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Abstract
Minority ethnic inventors play important roles in US innovation, especially in high-tech
regions such as Silicon Valley. Do ‘ethnicity–innovation’ channels exist elsewhere?
Ethnicity could influence innovation via production complementarities from diverse
inventor communities, co-ethnic network externalities or individual ‘stars’. I explore these
issues using new UK patents microdata and a novel name-classification system. UK
minority ethnic inventors are spatially concentrated, as in the USA, but have different
characteristics reflecting UK-specific geography and history. I find that the diversity of
inventor communities helps raise individual patenting, with suggestive influence of East
Asian-origin stars. Majority inventors may benefit from multiplier effects.
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1. Introduction

At first glance, ethnicity, diversity and innovation do not seem closely linked. However,
in recent years there has been growing research and policy interest in the role of
minority ethnic inventors (Saxenian, 2006; Legrain, 2006; Leadbeater, 2008; Hanson,
2012; Wadhwa, 2012). This largely stems from recent experience in the USA, where the
impact of these groups is striking. Since the 1980s minority communities, particularly
those of South/East Asian origin, have played increasingly important roles in US
science and technology sectors (Stephan and Levin, 2001; Chellaraj et al., 2008; Stuen
et al., 2012). Stephan and Levin, for example, find that minority ethnic scientists are
over-represented among the 250 most-cited authors, authors of highly cited patents and
individuals elected to the US National Academies of Sciences or Engineering. Minority
inventors are spatially concentrated at city-region level (Kerr, 2008b): in high-tech US
clusters such as Silicon Valley, so-called ‘ethnic entrepreneurs’ help connect South Bay
firms to global markets, and are responsible for 52% of the Bay Area’s start-ups
(Saxenian, 2006). Research also suggests positive links between diverse populations and
US regional patenting (Peri, 2007; Hunt and Gauthier-Loiselle, 2010), and between
diasporic communities and knowledge diffusion, both across American cities and
internationally (Kerr, 2008a, 2009).

By contrast, very little is known about the role of minority ethnic inventors in
European countries. This matters because innovation is an established driver of
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long-term economic growth, and European policymakers are actively seeking to
upgrade national innovation systems (McCann and Ortega-Arguilés, 2013). It also
matters because many European countries have become more ethnically diverse in
recent years, and immigration/integration policy design is a major focus of debate
(Putnam, 2007; Caldwell, 2009; Syrett and Sepulveda, 2011).

This article explores whether the UK innovation system has benefited from minority
ethnic inventors, and the diversity they introduce. I ask: does the cultural diversity of
inventor groups influence patenting rates? ‘Diversity effects’ are especially under-
explored in the literature, and are the focus of the article. I also look at possible effects
of minority ethnic status, co-ethnic group membership and the role of urban location.

The UK case is particularly interesting to explore. Census data show that the non-
white population in England and Wales grew from 5.9% to 14% of the population
between 1991 and 2011; between 2001 and 2011 the non-‘White British’ share rose from
12.7% to 19.5%. Immigration has been an important driver, with a number of new
communities forming since the mid-1990s; the migrant population share rose from 9%
to 13% during 2001–2011 (Office of National Statistics, 2012). These patterns are
highly urbanized, with London now a ‘majority minority’ city for the first time in its
history. Such deep shifts have proved politically controversial, especially the role of
immigration: the current UK Government has introduced a cap on non-European
Union (EU) migrants and set up tight entry criteria for skilled arrivals from these
countries.1

As with migrants and minorities in the wider population, minority ethnic inventors
have become an important feature of the UK’s inventor population. Figure 1 shows the
population shares for minority ethnic inventors against shares for migrants and
minority ethnic groups in the wider working-age population. Minority ethnic inventors’
population shares are higher, and rising faster, than either of the ‘base’ working-age
groups: by 2004 they comprised 12.7% of the inventor population, against 9.3% for
migrant workers and 6.8% for minority workers.

Changing demography might affect innovation in three ways. These effects are
ambiguous in sign, and channels may operate as substitutes or complements. First,
cultural diversity may improve ideas generation in groups of inventors, if the benefits of
a larger set of ideas or perspectives outweigh trust or communication difficulties
between those groups (Alesina and Ferrara, 2005; Page, 2007; Berliant and Fujita,
2008). Second, co-ethnic group membership can improve information flow and lower
transaction costs, accelerating within-group ideas generation and transmission
(Docquier and Rapoport, 2012). However, group size may constrain knowledge
spillovers. Third, demographic shifts may introduce highly skilled ‘stars’ who make a
substantial difference to knowledge generation, or who are more willing to introduce
disruptive ideas (Borjas, 1987; Zucker and Darby, 2007; Duleep et al., 2012); here,
minority ethnic status needs to be disentangled from other endowments and contextual
factors. All three channels may also be more pronounced in urban areas, through the
clustering of minority groups, agglomeration economies or both.

1 The UK’s Points Based System is organized in five Tiers. For Tier 1, ‘exceptional talent’ places are limited
to 1000 per year, of which 700 can be scientists; in most cases candidates for an ‘entrepreneur’ place need
at least £200,000 of backing; ‘investors’ need to demonstrate they can invest at least £1m. For
postgraduate researchers, post-study leave to stay in the UK has been cut from 3 years to 3 months. In
2011/2012, Tier 2 allows for 27,000 places, restricted to a tightly defined set of ‘shortage occupations’.
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To explore, I construct a new 12-year panel of European Patent Office (EPO) patents
microdata for the UK. I use the novel ONOMAP name-classification system to identify
minority ethnic inventors, building on pioneering US work by Agrawal et al. (2008) and
Kerr (2008b, 2010a). Descriptive analysis suggests that UK minority inventors have key
differences from their American counterparts, reflecting the UK’s distinctive geog-
raphy, colonial and recent migration history. Although minority inventors are spatially
clustered, as in the States, they are differently distributed from wider minority
populations: many high-patenting areas do not have diverse inventor communities.

To explore effects on patenting I deploy a two-stage identification strategy, building
on Oaxaca and Geisler (2003) and Combes et al. (2008). In the first stage, I estimate a
knowledge production function linking counts of inventors’ patenting activity to group
diversity, controls and individual fixed effects. In the second stage, I decompose fixed
effect estimates on minority ethnic status, co-ethnic group membership and other
individual-level observables.

I find significant positive effects of inventor group diversity on individual patenting
activity, worth about 0.025 patents per inventor. This result survives multiple
robustness checks and tests for positive selection by mobile inventors. A back-of-the-
envelope calculation suggests that increasing inventor diversity by around one standard
deviation in a city such as Bristol could be worth around 40 extra patents in total. I also
find suggestive evidence of positive contributions from minority ethnic high-patenting
individuals, particularly East Asian-origin stars, once human capital is controlled for.
Extensions imply some amplifying role of urban location and population density.
Distributional tests indicate some multiplier ‘effects’ from minority to majority
inventors, although these latter should be read as partial correlations, not causal links.

The article makes several contributions to the field. It is one of very few studies
exploring multiple ethnicity–innovation channels, at individual, group and area level: as

Figure 1. Growth in UK minority ethnic inventor population versus working-age migrant and
minority ethnic populations, 1993–2004.

Source: KITES-PATSTAT/Office of National Statistics / Labour Force Survey.

Note: LFS data sample the working-age population, so will differ from Census estimates.
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far as I am aware, this is the first research of its kind in Europe. It also adds to the
growing empirical literature on immigration, ethnicity and innovation, and to the
emerging field of inventor-level analysis (OECD, 2009).

The article is structured as follows. Section 2 sets out key concepts, theory and
evidence. Section 3 introduces the data and identification strategy. Section 4 provides
descriptive analysis. Section 5 outlines the identification and estimation strategy.
Sections 6 and 7 give results, extensions and robustness checks. Section 8 concludes.

2. Definitions, framework, evidence

2.1. Key terms

‘Innovation’, ‘ethnicity’ and ‘minority ethnic’ all need careful definition. Innovation
divides into invention, adoption and diffusion phases (Fagerberg, 2005). Patenting is
primarily an indicator of invention (OECD, 2009). I look at shifts in individual
patenting rates, hence ‘inventor activity’.

Ethnic identity is a multifaceted notion with objective, subjective and dynamic
elements (Aspinall, 2009). Robust quantitative measures of ethnicity therefore depend
on stable, least-worst proxies, particularly as self-ascribed ethnicity information is not
available from raw patents data (Ottaviano et al., 2007). I use inventor name
information and the ONOMAP name-classification system developed by Mateos et al.
(2007, 2011) to provide measures of inventor ethnicity, then use fractionalization indices
to proxy inventor group diversity.

Ethnicity measures are based on (i) 12 geographical origin zones, where this origin is
taken as a proxy for ‘roots’; and (ii) nine ‘macro-ethnic’ categories similar to those used
by the UK Office of National Statistics (ONS).2 ‘Minority ethnic’ inventors are
classified respectively as (i) those of likely non-UK roots and (ii) non-white inventors.
Geographical origin data contain more detail and are less focused on visible
appearance, so are my preferred measure (as Table 2 shows, under the ONS system
‘other’ is the second-largest ethnic category in the UK inventor population). In both
cases, ‘minority ethnic’ combines UK and non-UK born groups, as my data cannot
separately distinguish migrant inventors.

2.2. Literature review

Conventional theories of innovation have relatively little to say about ethnicity or
diversity. For example, Schumpeter (1962) focuses on the individual ‘entrepreneurial
function’ as a source of ideas; ‘innovation systems’ approaches highlight networks of
firms and public institutions (Freeman, 1987); spatial approaches focus on the
clustering of innovative activity due to agglomeration-related externalities, particularly
local knowledge spillovers (Jaffe et al., 1993; Audretsch and Feldman, 1996).
Endogenous growth theories help us to bridge demography and innovation. As
Romer (1990) sets out, shifts in the technology frontier help determine economic

2 Geographic origin zones are Africa, Americas, British Isles, Central Asia, Central Europe, East Asia,
Eastern Europe, Middle East, Northern Europe, South Asia, Southern Europe and Rest of the world.
ONS groups are: White, Black Caribbean, Black African, Indian, Pakistani, Bangladeshi, Chinese and
Other.
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development, while human capital stocks and knowledge spillovers influence techno-
logical progress. However, access to knowledge is likely to be uneven across locations,
sectors and social groups (Agrawal et al., 2008). Individual or group characteristics
might then influence ideas generation and diffusion.

The existing literature identifies three potential ethnicity–innovation channels. First,
the diversity of economic agents may influence innovative activity by acting as a
production complementarity (Page, 2007; Berliant and Fujita, 2008, 2009). Specifically,
individuals may benefit from group-level ‘cognitive diversity’ if this brings a richer mix
of ideas and perspectives, which in turn helps members problem-solve and generate
ideas. Ethnic or cultural mix may be a good proxy for cognitive diversity (Hong and
Page, 2001, 2004). Such effects will be most likely observed in ‘knowledge-intensive’
environments (Fujita and Weber, 2003). Conversely, group-level cultural diversity may
lead to lower trust and poor communication between individuals—for example, because
of language barriers, misunderstandings or discriminatory attitudes. Co-operation (and
thus spillovers) will be limited, leading to fewer, lower-quality solutions (Alesina and
Ferrara, 2005).

