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Abstract

The thesis presents research related to the dynamics of quantum systems, both

isolated and in the presence of interactions with their environment. Generally, I

employ matrix product state (MPS) techniques to explore quantum dynamics in

open and closed systems.

In the first part I present a study of quantum chaos and how mapping to a MPS

variational manifold allow the use of techniques developed in the study of classical

many-body systems. Using code developed for this project the Lyapunov spec-

trum is extracted to give an alternative perspective on eigenstate thermalization,

pre-thermalization and integrability.

In the second part, I present a novel combination of MPS methods with a

Langevin description of the open system. I use this to show how coupling to

the environment restricts the growth of entanglement. The consequences of this

are relevant for simulations of open quantum systems and their use in in quantum

technologies.

Finally I discuss applications of these ideas to quantum search. I consider adi-

abatic and quantum walk algorithms for optimal scaling quantum search algo-

rithms, and hybridisations between the two. The robustness of the different

underlying physical mechanisms is investigated in a simple infinite-temperature

model, and in a low-temperature limit using the MPS Langevin equation.
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Impact statement

The dynamics of strongly coupled many-body quantum systems is both a frontier of

physics research and a burgeoning area of technological development. Quantum com-

puters, capable of performing calculations impossible on classical hardware, can be built

from such systems.

The research presented in this thesis makes three key innovations in this area:

(1) The study of thermalization in many-body quantum systems is furthered via a new

method of projecting the dynamics onto a manifold of matrix product states. The

resulting trajectories are chaotic, proving a link to techniques based on dynamical chaos

in classical systems to describe the quantum problem.

(2) A Langevin open systems model is developed for efficient matrix product param-

eterizations of many body quantum systems. This models a thermal coupling to the

system environment via noise and dissipation, combining this with the ability of matrix

product states to describe large systems with local entanglement.

(3) An in-depth study of a simple continuous-time quantum computing protocol is given.

Two quantum protocols for quantum searching via different physical processes are com-

pared, and a family of algorithms that hybridize the effects are derived. It is shown that

the whole family of algorithms produce the optimal quantum speedup. The relative

merits of different degrees of hybridization are investigated in-depth, including a study

of open systems effects with the matrix product state Langevin equation.

Works relating to (1) and (3) are published in peer-reviewed journals. The scratch-built

code library developed for (2) is publicly available, and the research is in preparation

for publication.
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Chapter 1

Introduction

This chapter aims to connect the rest of the thesis with ideas of broader interest. The

key themes of the research – quantum entanglement, and its importance for quantum

technologies – are introduced at a general level. Several of the foundational ideas are

described and illustrated.
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The last few years have seen a significant increase in funding for the development

of quantum technologies. In June 2019 the UK’s National Quantum Technology

Program announced funding set to push the total investment in the programme in

excess £1 billion [1], and the EU have committed more than e1 billion for the initial

phase of the Quantum Technologies Flagship [2]. This is replicated worldwide, with

the US and China also investing heavily. A 2015 estimate of quantum technologies

funding put the figure at around $1.5 billion per year [3].

The goal in quantum technologies is to use the phenomenology of quantum me-

chanics to gain a fundamental edge over their non-quantum, ‘classical’, counterparts.

Possibilities for this include ultra high precision sensors [4], improved standards in

secure communications [5], and quantum computers capable of exponential speedup

[6], with applications in industries ranging from aerospace [7] to finance [8] to math-

ematics [9, 10] to scientific research [11].

There are a small number of quantum technologies that are already well-established.

Atomic clocks that use the natural quantum energy levels of atoms have provided

best in class precision since the 1950s, with errors of less than 1 part per billion [12].

Semiconductor transistors, built on an understanding of the quantum mechanics of

electrons in metals, allowed miniaturization of computer circuits onto integrated chips

that underpin most modern electronics. New quantum technologies aim to use more

exotic quantum effects, that are correspondingly harder to realize experimentally.

Perhaps unsurprisingly, those familiar with quantum mechanics have suggested

technological applications long before those ideas were experimentally viable. The

idea of using quantum mechanics for computational purposes can be traced as far

back as 1959 [13], and was considerably fleshed out in the late ’80s, ’90s and ’00s

[14, 15, 16, 17]. However, the ability to implement these schemes ‘coherently’ - that

is, without errors disrupting the important quantum effects - is only recently emerging.

An example is given by gate-based quantum computers, where operations (‘gates’)

are applied to a quantum system to process information. Real quantum computers of

this type are now able to apply gates with errors occurring less than 1% of the time

[18, 19, 20]. Combined with developments in error-correcting schemes, this approach

is now considered a plausible path to quantum computers that outperform what is

possible classically. There have been similar developments in other techniques for

controlling quantum effects: the 2012 Nobel prize in physics recognized developments

in manipulating single atoms in laser cavities, citing “groundbreaking experimental

methods that enable measuring and manipulation of individual quantum systems”.

Experimental breakthroughs mean that more quantum effects than ever are accessible

for study, and for technological development.
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A key difficulty in manipulating quantum systems is their sensitivity to any distur-

bances. Simply measuring a quantum system can induce a catastrophic ‘collapse’ of

the system state: a one-way process that radically alters the state of the system and

results in a loss of information. While this may be a worst-case scenario, a quantum

system is always in contact with its surroundings in one way or another. Interactions

with a system’s environment can look like a type of measurement, and usually lead

to an unwanted loss of coherence in the system. Understanding and guarding against

decoherence effects is a key experimental challenge.

There are also significant theoretical obstacles to studying collections of quantum

systems. The amount of information required to describe them can increase exponen-

tially with the number of systems. This scaling is severe - in practice it is impossible

to simulate a quantum computer of more than around 50 quantum digits [21]. Coping

with this is a significant challenge, which can be addressed by finding mathematical

shortcuts and approximations.

There are many physical questions about the behaviour of collections of quantum

systems that remain unanswered. Quantum mechanics was developed to explain

phenomena on a very small scale, and generally applies only on that scale. A single

atom needs to be described quantum mechanically, however a tennis ball of atoms is

accounted for by the quite different rulebook of classical mechanics. Yet the tennis

ball is made up of quantum mechanical atoms. Understanding how the quantum and

classical rulebooks morph into one another is a fascinating question.

The goal of the remainder of this introduction is to develop these ideas further and

explain how the research presented in this thesis fits in. First I will discuss what quan-

tum mechanics is, where it came from, and some of the distinct properties of quantum

dynamics. Then I will explain in more depth how quantum effects may be repurposed

for technological gain, using the semiconductor transistor as a case study, and con-

sidering which quantum phenomena are promising candidates for new technologies.

Following this I introduce quantum entanglement, discussing how entangled states

can be used for quantum computing and the challenges of using entangled states. I

then discuss the difficulties of describing collections of quantum systems, and how

the exponential space requirement may be beaten. Next I explain how interactions

with the environment are important, and how they may be accounted for. Finally I

summarize the goals and strategy of the thesis, and outline its remaining contents.
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Quantum mechanics

Our everyday experiences are largely described by classical mechanics: it is consistent

with our intuition for how objects behave when we interact with them. If we kick a ball

we have a clear idea of where that ball will go, and classical mechanics will predict that

trajectory with supreme accuracy. The planets follow classical trajectories around the

sun, and aircraft will fly if classical mechanics says they will. Classical mechanics was

first codified by Newton in the 17th century, and has been enourmosly successful.

Newton’s laws underpin much of the science and technology of the modern world,

from feats of civil engineering to the internal combustion engine.

However, there are phenomena that can’t be explained by classical mechanics. One

such case is the spectrum of light emitted by the sun. Fig 1.1 shows such a spectrum:

the result of splitting sunlight into its different colours, or wavelength components.

This demonstrates that white light is in fact made from a combination of different

colours. It also reveals that there are particular wavelengths that are missing, leaving

dark lines on the spectrum. While it would come to be understood that the dark

lines corresponded to absorption of light by electrons, classical mechanics was unable

to account for the discrete, ‘quantized’, nature of the dark lines.

Figure 1.1: Dark lines in the spectrum of solar light. When studying the different
wavelength components of light from the sun a continuum of colours is seen, ex-
cept that specific wavelengths are missing – these show up as dark lines. It would
take a quantum theory of matter and light to understand this. These features are
named after Joseph von Fraunhofer, and the conventional labelling of the Fraunhofer
lines is indicated. Image retrieved from https://commons.wikimedia.org/wiki/File:

Fraunhofer_lines.svg

An intense period of research in the early 20th century resulted in a theory that

could account for the dark lines with incredible accuracy. In this new ‘quantum’

mechanics, electrons in the atom can only exist at specific energy levels, and therefore

can only absorb light of exactly the right wavelength to move between these levels.

The dark lines seen in sunlight tell us about which wavelengths are absorbed in the

sun, and allow us to work out what the sun is made from.

While quantum mechanics works well as an explanatory tool, it initially seemed

like a very problematic as a picture of how the world really works. For example,

quantum mechanics is fundamentally non-deterministic: it will never be possible to
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say exactly what will happen, only to give the likelihood of each possible outcome.

This was a difficult concession to make philosophically, with Einstein famously writing

‘God does not play dice’ [22]. Quantum mechanics, while useful for predicting spectral

data, was surely just an approximation to a more fundamental, deterministic, theory.

Attempts to demonstrate this came to a head with Bell’s theorem [23], which shows

that unless more problematic concessions are made, no theory that has access to extra

information can reproduce the predictions of quantum mechanics entirely1. Quantum

mechanics, with all its idiosyncrasies, was here to stay.

Perhaps most fundamental to understanding quantum mechanics is to realize that

it comes with some amount of irreducible uncertainty. In classical mechanics a proba-

bility distribution arises when we have imperfect knowledge - if we flip a fair classical

coin and don’t look, we can say the outcome will be heads with probability 0.5, or

tails with probability 0.5. However this is only because we have missing information:

if we look at the flipped coin we will know with certainty what the result is. In quan-

tum mechanics there are probability distributions even if you have the most complete

information possible.

The mathematics of quantum mechanics tells us how these probability distribu-

tions change over time. Remarkably, they evolve in the same way that waves do: they

have peaks and troughs, amplitudes and phases, and so can reinforce or cancel out.

The size of the probability wave at any point corresponds to the probability of that

outcome. In this way small particles such as electrons can be shown, experimentally

as well as theoretically, to behave as particles in some scenarios and as waves in others.

Another important aspect of quantum mechanics is the effect of measurements,

as implied by the example of the classical coin toss. If the classical probabilities are

banished by simply looking at the coin, what’s to stop us looking at the quantum-

mechanical coin? The answer is that in quantum mechanics, the act of measuring

something can be destructive. Classical mechanics takes for granted the ability to

measure anything we please, to accuracies only limited by our experimental ability,

while leaving the system unchanged. Quantum systems are typically extremely small

however, and will notice if they are being measured. In the coin example, the process

of looking at the coin requires light to bounce off the face of the coin and to enter

our eyes. Light bouncing off a quantum coin will alter its state, so that by the time

the light leaves the coin the information it conveys is already out of date. In general,

measurement of a quantum system will ‘collapse’ its probability distribution, so that

even the most delicate measurement can radically alter the system’s state, with the

1The list of more problematic concessions include: information travelling faster than the universal
speed limit c ' 3× 108m/s = 671 million mph; or a ‘superdeterministic’ universe – one without free
will and where everything was determined before the universe began.
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quantum wave-like behaviour collapsing entirely.

These are just some of the consequences of quantum mechanics. Clearly quantum

systems exhibit a phenomonology very different to the world of classical mechanics.

If these quantum effects can be reliably harnessed, how can they be used for quantum

technologies?

Quantum technologies

What is required to develop a new technology? Just as a machine can be thought

of as a device for converting input forces into more useful output forces, a technol-

ogy repurposes some phenomena to a more useful end. Therefore having access to

new phenomena means that it may be possible to use it to develop new technology.

Experiments revealing the quantum nature of systems have revealed a host of such

phenomena, raising the possibility of quantum technologies that take advantage of

them.

Arguably the most successful quantum technology to date is semiconductor elec-

tronics based on miniaturized transistors. The properties of semiconductor metals are

explained by quantum mechanics, and this understanding underpins the manufacture

of anything with a computer chip. Perhaps surprisingly then the market is huge, with

global semiconductor sales in excess of $400bn annually [24]. A crucial component in

modern electronics is the transistor, which acts as a switch or amplifier for electrical

signals. Early computers used switches built inside vacuum tubes made with glass,

which were large, unreliable and expensive. The advent of quantum mechanics lead

to an understanding of how electricity is conducted in semiconductor metals. With

this understanding it was possible to see how semiconductors could be used to act

as an electrical switch and amplifier, and so the transistor was invented. Further

development led to radically smaller and smaller transistors on integrated chips, and

transistors sold today can be as small as 5nm across, small enough to fit 4× 1012 in

a square centimetre2.

Despite this astonishing success, semiconductor electronics is one of only a few

quantum technologies developed in the 20th century. It’s viability comes down to

the robustness of the quantum phenomena that it makes use of. The band structure

of electrons in metal, which explains how semiconductor devices work, is a quantum

phenomena of rare stability. Electronic band structure exists for systems large enough

to see with the naked eye, and without the sensitivity seen in many other quantum

systems.

2That’s four thousand billion or 4, 000, 000, 000, 000 per square centimetre
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The robustness of electronic band structure is an exception to the rule however.

Quantum effects are usually extremely delicate and confined to very small systems,

requiring sophisticated experimental techniques to precisely control and isolate from

interactions with the system’s environment. However experimental abilities are now

sufficiently advanced, and theoretical schemes have been devised with large enough

benefits, that a huge interest in new quantum technologies has developed.

Two exciting phenomena for making new quantum technologies are superposition

and entanglement. Superposition describes the situation where quantum systems

can exist simultaneously in different configurations with different probabilities. The

sensitivity of superpositions can be exploited for incredible sensitive metrology, for

example in gravity and inertial sensors that use quantum superposition to surpass

classical sensors [25, 26]. Another important effect is quantum entanglement, where

quantum systems can be correlated with one another in a way not possible in clas-

sical mechanics. These quantum correlations have the potential for a wide range of

uses - entangled systems can be used to send messages more securely than possible

classically, and a large enough quantum computer could crack common encryption

protocols faster than much larger supercomputers3.

Quantum entanglement

Entanglement is a key aspect of quantum mechanics. While quantum theory looks

very different to classical mechanics, replacing determinism with probability distri-

butions, many of its features could be explained by assuming that quantum theory

simply misses out on something. That if we could expand the theory to capture

some crucial layer of detail, then we would have a complete and deterministic theory.

Inequalities by Bell and Clauser-Horne-Shimony-Holt [23, 28] take this possibility seri-

ously to place bounds on measurable quantities: if they are exceeded, then there can’t

be another layer of detail. These inequalities can in fact be violated, and it takes en-

tangled states to do so, making entanglement an important feature that distinguishes

quantum from classical mechanics.

The term ‘entanglement’ was coined by Schrödinger to describe the situation in

a many-body quantum state where the best possible knowledge of the system as a

whole is more complete than the best possible knowledge of all of its parts. This is

counter to classical physics, where a many-body system can be fully accounted for by

looking at each of its parts in turn, and Schrödinger described it as ‘the characteristic

trait of quantum mechanics’ [29].

3This result and the accompanying algorithm kick-started an enthusiasm for quantum computers
that is still going strong today [27].
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To demonstrate this, consider a coin laying with either the heads (H) or tails (T)

side facing up. Using the notation | 〉 to denote the state of the coin, a regular,

classical, coin can be in state |H〉 (with heads up) or |T〉 (with tails up). If we toss

the coin and don’t look at the outcome, we have a 50% chance of getting |H〉 and

a 50% chance of getting |T〉. If we had tossed two coins there are four possible

outcomes: |HH〉, where both the first and second coins are heads, |HT〉, |TH〉, and

|TT〉. If these coins obeyed the laws of quantum mechanics then more states are

available. For example the coins could be in a state like |HH〉+ |TT〉, where the coins

are simultaneously both heads and both tails. Writing this means the coins are in

this state with 100% probability, however there is a new type of quantum uncertainty

about this state. If we look at the first quantum coin, we will be equally likely to find

it is heads or tails. Say we see the coin is H, then this collapses the coins,

|HH〉+ |TT〉 measure ‘H’−−−−−−−→
on first coin

|HH〉,

leaving them in the state |HH〉. The strange thing is that now the second coin is now

guaranteed to also be heads-up. The two coins are connected with one another, and

can only be described adequately as a whole. Individually the best we could say is

that each coin is 50% H and 50% T, but this would miss out on their connection.

