamine is critically involved in the 
biasing of decisions in many other dimensions, especially 
for goal-directed or reward-driven decisions (Friston et al., 
2014; Howard, Li, Geddes, & Jin, 2017; Lepora & Gurney, 
2012; Lo & Wang, 2006; Nagano-Saito et al., 2012; Sarno, 
de Lafuente, Romo, & Parga, 2017) – see (Balci, 2014) for 
an overview of some of these issues as they relate to the 
time domain. Considering this, the absence of evidence 
for an effect of pre-trial blinks in our data may not reflect 
a failure to replicate the previously reported influence of 
spontaneous blinks on time perception. Instead, it may 
indicate that our direct duration estimation task is not 
susceptible to the kind of bias in report that is susceptible 
to dopaminergic influence: i.e. a shift in decision criterion 
in a bisection task (Soares et al., 2016; Terhune et al., 2016) 
or peak-interval procedure. The latter has been commonly 
used in the rodent literature (Balci, 2014), and presented 
as evidence of the influence of changes in striatal 

dopamine on time perception specifically, rather than 
reflecting uncertainty (Lak, Nomoto, Keramati, Sakagami, 
& Kepecs, 2017) and biases in decision making (Wang, 
Rangarajan, Gerfen, & Krauzlis, 2018) more generally. Our 
results support that further direct replication of the study 
by Terhune and colleagues (Terhune et al., 2016) with 
extension to other tasks is required.

Our study, as most studies referenced in this paper 
(e.g. (Meissner & Wittmann, 2011; Terhune et al., 2016)), 
involved prospective time judgments, wherein participants 
know they must estimate duration of an interval in advance 
of the interval presentation, and therefore direct their 
attention to ongoing time itself (Block & Gruber, 2014). By 
contrast, retrospective timing tasks require participants to 
be naïve to the fact that they will be asked about time 
until after the interval presentation (Block, Hancock, & 
Zakay, 2010). Differences in duration estimation under 
these different paradigms have led to proposals that 
estimation in different tasks must be, at least partially, 
underpinned by different processes (Block, 1982; Block 
et al., 2010; Block & Reed, 1978; Zakay & Block, 1995). 
As we only tested participants’ duration judgements 
under a prospective paradigm, for now, we can only make 
conclusions regarding the putative processes related to 
tasks in that context. Further investigation is required 
to broadly understand and reconcile the common and 
different components of prospective and retrospective 
timing processes.

Several caveats may be considered regarding our study. 
As mentioned, our experiment contains several differences 
from previous studies claiming a role for autonomic or 
neural processes, including the stimuli – naturalistic 
scenes instead of simple, auditory visual (Meissner & 
Wittmann, 2011; Terhune et al., 2016) or interoceptive 
stimuli (Lernia et al., 2018) – and task, using prospective 
magnitude estimation instead of reproduction, bisection, 
etc. Participants were asked to watch and ‘engage’ with 
the video content, knowing that they would be asked 
to report its duration in the end: thus, the specific 
deployment of ‘attention to time’ would have played some 
role, relative to some other paradigms. Additionally, the 
use of pre-trial blinking as a marker of striatal dopamine 
may be problematic as it is possible that the recorded 
blinks were not all truly spontaneous – our experiment 
was not explicitly designed to capture this. Blinks in our 
task may sometimes have been due to eye fatigue due to 
the long durations of trials and dynamic visual nature of 
the trials, or any number of other factors that were not 
controlled for (though a similar criticism is also largely 
available for the original study as the precise definition 
of ‘spontaneous’ is not clear). However, the complete lack 
of any statistical association between pre-trial blink and 
duration estimation suggests that any such modulation 
had very little effect in the naturalistic conditions of our 
experiment.

In summary, our results (together with results reported 
in (Roseboom et al., 2019) for the basic behavioural 
dataset) strongly support the hypothesis that human 
subjective time perception (on the scale of seconds) can be 
characterised primarily as driven by perceptual change. This 
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is not to say that humans never make use of interoceptive 
information when judging duration, nor that humans rely 
entirely on vision for temporal perception. Such positions 
would be unsustainable. Rather, our data show that when 
provided with dynamic, naturalistic visual input, in the 
absence of other meaningfully changing input (the videos 
were silent and participants were seated and stationary), 
changes in visual content are related to human time 
estimation while changes in the other measured (cardiac 
cycle) and implied (striatal dopamine in relation to eye-
blinks) factors were not. It is possible that in conditions 
other than naturalistic wakeful experience (such as 
simplified laboratory conditions, resting state with closed 
eyes, exteroceptive sensory deprivation) interoceptive 
information plays a larger part in multi-modal perceptual 
content. Nevertheless, under circumstances where humans 
observe naturalistic video stimuli, there is no evidence 
for a meaningful contribution of proposed autonomic or 
neural pacemaker processes to duration estimation.
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