Co-ethnicity may also offer advantages. Specifically, co-ethnic social networks—such
as diasporas or transnational communities—may provide externalities (Agrawal et al.,
2008; Docquier and Rapoport, 2012). Social networks offer their members higher social
capital and trust, lowering transaction costs and risk, and helping ideas flow within the
group (Rodrı́guez-Pose and Storper, 2006; Kaiser et al., 2011). In a closed setting,
minority networks may be constrained by a small set of within-group possible matches
(Zenou, 2011). In an open setting, such as under globalization, co-ethnic networks can
be much larger and thus more influential. Again, in complex and/or research-intensive
economic activities, diasporic communities may perform valuable roles both co-
ordinating trans-national activity and facilitating information flows (Kapur and
McHale, 2005; Saxenian and Sabel, 2008).

A third view is that individual characteristics matter, especially if minority ethnic
inventors are migrants. From an economic perspective, migration decisions reflect
expected returns: potential migrants balance out gains from migration and costs of
moving abroad (Borjas, 1987). This implies that some migrants are ‘pre-selected’ on the
basis of skill and entrepreneurialism (Wadhwa et al., 2007). Minority ethnic inventors
who are migrants may also be more willing to invest in host country-relevant human
capital, as they face lower opportunity costs than natives (Duleep et al., 2012). Migrant/
minority status may thus positively predict patenting, over and above other human
capital attributes, and regardless of diasporic ties or group composition. Here, the
challenge is to distinguish ethnicity from other human capital endowments.

In theory, each of these channels has an ambiguous effect on innovation, and
channels may operate as substitutes or complements (for example, group-level diversity
effects may co-exist with individual ‘stars’). The empirical literature is still sparse, but
available evidence largely suggests net positive effects. Diversity channels remain the
least-thoroughly explored, beyond a management literature testing small-sample
correlations between team mix and business performance (see Page (2007) for a
review). A few robust studies link ethnic diversity and innovation at group or workforce
level. Some find correlations or causal links between team composition and product or
process innovation (Ostergaard et al., 2011; Ozgen et al., 2011; Parrotta et al., 2013;
Nathan and Lee, 2013). Others find no such connections (Maré et al., 2011). A couple
of area-level studies also identifies links between skilled migrant diversity and
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innovation, for example Ozgen et al. (2012) for EU regions and Gagliardi (2011) for
the UK.3

Co-ethnicity channels are better covered (see Docquier and Rapoport (2012) for a
recent review of this literature). Several qualitative case studies trace links between
specific US-based diasporas and ‘home’ countries such as India, China, Taiwan, Ireland
and Israel (Kapur and McHale, 2005; Saxenian, 2006; Saxenian and Sabel, 2008). A
range of quantitative studies identify links between co-ethnic communities and
industrial performance in home countries (Kerr, 2008a), trade and FDI flows (Rauch
and Trindade, 2002; Rauch and Casella, 2003; Kugler and Rapoport, 2007; Javorcik
et al., 2011) and US multinational activity (Foley and Kerr, 2013). By contrast, Agrawal
et al. (2008) find that physical location is up to four times more important for
knowledge diffusion than co-ethnic connections.

A few recent studies test for individual-level ‘star’ effects. In the US Stephan and Levin
(2001), Chellaraj et al. (2008) and Wadhwa et al. (2008) highlight the contributions of
Indo and Chinese-American scientists to US science, particularly foreign graduate
students. Kerr and Lincoln (2010) identify positive effects of US skilled migrant visas to
patenting by ethnic Indian and Chinese inventors. Stuen et al. (2012) identify causal links
between foreign PHDpresence and subsequent highly cited publications. However, Hunt
(2011) and Hunt and Gauthier-Loiselle (2010) find that individual ‘migrant effects’ are
largely or wholly explained by education and industry hiring patterns.

This brief review highlights three empirical gaps. First, as mentioned, diversity–
innovation channels are under-explored. Second, the vast bulk of the literature is
focused on the USA, with only a handful of European studies exploring ethnicity–
innovation connections: I am only aware of two area-level studies on diversity and
patenting outcomes, Ozgen et al. (2012) and Niebuhr (2010), and no analysis at the
individual or group level, where channels are most likely sited. Third, the interaction
between individual, group and area factors is poorly covered. Innovative activity and
minority communities tend to be concentrated in urban locations. Urban areas may
amplify ethnicity–innovation channels, for example via localized knowledge spillovers;
alternately, minority inventor communities may be physically isolated, limiting the
opportunity for interaction (Jacobs, 1969; Zenou, 2009). I am aware of only two
relevant empirical studies: Hunt and Gauthier-Loiselle (2010) find suggestive evidence
of positive amplifying effects for US metros; Kerr (2010b) tracks breakthrough
inventions across US cities, with co-ethnic networks aiding diffusion.

3. Data

I have three main data sources. Patents information comes from the European Patent
Office (EPO). Raw patent data cannot typically be used at inventor level, because of
common/misspelled names or changes of address: I use the KITES-PATSTAT cleaned
dataset, which allows robust identification of individual UK-resident inventors (see
Appendix A for details of the cleaning process). The raw data cover the period 1978–
2007, dated by priority year, and contain geocoded information on 141,267 unique
British-resident inventors and 123,030 patents with at least one British-resident

3 Other firm-level studies test links between workforce diversity and productivity: these include Maré and
Fabling (2011), Hoogendoorn et al. (2013), Malchow-Møller et al. (2011) and Trax et al. (2012).
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inventor.4 Ethnicity information is then derived from inventor names using the
ONOMAP name-classification system (see below and Appendix B). Finally, I combine
this individual-level information with data on area-level characteristics, assembled from
the UK Labour Force Survey (Office of National Statistics, 2013).

3.1. Working with patents data

I make several changes to the raw data. First, following Hall et al. (2001), I truncate the
dataset by 3 years to end in 2004.5 Second, I group patent observations in 4-year
‘yeargroups’. Invention is a process, not an event, and inventors typically work on an
invention for some time before filing a patent. Following Menon (2009), I use the mean
citation lag of EPO patents to proxy the invention process.6 Third, the main regressions
use unweighted patent counts; area-level analysis uses weighted patents to avoid
double-counting (OECD, 2009). Fourth, patents also have variable coverage across
industries (with a well-known bias towards manufacturing) and are sensitive to policy
shocks (OECD, 2009; Li and Pai, 2010).7 I use technology field dummies and area-level
industry shares to control for structural biases in patenting activity. Finally, I restrict
the sample to 1993–2004. This allows me to fit precise area-level controls from the LFS,
and to use pre-1993 inventor data to construct individual-level controls based on
‘historic’ activity (see Section 7).

3.2. Identifying ethnic inventors

I use the ONOMAP name-classification system (Mateos et al., 2007, 2011) to generate
ethnicity information for individual inventors, building on similar approaches in US
studies by Kerr (2008b, 2010a) and Agrawal et al. (2008). ONOMAP is developed from
a very large names database extracted from Electoral Registers and telephone
directories, covering 500,000 forenames and a million surnames across 28 countries.
It classifies individuals according to most likely ‘cultural–ethnic–linguistic’ (CEL)
characteristics, identified from forenames, surnames and forename–surname combin-
ations. Essentially, ONOMAP exploits structural similarities and differences between
name families, which reflect underlying cultural, ethnic and linguistic features—for
example, ‘John Smith’ is more likely to be ethnically British than French. It also
exploits the fact that ‘distinctive naming practices in cultural and ethnic groups are
persistent even long after immigration to different social contexts’ (Mateos et al., 2011,
p. e22943). Full details of ONOMAP are in Appendix B.

ONOMAP has the advantage of providing objective information at several levels of
detail and across several dimensions of identity. It is also able to deal with Anglicisation of
names, and names with multiple origins. Individual-level validation exercises suggest that

4 ‘Priority dates’ represent the first date the patent application was filed anywhere in the world. The OECD
recommends using priority years as the closest to the actual time of invention (OECD, 2009). The full
dataset has 160,929 unique UK-resident inventors: 19,492 observations lack postcode information.

5 There is typically a lag between applying for a patent and its being granted. This means that in a panel of
patents, missing values appear in final periods.

6 If patent B cites patent A, the ‘citation lag’ between the two is the time period between the filing of A and
the filing of B: the lag offers a rough way to capture the relevant external conditions affecting patenting.
The mean citation lag for EPO patents is 4 years (OECD, 2009), so I group patents into 4-year periods.

7 Patents data also have some inherent limitations: not all inventions are patented, and patents may not
record everyone involved in an invention.

Minority ethnic inventors, diversity and innovation . 135

D
ow

nloaded from
 https://academ

ic.oup.com
/joeg/article-abstract/15/1/129/957861 by U

niversity C
ollege London user on 03 February 2020

three 
four
; OECD, 2009
-
s
; Mateos etal.
a
;
-
-
-
 -- 
four 
four
s


ONOMAP matches almost all names and gives55% measurement error (Lakha et al.,
2011). For the KITES-PATSTAT data, ONOMAPmatches over 99% of inventor names,
and provides classification at various levels: after discussions with the ONOMAP team the
inventor data were classified into 68 CEL ‘subgroups’, as well as two simpler typologies
based on 12 geographical origin zones and nine ‘macro-ethnic’ groups based on the Office
of National Statistics (ONS) 1991 Census classification. The descriptive analysis uses all
three classifications (see Section 4). However, as many CEL subgroups are small, the
regression analysis uses the less detailed groupings to minimize measurement error from
small cells, and to allow easy matching with information from area-level controls.

4. Descriptive analysis

Tables 1–5 provide some initial descriptive analysis. Table 1 breaks down inventors by
CEL subgroup, showing the 30 largest groups. We can see that although English,

Table 1. Inventors by 30 biggest CEL subgroups, 1993–2004

CEL subgroup Frequency % Cumulative %

English 48,101 68.71 68.71

Celtic 5799 8.28 76.99

Scottish 3641 5.2 82.19

Irish 2034 2.91 85.1

Welsh 1452 2.07 87.17

Indian Hindi 751 1.07 88.25

German 731 1.04 89.29

Italian 600 0.86 90.15

French 572 0.82 90.96

Chinese 560 0.8 91.76

Polish 529 0.76 92.52

Muslim 483 0.69 93.21

European 387 0.55 93.76

Greek 340 0.49 94.25

Hong Kongese 335 0.48 94.73

Pakistani 326 0.47 95.19

Sikh 299 0.43 95.62

Spanish 244 0.35 95.97

Vietnamese 244 0.35 96.32

Jewish 205 0.29 96.61

Japanese 205 0.29 96.9

Portuguese 197 0.28 97.18

East Asian and Pacific 159 0.23 97.41

Danish 138 0.2 97.61

Sri Lankan 133 0.19 97.8

Dutch 115 0.16 97.96

South Asian 114 0.16 98.12

Swedish 109 0.16 98.28

Turkish 108 0.15 98.43

Pakistani Kashmir 78 0.11 98.55

Russian 78 0.11 98.66

Total 70,007 N/A 100

Source: KITES-PATSTAT/ONOMAP.
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Welsh, Scottish and Celtic8 inventors make up the bulk of the sample, other inventor

groups divide fairly evenly into geographically proximate communities (e.g. Irish, plus a

series of European groups); groups reflecting the UK’s colonial history in South and

East Asia (e.g. Indian Hindi, Sikh, Pakistani, Hong Kong Chinese), and some largely

recent migrant communities (e.g. Polish, Vietnamese).
Table 2 recuts the sample by geographical origin zones and by ONS macro-ethnic

groups. Geographical origin zones (top panel) allow me to preserve some of the detail

from the full CEL classification, including several areas of Europe as well as South and

East Asia. As highlighted earlier, ONS ethnic groups (bottom panel) are much less

flexible, with ‘other’ the next largest inventor group after ‘white’.
Table 3 sets out some differences in patenting activity between minority ethnic and

majority inventor groups. Minority ethnic inventors, on average, patent slightly less

than majority inventors (0.51 patents per yeargroup versus 0.54). As a whole, minority

inventors are also less likely to be ‘multiple’ and ‘star’ inventors (who patent 2–4 times

Table 2. Inventors by geographical origin and ONS ethnic groups, 1993–2004

Frequency % Cumulative

Probable geographic area of origin

British Isles 61,025 87.17 87.17

South Asia 1841 2.63 89.8

Central Europe 1804 2.58 92.38

East Asia 1539 2.2 94.57

Southern Europe 1442 2.06 96.63

Eastern Europe 801 1.14 97.78

Middle East 638 0.91 98.69

Northern Europe 374 0.53 99.22

Rest of World 337 0.48 99.7

Africa 177 0.25 99.88

Central Asia . . .