Quantum states with these properties are entangled and these correlations can be

manipulated in ways not possible with classical mechanics. For example entangled

states can be used to teleport quantum states over vast distances [30].

One important use for entangled states is in quantum computing. Quantum com-

puters can gain an edge over their classical computers because of the existence of

entangled states without a classical analogue. In fact, for a collection of quantum dig-

its, there are very many more entangled states than non-entangled states [31]. This

expanded set of possible states can be used to design quantum computing algorithms

that can be proven to outperform any classical algorithm. The killer application in

demonstrating this to the wider world was Shor’s algorithm [27], which shows how

a quantum computer can factorize large prime numbers exponentially more quickly

than classical computers, making use of entangled states [32]. This is an important

problem because the difficulty of doing this is the basis for common encryption pro-

tocols, for example those used to protect credit card details when shopping online.
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Describing quantum systems

The possibility of entangled states means quantum systems can exist in many more

configurations than classical systems, which can be used to perform tasks better.

However this increased number of possibilities is a double-edged sword, as studying

collections of quantum systems involves keeping track of all of these new configura-

tions. This quickly becomes a difficult task.

This is exemplified by considering how computers process information. The base

unit of a classical computer is a binary digit, shortened to ‘bit’, which is a number

that takes two values, usually 0 or 1. If |C bit〉 is the state of some classical bit, then

either |C bit〉 = |0〉 or |C bit〉 = |1〉. A quantum bit, shortened to ‘qubit’, can exist

in a superposition of these two values. To describe its state a number, called the

amplitude, must be assigned to each possibility. If the amplitude of |0〉 is c0 and the

amplitude of |1〉 is c1, the state of the qubit is written

|1 qubit〉 = c0|0〉+ c1|1〉.

These amplitudes describe how likely it is, if we were to measure the qubit, that we

would find it in state |0〉 or |1〉4.

Now consider what happens if we add another (qu)bit. The classical configurations

are easy to list as the first four binary numbers: we can have |00〉, |01〉, |10〉, or |11〉.

Which one we have can be specified with two binary numbers, 0 or 1 for the first

qubit and then 0 or 1 for the second qubit. Two qubits however can exist in many

more states. If their state is denoted |2 qubits〉, then four amplitudes are required,

one corresponding to each classical configuration:

|2 qubits〉 = c00|00〉+ c01|01〉+ c10|10〉+ c11|11〉.

How does this generalize as we go to 3 qubits, 4 qubits, and beyond? Every

time we add a bit to the classical system, we only need to give one more number to

describe the configuration – is the new bit a 0 or a 1? This doubles the number of

possible configurations: we have all of the previous configurations plus the new bit

as a 0, and we also have all of the previous configurations plus the new bit as a 1.

While the classical description only needs one more number to specify the state, the

quantum description needs an amplitude for each possible configuration. Since the

number of configurations has doubled, so has the size of the quantum description. This

4A subtlety here is that it matters how we measure. If we perform a measurement that dis-
tinguishes |0〉 and |1〉, then the probability of each outcome is given by the Born rule [33, 34]:
Prob(0) = |c0|2,Prob(1) = |c1|2.
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Number of (qu)bits Size of classical description Size of quantum description
1 2 2
2 3 4
3 4 8
10 10 210 = 1024
100 100 2100 ' 1.3× 1030

1000 1000 21000 ' 10301

n n 2n

Table 1.1: Describing quantum and classical bitstrings. For a given number of
(qu)bits, the size of the classical and quantum descriptions are given. Quantum
descriptions grow exponentially fast, whereas classical descriptions increase only lin-
early with the number of (qu)bits. ‘Size’ here refers to the number of binary digits
required in the classical case, and the number of amplitudes required in the quantum
case. In fact an amplitude is a more computationally expensive number to work with
than a binary digit, and this analysis also ignores details such as the normalization
of the quantum state. However as the number of (qu)bits grows the most important
fact is the exponential scaling, and at n = 400 the information capacity of the entire
observable universe is exceeded [35].

simple rule - adding a classical bit requires one more number, but adding a quantum

bit requires twice as many numbers - leads to an exponential growth in the size of

the quantum description. This growth corresponds to extra quantum possibilities in

terms of physics and possible technological applications, but even storing this numbers

quickly becomes impossible, as illustrated by Table 1.1

Beating the exponential space requirement: We are seemingly faced with a stark choice:

either to give up on the ability to describe quantum behaviour, or to grapple with an

exponential storage requirement that limits us to small systems. However there are

in fact various ways to get around this exponential space requirement. One way is

to find mathematical simplifications, where the quantum effects being studied can be

described in a well-suited specialized mathematical framework requiring considerable

fewer variables. For example, the quantum behaviour of large numbers of electrons

in metals can be analyzed by making use of the regular pattern of the atoms that

also make up the microscopic structure. Many quantum effects involving macroscopic

numbers of quantum particles have been studied using mathematical simplifications,

however they can be difficult, sometimes impossible, to find. Another approach is to

make assumptions about the structure of quantum states, and decide which sorts of

states are likely to be important.

One such technique, that is used in this research, is to use tensor network approx-

imations of the state. These are lightweight descriptions that rule out certain sorts of

entanglement. By only capturing some of the possible entanglements in a quantum

system the state can be defined with far fewer variables, and physical processes that

only make use of such states can be studied to high accuracy. For example, matrix

product states are one-dimensional tensor network states that have been used to infi-
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nite systems in one dimension. Their tensor network structure means they can only

describe entanglement between nearby systems well, and fail to capture long-range

entanglement. Specifying arbitrary states of infinite 1D systems requires infinite infor-

mation, but the low-energy physics of such systems requiring only local entanglement

has been explained very well using matrix product states [36].

Matrix product states are one of the main tools used in the research presented in

this thesis. They are efficient approximations of quantum states with a 1D spatial

structure with local entanglement, but can also be expanded to capture arbitrary

states at the cost of reintroducing an exponential amount of information. These

properties, efficiency for local entanglement and also an ability to tune the information

cost with non-locality of entanglement, make matrix product states well suited for

studying the dynamics and entanglement of many-body quantum systems.

Interactions with the environment

An important part of the dynamics of quantum systems is interactions they have with

their immediate surroundings or environment. While quantum mechanics can offer an

authoritative account of so-called ‘closed’ quantum systems, where interactions with

the environment are negligible, no quantum system is ever really closed. An ‘open’

quantum system interacts with its environment, and the effect of this can cause a

degradation of closed quantum behaviour.

An important problem in the physics of open quantum systems is how quantum

systems thermalize. The classical account of how a classical system reaches the same

temperature as its environment doesn’t work in quantum mechanics. Classical sys-

tems can evolve chaotically, resulting in an ergodic dynamics where the system moves

through every possible configuration, leading to thermal equilibrium with its sur-

roundings. Classical bodies are made from microscopic quantum systems, however

the quantum mechanics of closed systems does not permit chaotic evolution. How

can thermalization be explained at a quantum level, and how does chaotic dynamics

emerge from an underlying non-chaotic quantum mechanics? A resolution of this is

given by the eigenstates thermalization hypothesis [37, 38, 39], which explains how

local properties of a quantum system can thermalize via interactions with the rest

of the system, ie interactions with their environment. This suggests that open quan-

tum system effects are of fundamental importance to answering questions of quantum

thermalization, and of how classical mechanics emerges from quantum mechanics.

Describing environmental effects in open quantum systems requires different tools

from closed system quantum mechanics. A näıve approach of simply describing the
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combined system and environment as itself a closed quantum systems quickly runs

into two difficulties. The first is the exponential scaling of the information required to

describe ever larger collections of quantum objects. This is compounded further by

the second difficulty, which is that the environment of the quantum system itself has

an environment. In an experiment on a quantum system, the experimental apparatus

may be taken to be the relevant environment, but this apparatus itself is surrounded

by the laboratory it lives in. The laboratory in turn has its own surroundings, and

so on. Very soon any hope of a viable analysis is impossible, and in any case would

be severe overkill.

Open quantum systems effects are very important for the development of quantum

technologies. Many quantum phenomena that are hoped to lead to future quantum

technologies rely on a degree of quantum coherence being maintained and preserved

from environmental degradation. Understanding how quantum effects are affected

by open systems effects helps to combat the effects: either by identifying vulnerable

quantum states to avoid and robust states to make use of 5, or else by actively making

use of the interaction, for example by using feedback to cancel out its effects [40].

There are many different approaches to studying open quantum systems. Often

approximations are made about the environment. Savings can be made by not keep-

ing track of the environment’s internal dynamics, typically leading to a statistical

account of the system-environment interaction. The exact form of such models varies

a lot, but many fall into two broad categories. The first keeps track of each possible

outcome of the randomized interactions, evolving an entire probability distribution

over quantum states through time. This can be done using the formalism of den-

sity matrices, which give a complete statistical account at the expense of a higher

information cost and some subtleties of interpretation. The second category looks at

individual probabilistic trajectories of quantum states, many of which can be averaged

to reproduce the density matrix account of the dynamics. Trajectories can be found

more quickly, and can bear a closer resemblance to measured results. The results

of quantum experiments often look noisy, and because of the tendency of quantum

systems to collapse upon measurements, can exhibit sudden ‘jumps’. These effects

can also be seen in trajectory-based open quantum system models.

Part of the research presented in this thesis concerns a trajectory-based open

systems model, inspired by the Langevin equation from classical mechanics. The

classical Langevin has its origins in explaining Brownian motion [41, 42]. This is a

randomized motion encountered in many different scenarios, from noisy electronics

5Indeed for particular types of environment there are known to be ‘decoherence-free subspaces’
of states that are impervious to open systems effects [30].
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to financial markets. The canonical example of Brownian motion is the movement

of a grain of pollen under a microscope: such a grain can be observed to undergo

sudden changes of direction, to apparently random extents and at random time in-

tervals, as well as a general reduction of speed in between. The explanation is that

the grain is colliding with high-speed air molecules that are too small to be seen.

The resulting motion is described well by the Langevin equation, where the usual

Newtonian dynamics are modified with a random forcing and a frictional effect. This

is an example of approximating the environment of an open classical system - rather

than keeping track of many air molecules, their effect is approximated by stochastic

collisions combined with an overall drag term. A similar model can be used to de-

scribe a quantum system coupled to its surroundings. A quantum Langevin equation

modifies the closed behaviour of a quantum system with stochastic interactions and

a frictional effect, giving a trajectory-based model for an open quantum system. By

deriving a quantum Langevin equation over matrix product states, features of both

Langevin equations and matrix product states can be used to study entanglement

structure in open quantum systems.

Thesis summary and plan

The general aim of this thesis is to study the evolution of many-body quantum sys-

tems, to try and understand how open systems effects impact the entanglement struc-

ture and thermalization of such systems. The key techiques used involve matrix prod-

uct states, efficient parameterizations of many body quantum states, and a quantum

Langevin model of the environmental interaction. A scratch-built code library in

MATLAB and ncon [43] was developed for the research.

The thesis is structured as follows. In the following chapter I introduce matrix

product states, discussing their origin, definition, and techniques that have been de-

veloped for time evolving them. In chapter 3 I report on an investigation into quantum

thermalization, where studying matrix product state dynamics a link is made between

quantum thermalization and dynamical chaos. Chapter 4 presents a derivation and

implementation of a Langevin equation over matrix product states, which in chapter 5

is be applied to ground state finding, thermal sampling, and a study of entanglement

growth. In chapter 6 a detailed study of unstructured searching on a continuous-time

quantum computer is presented, where optimization of different physical mechanisms

is considered for a realistic machine – of intermediate size and subject to open systems

effects. The thesis concludes with a summary discussion in chapter 7.
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Chapter 2

Technical Introduction

The Hilbert space of many-body quantum systems grows exponentially with system size.

Therefore so does the amount of information required to specify an arbitrary state.

This exponential scaling is a significant barrier to numerical treatments, however it

can be overcome by describing only the parts of Hilbert space that are important,

by formulating a variational parameterization of the Hilbert space. Matrix product

states provide one technique for this, and are particularly suited to systems with a

one-dimensional geometry whose states exhibit only local entanglement. For a fixed

correlation length of entanglement, a matrix product state can be specified with just a

polynomial amount of information.

This chapter serves as a technical introduction to many of the methods used later

in the thesis. Matrix product states are introduced and defined, and some of the key

techniques and algorithms associated with them are explained. In the final section

the time-dependent variational principle is discussed as a technique for time-evolving

matrix product states, and the key algorithms are explained.

The research presented in this thesis was developed in parallel with a scratch-built

code library written in MATLAB with the ncon function, which can be found in the

publicly available repository at https: // github. com/ JGMorley/ mps_ langevin .
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1 Introduction

Studying a quantum system composed of many subsystems is a difficult task. One

of the primary difficulties lies in the size required for a complete description of the

system as a whole. This is exemplified by the space requirements for storing the state

of classical bits or quantum bits (qubits). The state of n classical bits is perfectly

specified by n binary digits taking the value 0 or 1, this bitstring is sufficient to

identify which of the 2n possible states the bits are in. If a bit is added to the system,

one extra binary digit is required.

However the state of n qubits requires more information. A probability amplitude

must be specified for each of the 2n possible bit strings, requiring 2n − 1 complex

numbers (the requirement that the probabilities sum to 1 saves a complex number).

If a qubit is added, the number of bitstrings 2n+1 = 2× 2n is doubled, and therefore

twice as many complex numbers need be specified.

This extra information requirement when adding quantum rather than classical

systems goes hand in hand with quantum entanglement, where a system can be speci-

fied better as a whole then in terms of its parts individually. Specifying an exponential

number of probability amplitudes accounts for the possibility that the quantum sub-

systems might be entangled.

In this section these ideas are fleshed out and the relationship between quantum

entanglement and the size of the quantum state is formalized. Following this is a brief

survey of methods developed to study the physics of many body quantum systems

using approximations of the quantum state that ultimately led to the use of matrix

product states.

1.1 Entanglement in many-body quantum systems

1.1.1 Quantum entanglement

The term quantum ‘entanglement’ was first used by Schrödinger in his response to the

EPR paradox work [44]. Schrödinger used ‘entanglement’ to describe the situation

in a many-body quantum state where the best possible knowledge of the system as a

whole is more complete than the best possible knowledge of all of its parts. This is

counter to classical physics, and Schrödinger described it as ‘the characteristic trait of

quantum mechanics’ [45, 29]. It was realized early on in the development of quantum

computing that entangled quantum states play a key role, and entanglement quickly

became an important concept in the field.

Recent decades have seen the rapid development of a formal theory of quantum in-

formation [30] that seeks to quantify the phenomenon of entanglement and the extent
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to which quantum mechanics can be used to improve of technologies such as com-

puting [6], cryptography [5], sensing and metrology [4]. Entangled quantum systems

can be used to perform seemingly miraculous tasks. For example by distributing two

entangled systems between parties A and B a large distance apart, it is possible to

teleport the quantum state of a third system from A to B [30]. Quantum entangle-

ment is now also used as a tool for understanding condensed matter physics [46], and

recent developments are demonstrating how quantum entanglement in a many-body

system can be measured directly [47].

Entanglement is defined with respect to partitionings of a composite system into

smaller subsystems, which may or may not be entangled with one another. If the

system consists of two irreducible parts, then there is only one non-trivial choice, which

is to ‘bipartition’ the system. If there are more than two parts then the systems can

be split into more than two pieces, giving rise to multipartite entanglement. However

studying multipartite entanglement is much more difficult [48], and so the theory of

bipartite entanglement is much better developed, and it is bipartite entanglement

that is considered here.

Quantum states that are not entangled are called ‘product states’, or ‘separable’.

Complementary to the division of entangled and separable states is the division of

‘mixed’ and ‘pure’ states. A pure state, usually denoted as eg. |ψ〉, indicates the con-

figuration of a system with zero uncertainty. A classical distribution {pi} over quan-

tum states |ψi〉 can be described with a density matrix or operator ρ̂ =
∑
i pi|ψi〉〈ψi|.

If the distribution is non-trivial, then the state is said to be ‘mixed’. Entanglement for

mixed states is hard to define without mixing up classical and quantum uncertainty.

In this thesis pure states are implied unless explicitly stated otherwise.