Americas . . 100

Total 70,077 100

Probable ethnic group, 1991 Census categories

White 65,744 93.91 93.91

Any other ethnic group 1323 1.89 95.8

Indian 1262 1.8 97.6

Chinese 1046 1.49 99.1

Pakistani 404 0.58 99.67

Black-African 163 0.23 99.91

Bangladeshi . . .

Black-Caribbean . . 100

Total 70,077 100

Source: KITES-PATSTAT/ONOMAP.

Notes: Ethnic groups typology taken from 1991 Census to allow comparability with pre- and post-2001

area conditions. Some frequencies are suppressed to avoid disclosure and are marked by ‘.’.

8 ‘Celtic’ denotes names common to Scottish, Welsh and Irish CEL types.
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per period and at least five times per period, respectively). However, minority multiple

and star inventors patent significantly more than their majority counterparts (for stars,

4.616 versus 4.358 patents, respectively). All of these differences are statistically

significant, as measured by t-tests and rank-sum tests. I return to this in Section 7 with

more formal decomposition of individual characteristics.
Minority and majority ethnic inventors also differ in the type of patenting they are

most likely to do. Table 4 decomposes minority and majority patenting by the groups’

most common Observatoire des Sciences and des Techniques (OST30) technology fields

(so that, for example, 0.12% of minority inventors most often patent in biotechnology

(OST field 15), against 0.072% of majority inventors). Chi-square tests confirm that the

two distributions are independent. The two groups are fairly close together across most

technology fields, but minority inventors are more concentrated in information

technology, semi-conductors, pharmaceutical and cosmetics, and agriculture and food

products.
Next, I use postcode information to locate inventors in UK Travel to Work Areas

(TTWAs), which are designed to cover self-contained labour markets: TTWAs are a

good approximation of a local functional economy, and superior to administrative units

such as local authority districts (Robson et al., 2006).9 I then fit a simple urban/rural

typology of TTWAs developed in Gibbons et al. (2011), allowing me to explore the

Table 3. Comparing patenting activity by majority and minority ethnic inventors, 1993–2004

Observations (%) % multiple inventors % star inventors

All inventors 70,007 (100) 9.10 2.59

Of which

Majority inventors 61,025 (87.2) 9.25 2.67

Minority inventors 8982 (12.8) 8.10 2.02

Different? N/A *** ***

Patent counts Patents by multiples Patents by stars

All inventors 0.536 1.917 4.384

Of which

Majority inventors 0.539 1.909 4.358

Minority inventors 0.510 1.975 4.616

Different? *** *** **

Source: KITES-PATSTAT/ONOMAP.

Notes: Multiple inventors patent 2–4 times in at least one 4-year period. Star inventors patent at least five

times in at least one 4-year period. ‘Patenting’ is unweighted patenting activity per inventor per 4-year

period. Differences between populations from t-tests and rank-sum tests.

Significant at *10%, **5% and ***1%.

9 Formally, 75% of those living in a given TTWA also work in the TTWA, and vice versa. Matching is
done by postcode sector, which minimizes observations lost through incomplete or mistyped postcode
information (matching on full postcodes drops around 12% of observations; matching on postcode sector
drops 5.77%). I exclude inventors resident in Northern Ireland.
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potential effects of urban environments: ‘primary urban’ TTWAs are defined as those

containing an urban core of at least 125,000 people.
Table 5 presents location quotients (LQs) for the 35 TTWAs with the largest shares of

minority ethnic inventors by geographical origin, plus comparator LQs for the wider

minority ethnic population (the latter defined by ONS ethnic groups).10 The table

confirms that minority ethnic inventors are spatially clustered, with a long tail of TTWAs

with LQs under 1. High-ranking TTWAs for minority ethnic inventors are predominantly

Table 4. Comparing patenting for minority ethnic and majority inventors, 1993–2004

Modal OST30 field % share of patenting by

Majority Minority ethnic All

Biotechnologies 7.39 12.03 7.99

Telecommunications 7.04 10.09 7.43

Information technology 6.05 9.18 6.46

Organic chemistry 10 8.94 9.86

Pharmaceuticals/cosmetics 7.06 8.83 7.29

Control/measure/analysis tools 9.12 8.4 9.03

Medical engineering 4.91 4.4 4.84

Optics 2.8 4.21 2.98

Basic chemistry 4.2 3.61 4.12

Audiovisual technology 2.94 3.37 2.99

Semi-conductors 1.13 3.05 1.38

Electrical engineering 3.68 2.84 3.57

Handling/printing 4.13 2.23 3.88

Consumer goods 3.88 2.16 3.66

Macromolecular chemistry 1.88 2.01 1.9

Mechanical engineering 2.86 2 2.75

Civil engineering 3.18 1.72 2.99

Materials processing 2.16 1.53 2.08

Engines/pumps/turbines 2.02 1.39 1.94

Materials/metallurgy 1.47 1.35 1.45

Transport technology 3.12 1.31 2.88

Mechanical elements 2.33 1.2 2.19

Agricultural and food products 1.41 1.11 1.37

Surface technology 1.14 0.99 1.12

Machine tools 1.21 0.57 1.13

Agricultural and food apparatuses 0.88 0.43 0.82

Thermal processes 0.63 0.34 0.59

Environmental technology 0.58 0.33 0.55

Nuclear technology 0.49 0.32 0.47

Space technology/weapons 0.32 0.08 0.28

Total 100 100 100

Source: KITES-PATSTAT.

Notes: OST30 reclassification of IPC technology fields.

10 Location quotients compare the local area share of a group i with the national share. Formally,
LQia¼ (pia/pa)/(pi/p), where pia/pa is the local population share of i in area a, and pi / p is i’s national
population share. An LQ of above 1 indicates concentration; scores below 1 indicate dispersion.
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‘primary urban’, although a number of less dense and rural areas also feature,

predominantly university towns (St Andrews, Lancaster, Inverness, Carlisle, Bangor) or

areas adjoining TTWAs with universities (Honiton and Axminster, adjoining Exeter).11

Table 5. Minority ethnic inventor LQs, 1993–2004. Top 35 TTWAs

LQ (minority

population)

LQ (minority

inventors)

TTWA name TTWA type

1.332 4.009 Crawley Primary urban

1.137 3.552 Southampton Primary urban

8.663 3.219 London Primary urban

0.267 2.779 Bangor, Caernarfon and Llangefni Welsh rural

1.482 2.599 Oxford Primary urban

0.621 2.499 Dundee Primary urban

1.006 2.417 Swindon Primary urban

1.163 2.374 Cambridge Primary urban

0.197 2.254 St Andrews and Cupar N Scotland rural

0.829 2.130 Colchester Primary urban

0.155 2.124 Inverness and Dingwall N Scotland rural

0.183 2.111 Carlisle N England rural

1.380 2.050 Guildford and Aldershot Primary urban

0.698 2.033 Edinburgh Primary urban

1.276 2.009 Glasgow Primary urban

6.453 1.931 Birmingham Primary urban

3.055 1.850 Bedford Primary urban

1.114 1.821 Lancaster and Morecambe N England rural

0.427 1.817 Livingston and Bathgate N Scotland rural

7.268 1.793 Bradford Primary urban

1.676 1.773 Cardiff Primary urban

0.990 1.765 Canterbury Rest England rural

0.483 1.743 Aberdeen Primary urban

0.349 1.741 Norwich Primary urban

0.400 1.730 Wirral and Ellesmere Port Primary urban

0.386 1.726 Lanarkshire Primary urban

4.056 1.708 Wycombe and Slough Primary urban

5.239 1.678 Leicester Primary urban

0.986 1.678 Liverpool Primary urban

0.719 1.671 Eastbourne Rest England rural

0.825 1.662 Newbury SW England rural

0.205 1.659 St Austell SW England rural

3.117 1.635 Leeds Primary urban

1.209 1.626 Brighton Primary urban

2.068 1.619 Reading and Bracknell Primary urban

Source: KITES-PATSTAT/ONOMAP/ONS.

Notes: TTWAs use 2001 boundaries. ‘Primary urban’ TTWAs contain an urban core with at least 125,000

people, ‘rural’ TTWAs may contain smaller urban settlements. Cells with fewer than 10 inventors

suppressed. Population LQs from ONS minority ethnic groups in working-age population, not CEL data.

11 Many inventors will work in professional/technical occupations, which are characterized by longer-than-
average commuting distances. Building ‘commuting zones’ on the basis of these workers’ commuting
patterns substantially reduces the total number of zones, suggesting that commuting across conventional
TTWAs is not uncommon (Robson et al., 2006).
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Overall, minority ethnic inventors follow the same urbanized spatial distribution as
wider minority populations, but they are less concentrated in the largest and most
diverse cities (such as London, Birmingham and Manchester) and more concentrated in
second-tier cities and university towns (such as Oxford, Cambridge, Southampton and
Guildford): the corresponding pairwise correlation of minority inventors to minority
population LQs is 0.348. Note that wider populations are not identified using CEL
data, so these comparisons should be used with care.

Table 6 gives weighted counts for the 35 TTWAs with the highest patenting activity:
to minimize double counting, I weight each patent by the number of inventors involved.