Insight into the bipartite entanglement of a pure state can be extracted from the

singular value properties of its matrix representation. Broadly, if one writes a matrix

of coefficients CiA,iB - one index each for the two subsystems A,B - the singular values

of this matrix tell us directly about the entanglement between A and B. If there is

just one non-zero singular value then A and B can be measured separately to yield a

full description of the system, whereas if they are evenly spread then measurements

of A and B yield uniformly random results that give no information about state of

the system as a whole. To give two brief examples, the separable two-qubit state

(|00〉 + |01〉)/
√

2 has singular values (1, 0), whereas the maximally entangled Bell

state (|00〉+ |11〉)/
√

2 has even singular values ( 1√
2
, 1√

2
). By considering the singular

value decomposition of CiA,iB as probabilities for a sequence of letters formed by

the corresponding basis states, techniques from information science can be used to

quantify and study quantum entanglement [49].
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1.1.2 Defining entanglement

Generally a composite system may be split into two subsystems A and B. Denoting

local orthonormal bases for each system as {|iA〉} and {|iB〉}, a generic state of the

overall system may be written

|ψAB〉 =
∑
ij

cij |iA〉 ⊗ |jB〉 , (2.1)

where ⊗ denotes the tensor product [30] and usually won’t be explicitly written from

here on.

One way to study such a state is by considering the reduced density matrix of one

of the subsystems. Eg, the reduced density matrix of subsystem A is given by

ρA =
∑
k

〈kB |ψAB〉 〈ψAB |kB〉 =
∑
ij

ρij |iA〉 〈jA| , (2.2)

where ρij =
∑
k cikckl, and an over-line denotes complex conjugation.

Measures of the entanglement between the two subsystems can be calculated from

this reduced density matrix. The most common measure is the von Neumann entan-

glement entropy, which is calculated as

S(ρA) = −Tr(ρA log2 ρA). (2.3)

The von Neumann entropy is zero in the limit of unentangled states [30].

There is a freedom of representation in how we write down the bipartite quantum

state in terms of local bases {|iA〉} and {|iB〉} for subsystems A and B in (2.1) - any

choice of basis will do, and will correspond to a different set of amplitudes cij . In

fact, it is always possible to choose bases so that the sum is diagonal, ie. cij = δijcii,

and in this case the coefficients cij can be interpreted as telling us directly about

the entanglement in the system. This is a result of the singular value decomposition

theorem in linear algebra, which can be stated as the following [50]:

Singular Value Decomposition. If A is a complex matrix ∈ Cm×n, then there

exist unitary matrices U ∈ Cm×m and V ∈ Cn×n such that

U†AV ≡ Σ = diag(λ1, λ2, . . . , λp) ∈ Rm×n, (2.4)

where p = min{m,n} and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0.

Thus the complex matrix A can be written as A = UΣV †, where the non-zero

elements of Σ are the singular values of A. The number of singular values p =
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min{m,n} is also known as the rank of A. The singular value decomposition can be

applied directly to the matrix cij appearing in the bipartite state (2.1), yielding a

diagonal sum over the singular values λk of c and unitary rotations of the local bases

for A and B. Since unitary rotations preserve the inner product, the transformed

basis states still form an orthonormal basis. This result is known as the Schmidt

decomposition, which can be stated as [30]:

Schmidt Decomposition. A (normalized) joint state |ψAB〉 of a composite system

AB can be written in terms of orthonormal states |k(A)〉 for subsystem A and |k(B)〉

for subsystem B as

|ψAB〉 =
∑
k

λk |k(A)〉 |k(B)〉 , (2.5)

where λk are non-negative real numbers satisfying
∑
k λ

2
k = 1 known as Schmidt

coefficients or Schmidt values.

The spectrum of Schmidt coefficients tell us quite directly about the entanglement

properties of the state. If λ1 = 1, then λk 6=1 = 0 and the state |ψAB〉 = |k(A)〉 |k(B)〉

is unentangled. It is easy to see that the von Neumann entanglement entropy is zero-

valued for this state. It is maximal when all λk are equal, and therefore states with

large amounts of bipartite entanglement between A and B are characterized by a flat

distribution of Schmidt coefficients. In terms of Schmidt values, the von Neumann

entanglement entropy between A and B can be written as

S(|ψAB〉) = −
∑
k

λ2
k log2 λ

2
k. (2.6)

1.1.3 Entanglement in many-body quantum systems

The research presented in this thesis primarily concerns systems comprised of many

discrete systems. The entanglement in such a system is subtle, as it depends on

which of many possible bipartitionings are chosen. Some overall insight can be gained

from simply considering the Hilbert space of such systems, as for example the di-

mensionality of the smallest partitioned subsystem constrains the maximum possible

entanglement between it and the rest of the system.

Consider a single qubit (or any other two-level system) with state |ψ〉. A well-

known representation for the Hilbert space of the qubit is to map it to the sur-

face of a unit sphere (often called the ‘Bloch sphere’), with coordinates given by

(x, y, z)ᵀ = 〈ψ|~̂σ|ψ〉 in terms of the Pauli matrices ~̂σ = (σ̂x, σ̂yσ̂z)
ᵀ. This gives a pleas-

ing graphical representation for qubit states and their trajectories, and even mixed

states are captured as points with radius less than one. However finding visualizations

for even more qubits gets increasingly difficult, not least because of the exponentially
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scaling dimensionality of their Hilbert space: for N systems each with local Hilbert

space dimension dn, the total Hilbert space has dimension dim(H) =
∏N
n=1 dn.

In many situations, such as for open quantum systems, the entanglement in many-

body quantum systems follows general patterns. If the Hamiltonian has only local-

ized terms, then this places limits on how quickly long-range entanglement can be

generated. Often the long-range entanglement in an open quantum system will de-

teriorate most quickly, which can lead to a finite entanglement correlation length in

such systems. This idea can be quantified by categorizing states according to how the

entanglement SAB between a region A and the rest of the system B scales with the

size of A. If entanglement only exists over short distances, then only parts of A and

B close to the boundary will contribute to SAB , which will therefore scale with the

area of this boundary. This is known as area-law entanglement. On the other hand,

if long-range entanglement exists then all parts of A can be entangled with parts of

B, resulting in SAB scaling with the total size of A. This is known as volume-law

entanglement [51].

1.2 Origins of entanglement-based parameterizations

One of the key techniques used in this project is matrix product state methods. Here

I summarize how matrix product states were originally found to be useful for finding

ground states of condensed-matter problems, before going on to discuss their technical

aspects in Sec 2.

Advances in quantum information began to develop rapidly, and help with con-

densed matter problems, shortly after important work on quantum teleportation in the

early 1990s [46, 52, 30]. At about the same time a breakthrough was made in numerical

methods for finding the ground states of condensed matter models. This breakthrough

was the introduction of the density matrix renormalization group (DMRG) technique

by White in 1992 [53]. This work improved on the previous standard, renormalization

group (RG) techniques, which were introduced in 1975 by Wilson [54] to help find

ground states of the Kondo impurity model in one dimension [55]. While Wilson’s

RG was successful for this, and for other impurity problems, when applied to other

problems it often failed [56]. Both of the methods for finding ground states involve

‘blocking’ the system into small subsystems and processing these smaller blocks indi-

vidually, before truncating the output and recombining. In the truncation step, the

renormalization group method takes the block Hamiltonian and truncates to only the

low energy components. It was found however that this fails to adequately describe

the effects of the neighbouring blocks in a real-space lattice problem [57]. DMRG
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improves on this by taking the low energy states of the block, dividing the block into

‘system’ and ‘environment’ sub-blocks, computing the reduced density matrix of the

system block, then retaining only the high-probability components of that density

matrix. DMRG proved to be successful for a wide range of applications and quickly

became established as the most powerful numerical method for one-dimensional quan-

tum lattice problems [58]. Efforts to understand the remarkable success of DMRG

methods led to the realization that DMRG is equivalent to finding the best MPS de-

scription of the ground state, thus cementing MPS as an invaluable tool for studying

strongly coupled systems in one dimension.

1.3 Chapter summary

The remainder of this chapter sets out key definitions and techniques for working with

matrix product states. In Sec. 2 definitions are given for finite and infinite matrix

product state parameterizations, and the graphical tensor notation commonly used is

illustrated. One feature of working with matrix product states is that particular gauge

choices, or ‘canonical forms’, for the parameterization yield direct information about

the entanglement in the system, and Sec. 2 continues by exploring this in more details

and giving key algorithms for working with matrix product states. In Sec. 3 the time-

dependent variational principle for evolving matrix product states is discussed, and

key algorithms for implementing this for finite and infinite systems are given. This

concludes with a discussion of how the code written for this research was validated

against many-body dynamics which have been solved analytically.
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2 Matrix product states

A practical solution to the problem of storing many body quantum states is provided

by matrix product states. Matrix product states (MPS) allow for smaller, partial

descriptions that capture states with localized entanglement. Moreover the size of

a matrix product state can be increased or decreased to allow for more or less en-

tangled states, spanning product states to arbitrary states in the Hilbert space. In

this section matrix product states are defined and the common pictorial notation for

describing their use is introduced. Then the standard techniques for manipulating

matrix product states are explained. I start with how gauge freedoms are used to

simplify calculations, and go on to discuss a number of important algorithms in their

use. Finally I explore extensions of matrix product states to two dimensions, and to

mixed states.

2.1 Definitions and notation

We start with the standard way of writing down the pure state of a many-body

quantum system. This is done by writing a superposition over a complete basis for

the system, which in turn is a composition of basis states for the individual systems.

Throughout ‘system’ is used to refer to the system as a whole, and ‘site’ is used to

refer to one of these subsystems. A generic pure state of such a system of N sites is

|ψ〉 =
∑

σ1...σN

= cσ1...σN |σ1 · · ·σN 〉, (2.7)

where {|σn〉} is a basis for the nth site, indexed by σn. Here all the information is

stored in the rank-N tensor of probability amplitudes, c. The number of elements in c

is exponential in the system size: if the nth basis has dimension dn, then the number

of elements in c is
∏
n dn, with the only redundancy being an overall phase factor.

Matrix product states are a variational parameterization of c, and are a partic-

ular example of ‘network states’. The idea here is to decompose the (fully general)

probability amplitude tensor c into a sub-exponential network of tensors. By find-

ing a tensor network that effectively parameterizes a region of Hilbert space that is

of interest, it is possible to make a numerical study of many-body quantum system

without the burden of an exponentially scaling description. Matrix product states use

a simple one-dimensional tensor network that provides a good description for locally

entangled systems of a similar geometry.
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2.1.1 Defining the matrix product state parameterization

A näıve parameterization would be to replace each of the amplitudes with a product

of N complex numbers, like so

cσ1σ2...σN = a[1]
σ1a

[2]
σ2 . . . a

[N]
σN . (2.8)

The number of degrees of freedom now increases only linearly with N , so this pa-

rameterization removes the exponential barrier to constructing the dynamics: the

number of degrees of freedom is decreased from
∏
n dn to

∑
n dn which becomes a

simple linear scaling dN if each local system has the same dimension d. However it

is easily shown that this corresponds to a restriction to unentangled product states

|ψ〉 = |ψ1〉|ψ2〉 · · · |ψN 〉, with |ψn〉 =
∑
σn
a[n]
σn |σn〉. Though efficient, this parameteri-

zation therefore can’t describe entangled states and so is not very useful.

A useful tool in analyzing tensor contractions is to represent them graphically, as

summarized in Fig 2.1. In the graphical notation this looks like In this notation the

product state parameterization (2.8) looks like the following:

(2.9)

This notation highlights the independence of each local system, and hence the sepa-

rability of the state. It is also suggestive of an improvement to the parameterization:

introduce additional ‘legs’ (indices) connecting the local tensors. This would allow a

co-dependence of the systems and hence describe a certain amount of entanglement.

That is, let us parameterize the quantum amplitudes of our many-body system as

cσ1σ2...σN = A[1]σ1TA[2]σ2 . . . A[N-1]σN-1A[N]σN , (2.10)

where a single underline denotes a vector and a double underline denotes a matrix.

This parameterization defines a ‘matrix product state’. Writing out the same equation

in our pictorial notation we have:

(2.11)

In a matrix product states the local amplitudes of a product state aσn have become
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Figure 2.1: Graphical representations of tensors and their contractions. a) Tensors
can be represented as labelled shape – in this case a circle – with indices represented
by protruding legs. Here x is a number and doesn’t have any indices. Vector v,
matrix M , and tensor T have 1, 2, 3 indices respectively. b) Particular elements of a
tensor can be indicated by labelling the legs with the value taken by each index. Here
vi and Mij are represented. c) Contractions of indices can be indicated by simply
joining the respective legs. Here the indices of two vectors are joined to represent
wᵀv =

∑
i wivi. d) Using this more straightforward notation for tensor contractions

can reveal interesting properties. Here we see an illustration of the cyclicity of the
trace:

∑
ijk AijBjkCki = Tr(ABC) = Tr(BCA) = Tr(CAB).

rank-3 tensors: the tensor for the nth site is written as A[n]σn
ij . Here the physical

index σn remains, but additional indices i, j are introduced. These ‘auxiliary’ or

‘bond’ indices are contracted between tensors, and allow the matrix product states to

describe correlations between different sites.

An important parameter of a matrix product state of the ‘bond dimension’, D.

This is equal to the maximum allowed number of auxiliary index values, across all

auxiliary indices. By tuning the bond dimension the Hilbert space can be mapped

out in discrete steps: if D = 1 we have the manifold of product states, and as D

is increased more and more entanglement is permitted, until eventually an arbitrary

state can be described.

2.1.2 Calculating expectation values

Some of the most important quantities to calculate are expectation values. As a

generic example, take an operator Q̂[n:n+∆] that acts trivially only on sites n, . . . , n+∆.

Using the convention that conjugate tensors are written upside-down, this calculation

looks like

〈ψ|Q̂[n:n+∆]|ψ〉 = , (2.12)

where the site indices have been indicated in square bracket below the RHS.
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The number of basic operations required to perform such tensor contractions de-

pends on the order in which the sums over the various indices are performed. For

example in calculating the expectation of the local operator (2.12) the fastest method

is to start at one end, say the right, and contract in the following order: (1) the Nth

physical index, (2) the (N−1)th physical index, then (3) both the (N−1)th auxiliary

indices, and so on. This process is made more clear in diagrammatic form:

, (2.13)

where the thicker, dashed line indicates which index is contracted in each step. Here

two new tensors are introduced, a labelled rectangle indicating the transfer matrix,

and two interlocking circles that for a label [n] is the result the contraction of all the

state tensors with site index greater than n. This object we refer to as the ‘right

environment’ for the nth site. This can be defined by the recursive relation

r[n-1]

in-1jn-1
=
∑
σn

∑
injn

A[n]σn
in-1in

r[n]

injn
A[n]σn
jn-1jn

, (2.14)

or

r[n-1] =
∑
σn

A[n]σnr[n]
(
A[n]σn

)†
, (2.15)

and the boundary condition R[N] = 1.

Considering the analagous contraction from left to right we end up with a corre-

sponding ‘left environment’ for each n that is the result of the contraction of all MPS

tensors with site index less than n. The left environment of the nth site we denote

l[n] and is defined by the end condition l[1] = 1 and the recursive relation

l[n+1] =
∑
σn

(
A[n]σn

)†
l[n]A[n]σn . (2.16)

So in practice as well as storing the MPS tensors {A[n]} the left and right envi-

ronments for each site {R[n], L[n]} are also stored. Thus for (2.12) with ∆ = 0 the
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contraction would involve just 5 tensors, A[n], A[n], Q[n], r[n] and l[n]:

〈Q̂[n]〉 = . (2.17)

2.1.3 Open, periodic, and infinite matrix product states

This general prescription for writing down a matrix product states can be used a few

different ways in practice. Here I briefly discuss how matrix product states can look

for finite systems, and infinite systems where N →∞.

Finite matrix product states

Matrix product states can be used to describe systems of a fixed number N of sites.

By truncating the bond dimension, larger systems can be studied than via storing

the probability amplitudes cσ1...σN in full. This truncation works best for locally

entangled systems in one dimension.

There is a choice of what to do with the end tensors. So far we have worked with

the assumption that these obey open boundary conditions. Another option would be

to have the 1st and Nth sites connected via an auxiliary index, leading to a periodic

matrix product state. Throughout this thesis we will work with matrix product states

with open boundary conditions.

Infinite matrix product states

For systems with a local homogeneous interaction, states can often be described with

a fixed bond dimension matrix product states with a repeating unit cell. This affords

a tractable description of bulk effects in a N →∞ limit [59, 60].

As long as only local expectation values are important, the end tensors become ir-

relevant. This can be seen by considering the ‘transfer matrix’, E(ii′),(jj′) =
∑
σ A

σ
ijĀ

σ
i′j′

for a one-site unit cell. A local expectation away from the ends of the system will

involve raising E to a very high power. The result is dominated by a unique largest

eigenvalue1: Ek ≈ λk1 |R1〉〈L1| with dominant right- and left-eigenvectors |R1〉,〈L1|.

These are the environments of the matrix product state and contract with the rele-

vant part of the state as in Eq 2.17. The leftover environment on either side contracts

with the rest of the chain to provide an overall phase factor equal to the norm of the

1If one exists. It turns out that the existence of a unique largest eigenvalue is a necessary condition
for the state to be well described by a matrix product state in the first place [59].
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state. The end tensors can therefore be ignored, and the state described simply by

a rank-3 tensor A having dD2 elements, where D is the bond dimension and D the

local physical dimension. Extracting the left and right environments as the domi-

nant eigenvectors of the transfer matrix E gives insight into the entanglement in the

system2 and allows for easy calculation of local expectation values.

2.2 Gauge choices

As touched on above, a pure quantum state has a gauge freedom in the form of an

overall phase factor: the mapping |ψ〉 → eiφ|ψ〉 has no effect on any physical expec-

tation. Matrix product states have much more freedom, and by taking advantage of

this can be transformed into so-called ‘canonical’ forms that simplify many important

contractions.

2.2.1 Gauge freedoms in matrix product states

A matrix product state is unchanged if a resolution of the identity matrix is inserted

at any of the bond indices. That is, all tensors A[n] could be altered by A[n]σn →

M [n-1]−1A[n]σnM [n], where for each n we have M [n]M [n]−1 = 1, with 1 the identity.

This gauge freedom can be taken advantage of to simplify many commonly oc-

curing contractions involving the matrix product state tensors, including those for

calculating expectation values. By careful choices of gauge, many of the environ-

ments can be made trivial, and the Schmidt spectra and hence entanglement at each

bond index can be extracted straightforwardly. These canonical forms for the ma-

trix product states can elucidate the entanglement structure in the state, and are

necessary for some important matrix product state algorithms3.

2.2.2 Canonical gauge choices

Here I give a brief overview of the canonical forms used in this thesis. More detail, and

algorithms for canonicalization of a matrix product state, can be found in [61, 62, 63].

Vidal form

The first canonical form, first defined by Vidal [63], contains the essential ideas of all

the canonical forms discussed here. In the Vidal form, the matrix product state is

2via the Schmidt decomposition theorem.
3e.g. time-evolving an infinite matrix product state via the time-dependent variational principle,

as discussed in Sec 3
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decomposed as

. (2.18)

The Γ and λ tensors satisfy the requirements of a Schmidt decomposition at each cut of

the system into two contiguous parts: at the nth cut we have |ψ〉 =
∑
k λ

[n]
kk |L

[1..n]
k 〉|R[n+1..N ]

k 〉,

where the orthogonal bases {|L[1..n]〉}, {|R[1..n]〉} are described by contracting the Γ

and λ tensors either side of λ[n]. The λ matrix itself is a diagonal matrix of the singular

values of the state tensor grouped accoring to the partitioning, c(σ1,...,σn),(σn+1...σN ).

These properties mean that the entanglement at each cut is easy to calculate as

S(nth cut) = −
∑
k

λ2
kk log2 λ

2
kk, (2.19)

and moreover that contractions of the system environment to the right and left of the

nth site are greatly simplified by the orthogonality condition, leading to the following:

. (2.20)

Efficient algorithms exist for converting a generic state to a Vidal form matrix

product state, and for converting a non-canonical matrix product state into Vidal

form [58]. The properties that the Γ tensors and λ matrices inherit from the singular

value decomposition theorem underlie the usefulness of the remaining canonical forms,

which can be expressed in terms of them.

Left- and right-canonical forms

The idea behind the left- and right-canonical forms is to group Γ and λ tensors in

order to make either all the left or all of the right environments trivial. For right

canonical form this can be achieved by setting

A[n]σn = Γ[n]σnλ[n]. (2.21)

The effect of this is to make contractions of the right environments trivial (r[n] = 1),

and the left environments diagonal matrices with the corresponding squared Schmidt

spectrum as the diagonal elements: l[n] = λ[n−1]2.
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Similarly, a matrix product in left canonical form satisifes

A[n]σn = λ[n−1]Γ[n]σn . (2.22)

In left canonical form the left environments are the identity, and the right environ-

ments give the squared Schmidt spectrum: l[n] = 1, r[n] = λ[n].

Central canonical gauge

A final combination of Vidal form tensors is the central canonical form, which is

useful when time-evolving finite-system matrix product states via the time-dependent

variational principle [64]. In the central canonical form for the nth site, we have

A[n]σn = λ[n−1]Γ[n]σnλ[n], (2.23)

while tensors for sites > n are in right canonical form, and sites < n are in left

canonical form. This means that for the nth site only, both right and left environments

are the identity matrix. As we will see in Sec 3, this will be useful in avoiding

inversion of Schmidt values in a particularly useful gauge choice for tangent vectors

for variations on the nth site4.

Unitary gauge

A related alternative gauge choice is motivated by considerations of tangent vectors for

variations on each site. The time dependent variational principle evolution of matrix

product states involves calculating ‘orthogonal’ tensors to each A[n]. Specifically,

an orthonormal set of vectors vk which satisfy
∑
σ A
†σl

1
2 vk = 0. The idea of the

unitary gauge is to store the state tensor and these orthogonal tensors as the mutually

orthonormal columns of a unitary matrix U (iδ),(σj), indexed by δ such that U δ=1 = A

and Uδ 6=1 = vδ.

This could prove to be useful when evolving matrix product states via the time-

dependent variational principle, saving time by evolving both the state tensors and

also the tangent space tensors. This unitary gauge choice is used when deriving a

path integral over MPS in [65], a result we will build on in Chapter 4. It is also a

natural choice when putting MPS on a quantum computer [66]. The term ‘unitary

gauge’ is not in general use but has been adopted by our research group.

4This is desirable because it allows evolution through state where one or more Schmidt values are
equal to or close to zero.
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2.3 Properties of matrix product states

Matrix product states are parameterizations of a many-body state |ψ〉 that can offer

a tuneable trade-off between the number of degrees of freedom and the degree of

entanglement that can be captured. This can be seen directly in the λ matrices

described above: square diagonal matrices of dimension limited by the bond dimension

of the matrix product state. The diagonal elements are the Schmidt values, amplitudes

of the distribution of the corresponding orthogonal Schmidt basis of sates, from which

the entanglement entropy can be calculated. The maximum possible entanglement

for a normalized state is capped by the bond dimension. Normalization requires∑
k λ

2
k = 1, and the von-Neumann entropy is maximized by a flat distribution λk =

1/
√
D giving an entropy of Smax = log2D.

The set of possible states described by a matrix product state will include the

entire Hilbert space if the bond dimension is sufficiently large. The value required for

this increases exponentially with the system size. However in one-dimensional spin-

chain models, where the Hamiltonian exhibits a gap between the ground and excited

states, the low energy states are known to obey an area law for entanglement, ie. the

entanglement in such states is fixed as system size increases[62]. This makes matrix

product states with a fixed bond dimension a good approximation for such states,

even in the limit of infinite system size.

From a practical point of view, matrix product states are useful because storage

and calculations with them are efficient. Storing N tensors with bond dimension D

and physical dimension D requires just ND2d parameters, rather than the exponential

dN number of parameters required for a full description. Calculating local expectation

values is straightforward as those sites not involved can be reduced to ‘environment’

matrices r, l as described in Eq 2.135 can be calculated in advance an re-used for

many calculations on the state. Alternatively the state can be transformed into one

of many useful canonical gauges, where these environments can be made equal to the

identity, further simplifying calculations.

Matrix product states are a powerful tool for describing states with localized

entanglement. However many questions about many body quantum systems involve

dynamics. In the following section we show how matrix product states can be used

to study the dynamics of many body quantum systems.

5The efficiency of this does not translate well to two dimensions. For example, projected entangled
pair states are described by a square-grid tensor network, and the corresponding environments in
such states look like entire matrix product states rather than D2 square matrices [62].
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3 Time-dependent variational principle

In this section we show how the time-dependent variational principle can be used

to find equations of motion for matrix product states, and discuss algorithms for

integrating these equations forwards. Finally we illustrate this using the code writ-

ten for this research and explain how the time-dependent variational principle was

implemented and tested.

3.1 The time-dependent variational principle (TDVP)

The time-dependent variational principle (TDVP) provides a route to time-evolving

variational parameterizations of a quantum state. Here we write this as |ψ(z)〉, where

z represents a collection of complex-valued parameters. The TDVP was first used

by Dirac in 1930 to derive the time-dependent Hartree-Fock equations, often used in

quantum chemistry to parameterize molecular electron orbitals [67, 68, 69, 70].

Time-evolving such parameterizations via the Schrödinger equation ∂t|ψ〉 = −iĤ|ψ〉

is generally not possible. We have a restriction that we can only describe states within

the manifold defined by our parameterization |ψ〉 = |ψ(z)〉, so the time-derivative of

the state looks like |∂tψ〉 '
∑
k |∂zkψ〉 żk. However the application of the Hamiltonian

operator will in general lead to a derivative that can’t be described in this way. The

solution, due to Frenkel [68], is to take an inner product of the two terms with an

arbitrary variation of the state, which can be written |δψ〉 =
∑
k |∂zkψ〉 δzk, with the

vector of variations δzk arbitrary. This leads to equations of motion for the variational

parameters zk(t), which minimize6 ||Ĥ |ψ〉 − i∂t |ψ〉 || at each point in time [71]:

i
∑
j

〈∂zkψ|∂zjψ〉 żj = 〈∂zkψ|H|ψ〉 . (2.24)

These equations can be thought of as optimizing a projection of the tangent state

−iĤ|ψ〉 onto the tangent space of the variational manifold, in such a way that the

fidelity error is minimized.

The resulting TDVP trajectories form a symplectic manifold, that is, a classi-

cal phase space. This comes with its own conserved quantities, even when the full

quantum dynamics can’t be realized. In particular, the TDVP equations are inher-

ently energy conserving. These conservations properties make the TDVP method of

time-evolving matrix product states particular suited to situations where long-time

evolution is of interest [72].

Here I give overviews of a few different ways of evolving matrix product states via

6Where the norm indicated here is the usual Fidelity measure for pure states: |||φ〉|| = |〈φ|φ〉|1/2.
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the TDVP. The key trick is a useful parameterization of the tangent space vectors,

first reported in [72]. By using a basis of tangent vectors which are orthogonal to the

state vector and to eachother, the matrix Gij = 〈∂z̄kψ|∂zjψ〉 in Eq 2.24 is simplified.

In the basis of site index this becomes proportional to the identity, decoupling the

equations for Ȧ[n]. This makes evolution of infinite matrix product states tractable,

and greatly simplifies evolution of finite systems.

The discussions given in sections 3.2.1, 3.2.2 and 3.2.3 summarize the full presen-

tations given in [72, 64], highlighting the key aspects used in this thesis.

3.2 Applying TDVP to matrix product states

Here I mainly describe the original implementation due to Haegeman et al in [72].

More modern approaches have followed, which will be touched on briefly. This dis-

cussion is intended to demonstrate the content and considerations of the method.

3.2.1 Parameterizing the tangent space

The TDVP equations for the tensors A of a matrix product state can be decoupled

with the following parameterization of the tangent space. Only updates A→ A+ dA

that are orthogonal to the state are considered, which is achieved by imposing a ‘left-

tangent gauge’ condition:
∑
σ A
†σldAσ = 0. It is straightforward to see that this

leads to 〈ψ|δψ〉 = 0 by considering contractions from the left, where the tangent state

|δψ〉 corresponds to replacing A with dA.

To do this Ȧ is written as a linear combination of an orthonormal set of vectors V k

which satisfy A†l
1
2V k = 0, where A has been reshaped as [A](iσ),j = Aσij and similarly

for V k. To ensure the equations fully decouple, the tangent state is parameterized as

the following:

Ȧ
σ

= l−
1
2V σẊ r−

1
2 , (2.25)

where now V is written with the physical index σ free and the orthonormal vector

index k contracted with Ẋ, ie [V σ]i,(kj) = V σkij . Sometimes it will be convenient to

treat V and Ẋ in terms of a greek index δ over a full basis, so that δ = 1 indexes

the original state vector and δ 6= 1 the orthogonal vectors. In this case they will be

written as variants of V
σ(δ 6=1)
ij and X

(δ 6=1)
ij .

The next step is to contract the open indices of 〈∂Ākψ| on either side of the TDVP

equation with all parts of this parameterization apart from Ẋ. This now becomes

〈∂X̄δψ|, where 〈δψ| is a tangent state under the left-tangent gauge. The result is that
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the TDVP equations for each site decouple, and we have

Ẋ = −i〈∂X̄δψ|Ĥ|ψ〉. (2.26)

3.2.2 Infinite matrix product states

An infinite, homogeneous matrix product state can be time-evolved this way. Care

needs to be taken when evaluating the RHS of Eq 2.26 for a repeating Hamiltonian

of single-site and two-site terms, as detailed in [72]. One issue with evolving in this

way come from the inversion of l and r environments in Eq 2.25: if one or more

of the Schmidt values are zero, then these inverses don’t exist. Even if they exist

but are small, their inversion will lead to numerical errors. This is problematic for

example when evolving from an initial product state under an entangling Hamiltonian.

This can be resolved with an inverse-free algorithm, such as that detailed in [64], or

alternatively one described in Chapter 3.

3.2.3 Finite matrix product states

For a finite system of N sites we have a slight modification that needs to be made for

the end sites, that have just one bond index each. The left-tangent gauge parameter-

ization can be extended as

, (2.27)
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where here the right and left environments are indicated as R and L. The TDVP

equations for X [1], X [n] and X [N ] then read

. (2.28)

These equations suffer the same problem mentioned above: they require inverting

Schmidt coefficients, which may be zero-valued. However this may be resolved by

using an algorithm for sweeping along the system, updating each site in turn, also

given in [64]. The essential idea is to use central canonical gauge with respect to

the site being updates. Consider starting with a state in, say, right-canonical form.

This turns out to be the same as the central gauge for the 1st site. The first of the

lines in Eq 2.28 can be evaluated without issue, since in this central gauge R[1] = 1

is trivially inverted. The first site can then be updated. Then, by acting only on the

first two sites, the state can be transformed into the central gauge for the 2nd site,

which can then be updated without inverting and Schmidt coefficients. This can be

repeated until the Nth site is reached, after which point the updated state will be in

the left-canonical form. An analogous sweep from right to left can then be made.

This sweeping update interleaves the update of site tensors and the canonicaliza-

tion of the states, which is more efficient then separate update and canonicalization

steps. In chapters 4, 5 and 6 of this thesis a Langevin open systems model is given for

matrix product states, the implementation of which extends this sweeping algorithm

to calculating additional noise and friction terms.
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3.3 Code validation

As part of the research presented in this thesis, a code library was built from scratch

in MATLAB and the ncon function. The ncon function in MATLAB can contract

tensor networks, calculating the optimal order to contract indices. More details can

be found here [43].

The code library consists of scripts and functions for studying both finite and infi-

nite matrix product states. For both varieties, there are routines for canonicalization,

and various analysis functions eg. for calculating expectation values. Implementa-

tions of TDVP have been developed for both finite and infinite systems. Additionally

an implementation of a Langevin open systems model for finite matrix product states

was developed, which is discussed further in Chapter 4.

To validate my implementations of TDVP several approaches were taken. At the

most basic level each subroutine was checked for correct behaviour, and unit tests

were written to automate this process to an extent. The next step was to test local

dynamics, which can be straightforwardly checked with exact diagonalization. Testing

non-local dynamics with the infinite-system TDVP (which was written first) required

methods beyond exact diagonalization. This was done by calculating the rate function

for quenches in cases where exact expressions are known. The rate function here is

defined by

l(t) = − log |〈ψ(0)|ψ(t)〉|, (2.29)

where t is the time since a quench with the system in the ground state |ψ(0)〉 of a

different Hamiltonian. This is a useful test because it involves a non-trivial evolution

through entangled parts of the manifold of matrix product states. In the infinite-

system example, the exact expression for the rate function exhibits non-analytic cusps,

and reproducing these cusps requires a high level of precision.