Table 6. Weighted patent counts by TTWA, 1993–2004. Top 35 areas

Weighted patent count TTWA name TTWA type

1613.33 London Primary urban

1021.22 Cambridge Primary urban

617.47 Oxford Primary urban

533.29 Harlow and Bishop’s Stortford Rest England rural

507.08 Manchester Primary urban

496.12 Guildford and Aldershot Primary urban

456.90 Bristol Primary urban

424.77 Southampton Primary urban

414.35 Crawley Primary urban

370.59 Reading and Bracknell Primary urban

366.80 Ipswich Primary urban

344.94 Wycombe and Slough Primary urban

344.17 Swindon Primary urban

303.09 Birmingham Primary urban

265.75 Newcastle and Durham Primary urban

254.54 Stevenage Primary urban

254.23 Nottingham Primary urban

252.37 Leicester Primary urban

235.58 Wirral and Ellesmere Port Primary urban

210.11 Worcester and Malvern Primary urban

206.02 Edinburgh Primary urban

203.80 Leeds Primary urban

167.67 Coventry Primary urban

167.36 Luton and Watford Primary urban

166.46 Warwick and Stratford-upon-Avon Rest England rural

151.64 Aberdeen Primary urban

151.24 Portsmouth Primary urban

149.98 Bedford Primary urban

147.75 Margate, Ramsgate and Sandwich Rest England rural

144.87 Derby Primary urban

143.20 Warrington and Wigan Primary urban

142.31 Glasgow Primary urban

139.42 Cardiff Primary urban

138.46 Maidstone & North Kent Primary urban

135.11 Hull Primary urban

Source: KITES-PATSTAT/ONOMAP/ONS.

Notes: TTWAs use 2001 boundaries. Primary urban TTWAs defined as Table 4. Weighted patents stocks

averaged 1993–2004. Weighting by inventors/patent and based on inventor address, not applicant address.
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The results follow the familiar geography of UK innovative activity. A number of these
high-patenting areas also have large minority ethnic inventor shares and diverse
inventor groups (for example, London, Southampton, Crawley, Oxford and
Cambridge). However, another group of high-patenting TTWAs have rather more
homogenous inventor and general populations (for example, Bristol, Manchester and
Reading). The pairwise correlation between minority inventor LQ and weighted patent
stocks is 0.560.

Four broad lessons emerge from the descriptives. First, the UK’s population of
minority ethnic inventors appears substantially different from that of the USA, where
minority ethnic inventor communities are dominated by South and East Asian groups
(Kerr, 2008b, 2010a). By contrast, the UK has a number of European groups, South
Asian and East Asian inventors drawn in large part from former colonies, plus recent
migrant communities. Second, minority inventors are under-represented in the upper
tail of multiple and star inventors; but those who are present patent significantly more
than their ‘majority ethnic’ counterparts. There are also some differences in patenting
fields, with minority inventors more likely to focus on semi-conductors and IT (as in the
USA) as well as chemistry and food/agriculture fields (distinctive). Third, as in the
USA, minority ethnic inventors are spatially concentrated, but the link to wider
population diversity is relatively weak. Fourth, although minority ethnic inventor
presence is positively correlated with high patent stocks, not all high-patenting locations
have large minority inventor shares or diverse inventor communities.

5. Econometric analysis

For the regression analysis, I build a panel of UK-resident inventors’ patenting activity
between 1993 and 2004 inclusive. The sample includes all and only those inventors who
patent at least once during this period. Each inventor-yeargroup-area cell records how
many times an inventor patents in each 4-year phase. The basic panel covers 70,007
inventors across three ‘yeargroups’, giving 210,021 observations in the raw sample. Cell
counts vary from 0 to 36, with a mean of 0.53 (see Table 6). Note that inventors are only
observed when patenting. Blanking all cells where the inventor is not active—the most
conservative response—would radically reduce sample size, as most inventors patent
only once (and would miss instances where inventors were constrained from patenting
for some reason). I thus zero all cells when no inventor activity is recorded, and test
‘blanking’ in robustness checks.

5.1. Identification strategy

This panel setting allows me to explore how changes in inventor group ethnic diversity
might affect individual patenting activity, and to look at possible roles of minority
ethnic status and co-ethnic group membership. To reliably identify group-level
‘diversity effects’, I need to control for individual ethnicity and unobserved individual
characteristics as well as wider influencing factors (such as area-level demographic and
economic conditions, technology field and time trends). Individual fixed effects are the
most robust way to control for individual-level unobservables. However, as minority
ethnic status and ethnic group membership are time-invariant, they drop out of any
subsequent fixed effects regression. I therefore develop a two-stage identification
strategy, drawing on Oaxaca and Geisler (2003) and Combes et al. (2008).
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The first stage focuses on diversity. The estimating model is a modified knowledge
production function, regressing counts of individual patenting activity on inventor
group diversity, plus area-level controls, technology field-time effects and individual
fixed effects. Group diversity effects on individual patenting activity should then reflect
a combination of (i) externalities of ethnic diversity, (ii) changes in TTWA composition
or (iii) inventors moving between TTWAs. The first of these is my variable of interest,
and the second is captured in the area-level controls vector. Movers are a potential
omitted variable if between-TTWA movement is a strong feature of the data,
particularly if inventors select into high-innovation clusters. To deal with this, I identify
the set of moving inventors in the panel (see Appendix A). In the main regressions,
movers are constrained to one location: I then run a series of separate checks, exploring
overall patterns of movement and testing the extent to which changes in area patent
counts are explained by in-movers versus other factors (see Section 6).

For the second stage of the analysis I retrieve estimates of the individual fixed effect,
then regress this on individuals’ observable characteristics.12 Here the variable of interest
is minority ethnic status or co-ethnic group membership, and controls cover individual
patenting intensity and scope as well as historical patenting activity (see Section 7).

5.2. Empirical strategy

The first stage model is set out below. For inventor i in area j and yeargroup t, I
estimate:

PCOUNTijt ¼ aþ bDIVjt þ VCTRLSjtcþ ICTRLSjdþ Ii þ TF�YGpt þ ei, ð5:1Þ

where PCOUNTijt is a count of the number of times an inventor engages in patenting
during a given 4-year period (patenting activity), the variable of interest is DIVjt, the
diversity of active inventors in a given TTWA and time period, and Ii is the individual
fixed effect. As movers are constrained to a single location, all area-invariant
information is absorbed in the individual fixed effect.13 The model thus effectively
fits inventor-area fixed effects:

PCOUNTijt ¼ aþ bDIVjt þ VCTRLSjtcþ ICTRLSjdþ Iia þ TF�YGpt þ ei ð5:2Þ

For group a in area j in year t, DIVjt is given by:

DIVjt ¼ 1�
X

a
SHAREajt

� �2
, ð5:3Þ

where SHAREajt is a’s share of the relevant population (here, all active inventors in a
given area). The Index measures the probability that two individuals in an area come
from different geographical origin or ethnic groups. Similar measures are used widely in
the development literature, as well as some area-level studies (Easterley and Levine,
1997; Alesina and Ferrara, 2005; Ottaviano and Peri, 2005, 2006).

12 My preferred estimator is a negative binomial fixed effects estimator, which should permit me to fit time-
invariant individual-level regressors in the stage 1 model: in practice, identification is very unstable and
so the two-stage process is preferred.

13 In a linear estimator with both sets of fixed effects, area dummies drop out. The conditional fixed effects
negative binomial estimator does allow time-invariant regressors, but adding in a large number of right-
hand side dummies to a model with only three time periods is likely to create an ‘incidental parameters
problem’ (Heckman 1981), which in turn leads to inconsistent estimates.
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To deal with sectoral and industry patenting shocks, the model includes technology

field-by-yeargroup fixed effects (TF*YGpt), where p indexes shares of patenting in one

of the 30 OST-defined technology fields. VCTRLSjt and ICTRLSj are vectors of,

respectively, time-varying and time-invariant TTWA-level controls covering key spatial,

economic and demographic characteristics affecting relationships between DIV and

innovation: all controls are for the same 1993–2004 period as the patent data. I use

aggregated ONS population and LFS client file microdata to build these.14

Patenting and population diversity are spatially concentrated, reflecting benefits from

agglomeration that may persist over time (Simmie et al., 2008). Diversity effects on

patenting might then simply reflect agglomeration and path-dependence. ICTRLSj

includes a dummy for urban TTWAs, and 1981–1984 area weighted patents to control

for historic ‘knowledge stocks’ (robustness checks explore different lags). VCTRLSjt

includes the log of population density to explore wider agglomeration effects, plus a

series of other variables. Inventor demographic characteristics may be entirely

explained by area demographic characteristics: for example, places with more diverse

populations may produce more diverse inventor groups. I control for this by using area-

level fractionalization indices of ONS macro-ethnic groups (and cross-check using

migrant population shares). Third, human capital stocks are closely correlated with

innovative activity (Romer, 1990) and may account for apparent ethnicity effects on

patenting. To deal with this, I fit areas’ share of science, technology, engineering and

maths (STEM) degree-holders in the local working-age population.
I fit further controls for precision. Patenting is known to be higher in ‘knowledge-

intensive’ high-tech and manufacturing sectors, so I include measures of the share of

workers employed in ‘knowledge-intensive’ manufacturing, following Brinkley (2008).15

Patenting may also be lower in areas with a lot of entry-level jobs, so I include the

share of workers in entry-level occupations as a control. Summary statistics are given in

Table 7.
My panel exhibits excess zeroes (63.2%) and slight over-dispersion (the variance of

PCOUNT, 1.129, is over twice the mean, 0.529). As the assumptions of the standard

Poisson model are not met, I fit the model as a conditional fixed effects negative

binomial (Hausman et al., 1984).16

14 I aggregate individual-level data to local authority-level averages, and then aggregate these to TTWA-
level means using postcode shares. Local Authority Districts (LADs) are not congruent with TTWA
boundaries, so straightforward aggregation is not possible. Using the November 2008 National Postcode
Sector Database (NSPD), I calculate the number of postcodes in each 2001 TTWA and in each of its
constituent LADs. For each TTWA, I then calculate constituent LADs’ ‘postcode shares’. Shares sum to
one, and are used as weights to construct TTWA-level averages. Example: suppose a TTWA consists of
parts of three LADs. The TTWA has 100 postcodes, 60 of which are in LADa, 30 in LADb and 10 in
LADc: relevant LAD weights are 0.6, 0.3 and 0.1, respectively. The TTWA-level average of X is given by
XTTWA¼ 0.6*(X)aþ 0.3*(X)bþ 0.1*(X)c.

15 This adjusts OECD definitions for the UK context. The final list of three-digit SIC sectors includes
medium and high-tech manufacturing (pharmaceuticals, aerospace, computers and office machinery,
electronic communications, software, other chemicals, non-electrical machinery, motors and transport
equipment).