Infinite TDVP

For the infinite code I looked at a quench of the spin-1/2 Ising model, for which an

analytical expression for the rate function is given in [73]. The Hamiltonian is

Ĥ = −J
∑
i

(
σ̂zi σ̂

z
i+1 + gσ̂xi

)
, (2.30)

and the system is quenches from the ground state at g = g0 = 1.5, in the ferromagnetic

phase, to g = g1 = 0.2 in the paramagnetic phase.

The analytical expression for the rate function was compared against numerical

results from the infinite-chain TDVP code. The numerical results were obtained
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Figure 2.2: Testing infinite TDVP: Ising quench with J = 1, g0 = 1.5, g1 = 0.2, with
analytical and numerical values of the rate function compared for increasing bond
dimension D = 2, 4, 8. Also shown is a comparison of the absolute error for each
bond dimension.

by first evolving a randomized state with J = 1, g = g0 and imaginary timesteps

∆t← i∆t for a long time to reach a good approximation to the ground state. Finally

this state was evolved in real time with J = 1, g = g1 via the TDVP code to find

|ψ(t)〉 and hence the rate function l(t). The results are shown in Fig 2.2 for bond

dimensions D = 2, 4, 6, 8. Substantial improvement with bond dimension is seen, and

the non-analytical behaviour of the cusps is well reproduced, indicating that the code

is working well.

Finite TDVP

For the finite-chain code two rate function checks were carried out. The first is for a

simplified XXZ model of spin-1/2s [74]:

Ĥ = J
∑
j

[Ŝxj Ŝ
x
j+1 + Ŝyj Ŝ

y
j+1] +

∑
j

(−1)jhstŜ
z
j . (2.31)

We start from the ground state when J = 0, hst 6= 0. This is just a Néel state where

the spins alternate between aligning parallel and antiparallel to the z direction. The

Hamiltonian is then instantaneously changed to hst = 0, J 6= 0. For a number of

sites N an integer multiple of 4 an analytical expression for the rate function can be

derived, and we test our finite-chain TDVP integrator against this. The results are

shown for full bond dimension with N = 8 in Fig 2.3 and show good agreement.

The second rate function test for the finite-chain code is for the Ising model, where
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Figure 2.3: Testing finite TDVP: Quench of equation (2.31) from J = 0, hst 6= 0 to
J 6= 0, hst = 0. Numerical results compare well with analytical expression for rate
function.
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Figure 2.4: Testing finite TDVP: Finite chain quench of Ising model (2.30) from
J = 0, g 6= 0 to J 6= 0, g = 0, showing good agreement between analytical expression
and numerical values for rate function. Number of sites N = 8.

the 1st and Nth sites are also coupled. If N is a multiple of 4 then an exact expression

for the rate function is given in [73]. Quenching from J = 0, g 6= 0 to J 6= 0, g = 0 we

get good agreement, as shown in figure Fig 2.4 for N = 8.
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Chapter 3

Quantum chaos - tracking

Lyapunov coefficients

A key difference between classical and quantum mechanics is dynamical chaos. While

in classical systems a small difference in initial conditions can lead to exponentially

different outcomes, a quantum system undergoes unitary time evolution in which the

distance between trajectories stays constant. This chaotic behaviour underpins many

phenomena associated with classical systems - it fundamentally limits the work of

predicting weather systems, and provides an explanation for thermalization.

In this chapter I report on research into these questions using trajectories of ap-

proximate quantum states described by the time-dependent variational principle. Such

trajectories are governed by a classical Hamiltonian system of equations, and therefore

exhibit classical chaos.

This work is original, and was conducted in collaboration with Andrew G Green

and Andrew Hallam, and published here [75]. My contribution to the work was devel-

oping time-dependent variational principle code precise enough to generate long-time

trajectories, and also involvement in development of code for extracting Lyapunov

exponents.
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1 Thermalization

Quantum thermalization can be understood in terms of quantum chaos [76], through

the study of systems whose classical limit is chaotic, or of many-body systems domi-

nated by single-particle dynamics [77, 78, 79, 80, 81, 82, 83]. For many-body quantum

systems where these approximations can’t be made, progress can be made by apply-

ing random matrix theory to the spectral statistics to reveal the underlying chaos

[84, 85, 86, 87, 88, 89, 90]. However this leaves the link between classical and quan-

tum chaos in these many-body systems unclear.

In this section I briefly recap how dynamical chaos leads to thermalization in many-

body classical systems, and how this may be measured via Lyapunov coefficients.

Then I discuss the study thermalization in many-body quantum systems.

1.1 Dynamical chaos in many-body classical systems

Thermalization is the process by which a system reaches a thermal equilibrium state,

characterized only by the system’s temperature. This describes processes where a

system equilibriates with its environment. It also describes how an isolated many-

body system evolves into a dynamical regime where temperature is the only practically

useful state variable. Though the microscopic dynamics of classical systems are time-

reversible, thermalization leads to an emergent preferred direction or ‘arrow’ of time

via an increased entropy, i.e. decreased information content.

This emergence is explained by the tendency of many body classical systems to

dynamical chaos. Motion is chaotic when a small difference in initial configurations

can grow exponentially. This is illustrated by the famous example of the ‘butterfly ef-

fect’ in complicated weather systems, where in principle the actions of a lone butterfly

could determine whether a tornado might form at a later time. However chaos occurs

in many simpler classical systems, for example a double pendulum where a second

pendulum is hung from the end of the first. Dynamical chaos offers an intuitive expla-

nation for the loss of information content of a system - tracing dynamics backwards

in time becomes exponentially more difficult with time. More importantly, it leads

to the system exploring all of its possible configurations in a fixed time interval. In

this ‘ergodic’ limit the tools of statistical mechanics can be applied, where only the

statistical properties of the possible configurations of the system are important.

Chaos is often studied by looking explicitly at diverging trajectories. The diver-

gence can be quantified in terms of Lyapunov coefficients. For a system with just

one degree of freedom X(t), we can consider the displacement between neighbour-

ing trajectories starting at X(0) and X(0) + dX(0). If at a time t the displacement
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has become dX(t) = Y (X, t)dX(0), then the corresponding Lyapunov coefficient is

defined as1

λ = lim
t→∞

1

t
log
|dX(t)|
|dX(0)|

= lim
t→∞

1

t
log |Y (X, t)dX(0)|, (3.1)

so that expontial divergence of dX is captured by the growth factor eλt. In non-

chaotic dynamics, the trajectories may converge (λ < 0), or stay a fixed distance

apart (λ = 0). Eq 3.1 is also valid for a multi-variable system if X is a vector and Y

a matrix, in which case it will converge on the largest Lyapunov exponent for almost

all trajectories X(t) and tangent vectors dX(t) [91, 92].

1.2 Eigenstate thermalization in many-body quantum systems

Unlike classical systems, the overall dynamics of quantum many body systems are very

much un-chaotic and therefore non-ergodic. Trajectories under the time-dependent

Schrödinger equation neither diverge nor converge, in the sense that two states initially

with fidelity |〈ψ0|ψ′0〉| = 1− ε, will after evolving under a constant Hamiltonian Ĥ for

a time t be separated by the exact same fidelity: |〈ψt|ψ′t〉| = |〈ψ0|e+iĤte−iĤt|ψ′0〉| =

1− ε. Moreover any differences in expectation values will scale with ε, so that states

close in fidelity will stay close in fidelity, and their observables will remain close also2.

The emergence of thermalization from quantum microscopics must be therefore be

different in origin to the classical case.

The eigenstate thermalization hypothesis (ETH) refers to a collection of ideas

about the conditions under which quantum systems may exhibit thermalization.

These ideas successfully descibe thermalizing behaviour in a large number of many-

body quantum models. The general idea is that the expectations values of local

observables are, over a long-time average, dominated by terms diagonal in the energy

eigenbasis. Moreover that such local expectations ought to vary smoothly with the

energy of the state. Therefore the eigenstate expectation values should match up with

the thermal Gibbs states at equal energies. The dominance of the diagonal contribu-

tions – and the loss of knowledge about the initial state – are thought to occur via

dephasing between the local region of the system and its larger complement. A large

number of many-body quantum systems appear to behave in a way consistent with

ETH3, and the study and refinement of the conditions and mechanisms of ETH is an

1Here the dX(0) in the denominator leads to zero contribution in the infinite time limit. The
dX(0) in the numerator is left in for consistency with the vectorized expression.

2This can be seen by defining a basis {ψ′t, {ψ
ᵀ
i,t}}, having constant overlaps with the initial state

ft ≡ 〈ψ′t|ψt〉, fi,t ≡ 〈ψ
ᵀ
i,t|ψt〉. Normalization of |ψt〉 requires that |ft|2+

∑
i |fi,t|2 = 1 =⇒ |fi,t|2 ≤

1− |ft|2 = ε. Then, writing |ψt〉 = ft|ψ′t〉+
∑
i fi,t|ψ′i,t〉, the difference in expectation value of some

operator Ô is straightforwardly shown to be ∆Ot = 〈ψt|Ô|ψt〉−〈ψ′t|Ô|ψ′t〉 = −(1−|ft|2)〈ψ′t|Ô|ψ′t〉+∑
i |fi,t|2〈ψ

ᵀ
i,t|Ô|ψ

ᵀ
i,t〉, that is, ∆Ot ∼ ε.

3With some exceptions, for example in many-body localized systems [93, 94, 95].
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active area of research.

The research presented in this chapter, and in the associated paper [75], pioneers

a new technique for studying thermalization in fundamentally many-body quantum

systems. By evolving such a system through a variational manifold via the time-

dependent variational principle (TDVP), its thermalization may be related to dy-

namical chaos. In the following section I discuss this approach, and explain how

Lyapunov coefficients for these dynamics can be calculated.
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2 Tracking chaos with TDVP

The dynamics of a closed quantum system are unitary, ie. not chaotic. Yet despite

this, and despite a lack of any external interactions, many system are known whose

local expectations appear to thermalize, converging on the values predicted by sta-

tistical mechanics. In this section I show how chaotic trajectories in manifolds of

localized matrix product states can be found, moreover how Lyapunov coefficients

can be extracted to help explain quantum thermalization in many-body systems.

First I explain how Lyapunov coefficients can be defined and extracted in the

geometrically non-trivial manifold of matrix product states. Then I introduce the

thermofield purification of the density matrix into a matrix product state, and explain

how this can be used to explore states near the centre of the spectrum.

2.1 Projecting quantum dynamics

A link can be made between thermalization in classical and quantum many-body sys-

tems by projecting the dynamics of the latter. Using the time-dependent variational

principle to find the dynamics of a reduced parameterization of the system leads to

effective classical, Hamiltonian equations of motion through the corresponding varia-

tional manifold [96, 97]. Thermalization in the quantum system can then be described

via classical thermalization – that is, it via dynamical chaos [98, 99, 100]. As time

progresses, dynamical modes of the system reveal a chaotic nature, at a rate given by

the inverse of the corresponding Lyapunov exponent. Thermalization of the system

as a whole can be studied by calculating the Lyapunov spectrum.

2.2 Extracting the Lyapunov spectrum

The entire spectrum of Lyapunov coefficients, describing the behaviour of displace-

ments in every dimension, can be found by adapting Eq 3.1. If the space of possible

displacements is spanned by d tangent vectors, consider a parallelepiped whose edges

are formed by these tangent vectors at point X(t), U(t) = {dX1(t), dX2(t), . . . , dXd(t)}.

The spectrum of the d Lyapunov coefficients can be obtained from the evolution of

the volume of this parallelepiped, via

d∑
i=1

λi = lim
t→∞

1

t
log(Vold(Y (X, t)U(0))). (3.2)

However this alone doesn’t provide a practical route to finding the coefficients. Over

time the tangent vectors will be biased towards the direction of the largest Lya-

punov coefficient, with the effects of the smaller coefficients becoming harder to dis-

57



tinguish. The algorithm of Bennetin et al [99] may be used to overcome this difficulty.

This works by separating the rotational and amplitude variations of the tangent vec-

tors, and re-orthogonalizing them at regular intervals. More details are given in

Appendix A.

As a first step to deducing the Lyapunov spectrum for MPS, we must assign a

distance measure on the variational manifold. This is done using the fidelity between

states with two different coordinates X and X + dX. In the case of translationally

invariant states, we must use the fidelity density rather than fidelity, since the fidelity

between translationally invariant states described by an MPS tensor Aσij and one

described by a tensor Aσij + dAσij scales as one over the total length of the system.

As described in Chapter 2, a small deviation from a translationally invariant MPS

state described by a tensor Aσij may be parametrized[96] in terms of freely-chosen

complex tensor dXσ
ij : A

σ
ij → Aσij + dAσij . Suppressing auxiliary indicies for a moment

for clarity, we can write dAσ =
∑d−1
δ=1 l

−1/2V σδdXδr−1/2, where l and r are the left

and right environments respectively, and V σδij ≡ V σδij (A) is a tensor of null vectors to

Aσji
∗ (reshaped into a matrix by pairing indices σ and j). This parametrization was a

crucial development of Haegeman et al in making the TDVP applied to MPS states

tractable [96]. The distance measure takes a particularly simple form in terms of X:

dS2 =
∑
σij

dXσ
ij
∗dXσ

ji. (3.3)

This parametrization is useful in determining the Lyapunov spectrum, the details of

which we turn to next.

Linearized TDVP and the Lyapunov Spectrum

We are interested in the evolution of the difference of two trajectories, i.e. the tangent

vectors to the variational manifold. The equation of motion of these is given by

linearizing the TDVP equation for matrix product states given in Chapter 2 using

the parametrization in terms of Ẋ given by Eq 2.26. The result of this linearization

is given in Box 2.1.

The Lyapunov spectrum is calculated by measuring the extent to which a tangent

vector dX(t) has changed in magnitude between a time t and t+δt. Eq.(3.4) describes

how the components dXa transform but does not account for the transformation of

the tangent space basis. This may be captured by allowing for parallel transport

along the trajectory. Box 2.2 shows how Eq.(3.4) looks after taking into account the

parallel transport.
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Box 2.1 Linearized TDVP

Linearizing the time-dependent variational principle gives:

dẊa(t) = i〈∂X̄a∂X̄bψ|Ĥ|ψ〉dX̄b(t)

+i〈∂X̄aψ|Ĥ|∂Xbψ〉dXb(t). (3.4)

Our notation indicates a reshaping of the (d2 − 1)D × D matrix

dX into a complex (d2 − 1)D2 vector. The right hand side of

Eq.(3.4) contains two parts: F1 = 〈∂X̄aψ|Ĥ|∂Xbψ〉 is manifestly

Hermitian and generates unitary rotations of the tangent vectors.

F2 = 〈∂X̄a∂X̄bψ|Ĥ|ψ〉 is not Hermitian. Instead it is a symmetric

matrix F2 = FT2 and is responsible for the non-unitary evolution of

tangent vectors.
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Box 2.2 Linearized TDVP with parallel transport

Taking into account parallel transport of the tangent space vectors,

the linearized time-dependent variational principle becomes:

dẊ(t) = F̃1dX(t) + F̃2dX̄(t), (3.5)

where F1 and F2 have been modified as follows:

F1 → F̃1 = 〈∂X̄bψ|Ĥ|∂Xaψ〉 − ΓcabẊc (3.6)

F2 → F̃2 = 〈∂X̄a∂X̄bψ|Ĥ|ψ〉 − Γ̄cabẊc, (3.7)

with Γ̄a,bc = 〈∂X̄b∂X̄cψ|∂Xaψ〉 and Γa,bc = 〈∂X̄bψ|∂Xc∂Xaψ〉 the

Christoffel symbols for the variational manifold. With this modi-

fication we can calculate the Lyapunov spectrum. We separate the

real and imaginary components of dX = dXR+idXI , F̃1 = F̃R1 +iF̃ I1

and F̃2 = F̃R2 + iF̃ I2 . Eq.(3.4) can be rewritten as:

dẊR

dẊI

 =

 F̃ I1 + F̃ I2 F̃R1 − F̃R2

−F̃R1 − F̃R2 F I1 − F̃ I2


dXR

dXI

 . (3.8)

When F̃2 = 0 the Hermitian property of F̃1 would result in a totally antisymmetric

matrix in Eq.(3.8), generating purely orthogonal rotations on the tangent vectors. F̃2

is responsible for the changing magnitude of a tangent vector upon moving along a

trajectory, and therefore for the generation of a non-zero Lyapunov spectrum. Local

Hamiltonians H =
∑
i hi are important examples in which F̃2 = 0. In this case, the

parallel transport term cancels with F2, guaranteeing that the Lyapunov spectrum is

zero for all states. Having accounted for these details, the Lyapunov spectrum of the

system can be calculated using Eq.(3.8) and the methods in Appendix A.

2.3 Accurate numerical integration

Extracting the Lyapunov spectrum in the way described here requires numerically

evolving matrix product state trajectories accurately for long times. The time-

dependent variational principle, where state updates are projected onto the reduced

manifold in order to maximize fidelity, was used for this. When a reduced parameteri-
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zation is used, we get classical Hamiltonian equations, with their own set of conserved

quantities - any conserved quantity corresponding to a symmetry that is reflected in

the underlying manifold of states is also conserved under the related TDVP equations

[71].

Extracting the Lyapunov spectrum in the way described here requires numerically

evolving matrix product state trajectories accurately for long times. In order to

achieve this the time-dependent variational principle method, discussed in chapter 2,

was used. However, in order to achieve the extreme accuracy required for faithfully

extracting long-time Lyapounov coefficients, careful development of the code was

required.

While the TDVP algorithm is sufficient to determine the time evolution of a matrix

product state at fixed bond dimension it has two flaws. Firstly, it necessarily involves

inverting Schmidt coefficients and therefore encounters issues when a state has small

Schmidt values. Secondly, there is no easy way to increase the bond dimension of

the matrix product state as may be necessary if we start from say a product state

initial state. Both of these issues can be solved by using an inverse-free version of the

TDVP algorithm [64]. In Box 2.3 we provide minor modifications to this algorithm

required for real-time evolution rather than imaginary-time evolution as studied in

[64]. It is straightforward to check the size of the smallest Schmidt value, and use this

to dynamically shift between using this inverse free algorithm (when Schmidt values

are small) and an algorithm that is faster but uses inverse Schmidt values.

Additional steps that can be taken to improve the long-time accuracy of the code

are to use higher order integrators. Here we used two higher order schemes. The first

was a 4th-order Runge Kutta scheme, which has an error that goes as (∆t)5 where ∆t

is the numerical timestep. The second was a reversible midpoint algorithm following

[72], which takes advantage of the fact that a numerical integration algorithm that is

reversible in time gains an extra power in ∆t in its error term, so that a 4th order

Runge-Kutta integrator with a reversible timestep has an error that goes as (∆t)6.
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Box 2.3 Inverse free TDVP

An inverse-free algorithm uses A in both left and right canonical

forms, AL and AR respectively. For AL the dominant left eigenvector

of the transfer matrix is l = I and dominant right eigenvector is

r = cc†. For AR the dominant left eigenvector of the transfer matrix

is l = c†c and dominant right eigenvector is r = I. The algorithm

has three key steps:

i. AR and c can be calculated from AL in an inverse-free method by

iterating RQ decompositions

c(i+1)AR(i+1)
RQ
= AL(i)c(i) (3.9)

until ci+1 ≈ ci.

ii. An inverse-free update of AL(t) is found by solving

min
ÃL

|ÃLc(t+ δt)−AC(t+ δt)| (3.10)

where we have defined AC = ALc = cAR, with AC(t + δt) =

AL(t)c(t) + δt d(ALc)/dt and c(t + δt) = c(t) + δt dc/dt. The time

derivative of AL is obtained via the TDVP equations and that of c

from

(I−
d∑

σ=1

AσL ⊗ ĀσR)
dc

dt
=

d∑
σ=1

dAσL
dt

cAσ†R . (3.11)

Eq.(3.11) follows from writing dc
dt = d

dt (
∑d
σ=1A

σ
LcĀ

σ
R) and using the

right gauge fixing condition on AR to impose
∑d
σ=1A

σ
ijcjkdA

σ†
R,kl =

0.

iii. Eq.(3.10) can be solved performing qr decompositions on c(t+δt)

and AC(t + δt)(σi),j , c(t + δt) = qr and AC(t + δt)(σi),j = QR. We

find r = R so AL(t+ δt)(σi),j) = Qq† and AL(t+ δt)σij can be found

by reshaping this matrix.
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2.4 The thermofield double

The MPS ansatz applied in the usual way efficiently describes states near to the

top and bottom of the spectrum. States near to the centre of the spectrum require

an alternative variational parametrization. We use an MPS parametrization of the

thermofield double [101], which represents a purification of the density matrix. For

a (diagonalized) density matrix ρ̂ =
∑
α γα|α〉〈α|, the corresponding purification is

written for a doubled system as |ψψ〉 =
∑
α

√
γα|α〉⊗|α〉, so that tracing out one of the

subsystems of |ψψ〉〈ψψ| recovers ρ̂. Here γα are real positive weights that correspond

to the Gibbs weights in thermal equilibrium, and α labels the eigenstates, |α〉.

Expectation values can be calculated by applying the relevant operator only to

the first copy of the system, so that 〈ψψ|θ̂ ⊗ 1|ψψ〉 = Tr(θ̂ρ̂). The thermofield double

is time-evolved with a Hamiltonian HH = H⊗ 1 + 1⊗H which acts symmetrically on

the two copies of the system.

The next step is to make MPS parameterizations of the thermofield double. This

entails a few differences from when working with MPS representing pure states. If a

reduced manifold, ie a truncated bond dimension, is used then pure states are taken to

mixed states. This means that the bond order of a thermofield MPS no longer yields

direct information about the entanglement in the system. Evolving a thermofield

MPS via the time-dependent variational principle consists of minimizing fidelity error

at each point in time. For a thermofield MPS this fidelity measure is the trace-norm

of the true updated density matrix with its MPS approximation. Although TDVP

has been applied to the density matrix before [102], as far as we are aware, this is

the first time that it has been used to follow real time evolution of a matrix product

ansatz for it (though see [103] for a related work).

We parametrize the thermofield double state |ψψ(AA)〉 by an expanded matrix prod-

uct state AAσδIJ with a doubled physical index representing the two copies of the system.

The thermofield double state is evolved using the expanded Hamiltonian, HH. The

time-dependent variational principle, as detailed in Chapter 2, is modified accordingly

with A→ AA, H → HH and {i, j, σ} → {I, J, σ, δ}.

In order to obtain accurate results, we have made an important modification to

the algorithm developed in [96] for MPS representations of the state. The thermofield

double is evidently symmetrical between the two copies of the physical space; observa-

tions made on either copy will yield the same result. However, this is not necessarily

reflected in an explicit symmetry of the tensor AAσδI,J and this can lead to the accu-

mulation of numerical errors that break the symmetry. The MPS for the thermofield

double can be written such that the symmetry between the two copies of the physical
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space is explicit. This is achieved for a bond order DD = D2 thermofield MPS by

imposing the symmetry AAσδI,J = AAδσ
Ĩ,J̃

using an additional tangent space gauge fixing,

where I ≡ i⊗ i′ and Ĩ ≡ i′ ⊗ i with the indices i, i′, j, j′ ∈ {1, 2, ...D}4.

In order to calculate our tangent state we find it more convenient to work in the

a slightly different gauge in which the symmetry condition is AAσδI,J = MIKAA
δσ
KLMLJ ,

where

M =

ID
2 (D+1) 0

0 −ID
2 (D−1),

 (3.12)

The tangent gauge fixing is then achieved as described in Box 2.4.

Box 2.4 Fixing thermofield double tangent gauge

We first calculate VV σδL,(IJ) using the methods of Chapter 2. Sym-

metric ( 1
2VV

σδ
L,(I,J) +ML,L′

1
2VV

δσ
L′,(IJ)) and antisymmetric ( 1

2VV
σδ
L,(IJ) −

MLL′
1
2VV

δσ
L′,(I,J)) parts of VV contribute separately to dAA with cor-

responding symmetric and antisymmetric parts of the matrices X.

The symmetrized and anti-symmetrized spaces are each smaller than

the doubled space. A complete orthonormal basis for VV is obtained

by keeping the first (d2−1)D(D+1)/2−D or (d2−1)D(D−1)/2+D

(where DD = D2) columns of the Q from a QR decomposition of the

symmetrized or anti-symmetrized VV respectively.

This constraint also requires the modification of step iii. in the

inverse-free algorithm. AAL(t+δt) is calculated using QR decomposi-

tions on cc(t+δt) and AAC(t+δt) but the symmetry constraint requires

Q to be modified. A new Q is obtained by performing a QR decompo-

sition on the symmetrised 1
2Q((σδ)I),((σδ)′I′) + 1

2MQ((δσ)Ĩ),((δσ)′Ĩ′)M
†

and keeping the first DD columns.

The infinite temperature state takes a particularly simple and instructive form when

represented in terms of a thermofield MPS. At DD = 1 it is given by AAσδ = δσδ/
√

2.

At DD = D2 > 1 there are many ways to represent the state. A class of symmetrical

thermofield MPS states can be constructed from a unitary matrix U ∈ SU(dD) as

AAσδIJ =
1√
d

d∑
γ=1

U(σi),(γj)U(δi′),(γj′). (3.13)

4Note that a pure state with bond order D wavefunction MPS tensor Aσij can be represented as

a thermofield MPS of bond order D = DD and tensor AAδσ
ii′,jj′ = AσijA

δ
i′j′
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This follows from noting that i. the infinite temperature state is the same for

any Hamiltonian and ii. that it is invariant under evolution with the Hamiltonian.

Eq.(3.13) follows by representing an arbitrary time evolution of AAσδ = δσδ/
√

2 with

a bond operator representation of the time-evolution operator using the unitary U .

This manifold of equivalent representations of the infinite temperature state resolves

an apparent contradiction: on the one hand a state at the middle of the spectrum of a

given Hamiltonian is expected to evolve towards the infinite temperature state, whilst

on the other hand the projected dynamics is classically Hamiltonian and so cannot

evolve to a single point in phase space. It also holds the seed of how to compress the

thermofield MPS representation of a thermalizing system at late times5.

5A. Hallam and A. G Green work in progress.
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3 Results

By simulating the dynamics of a truncated matrix product state description, an asso-

ciated chaotic classical system can be investigated. In this section are results for an

infinite spin chain in integrable, nearly integrable, and non-integrable (thermalizing)

limits. The dynamics near the bottom of the spectrum were investigated using wave-

function matrix product states, and the dynamics near the centre were studied using

thermofield matrix product states.

We use these tools to study the thermalization of the Ising model with longitudinal

and transverse fields:

Ĥ =
∑
i

[
Jσ̂z

i σ̂
z
i+1 + hxσ̂x

i + hzσ̂z
i

]
. (3.14)

The properties of this model are well known; it is integrable when the longitudinal

field hz is zero and non-integrable otherwise. This allows us to investigate: i. inte-

grable systems (J = O(1), hx = O(1) and hz = 0), ii. non-integrable/thermalizing

systems J = O(1), hx = O(1) and hz = O(1)), and iii. nearly integrable systems

J = O(1), hx = O(1) and hz � hx). We apply the machinery of the time-dependent

variational principle to determine trajectories, and the linearized time-dependent vari-

ational principle to determine Lyapunov spectra. Reflecting their different encodings

of the relevant physics and different regimes of validity, we separate our discussions

of the wavefunction MPS and thermofield MPS.

3.1 Wavefunction matrix product state

First we calculate Lyapunov spectra evaluated from the wavefunction MPS starting

from an initial product state |ψ(0)〉i = (0.382 − 0.382i) |↑〉i + (−0.595 + 0.595i) |↓〉i
near the bottom of the spectrum.

Lyapunov spectrum: The Lyapunov spectrum for the non-integrable, integrable and

nearly-integrable cases are shown in Fig. 3.1. All show a broad distribution of ex-

ponents, with no strong differences apparent between integrable and non-integrable

cases. Although there is a difference between the non-integrable and integrable or

nearly-integrable cases, this is insufficient to provide a diagnostic of integrability.

A translationally invariant MPS is parametrized by a set of D×D matrices, where

D is the bond order. Since the nonlinearities and chaos of our dynamics arise from

projection to the variational manifold, the Lyapunov spectrum varies with bond or-

der. This situation is unlike the conventional use of matrix product methods, where

increasing bond order gives increasingly accurate results. The dependence of the
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Figure 3.1: Lyapunov Spectrum for a wavefunction MPS representation of Ising
model dynamics: a) Non-integrable case with J = 1, hx = 0.5, hz = 1. b) Integrable
case with J = 1, hx = 0.5, hz = 0. c) Nearly Integrable case with J = 1, hx = 0.5,
hz = 0.1 In all cases the spectrum is obtained for an MPS representation of the
wavefunction at bond order D = 20.

maximum Lyapunov exponent, λmax, upon D is shown in Fig 3.2. This shows a

decrease from D = 2 as D → ∞. The following discussion demonstrates the con-

sistency of these results with physical observations. Note that in the translationally

invariant case with spin 1/2, the projected dynamics is not chaotic at D = 1 by

the Poincaré-Bendixson theorem, since the phase space is two-dimensional. The Lya-

punov exponents are therefore zero in this case.

Figure 3.2: Maximum Lyapunov exponent versus bond order: The maximum Lya-
punov exponent depends strongly upon the projection non-linearities at different
bond orders, tending to zero in the limit D → ∞. Here we show the largest ex-
ponent varying with bond order for Non-Integrable (circles), Integrable (crosses) and
Nearly integrable (pluses) systems. The largest exponent decreases like λmax(D) =
0.32(D − 1)−0.21 for Non-Integrable systems, λmax(D) = 0.54(D − 1)−0.27 for Inte-
grable systems and λmax(D) = 0.42(D − 1)−0.22 for Nearly-Integrable systems.

Maldacena et al.[104] have conjectured that the largest Lyapunov exponent of a

quantum system has an upper bound related to its temperature λmax ≤ 2πkBT/~ .

The behaviour of λmax for initial states of different energy can be seen in Fig 3.3.

At low energies the exponent appears to increase as a power law before saturating at
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Figure 3.3: Maximum Lyapunov exponent versus energy density: It has previously
been conjectured that λmax ≤ 2πkBT/~, here we observe that λmax(D = 2) increases
with energy density above the ground state but appears to saturated at E ≈ 0.6. The
initial growth of λmax was fitted with a power law 1.80E1.69.

E ≈ 0.6.

Entropy growth: The dependence of the entanglement entropy SE upon time is

shown in Figs. 3.4 and 3.5. SE grows until saturation at a point that increases

with bond order. This saturation point can be well approximated by drawing the

Schmidt coefficients sn from a distribution given by the modulus of the elements of

a random O(D) vector. The mean Schmidt coefficients then correspond to sn =

n
√

6/
√
D(1 +D)(1 + 2D), from which one may deduce a saturation entanglement at

large bond order given by

SSat
E (D) = −

D∑
n=1

s2
n log s2

n ≈ log[0.65(D − 1) + 1]. (3.15)

With growing entanglement, the effective bond order of the quantum state (the bond

order required for an accurate description) grows. We can use Eq.(3.15) to deduce

this time-dependence; at the point where SE crosses the bond order D saturation

value, the bond order must be increased. A continuous approximation can be found

by equating SSat
E (D − 1) = SE(t), from which we obtain

D(t) = 1.54(eSE(t) − 0.997) + 2. (3.16)

As we discuss presently, this dependence of bond order upon time allow us to demon-
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strate the consistency of the Lyapunov spectrum and its variation with D with the

physically relevant dependence of the entanglement entropy upon time.

Figure 3.4: Entanglement entropy across a bond compared to randomly distributed
Schmidt coefficients: At a given bond dimension the entanglement entropy will satu-
rate after a short time. The saturation value for the entanglement entropy is in strong
agreement with a random uniform distribution of Schmidt coefficients.

The Kolmogorov-Sinai entropy SKS is a measure of how quickly knowledge of a sys-

tem’s initial state is lost in a chaotic system. It determines the growth-rate of the

volume of a region of phase space and, following Pesin’s theorem [105], is given by the

sum of the positive Lyapunov exponents. The Kolmogorov-Sinai entropy is therefore

straightforwardly calculated from our results.

Studies of single particle quantum chaos have shown the relationship ṠE(t = 0) =

SKS, provided that starting wavefunction is as classical as possible [106, 107, 108].