16 Hausman tests strongly suggest that the conditional fixed effects estimator is preferred to random effects
(chi2¼ 734.21, P¼ 0.000). Given the large sample size, a conditional fixed effects estimator is preferred to
an unconditional estimator with individual-level dummies.
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6. Main results

The main results for the first stage model are given in Table 8. The dependent

variable is the count of patenting activity, or unweighted patent counts (results for

weighted patents are almost identical). The left hand panel shows results for DIV

measured with geographic origin zones, my preferred specification; the right hand

Table 7. Summary statistics

Variable N Mean SD Min Max

Inventor patent count/4-year period 210,010 0.536 1.074 0 36

Inventor patents 2–4 times/YG 210,010 0.091 0.288 0 1

Inventor patents at least 5 times/YG 210,010 0.026 0.159 0 1

Inventor patents pre-1993 210,010 0.05 0.218 0 1

Inventor mean patent count pre-1993 210,010 0.028 0.174 0 9.429

Inventor is TTWA mover, same YG 210,010 0.013 0.115 0 1

Inventor moves across TTWAs 210,010 0.025 0.157 0 1

Inventor patents across OST30 fields 210,010 0.096 0.294 0 1

Minority ethnic inventor (geography) 210,010 0.128 0.334 0 1

Minority ethnic inventor (ONS ethnic) 210,010 0.061 0.239 0 1

Inventor UK origin 210,010 0.872 0.334 0 1

Inventor Central Europe origin 210,010 0.026 0.158 0 1

Inventor East Asian origin 210,010 0.022 0.147 0 1

Inventor Eastern Europe origin 210,010 0.011 0.106 0 1

Inventor South Asian origin 210,010 0.026 0.16 0 1

Inventor Southern Europe origin 210,010 0.021 0.142 0 1

Inventor Rest of world origin 210,010 0.022 0.147 0 1

Frac Index, geographic origin groups 210,010 0.215 0.112 0 0.571

Inventor White ethnicity 210,010 0.939 0.239 0 1

Inventor Black Caribbean ethnicity 210,010 0.000 0.007 0 1

Inventor Black African ethnicity 210,010 0.002 0.048 0 1

Inventor Indian ethnicity 210,010 0.018 0.133 0 1

Inventor Pakistani ethnicity 210,010 0.006 0.076 0 1

Inventor Bangladeshi ethnicity 210,010 0.001 0.03 0 1

Inventor Chinese ethnicity 210,010 0.015 0.121 0 1

Inventor Other ethnic group 210,010 0.019 0.136 0 1

Frac Index, ONS ethnic groups 210,010 0.108 0.062 0 0.56

TTWA Frac Index, geo. groups 210,010 0.159 0.117 0.017 0.526

% Graduates 210,010 0.237 0.051 0.09 0.358

% Graduates with STEM degrees 210,010 0.121 0.031 0.035 0.186

% Graduates with PhDs 210,010 0.008 0.007 0 0.031

% Employed high-tech manufacturing 210,010 0.029 0.014 0 0.189

% Employed medium-tech manuf. 210,010 0.045 0.022 0.006 0.154

% In entry-level occupations 210,010 0.34 0.048 0.251 0.521

% Unemployed at least 12 months 210,010 0.015 0.011 0 0.052

Log(population density) 210,010 6.469 0.976 2.06 8.359

Log(TTWA w/patents, 1981–1984) 210,010 4.028 1.439 �1.386 6.543

Source: KITES-PATSTAT/ONS.

Note: Statistics for estimation sample. For reasons of space, country of origin dummies are shown for UK-

origin and the six largest minority ethnic groups.
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panel repeats the regression using the simpler Index built with ONS macro-ethnic
groups. In each case, column 1 shows a bivariate regression for the main variables of
interest only, column 2 adds individual fixed effects and column 3 adds controls.
Coefficients are presented as marginal effects at the mean. Column 1 indicates a
significant log alpha term, confirming over-dispersion. Controls are generally of the
expected size and sign. Bootstrapped, cluster-robust standard errors are fitted in all
cases.

For geographic origin zones, estimates of DIV in the bivariate regression are small
and close to zero (column 1). Including individual fixed effects increases the effect of
DIV, which is now significant at 1% (column 2). As expected, model fit is also
substantially better. Once controls are added, model fit improves further: the marginal
effect of DIV is 0.248, significant at 1%. A 10-point increase in the Fractionalization
Index—increasing inventor diversity in Bristol to that in Oxford, for example—would
then raise each Bristol inventor’s patenting activity by just under 0.025 patents in a
given 4-year period. A back-of-the-envelope calculation of the aggregate effect across

Table 8. First stage regression: individual patent counts and inventor group diversity

Inventor patent counts Geo origin zones ONS groups

(1) (2) (3) (1) (2) (3)

Frac Index of inventors 0.075 0.221*** 0.248*** 0.111 0.312*** 0.337***

(0.100) (0.020) (0.023) (0.165) (0.011) (0.014)

Frac Index of TTWA pop 0.028 0.061

(0.058) (0.054)

% STEM degrees, TTWA 0.323*** 0.308***

(0.106) (0.106)

Log of TTWA population density 0.015** 0.010

(0.007) (0.007)

% Employed in hi-tech mf (OECD) 0.237 0.107

(0.164) (0.149)

% Employed in medium-tech mf

(OECD)

�0.106 �0.075

(0.110) (0.115)

% Workers in entry-level occupations �0.053 �0.090**

(0.036) (0.042)

Log of area weighted patent stocks

(1981–1984)

�0.024*** �0.023***

(0.006) (0.007)

Urban TTWA �0.051*** �0.047***

(0.015) (0.015)

ln(alpha) �1.016*** �1.010***

(0.048) (0.046)

Individual fixed effect N Y Y N Y Y

Controls N N Y N N Y

Observations 210,008 210,008 210,008 210,008 210,008 210,008

Log-likelihood �20,6721.358 �91,887.733 �91,829.454 �206,723.863 �91,913.822 �91,861.933

Chi-squared 167.855 21,597.972 . 169.380 10,830.210 .

Source: KITES-PATSTAT/ONS.

Notes: Constant not shown. Model (1) uses yeargroup dummies. Models (2) and (3) use OST30 technology

field*yeargroup dummies. Bootstrapped standards errors are clustered on TTWAs. Results are marginal

effects at the mean.

Significant at *10%, **5% and ***1%.
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the area’s 1628 inventors is then 40.4 unweighted patents.17 For DIV measured by ONS
groups, the pattern of results is similar but marginal effects of DIV are rather bigger, at
0.337 (also significant at 1%). Interestingly, coefficients of wider population diversity
are small and close to zero in the preferred specification, small and positive significant
in the ONS models. The urban area dummy is negative, but population density has a
positive link to patenting activity. I explore these urban and density connections further
in the next section.

To put the main result into perspective, note that effects of DIV are rather smaller
than for human capital and technology field-time dummies. For example, the marginal
effect of area-level science, engineering, technology and maths degree-holders is 0.323,
significant at 1%. That implies that a 10% rise in STEM graduates in Bristol is linked
to 0.032 extra patents per inventor (or over 65 unweighted patents at the area level,
almost a third larger than the diversity result). This chimes with the existing empirical
literature, which suggests that ‘diversity effects’ are relatively small where they exist.

As a basic crosscheck, I compare the negative binomial estimates with linear fixed
effects regressions. Angrist and Pischke (2009) argue that once raw coefficients are
converted into marginal effects, non-linear modelling offers little over standard linear
regression. OLS regressions give results with a similar sign and significance, but with
marginal effects around twice as large. Results are given in Appendix C, Table C1.

6.1. Robustness checks

I conduct a number of robustness checks. Results are summarized in Table 9. I first fit
some basic specification checks against the main result (column 1). Some of the inventor
geographical origin groups are small, so the Fractionalization Index may be affected by
measurement error. Column 2 refits the Index as seven categories, aggregating the six
smallest groups into a single ‘other’ category. Marginal effects of DIV are identical
though the model fit changes slightly. I also run a falsification test on ONOMAP. I
randomly assign ethnicity, with ‘fake’ categories following the same underlying
structure as the ONOMAP classification, and build a fake Fractionalization Index: if
this gives the same results as the ONOMAP Index, it suggests that ONOMAP is no
better than random assignment. Results are shown in column 3: fake DIV is �0.050
rather than 0.248, significant at 5% rather than 1%, and with reduced model fit.
Inventor diversity effects might also collapse to simple size effects, not least because
Fractionalization Indices tend to be highly correlated with group population shares (the
pairwise correlation here is 0.779). Column 4 fits the share of minority ethnic inventors;
column 5 fits the Fractionalization Index and share together. In both cases, marginal
effects of minority ethnic inventor shares are negative, whereas those of DIV stay
positive.

Next, I check for omitted variables. Column 6 refits the Equation (5.1) with area-by-
technology field-by-yeargroup dummies, which capture localized industry/sector trends.
Effects of DIV shrink to 0.231, but remain positive significant. Column 7 fits the model
without inventors from London—a city with high levels of cultural diversity; column 8

17 The average weighted patent count per inventor is 0.235, versus 0.535 for unweighted patents. Again, a
back of the envelope calculation suggests approximate aggregate weighted patent effect of (0.235/
0.535)*40.4¼ 17.7 weighted patents.
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fits the area share of PHD-holders as an alternative area-level human capital control.

Removing London raises the effect of DIV to 0.268; switching to PHDs also raises

estimates of DIV, to 0.250. Both are significant at 1%. Column 9 adds the share of

‘stars’ in the TTWA inventor population, where stars are defined as inventors patenting

at least five times during a given period. This raises the marginal effect of DIV from

0.248 to 0.366 and is still significant at 1%.18

I then test for urban amplifying effects. Minority ethnic inventors are spatially

concentrated in urban locations: as discussed in Section 2, agglomeration economies

might generate some of the diversity result. Columns 10 and 11 test for amplifying

effects of urban and high-density areas, respectively, fitting interactions of the

Fractionalization Index with the urban TTWA dummy and with logged population

density. In the first case, the effect of DIV alone falls to zero, but the joint effect of

urban DIV is 0.285, significant at 1%. Effects of urban status remain negative, as

before. In the second case, estimates of DIV grow substantially to 0.812, whereas the

joint effect of DIV and population density is negative at �0.259. Population density

marginal effects are 0.029, larger than in the main regressions. All are significant at 1%.

Together, this suggests an amplifying effect of urban areas, which disappears in the

biggest and most dense cities. This may partly reflect the spatial distribution of minority

ethnic inventors, who are most densely clustered in second tier cities and university

towns, rather than the largest urban cores. Note also that removing London-based

inventors raises marginal effects of inventor diversity, which is compatible with these

results.
Finally, I check for appropriate historical settings. If the historic patent stocks term

in the main model is mis-specified, path-dependence will not be adequately controlled

for. Column 12 shows results for the most conservative specification (when the lag is

dropped to the 4-year period before the sample). Effects of DIV barely change, and

results for other lags also show no change.
I also conduct three further structural tests. First, my results might be particular to

the choice of time period, in which the UK experienced substantial rises in net

migration and minority ethnic populations (Graph 1). To test this I run a reduced-form

model on the full set of inventors active between 1981 and 2004, and on the sub-group

active between 1981 and 1992. Results (Appendix C, Table C2) show positive significant

effects of DIV in the long sample: in the earlier period, DIV is non-significant and close

to zero. National demographic changes, then, help explain my results.
Next, I reconstruct my sample by blanking all inventor-yeargroup cells when an

inventor is not patenting. This is a more conservative way of treating inactive inventors,

and will deal with any measurement error introduced by zeroing. My choice of

estimator means that blanking out non-activity has the effect of restricting the sample

to inventors who patent more than once. I compare estimates for multiple inventors

across two different samples, one with zeroed and one with missing observations for

non-activity. Reduced-form results show that estimates for the two sub-samples are

identical (Appendix C, Table C3). This strongly suggests that sample construction has

no effect on my main findings.

18 I exclude inventors who are themselves stars, so as to capture any effect of the presence of stars around
that inventor. I also run tests for the sum of stars, the sum of multiple inventors (inventing more than
once) and the share of multiple inventors, none of which change my main result.
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Finally, I transform the model into a wholly area-level specification: this loses
individual fixed effects but allows for an alternative estimation of aggregate effects.
I collapse the panel to area level and estimate:

Yjt ¼ aþ bDIVjt þ VCTRLScjt þAj þYG � TFpt þ ejt, ð6:4Þ

where Y is the total count of unweighted patents for area j in yeargroup t, A is the area-
level fixed effect and all other terms are defined as in Equation (5.2). The two models
are not identical, and we should expect estimates of b to differ: Equation (6.4)

substitutes area fixed effects for individual-area fixed effects, and this loses important
variation, as the main results suggest that individual characteristics help drive
patenting. Sample construction is also different; in the individual panel DIV is
effectively ‘weighted’ across inventor populations in each area, whereas the area-level
panel cleans this out (means of DIV differ quite a lot, at 0.213 for the individual panel
and 0.109 for the area panel).