Here we find — as indicated in Fig. 3.5 — that ṠE(t = 0) = SKS(D = 2). D =

2 corresponds to the most classical, non-trivial (recall that D = 1 has vanishing

Lyapunov exponents) projected dynamics and is the many-body equivalent of the

single particle result. We speculate the following extension of this result:

ṠE(t) =
SKS(D(t))

(D(t)− 1)2
. (3.17)

Our main justification is the very good, zero-parameter fit that it gives between our

results for the entanglement and Lyapunov spectrum. A derivation may be possi-

ble from the entangled path integral [65], where a similar result is obtained for the

growth rate of bosonic fluctuations at a particular bond order. Fig. 3.6 shows the

Kolmogorov-Sinai entropy scaled by (D − 1)2 and its dependence upon bond order.
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Figure 3.5: Entanglement entropy and Kolmogorov-Sinai entropy: The gradient
of the entanglement entropy is determined by the Kolmogorov-Sinai entropy. The
Kolmogorov-Sinai entropy at D = 2 accurately predicts the gradient of the entangle-
ment entropy at t = 0 (orange). Substituting fitted forms for the Lyapunov spectrum
and saturation entanglement into Eq.(3.17) gives a zero parameter fit to the entan-
glement entropy (yellow). This fits may both be compared with the time evolution of
SE(t) found using iTEBD at D = 100.

At long times we expect SE(t) ∼ t for thermalising systems, which using Eq.(3.17)

suggests the fit

SKS(D)

(D − 1)2
= 0.14 + 1.6e−1.08(D−1). (3.18)

Combining Eqs.(3.16), (3.17) and (3.18) the Lyapunov data imply a differential equa-

tion for SE(t) that we can integrate to find SE(t). Fig. 3.5 shows the result plotted

alongside entanglement obtained from a high bond-order iTEBD algorithm. The

Lyapunov spectra underestimate the late-time linear growth rate of entanglement by

about 15%. Note that Fig. 3.5 is plotted to times that extrapolate beyond times

where our TDVP simulations are accurate.

It is apparent from these observations that the Lyapunov spectrum extracted

from mapping the quantum dynamics of the wavefunction to classical Hamiltonian

dynamics is not unique. There is no sense in which spectra collected in this way show

numerical convergence, with increasing bond order. A moments reflection about the

way in which the wavefunction MPS captures the physics of thermalization shows

why. At low bond order, the dynamics is very non-linear and thermalization occurs

via chaotic classical dynamics. Thermal averages are recovered in temporal averages

of the simulated dynamics. As bond order increases, the MPS ansatz make better and

better approximation to the underlying eigenstates and ultimately, thermalization is

captured in the same way as the conventional picture of eigenstate thermalization.
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Figure 3.6: Kolmogorov-Sinai entropy versus bond order: The Kolmogorov-Sinai
entropy scaled by (D − 1)2 is related to entanglement growth at short times. Here
we show the scaled KS entropy varying with bond order for Non-Integrable (circles),
Integrable (crosses) and Nearly integrable (pluses) systems. The Non-Integrable KS
entropy decreases like 0.14 + 1.6e−1.08(D−1), the Integrable KS entropy decreases like
0.19 + 6.6e−1.32(D−1) and the Nearly-Integrable KS entropy decreases like 0.19 +
11.4e−1.81(D−1).

Thermal averages are obtained in instantaneous measurements after an initial period

of dephasing reveals the intrinsic properties of the underlying eigenstates. However,

the Lyapunov spectrum does have physical meaning. We have demonstrated how the

physical quantity, SE(t), is related to the Lyapunov spectrum obtained on a sequence

of variational manifolds.

3.2 Thermofield matrix product state

While MPS approximations of pure states allowed us to relate thermalization to

chaotic projected dynamics near the edge of the spectrum, the practical limitations of

working with large bond dimension mean it can’t be applied near the middle. Here we

use MPS approximations of the thermofield double to calculate the Lyapunov spec-

trum near the middle of the spectrum. We consider an initial pure state near to the

middle of spectrum, |ψ(0)〉i = 0.448 |↑〉i + 0.873 |↓〉i. The late time dynamics of this

are similar to the infinite-temperature state, which is well captured by the thermofield

double.

The Lyapunov spectra for the thermofield MPS dynamics are shown in Fig. 3.7.

There is now a clear distinction between the non-integrable, and integrable and nearly-

integrable cases. The former has a semi-circular distribution, whereas the latter are

narrower and fit a Gaussian distribution (with long tails that have been cut off in

Fig. 3.7). For long time averages, the Lyapunov spectrum for the nearly integrable
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case is expected to crossover from a pre-thermalization Gaussian to a semi-circle

distribution. There is a narrowing of the tails of our spectra at late times, but a clear

demonstration of the emergence of a semi-circle is a subject for further study. The

semi-circular distribution in the non-integrable case suggests a connection to random

matrix theory. Such a connection has previously been explored in the context of

matrix models [109, 110].

Figure 3.7: Lyapunov Spectrum for a thermofield MPS representation of Ising model
dynamics: a) Non-integrable case with J = 1, hx = 0.5, hz = 1. b) Integrable case
with J = 1, hx = 0.5, hz = 0. c) Nearly Integrable case with J = 1, hx = 0.5, hz = 0.1
In all cases the spectrum is obtained for a wavefunction MPS at bond order DD = 16.
The non-Integrable case appears to fit a semicircle distribution with radius r = 0.39,
the Integrable case appears to be Gaussian with standard deviation σ = 0.167 and
the nearly integrable case appears to be Gaussian with standard deviation σ = 0.161.

Fig. 3.8 shows the variation of the maximum Lyapunov exponent with bond

order for the non-integrable case. Symmetry constraints that we impose upon the

thermofield MPS tensor, as discussed earlier in this Chapter, restrict the bond order

to DD = 1, 4, 9, 16 etc, and together with the rapid growth of the number of Lyapunov

exponents as 2(d2 − 1)DD2 this leads to rather few points in the figure. Note that

since the dimension of the local Hilbert space is d2, dynamical chaos occurs at DD =

1. Our numerics are fit by 1.09DD−0.373, or 1.17e−0.0173DD, but are also consistent

with convergence 0.410 + 0.1740e−0.0116DD. The latter might be expected since the

thermofield double (being a purification of the density matrix) encodes a limited

set of observations corresponding roughly to a window of size 1
2 log2DD. When this

window is larger than the correlation length timescales of the dynamics are expected

to converge to values characteristic of the observable thermalization process.

The Kolmogorov Sinai entropy for the thermofield MPS is shown in Fig. 3.9. This

is fit with 1.427DD1.58 to high accuracy. This scaling is less than DD2 (the volume of

phase space) of a typical classical dynamical system. This is consistent with unitary

dynamics as DD tends to infinity. Unlike wavefunction MPS, we have been unable

to find a simple relationship between the Kolmogorov-Sinai entropy and thermofield

entanglement.
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Figure 3.8: Maximum Lyapunov Exponent vs Thermofield MPS Bond Order for Non-
Integrable System: The largest Lyapunov exponent for the Ising model with J = 1,
hx = 0.5, hz = 1.0 obtained for an MPS representation of the Thermofield double.
The exponent appears to be approaching zero like λmax = 1.09DD−0.373

4 Discussion

This chapter has presented a new collection of techniques for studying thermalization

in strongly coupled, many-body, quantum systems, where no easy simplifications are

available. By casting the quantum dynamics of the system to MPS approximations –

either of pure states near the edge, or density matrices near the middle of the spectrum

– chaotic classical trajectories emerge via the time-dependent variational principle.

This provides an explicit realization of the conventional picture of dephasing of eigen-

states, as seen in eigenstate thermalization, and brings the study of quantum chaos full

circle. Previous studies of quantum chaos have focussed on single-particle quantum

systems with a chaotic semi-classical limit, or else on regimes where many-body quan-

tum dynamics are dominated by single-particle behaviour [77, 78, 79, 80, 81, 82, 83].

Following this approach the level statistics of the system can be used as a diagnostic

of chaotic behaviour, giving insights that can be extended to genuinely many-body

dynamics [84, 85, 87, 88]. The techniques presented here instead allow genuinely

many-body systems to be studied in a semi-classical context via MPS descriptions.

One outcome of this research is evidence of a new relationship between the Komogorov-

Sinai entropy, MPS bond order, and entanglement (Eq 3.17). Here entropy is related

to the growth of bond dimension D(t) and the related Komogorov-Sinai entropy

SKS(D(t)). Another outcome is the striking Gaussian and semi-circular distribution

of Lyapunov coefficients seen for the thermofield MPS in integrable and non-integrable

systems respectively. The circular distribution for non-integrable systems has been
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Figure 3.9: Kolmogorov-Sinai entropy vs Thermofield MPS Bond Order for Non-
Integrable System: The Kolmogorov-Sinai entropy for the Ising model with J = 1,
hx = 0.5, hz = 1.0 obtained for an MPS representation of the Thermofield double.
The KS entropy appears to be diverging, growing like SKS = 1.4270DD1.58.

predicted in studies of gravitation [109, 110] and conjectured to be universal.

A natural extension of this work is to adapt the method to finite systems, where for

example comparisons could be made with previous calculations of out-of-time ordered

correlators [111, 112, 113, 114, 115]. These results suggest a route to numerical

studies of quantum systems that sidestep the usual barrier of exponential memory

requirements. Dynamical modes that have revealed themselves to be chaotic act as a

chaotic bath for the remaining quasi-regular modes. If these were modelled as such,

via a Langevin description, the memory requirement could be substantially reduced,

and the short- and long-time dynamics captured as dissipative and diffusive effects

respectively. Methods for formulating and applying a Langevin equation over matrix

product states are given in Chapter 4 and 5. Another interesting extension to this

work would be to look for quantum analogues of behaviour described by the KAM

theorem for classical systems. The KAM theorem codifies the robustness of classical

integrable systems to perturbations, and its applicability in quantum systems has

been speculated on [116]. Projecting quantum dynamics to the classical dynamics of

a reduced MPS description suggests a promising route to investigating the robustness

of quantum integrability.
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Chapter 4

A Langevin equation for

matrix product states

A key challenge in developing quantum technologies is understanding how a quan-

tum system is affected by its environment. This can be modelled with a quantum

Langevin equation, which adds the effects of noise and dissipation to the Schrödinger

equation. However these techniques are generally either limited to describing non-

entangled states, or burdened with carrying along a full description of an arbitrary

(entangled) quantum state. This chapter presents a quantum Langevin equation over

matrix product states, which combines the power of a quantum Langevin equation with

an efficient matrix product state parameterization of partially entangled states.

First I present a general survey of techniques for studying open systems, with a

focus on how Langevin techniques have been applied to many-body quantum systems.

Next I show how a quantum Langevin equation for matrix product states can be derived

and illustrate its properties with an exactly soluble model for two spins. Finally I

discuss the practicalities of implementation, and the algorithms developed for this

purpose as part of this research. The following chapters will use these techniques.

The original work in this chapter consists of the techniques for implementing the

quantum Langevin equation for matrix product states for arbitrary matrix product

states, and writing the associated code. [article in preparation]
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1 Langevin methods for open quantum systems

The Langevin equation for the dynamics of a classical particle accounts for the par-

ticle’s surroundings with two effects: i. a stochastic forcing, and ii. a deterministic

friction, accounting for the viscosity of the surroundings with a drag term proportional

to the speed of the particle.

A similar Langevin equation can also be formed for a quantum particle by adding

noise and friction terms to the Schrödinger equation for single particle quantum me-

chanics. While this allows a fairly direct translation of some of the classical techniques,

a single-particle Langevin equation can’t account for quantum entanglement.

This can be resolved by deriving a stochastic Schrödinger equation for the full

wavefunction of a many-body quantum system, as described in [117]. However this

approach quickly runs into the usual difficulties of working with many-body wave-

functions: the exponential amount of information required to store the state.

The methods introduced in this chapter allow a Langevin modelling of entangled

many-body quantum systems via a Langevin equation over matrix product states.

The purpose of this section is to illustrate how this development sits in the current

literature. First I give an overview of classical Langevin equations, illustrating the

key features that carry over to their quantum counterparts. Then follows a summary

discussion of the open quantum systems toolkit, including the key difficulties and

common steps made to overcome these. Finally I discuss Langevin equations for

many-body quantum systems.

1.1 Classical Langevin equations

Langevin equations were first developed by Paul Langevin to explain Brownian mo-

tion, where a visible particle moves according to interactions with an invisible fluid

[42]. The most famous example of Brownian motion is the perplexing movements of

a pollen particle suspended in water [41]. Einstein explained this motion in 1905 in

terms of collisions between the pollen particle and the water molecules, by deriving

equations of motion for the probability density of the pollen particle, in a precur-

sor to Fokker-Planck equations. Langevin published his complementary approach in

1908 that modified Newton’s second law with noisy and friction terms. Langevin’s

approach was more intuitive, dealing with stochastic trajectories of Brownian parti-

cles, though this came with the price of requiring the sophistications of dealing with

stochastic differential equations.

By way of illustration, Box 1.1 gives an example of a classical Langevin approach

to modelling a harmonic oscillator. Langevin equations give stochastic trajectories,
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whose properties can be used to calculate the effects of diffusion.

Box 1.1 Classical Langevin Harmonic Oscillator

An example of a classical Langevin model is a harmonic oscillator

in thermal contact with an environment, as studied in [118]. The

oscillator is modelled with a modified version of Newton’s equation

F = mẍ = −kx:

mẍ = −kx− γẋ+
√

2kBγTη(t).

The environment is modelled with a damping term tuned by γ pro-

portional to the velocity ẋ and a noise term proportional to a δ-

correlated Gaussian white noise η(t) obeying

〈η(t)〉 = 0, 〈η(t)η(t′)〉 = 2kBγTδ(t− t′).

This model can be solved, giving a stochastic solution in terms of a

noise sequence η(t). The resulting trajectory x(t) can be interpreted

as a possible motion of the oscillator, and expectations such as the

mean 〈x(t)〉 and variance σ2
x can be computed. In this case, 〈x(t)〉 =

0 and σ2
x ∝ T . The noise term balances the energy of the system

at long times, resulting in 1
2m〈v

2(t)〉 = kBT , in agreement with the

equipartition theorem.

Fluctuation Dissipation Relations: The fluctuation dissipation relation describes the

balance between thermal fluctuations and friction[119, 120]. It is an important result

that explains the form of the noise term in Box 1.1. Here the noise is δ-correlated

in time with zero mean and variance equal to 2kBγT , where kB is Boltzmann’s con-

stant. This variance codifies the relation between the strength of the friction γ, the

temperature of the bath T , and the size of the noise fluctuations.

The insight of fluctuation dissipation relations is that for systems in thermal con-

tact, every dissipative process has an associated fluctuation. Dissipative processes

generate heat, which in turn induces fluctuations. When detailed balance conditions

are satisfied, the relationship between these paired dissipative and fluctuating pro-

cesses can be quantified. In the case give above, of thermal coupling to a bath in the

Markovian limit, the fluctuations of the noise are related to the dissipative friction of
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strength γ by the following relation

〈η(t)η(t′)〉 = 2kBγTδ(t− t′). (4.1)

The fluctuation dissipation theorem is a powerful result and occurs in many con-

texts. As well as Brownian motion discussed above, other example include Jonhson-

Nyquist noise in electrical resistors, where the dissipative slowing of current gener-

ates heat which in turn causes current fluctuations [121, 122]. Another example is

Kirchoff’s law for thermal radiation, where the dissipative process is absorption of

radiation, which is associated with a fluctuating emission of radiation [123].

1.2 The open quantum systems toolkit

A quantum system is considered to be ‘open’ if its interactions with its surroundings

are important. There are a variety of useful techniques for studying open quantum

systems. Sometimes exact solutions are possible, but more often some degree of ap-

proximation is made for the environment, resulting in a plethora of models for open

quantum systems [124, 125]. Typically approximations of the environment result in a

probabilistic element to the system’s dynamics. One approach is to use a density ma-

trix description, leading to master equations that describe the evolution of probability

distributions over the system state, in analogy with Einstein’s approach to studying

Brownian motion. Another is to use stochastic trajectories of pure quantum systems,

which on averaging over noise reproduce the results of master equations, similar to

Langevin’s approach. The relative merits of the two approaches are similar to the

classical case: while density matrix methods give useful results about noise-averaged

quantities, they can be more difficult to compute. Additionally density matrices suffer

from a freedom of decomposition - many different ensembles of pure state can pro-

duce the same density matrix - that can make an interpretation in terms of individual

processes difficult. On the other hand, trajectories are faster to compute and easier

to interpret, but give a less complete account of averaged behaviour.