I estimate Equation (6.4) in OLS, with Poisson results included for comparison (as
shares of zeroes are low and mean–variance assumptions are met). Results are shown in
Appendix C, Table C4. In the OLS model the beta of DIV is 335.48, which implies that
a 0.1 shift in area DIV is linked to 33.5 extra patents in that area. This compares to a
(rough) aggregate effect of 40.4 patents from the individual-level model. This suggests
that (i) my main result holds in an area-level specification, (ii) this specification misses
out salient individual-level factors and (iii) sample construction issues may also be in
play. Area-level results should also be treated as associations: unobserved area-level
factors might affect aggregate patenting (but not individual inventors). For all these
reasons, my main, individual-level results are preferred.

6.2. Moving inventors

If inventors select into high-innovation clusters that help them become more
productive, this might create upwards bias on coefficients of DIV or, in extremis,
explain the result entirely. To explore this issue, I use information from the KITES-
PATSTAT cleaning process to identify inventors who move between TTWAs (see
Appendix A). The group of movers comprises 1781 individuals (around 2.5% of the
sample), of who 963 (1.33%) move within the same yeargroup. I then run a series of
checks on the influence of movers. First, I re-assign movers from their first to their
second locations and re-run model (Equation 5.2), with almost no change to coefficients
of DIV (see Appendix C, Table C5). Next, I manually examine mover origin and
destination points. Specifically, I look for whether moves are between contiguous

TTWAs or across greater distances. Contiguous moves, especially from an urban to a
rural TTWA might suggest lifecycle-related relocation, for example a new family
moving from a city to a less dense area. Moves across greater distances might suggest
job-related motives. I find that over 90% of moves are between contiguous TTWAs (for
example, Cambridge–Huntingdon, Reading–Newbury, Middlesborough and Stockton–
Hartlepool–Bishop Auckland).

Finally, I construct an area-level panel and regress the change in area-level weighted
patent counts on the change in movers to a given TTWA. For TTWA j, I estimate:

�WPATENTSj ¼ aþ b�MOVERSj þ�VCTRLScj þ ej, ð6:5Þ
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where

�WPATENTSj ¼ ðWPATENTSj 2004 �WPATENTSj 1993Þ=WPATENTSj 1993: ð6:6Þ

And WMOVERSj is assembled similarly. VCTRLS contains the same set of area-
level variables from model (5.2), with time-varying variables expressed as percentage
changes. This horse-race setting allows me to test the relative contribution of movers to
overall patenting. A large and significant value of b compared with c would suggest that
positive selection is an issue at the area level (although these are associations, not causal
effects). Results are given in Table 10. I find small, positive significant coefficients of
movers on changes in area patenting (0.082, significant at 5%) but these are dwarfed by
changes in other area-level characteristics (such as STEM degrees and high-tech
manufacturing) that are fitted as controls in the main model. For instance, a 10% rise in
moving inventors is linked to a 0.8% rise in total patenting; a similar increase in STEM
degrees is associated with an 11.9% rise. This also suggests that impacts of movers at
the area level on individual inventors’ outcomes are likely to be minimal.

7. Extensions

7.1. Minority ethnic status and co-ethnic group membership

The second stage analysis explores roles of minority ethnic status and co-ethnic group
membership in individuals’ patenting activity in more detail. To do this, I retrieve
estimates of the individual fixed effects from Equation (5.2) and regress these on

Table 10. Testing for the role of moving inventors in the first stage model

% Change in total weighted patents, 1993–2004 (1) (2) (3) (4)

% Change in moving inventors 0.056** 0.050* 0.082** 0.082**

(0.028) (0.026) (0.037) (0.038)

% Change, TTWA Fractionalization Index �0.521 �0.355 �0.361

(0.335) (0.255) (0.256)

% Change, TTWA STEM degrees 0.893 1.202 1.192

(0.726) (0.754) (0.756)

% Change, TTWA high-tech manufacturing 0.848 0.564 0.552

(0.793) (0.894) (0.891)

% Change, TTWA medium-tech manufacturing 0.169 0.573 0.574

(0.505) (0.366) (0.370)

% Change, TTWA population density 10.445 12.189

(16.729) (15.488)

% Change, TTWA entry-level occupations �1.130 �0.454 �0.713

(1.088) (1.180) (1.201)

OST30 technology field effects N N Y Y

Observations 206 202 198 198

F-statistic 3.989 1.707 2.824 2.753

R2 0.003 0.096 0.318 0.317

Source: KITES-PATSTAT/ONS.

Notes: Standard errors are in parentheses, are heteroskedasticity and autocorrelation-robust and clustered

on TTWAs.

Significant at *10%, **5% and ***1%.
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observable individual characteristics. The fixed effects are capturing all time-invariant
individual factors, which may include ethnicity elements (see Section 2.2). I therefore

aim to separate coefficients of minority ethnic status, group membership and other

salient individual-level factors (such as human capital and previous experience). These
results are associations, not causal links. Note that because I do not observe how

individual fixed effects are scaled, I am unable to interpret point estimates in relation to
the dependent variable.19 However, I am able to discuss the sign and significance of the

independent variables, as well as their sizes relative to each other.
Specifically, I estimate the following cross-sectional model for inventor i:

IHATi ¼ aþ ETHbi þ cMULTIPLEi þ dSTARi þ PREi þ ePRECOUNTi þ ui, ð7:7Þ

where IHATi is the estimated fixed effect and ETHi is either a dummy for minority

ethnic status, or a vector of co-ethnic group dummies. In the latter case I take UK

origin as the reference category and estimate coefficients of the five largest minority
ethnic groups, aggregating the six smaller groups into a ‘rest of the world’ category.

Control variables are dummies for inventors who patent between two and four times in
a given yeargroup (MULTIPLEi), over five times (STARi), plus two controls which use

historic patenting activity to approximate human capital characteristics. (Note that as
IHAT is derived from a patent counts regression, results using MULTIPLE and STAR

have to be interpreted with caution.) Historic patenting controls draw on a widely used

approach developed by Blundell et al. (1995), who argue that agents’ capacity to
innovate is largely explained by their cumulatively generated knowledge at the point in

which they enter a sample. With long enough time-series data, pre-sample activity thus
approximates agent-level human capital. Following this logic, I fit a dummy for

whether inventors patented in the pre-1993 period (PREi), and for those that did,
PRECOUNTi, is the mean of historic patenting activity. As before, summary statistics

are given in Table 7 (top panel).

I estimate the model in OLS, using bootstrapped standard errors to deal with
heteroskedasticity arising from first stage sampling error.20 Results are set out in Table 11:

Feasible Generalised Least Squares (FGLS) regressions give almost identical coefficients
(see Appendix C, Table C6). Coefficients of minority ethnic status are negative and

significant at 1% in all specifications; by contrast, pre-sample patenting activity has a

positive link, also significant at 1% (with a significant ‘penalty’ for those not patenting pre-
sample). Multiple and ‘star’ inventors also show positive coefficients, significant at 1%.

Estimates of minority status are substantially smaller than these latter two variables.
Columns 2 through 4 fit interactions of minority ethnic status with multiple and star

inventor status. The latter finds positive joint coefficients, which are net positive and 10%

significant (columns 3 and 4). This is in line with the earlier descriptive analysis, and
suggests that individual-level links between minority ethnic status and patenting exist, at

least for higher-patenting inventors, even after human capital is controlled for.
Table 12 explores further for the five largest co-ethnic groups, plus a rest of the world

group. Coefficients should be interpreted as associations and as relative to UK origin,

the reference category. Co-ethnic group membership coefficients are negative significant

19 Results are also robust to using fixed effects derived from the OLS regressions.
20 A Breusch–Pagan test on the basic OLS regression gives a Chi2 statistic of 63.98 (P¼ 0.000), suggesting

that heteroskedasticity is present.
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as before; joint effects of most co-ethnic group stars are positive, and are 10%
significant for East Asian-origin stars. Cross-checking using ONS ethnic groups finds a
stronger result for Chinese star inventors (1.639, significant at 5%). There is some
variation in coefficient size between co-ethnic groups, suggestive of differing diaspora
resources and capacity.

I then run a series of robustness tests. I first check for omitted variables,
fitting dummies for moving inventors and for inventors patenting across at least two
OST30 fields (a measure of ‘generalists’ that captures intellectual range). I also fit the
count of within-sample patenting alongside historic patent counts. Results show
minimal change compared with my main findings. Next, I run a falsification test on
main results with fake ethnic group dummies generated by random assignment.
Coefficients of ‘fake’ minority ethnic and co-ethnic group variables are generally
non-significant, and model fit is substantially worse. Results are shown in Appendix C,
Tables C6 and C7.

7.2. Distributional analysis

Finally, I briefly explore potential impacts of minority ethnic inventors on majority
groups. This might involve physical outflows, in which UK-origin inventors leave an
area after minority groups arrive (Borjas, 1994), or ‘resource crowd-out’, in which
minority ethnic inventors displace majority inventors from jobs or (say) lab space
(Borjas and Doran, 2012). Analysis of moving inventors suggests that they have
minimal impact on the main results. However, resource crowd-out could co-exist with

Table 11. Second stage regressions: decomposing fixed effect estimates from first stage

Inventor fixed effects (estimated) (1) (2) (3) (4)

Minority ethnic inventor (geo groups) �0.199*** �0.201*** �0.206*** �0.209***

(0.010) (0.011) (0.010) (0.011)

Inventor patents 2–4 times (multiple) 1.097*** 1.095*** 1.097*** 1.093***

(0.019) (0.019) (0.019) (0.019)

Minority ethnic *multiple inventor 0.022 0.040

(0.064) (0.062)

Inventor patents at least 5 times (star) 3.695*** 3.695*** 3.664*** 3.663***

(0.059) (0.059) (0.061) (0.061)

Minority ethnic * star inventor 0.320* 0.325*

(0.192) (0.191)

Average patenting, pre-1993 0.199*** 0.199*** 0.202*** 0.202***

(0.076) (0.076) (0.076) (0.076)

Dummy, inventor patents pre-1993 �0.113** �0.113** �0.113** �0.113**

(0.044) (0.044) (0.044) (0.044)

Constant �0.170*** �0.169*** �0.169*** �0.168***

(0.004) (0.004) (0.004) (0.004)

Observations 70,007 70,007 70,007 70,007

R2 0.253 0.253 0.253 0.253

Source: KITES-PATSTAT/ONS.

Notes: Robust standard errors in parentheses, bootstrapped, 50 repetitions.

Significant at *10%, **5% and ***1%.
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externalities at the inventor group level. At the extreme, ‘minority ethnic’ patents might
wholly explain increases in area-level patent counts. Conversely, there might be
multiplier effects from minority ethnic inventors to majority group inventors, leading to
crowd-in (Hunt and Gauthier-Loiselle, 2010).

To explore, I draw on work by Card (2010) and Faggio and Overman (2014). I define
‘minority’ patents as those with at least one minority ethnic inventor; all other patents
are ‘majority’ patents. I assemble a panel of TTWA-level weighted patent counts for
1993–2004 and regress the percentage change in majority patents on that in minority
patents, with both expressed as a share of all patenting in the base year. Specifically, for
TTWA j I estimate:

ððMPj 04 �MPj 93Þ=TPj 93Þ ¼ aþ bððEPj 04 � EPj 93Þ=TPj 93Þ þ CTRLScjtbase þ ej, ð7:8Þ

Table 12. Second stage regressions, co-ethnic groups

Inventor fixed effects (estimated) (1) (2)

Inventor South Asian origin �0.314*** �0.310***

(0.021) (0.020)

Star * South Asian �0.219

(0.277)

Inventor Central Europe origin �0.112*** �0.117***

(0.019) (0.021)

Star *Central European 0.256

(0.485)

Inventor East Asian origin �0.142*** �0.157***

(0.027) (0.025)

Star *East Asian 1.053*

(0.576)

Inventor Southern Europe origin �0.175*** �0.183***

(0.030) (0.030)

Star * Southern European 0.359

(0.408)

Inventor Eastern Europe origin �0.112*** �0.127***

(0.029) (0.029)

Star *Eastern European 0.559

(0.575)

Inventor rest of world origin �0.289*** �0.298***

(0.027) (0.025)

Star *Rest of world 0.380

(0.546)

Inventor patents at least 5 times (star) 3.695*** 3.663***

(0.060) (0.061)

Controls Y Y

Observations 70,007 70,007

R2 0.254 0.254

Source: KITES-PATSTAT/ONS.

Notes: Constant not shown. Controls as in Table 10, plus multiple inventor dummy. All models use

bootstrapped standard errors, 50 repetitions.

Significant at *10%, **5% and ***1%.
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where MP refers to majority patents, EP refers to minority ethnic patents, and CTRLS

is a vector of area-level controls for the base period 1993, including the previous stock
of weighted patents. The coefficient b expresses the relationship between majority and
minority patenting. If b is 0, a 1-unit change in minority patenting has no consequences
for majority patenting, simply adding 1 to total patenting. Estimates above 0 indicate
multiplier effects of size b, resulting in a more-than-proportionate increases in total
patenting. Conversely, estimates below 0 indicate crowding-out.

Results are given in Appendix C, Table C8. It is important to emphasize that these
should be interpreted as partial correlations, not as causal links. Unobserved factors
such as area-level shocks may influence both sides of the equation—and running the
regression in reverse also indicates some connections from majority to minority patents.
In fully specified form, results from Equation (7.8) give b at around 1.9, significant at
1%. This suggests that each additional minority patent is linked to just almost two
additional majority patents, implying a multiplier ‘effect’. However, the confidential
interval is between 0.92 and 2.22, so the connection is not observed with much
precision, and omitted variables are also likely to be in play. Coefficients should thus be
interpreted with caution.21

8. Conclusions

In recent years, there has been growing interest in the links between minority ethnic
communities, diversity and innovation. The contribution of minority ethnic inventors and
‘ethnic entrepreneurs’ to US innovation is substantial, suggesting that European
countries’ innovation systems could also benefit from these groups’ presence and activity.

This article looks at the role of minority ethnic inventors on innovative activity in the
UK, using a new 12-year panel of patents microdata and a powerful name-classification
system. I uncover some distinctive features of the UK inventor community, and explore
different potential ‘ethnicity–innovation’ channels—individual selection, externalities
from diasporic groups and from the cultural diversity of inventor communities, as well as
‘amplifying’ roles of urban environments. The research is one of very few studies to
explore these links, and as far as I am aware is the first of its kind outside the USA.

The descriptive analysis suggests that the UK’s minority ethnic inventor community
has a few important commonalities with the USA—with large South and East Asian-
origin groups, plus groups of multiple and star inventors who patent significantly more
than majority counterparts. Minority inventors patent most often in semi-conductors,
IT, pharmaceutical and agriculture/food fields: these modal shares are somewhat higher
than majority inventors’. I also find differences: UK inventor demographics reflect
proximity to Continental Europe, colonial history and recent immigration trends.
Minority ethnic inventors are spatially clustered, as in the USA, but seem to follow a
different distribution from wider minority populations. Not all high-patenting regions
have diverse inventor communities.

Regressions find a small, positive effect of inventor group diversity on individual
patenting activity, which is not driven by inventor mobility or the crowding-out of
majority inventors (rather, I find suggestive evidence of crowding-in from minority to
majority patenting). This suggests that learning externalities exist for diverse inventor

21 I experiment with lags of minority ethnic patents as an instrument, but none pass first-stage tests.
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groups, over and above simple size/co-location effects. Tests also suggest an amplifying

role of urban location, but this dies away in the densest environments where minority

inventors are less clustered than the wider population.
Do inventor characteristics such as human capital or co-ethnic group membership

help explain the diversity result? Some tentative positive associations emerge for

minority ethnic and East Asian-origin stars, especially those of Chinese ethnicity (the

latter both relatively large groups in the UK inventor community). This suggests the

existence of network externalities within (some) diasporic groups, which may operate as

a complement to the across-group effect. I speculate that stars might also generate

substantive knowledge spillovers, as well as having a motivating effect on those around

them: minority stars patent significantly more than their majority counterparts.

Certainly, larger shares of star inventors in an area increase the diversity effect,

suggesting that these channels operate as complements.
Overall, the results suggest that minority ethnic inventors are a net positive for

patenting in the UK, and imply that policymakers should aim to increase both the skills

and the mix of the country’s research communities. They also highlight some distinctive

features of the UK innovation system. In the USA, minority ethnic inventor

communities have been historically shaped by Cold War science, which attracted very

large numbers of skilled workers into a small number of high-tech locations (Saxenian,

2006). By contrast, until recently ‘calls’ for migrant workers in the UK have focused on

less skilled occupations and on Commonwealth countries, especially in Africa and

South/East Asia (Somerville, 2007). Results may also reflect culturally distinctive US

attitudes to entrepreneurship, as evidenced by sociological studies of Jewish and Afro-

Caribbean migrant communities in New York and London (Gordon et al., 2007), and

by the complex interplay between class, skills, resources and attitudes that influence

real-world entrepreneurial behaviour (Clark and Drinkwater, 2010). The rigidities of

some European labour markets could also explain UK inventor demographics, as

young researchers seek new opportunities in more open environments.22

There are two important caveats to the results. First, diversity and diaspora effects

are relatively small—human capital and technology effects are more important

determinants of inventors’ productivity. This is intuitive, and echoes much of the

existing literature. Second, working with inventor data presents a number of

measurement challenges: most seriously, my data only allow a fuzzy identification of

ethnic inventors and diasporic groups.
This leaves a number of areas for future research. We need to better understand what

is driving these results—not least, the scale(s) at which the diversity effect is operating

(teams, departments, communities of interest). Understanding the quality and influence

of minority patenting (for example, through citations data) is also a priority. Better

individual-level data would allow the identification of migrants, as well as revealing

other salient characteristics (such as age, gender, qualifications, experience): linking

inventor information to academic or professional curricula vitae (CVs) would be one

way to achieve this. Research could also explore the detailed roles of minority inventors

in the technology fields where they are most active, and in specific locations where they

are clustered. Finally, the analysis should be extended to other European countries.

22 Thanks to a referee for this last point.
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Appendix

A. The KITES-PATSTAT database

Raw patent data cannot typically be used at inventor level because of common/
misspelled names, changes of address or duplication (Trajtenberg et al., 2006). The
dataset of inventors used in this article is taken from the KITES-PATSTAT database,
developed by the KITES centre at Bocconi University under the APE-INV initiative.23

The original patents data come from the EPO PATSTAT system, and are cleaned by
the KITES team to allow robust identification of individual inventors.

The KITES cleaning procedure has three stages (Lissoni et al., 2006). First, inventor
name and address fields are cleaned and standardized, and a unique CODINV code is
applied to all inventors with the same names, surnames and address. Second, ‘similarity
scores’ are assigned for pairs of inventors with the same name and surname but different
addresses. Scores are higher for pairs whose dyads are located in the same city/province/
region, who patent in the same technological fields (this is measured separately at 4-, 6-,
10- and 12-digit level, with corresponding weights), who share the same applicant
organization, who share co-inventors or who are in ‘small world’ networks with third
parties, andwho cite each other. Scores are lower for pairs whose dyads patent 20 ormore
years apart, or who share common surnames (assessed by name frequency analysis for
each country). Third, a threshold for similarity scores is generated for each country, over
which inventor pairs are considered the same person and given the same identifier.

This cleaning procedure deals with the ‘who is who’ problem, and indirectly, allows
me to identify moving inventors—the ‘who is where’ problem—much more precisely
than some previous studies such as Agrawal et al. (2006). Comparing the original and
cleaned CODINV codes allows me to see cases where inventors with different addresses
have been subsequently coded as the same individual but at different addresses. I define
these as cases of moving inventors. This group turns out to comprise 1781 individuals
(2.45% of my sample). Within this group, I also identify a set of smaller inventors who
appear in two different TTWAs in same yeargroup. This is a group of 963 individuals
(1.33% of my sample).

23 See http://db.kites.unibocconi.it/
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B. ONOMAP and minority ethnic inventors

‘Ethnicity’ is not straightforward to frame or measure (see main text). The ‘gold standard’
scenario is when there is a rich and flexible typology and where individuals can self-
ascribe, for example in a Census (Aspinall, 2009). In many cases, such as health or patents
data, this is not available, and name-based approaches have emerged as a powerful
alternative (see Mateos (2007) for a review of this literature). The intuition behind name-
based approaches is that naming relates to cultural, ethnic, linguistic features of
individuals, families and communities. Mateos et al. (2011) point out that ‘naming
practices are far from random, instead reflecting social norms and cultural customs. They
exist in all human groups, and follow distinct geographical and ethno-cultural
patterns . . . distinctive naming practices in cultural and ethnic groups are persistent even
long after immigration to different social contexts’ (p. e22943). Working with a database
of 18 million names from over 17 countries, the authors show the persistence of naming
networks in migrant and minority communities in ‘host’ and new ‘home’ environments
(Mateos et al., 2011). Note that this last feature of ‘naming networks’ makes name-based
systems suitable for identifying minority ethnic inventors, in particular.

B.1 The ONOMAP system

One of the limitations in early name-based classification systems was a restricted number
of names (Mateos, 2007). The ONOMAP system, built at University College London,
has designed to deal with this problem.24 ONOMAP uses a reference population of
500,000 forenames and a million surnames, derived from electoral register or telephone
directory name frequency data for 28 countries. Names are then classified into groups,
exploiting name-network clustering between surname and forename pairings. Techniques
used include forename–surname triage, spatio-temporal analysis, geo-demographic
analysis, text mining, ‘name-to-ethnicity’ analysis from population registers, international
name frequency and genealogy resources, and individual name research for hard cases
(see Mateos et al. (2007) for details). The final classification comprises 185 ‘cultural–
ethnic–linguistic’ (CEL) groups, building on frameworks developed by Hanks and Tucker
(2000). At its finest level, this gives 185 CEL ‘types’: given the frequency distribution of
these types in the inventor data, inventors were eventually classified at a higher level
based on 68 CEL ‘subgroups’. ONOMAP also provides detail on CEL component
criteria, including 12 geographical origin groups and nine ‘macro-ethnic’ groups that
derive from the UK Office of National Statistics 1991 Census classification.

ONOMAP is used to classify inventor names via an algorithm that uses surname,
forename and surname–forename combinations. In most cases, both elements of a
person’s name share the same CEL type; in other cases there will be multiple possibilities
(such as the author’s own name), in which case the system assigns the most likely type
based on the underlying name networks in the reference population. In a few cases, names
are unclassified (in the case of the KITES-PATSTAT dataset, this is under 1% of
inventors). ONOMAP has also been extensively tested with individual-level datasets
where ethnicity is known. Petersen et al. (2011) analyse over 107,000 patients for a
London hospital; ONOMAP matches over 95% of names. Lakha et al. (2011) test birth
registration, pupil census and health data for 260,748 individuals: ONOMAP matches

24 See http://www.onomap.org/
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over 99% of names and gives55% measurement error. For this article, I also subject
ONOMAP to a falsification test where ethnicity is assigned at random. In both cases,
ONOMAP performs better than random assignment (see Section 7).

B.2 Potential limitations of ONOMAP

There are two potential limitations of ONOMAP relevant to research on inventor
demographics. First, the system is unable to distinguish migrants from second-plus
generation communities. This article thus focuses on the larger group of minority ethnic
inventors. A second limitation stems from international languages, such as Spanish and
English, where similar names may be found across several communities and countries.
This could be a source of measurement error. In practice, ONOMAP explicitly models
Spanish, Mexican, Filipino, Latin American and other Spanish-language names; it also
distinguishes English mainland, Cornwall and Channel Islands; Scottish and Welsh;
Black Caribbean, American and British; British South African; American Indian and
‘American Other’ groups. Australasian names are not separately classified, but in the
2011 Census, Australasians make up just 2.4% of the wider migrant population in
England and Wales (versus 3.3% from North/South America and 36.3% from
Continental Europe). This suggests any remaining misclassification is residual noise
rather than a structural problem in the data.

C. Additional results

Table C1. First stage estimator tests: individual patent counts and inventor group diversity

Geo origin zones ONS ethnic groups

(1) (2) (3) (1) (2) (3)

Negative binomial

Frac Index of inventors 0.075 0.221*** 0.248*** 0.111 0.312*** 0.337***

(0.100) (0.020) (0.023) (0.165) (0.011) (0.014)

Individual fixed effect N Y Y N Y Y

Controls N N Y N N Y

Log-likelihood �20,6721.358 �91,887.733 �91,829.454 �20,6723.863 �91,913.822 �91,861.933

OLS

Frac Index of inventors 0.089 0.644** 0.623** 0.122 0.814* 0.758*

(0.115) (0.272) (0.282) (0.181) (0.424) (0.423)

Individual fixed effects N Y Y N Y Y

Controls N N Y N N Y

F-statistic 68.238 89.492 49.994 69.024 46.575 46.575

R2 0.012 0.018 0.018 0.012 0.018 0.018

Source: KITES-PATSTAT/ONS.

Notes: 210,008 observations. Negative binomial coefficients are marginal effects on the mean. In each panel,

column (1) uses yeargroup dummies, columns (2) and (3) use technology field*yeargroup dummies and

individual fixed effects. Column (3) controls include Fractional Index of TTWA population, % STEM degree

holders in TTWA, log of TTWA population density, % high-tech manufacturing in TTWA, % medium-tech

manufacturing in TTWA, % workers in entry-level occupations, log of area weighted patent stock 1981–1984,

urban TTWA dummy. Bootstrapped standard errors are in parentheses and are clustered on TTWAs.

Significant at *10%, **5% and ***1%.
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Table C2. First stage regressions: choice of time period test, reduced form model

Individual patent counts (1) (2) (3) (4)

Frac Index of inventors by geographical origin 0.623** 0.644*** 0.237*** �0.022

(0.282) (0.048) (0.019) (0.022)

Controls Y Y Y Y

Observations 210,008 210,008 587,805 293,266

R2 0.018 0.018 0.038 0.016

Source: KITES-PATSTAT/ONS.

Notes: Model is estimated in OLS. Column (1) fits the full regression. Columns (2)–(4) fit reduced form

model with individual*area fixed effects and technology-field*year fixed effects, as detailed controls are not

available pre-1993. Column (2) fits inventors active 1993–2004, column (3) fits inventors active 1981–2004,

column (4) fits inventors active 1981–1992 only. Standard errors are in parentheses, are heteroskedasticity

and autocorrelation-robust and clustered on TTWAs.

Significant at *10%, **5% and ***1%.

Table C3. First stage regressions: sample construction test, reduced form model

Individual patent counts (1) (2) (3)

All Multiple Blanks

Frac Index of inventors by geographical origin 0.623** 0.210 0.210

(0.282) (0.185) (0.185)

Controls Y Y Y

Observations 210,008 19,118 19,118

R2 0.018 0.004 0.004

Source: KITES-PATSTAT/ONS.

Notes: Model is estimated in OLS. Columns (1) and (2) use a sample where inventor*area*time cells are

marked as zero when inventors are not patenting; column (2) restricts this sample to inventors who patent

more than once. Column (3) uses a sample of multiple inventors where non-active cells are marked as

missing rather than zero. All models use technology field*yeargroup dummies and individual fixed effects.

Controls as per Table C1. Standard errors are in parentheses, are heteroskedasticity and autocorrelation-

robust and clustered on TTWAs.

Significant at *10%, **5% and ***1%.
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Table C4. Area-level alternative specification for the first stage model

Aggregate patent counts OLS Poisson

Unweighted Weighted Unweighted Weighted

Frac Index of inventors (geo origin) 335.481** 124.173* 88.630** 38.920*

(158.083) (63.563) (39.646) (20.364)

Controls Y Y Y Y

Observations 532 532 532 532

Log-likelihood �3269.429 �2712.868 �3485.019 �2173.729

R2 0.936 0.952

Source: KITES-PATSTAT/ONS.

Notes: Dependent variables are various unweighted and weighted area-level patent counts. Poisson

coefficients are marginal effects at the mean. All models use technology field*yeargroup dummies and area

(TTWA) fixed effects. Controls as per Table C1. Standard errors are in parentheses, are heteroskedasticity

and autocorrelation-robust and clustered on TTWAs.

Significant at *10%, **5% and ***1%.

Table C5. Moving inventors test: reassigning primary location for moving inventors

Individual patent counts Location 1 Location 2

Frac Index of inventors by geographical origin 0.248*** 0.262***

(0.023) (0.015)

Controls Y Y

Observations 210,008 210,008

Log-likelihood �91,829.454 �91,772.246

Source: KITES-PATSTAT/ONS.

Notes: All models use technology field*yeargroup dummies and individual fixed effects. Controls as per

Table C1. Bootstrapped standard errors in parentheses. Coefficients are marginal effects at the mean.

Significant at *10%, **5% and ***1%.
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Table C6. Second stage regressions: robustness tests on fixed effects decomposition

Estimated individual fixed effect (1) (2) (3) (4) (5) (6)

Minority ethnic inventor �0.199*** �0.194*** �0.196*** �0.200*** �0.198***

(0.011) (0.011) (0.010) (0.010) (0.010)

Moving inventor, same yeargroup 0.512***

(0.036)

Moving inventor 0.044*

(0.025)

Inventor patents in �1 technology field 0.213***

(0.015)

Fake minority ethnic 0.016

(0.010)

Controls Y Y Y Y Y Y

Observations 70,007 70,007 70,007 70,007 70,007 70,007

R2 0.253 0.343 0.256 0.253 0.256 0.249

Source: KITES-PATSTAT/ONS.

Notes: Column (1) fits the main regression as per Table 10 in the article. Column (2) uses an FGLS

estimator instead of bootstrapped OLS. Columns (3) and (4) introduce additional controls for moving

inventors. Column (5) includes a control for ‘generalists’ (patenting across at least one technology fields).

Column (6) uses ‘fake’ (randomly assigned) minority ethnic status. For all models, controls include multiple

inventor dummy, star dummy, inventor average patent count, pre-1993 and dummy for inventor activity,

pre-1993. All models use robust standard errors, bootstrapped, 50 repetitions. Constant not shown.

Significant at *10%, **5% and ***1%.
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Table C7. Second stage regressions: falsification test

Estimated individual fixed effect (1) (2)

Inventor Central European origin �0.112***

(0.019)

Inventor East Asian origin �0.142***

(0.027)

Inventor East European origin �0.112***

(0.029)

Inventor rest of world origin �0.289***

(0.027)

Inventor South Asian origin �0.314***

(0.021)

Inventor South European origin �0.175***

(0.030)

Fake origin group 2 dummy 0.047**

(0.020)

Fake origin group 3 dummy 0.022

(0.022)

Fake origin group 4 dummy �0.017

(0.023)

Fake origin group 5 dummy �0.021

(0.022)

Fake origin group 6 dummy 0.022

(0.030)

Fake origin group 7 dummy 0.016

(0.026)

Controls Y Y

Observations 70,007 70,007

R2 0.254 0.249

Source: KITES-PATSTAT/ONS.

Notes: Column (1) fits the main regression, column (2) fits randomly assigned categories. Controls as in

Table C6. All models use robust standard errors, bootstrapped 50 repetitions.

Significant at *10%, **5% and ***1%.
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Table C8. Distributional analysis. Resource crowd-out/-in

Change in majority weighted patents

1993–2004

(1) (2) (3) (4) (5)

% Change in minority ethnic weighted

patents 1993–2004

1.645*** 1.576*** 1.907*** 1.988*** 1.908***

(0.341) (0.330) (0.104) (0.073) (0.088)

TTWA population Frac Index, 1993 0.943 1.046 1.431 �1.085

(1.594) (1.761) (1.621) (1.396)

TTWA share of STEM graduates, 1993 �4.492 �2.398 4.295 �2.057

(3.951) (3.021) (3.090) (2.993)

TTWA high-tech manufacturing, 1993 �4.203 �7.638 �5.771 0.037

(4.202) (4.735) (4.660) (3.842)

TTWA medium-tech manufacturing, 1993 �4.475 �3.114 �3.927 1.041

(4.009) (4.301) (3.991) (3.422)

Log(TTWA population density, 1993) �0.204 �0.041 0.128 0.112

(0.170) (0.130) (0.108) (0.099)

Urban TTWA �0.070 �0.466** �0.163 �0.494**

(0.226) (0.211) (0.228) (0.194)

Log(area patent stocks, 1989–1992) �0.327***

(0.104)

Log(area patent stocks, 1981–1984) 0.026

(0.077)

OST30 technology field dummies N N Y Y Y

Observations 203 203 201 196 176

R2 0.391 0.427 0.712 0.768 0.798

Source: KITES-PATSTAT/ONS.

Notes: Column (1) fits the variable of interest, column (2) adds controls, column (3) adds technology field

dummies. Constant not shown. Heteroskedasticity and autocorrelation-robust standards errors are

clustered on TTWAs.

Significant at *10%, **5%, *** 1%.
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