Here I give a general survey of techniques used to model open quantum systems,

expanding on density matrix and trajectory-based methods in more detail. I then

introduce the Caldeira-Leggett model for the system-environment interaction, which

is used later in the chapter.
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1.2.1 General survey

The Hamiltonian of a system and its environment (or bath) is often written as

Ĥ = ĤS + ĤB + ĤI, (4.2)

where the terms affecting just the bath or just the environment are separated into ĤB

and ĤB respectively, and terms involving degrees of freedom from both are included

in the interaction Hamiltonian ĤI. The joint system-bath state at a time t is given

by |ΨSB(t)〉 = exp(−i
∫
t
Ĥdt)|ΨSB(0)〉 = Û(t, 0)|ΨSB(0)〉.

Two common assumptions made are i. that the initial state is separable between

the system and environment, ie |ΨSB(0)〉 = |ψS(0)〉 ⊗ |ψB(0)〉, and ii. that the in-

teraction is Markovian. Markovianity means that the interaction at a given time is

independent of the state at previous times, ie. the bath is ‘memoryless’. This is true

when the timescale of environmental relaxation after an interaction is much faster

than the timescale of the system dynamics.
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Master equations

Master equations describe the evolution of the system density matrix, related to the

joint system-bath state by

ρ̂S(t) = TrE [|ΨSB(t)〉〈ΨSB(t)|] . (4.3)

Deterministic equations of motion for ρ̂S(t) can be derived through a variety of meth-

ods. One starting point is to take the trace over the environment of the Liouville-von

Neumann equation to write

dρ̂S

dt
= TrE

[
dρ̂

dt

]
= −iTrE

{
[Ĥ, ρ]

}
, (4.4)

where ρ̂ is the joint system-bath density matrix. With the help of an initially separable

state and assumptions of Markovianity, it is possible to derive a RHS to this equation

in terms of just the system density operator ρ̂S. The effects of the environment are

accounted for by a collection of super-operators that act on ρ̂S, often called Lindblad

or Kraus operators.

Master equations give deterministic equations of motion for ρ̂S, and while this does

give an account of the measurement statistics, they do not describe any particular

history of the system: the underlying probability distribution’s essential properties

are conserved, but the unitarity of the evolution of individual state vectors is lost.

This makes ‘unravelling’ a density matrix an ambiguous task, in particular it is very

difficult to extract meaningful entanglement measures from a density matrix [126, 30].

Trajectory-based methods

As mentioned above, there are various ways to ‘unravel’ a the ensemble of pure-state

quantum trajectories summarized by the system density matrix. Trajectory-based

open systems methods find stochastic equations of such trajectories. Techniques of

this variety include stochastic Schrödinger equations, where noisy terms are added

to the usual time- dependent Schrödinger equation [127, 128, 129], and Monte-Carlo

methods, where a change in the system, for example a photon detection event, is

described by a Poisson process [130, 131]. Trajectory based methods can sometimes

be interpreted as a single run of an experiment that produces differing outcomes each

time it is performed. Only having to evolve one state vector gives square-root saving

in the number of degrees of freedom to be considered in master equations, and can

allow a description of dynamics that are conditional upon measurement [132].
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The subject of the latter sections of this chapter is a quantum Langevin equation,

a trajectory-based open quantum system model. Quantum Langevin methods give

a good account of the thermal properties of the system-bath interaction, accounting

for both the temperature of the bath and strength of its coupling to the system via

the fluctuation-dissipation theorem. These effects are separate terms in a Langevin

equation, allowing each effect to be studied independently, and the size of each effect

to be varied. The derivation of this equation starts with a model of the system-bath

interaction, ie an appropriate choice of ĤB and ĤI. A commonly used model is that of

Caldeira and Leggett, where the system is coupled linearly to harmonic baths, which

is discussed below.

1.2.2 Caldeira-Leggett model

The Caldeira-Legget model describes a system coupled to one or more baths of har-

monic oscillators. Indexing the oscillators by j, so that xj and pj are the position and

momentum of the jth oscilator with mass mj and angular frequency ωj , the bath’s

Hamiltonian is

ĤB =
∑
j

(
p2
j

2mj
+

1

2
mjω

2
jx

2
j

)
. (4.5)

If the system-bath interaction is sufficiently weak then it can be well approximated

with a linear coupling:

ĤI = −
∑
j

gjF̂j x̂j , (4.6)

where F̂j is an operator that acts on the system. The advantage of the Caldeira-

Leggett model is its simplicity to write down, its amenability to analytical treatments,

and its wide range of applicability. The Caldeira-Leggett model has been used to

describe Markovian quantum Bronian motion [133, 134], and quantum tunnelling

[135, 136], and is a widely used model for approximating system-bath interaction

[125].

1.3 Trajectories for open many-body quantum systems

The Langevin approach of describing the fluctuations and dissipation caused by the

environment was first used in quantum settings in the 1970s and 1980s [137, 138,

139, 140, 141]. These added noise and friction terms to the closed-system quantum

equations of motion. More recently quantum Langevin equations have been used to

study quantum optical systems [142], optomechanical systems [143], and even the

motion of Bohmian wavepackets [144].

These techniques are targeted at individual quantum systems, and therefore don’t
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provide an account for entanglement in the quantum system. This can be addressed

with stochastic Schrödinger equations for the entire wavefunction of a many-body

quantum system. However the scope of such an approach is limited by the exponential

scaling of the Hilbert space of a many-body quantum system. Matrix product states

provide a useful tool for studying the evolution of entanglement in quantum systems,

because the size of their description can be tuned by the bond dimension.

One such technique involves combining time-dependent density matrix renormal-

ization methods for evolving matrix product states with ‘jump’ operators that encode

the environmental interaction [145, 146, 147]. These models are derived from master

equations for quantum optical systems, which are then unravelled into pure state tra-

jectories under an effective Hamiltonian, with derivatives of the Lindblad operators

applies as ‘jumps’ at random times. This provides useful trajectories in a quantum

optics setting by modelling randomly occurring events like spontaneous emission. The

jumps can be combined with time-dependent density matrix renormalization methods,

which work by applying discretized time-evolution operators to the matrix product

state, by modifying the effective Hamiltonian when a jump is to be applied. By using

matrix product states, many-body quantum systems undergoing dynamics with lim-

ited entanglement can be studied efficiently. This approach is different to the matrix

product state Langevin equation discussed later in this chapter, which comes from a

different set of approximations, and for example allows the temperature and coupling

strength of the environmental interaction to be tuned.

Langevin methods based on assumptions of separability between subsystems, and

stochastic trajectories of the entire wavefunction, have their advantages and disadvan-

tages. When entanglement is not important a product state Langevin equation can

be shown to work well, and if entanglement is important then a Langevin equation

over the full many body state can be applied. However unless the number of sub-

systems is small or significant simplifications can be made, it is impractical to work

with the full many body state. We now go on to discuss how this problem can be

addressed by combining Langevin techniques with an efficient, entanglement-based

parameterization of the full wavefunction: matrix product states.
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2 A quantum Langevin equation for MPS

Existing quantum Langevin equations consist of methods for non-entangled states, or

for generic states where entanglement is captured faithfully but the memory scaling

is exponential in system size. A middle ground is provided by matrix product states,

where the memory size can be tuned between a product state and a generic description,

optimizing numerical performance with ability to capture long-range entanglement.

Starting with a Caldeira-Leggett type Hamiltonian, where the system is coupled

to an oscillator bath via a system operator F̂ , we derive a Langevin equation over

matrix product states can be derived that takes the form

Ȧα = −i〈∂Āαψ|

(
Ĥ − η(t)F̂ + γ

d〈F̂ 〉
dt

F̂

)
|ψ〉, (4.7)

where η(t) is a Gaussian white noise related to the frictional strength γ via a fluctuation-

dissipation relation. Here, the usual terms of the time-dependent variational principle

have been supplemented with a stochastic fluctuation term and a frictional dissipative

term.

In this section we show how this quantum Langevin equation over matrix product

states can be derived, first with a heuristic derivation that communicates the key ideas,

and then with a more rigorous derivation from a Keldysh path integral over the system

density matrix, which permits a more transparent discussion of the applicability and

assumptions underlying the result.

2.1 Heuristic derivation

We split the Hamiltonian into the terms for the isolated system and environment, Ĥs

and Ĥbath, and an interaction term Ĥint:

Ĥ = Ĥs + Ĥbath + Ĥint. (4.8)

We keep Ĥs general for now, set Ĥbath =
∑
α ωαâ

†
αâα, and couple the system and

bath via Ĥint = F̂s

∑
α gα

(
â†α + âα

)
, where F̂s is an Hermitian operator that acts

on the system. The bath consists of independent quantum harmonic oscillators. For

these we work in the coherent state basis |φ〉 = exp(φâ†) |0〉 where â† is the creation

operator and φ a complex number. The system state is parameterized by variables z,

ie. |ψ〉 = |ψ(z)〉.

Here we present a heuristic derivation for the quantum Langevin equation by tak-

ing variations about a system+bath time-dependent Schrödinger equation (TDSE).
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The result, in the Markovian limit, is

i
∑
i

Gjiżi − 〈∂z̄jψ|Ĥs|ψ〉 − [∂z̄f(z̄, z)] (η(t)− γ∂tf(z̄, z)) = 0, (4.9)

where Gij = 〈∂z̄iψ|∂z̄jψ〉 and f(z̄, z) = 〈ψ|F̂ |ψ〉. The friction rate γ depends on the

coupling strengths gα and is related to the Gaussian white noise η(t) via its variance:

〈η(t)η(t′)〉 = 2γTδ(t−t′). This is a fluctuation-dissipation relation for the interaction,

and depends on the bath temperature T .

Starting from the Schrödinger equation

This derivation follows in spirit the Frenkel principle for deriving the TDVP equations

[68], allowing for the effects of coupling to the environment. We start by expanding

i∂t |Ψ〉 with a chain rule over the variational parameters z and φα of the system and

bath modes α, respectively. We set this equal to the RHS of the Schrödinger equation

and then take carefully chosen inner products to isolate the terms we want.

Before taking the inner products, we have

∑
i

|∂ziψ〉 żi (⊗α |φα〉) + |ψ〉 ⊗
∑
β

(⊗α 6=β |φα〉) |∂φβφβ〉 φ̇β ' −iĤ |ψ〉 (⊗α |φα〉) .

(4.10)

Noting that 〈φ|φ′〉 = exp(φ̄φ′) we take an inner product with 〈∂zj | (⊗α′ 〈φα′ |) to find

Gjiżi

(∏
α

eφ̄αφα

)
= −i

(
〈∂z̄jψ|Ĥs|ψ〉+ 〈∂z̄jψ|F̂ |ψ〉

∑
α

gα(φ̄α + φα)

)∏
β

eφ̄βφβ ,

(4.11)

where we have used â |φ〉 = φ |φ〉 and 〈∂zjψ|ψ〉 = 0, and also definedGji = 〈∂z̄jψ|∂ziψ〉.

Cancelling the common phase factors and identifying ∂z̄fα(z̄, z) = 〈∂z̄ψ|Ôs|ψ〉, we

have:

Gij żj = −i 〈∂z̄jψ|Ĥs|ψ〉 − i∂z̄jf(z̄, z)
∑
α

gα(φ̄α + φα). (4.12)

Now we instead take an inner product of Eq. (4.10) with 〈ψ| (⊗α 〈φα|) to find

∑
α

φ̄αφ̇α = −i 〈ψ|Ĥs|ψ〉 − i
∑
α

ωαφ̄αφα − i
∑
α

fα(z̄, z)(φα + φ̄α). (4.13)

Differentiating this with respect to φ̄α (for some particular value of the bath index α)

yields us:

φ̇α = −iωα − fα(z̄, z). (4.14)

We can use an integrating factor of exp(iωαt) and integrate this by parts to find an
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expression for φα(t):

φα(t) = φα(0)e−iωαt −
∫ t

0

ieiωα(t′−t)f(z̄, z)dt′. (4.15)

Combining to form quantum Langevin equation: First we define the retarded Green’s

function for the bath as, up to normalization,

ieiω(t′−t) → GR(t′ − t) = −iΘ(t− t′) 〈â†(t′)â(t)〉 , (4.16)

where Θ is the Heaviside theta-function. We can then substitue Eq. (4.15) into Eq.

(4.12) to find

iGij żj − 〈∂z̄jψ|Ĥs|ψ〉 =[∂z̄f(z̄, z)](φ̄(0)eiωt + φ(0)e−iωt) (4.17)

+[∂z̄f(z̄, z)]

(∫ t

0

GR(t′ − t)f(z̄, z)dt′

−
∫ t

0

GR(t′ − t)f(z̄, z)dt′
)
.

The terms in φ(0) we treat as stochastic noise and define as η(t). The second integral is

zero because of the Heaviside function in the definition of GR. We can make progress

with the first integral by defining ∂tΓ(t) = GR(t). Integrating by parts we find

i
∑
i

Gjiżi − 〈∂z̄jψ|Ĥs|ψ〉 − [∂z̄f(z̄, z)]

(
η(t)−

∫ t

0

Γ(t′ − t)∂tf(z̄, z)dt′
)

= 0. (4.18)

Limit of high-temperature, Ohmic bath: The fluctuation dissipation theorem tells us

that the noise η(t) and dissipation (given by the time integral of the retarded Green’s

function of the bath Γ(t)) due to the same bath oscillator obey the following relations:

〈η(t)η(t′)〉 =
1

4π

∫ ∞
0

dωJ(ω) cos(ωt) coth
( ω

2T

)
. (4.19)

Γ(t) =
1

2π

∫ ω

0

dω

ω
J(ω) cos(ωt). (4.20)

For an Ohmic bath the bath spectral function is J(ω) = 4γω. If we also work in the

high temperature limit T � ω where ω is the frequency scale of interest, our quantum

Langevin equation emerges as

i
∑
i

Gjiżi − 〈∂z̄jψ|Ĥs|ψ〉 − [∂z̄f(z̄, z)] (η(t)− γ∂tf(z̄, z)) = 0, (4.21)

with a delta-correlated second moment of the noise fields, 〈η(t)η(t′)〉 = 2γTδ(t− t′).
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This high-temperature limit of an Ohmic bath is a separation of frequency scales that

is equivalent to a Markov approximation.

Box 2.1 illustrates this quantum Langevin equation for a single spin coupled to a

harmonic bath.

Box 2.1 Toy model: one spin coupled to bath

This Langevin equation was used in [148] to derive an anisotropic

Landau-Lifschitz-Gilbert equation for isolated spins coupled to a

bath in just one direction. Taking Ĥ = −~σ · ~B/2 and F̂ = σz,

an equation of motion for the Pauli vectors ~s = 〈~̂σ〉 can be derived:

~̇s = ~s× ( ~B + η(t)~̂z)− γṡz~s× ~̂z,

where ~̂z is the z-direction unit vector. The form of the environmental

coupling is fairly clear here: as well as the Hamiltonian procession

~̇s = −~s× ~B, the spin feels a fluctuating field in the z-direction, and a

dissipative field also in the z-direction and proportional to ṡz. This

dissipative field will try to draw energy from the system to the bath,

by aligning ~s with ~B. How well it achieves this depends on γ and

the the temperature of the bath T , which controls the strength of

the noise fluctuations via Eq. 4.34.

2.2 Derivation from Keldysh field theory

A more complete derivation may be made using the tools of Keldysh field theory.

This section now concludes by giving this derivation. The approach taken is similar

to that presented in [119] and [148]. The key difference – and the new feature of the

present work – is the derivation for evolution over matrix product states.

2.2.1 Forming a Keldysh path integral from the propagator

The fundamental object in Keldysh field theory is a partition function Z. This is

written in terms of a propagator for the system+bath density matrix ρ̂(A, {xk}).

Since this is an operator it is evolved in time via e−i
∫
Ĥdtρ̂ei

∫
Ĥdt. The forwards and

backwards parts instantiate the Keldysh time contour. Here A denotes all of system

fields, and {xk} are the bath fields, indexed by k. Under a certain set of assumptions

[discussed below], this is equivalent to an ensemble of trajectories described by a

quantum Langevin equation.
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Forming the Keldysh path integral begins with the following expression for the

partition function:

Z =
Tr{ÛCρ−∞}

Tr{ρ̂−∞}
=

Tr{Û−∞,+∞ρ̂−∞Û+∞,−∞}
Tr{ρ̂−∞}

, (4.22)

where UC is the unitary time-evolution operator along the ‘Keldysh contour’ C, which

follows the (real) time axis from negative to positive infinity and then back again. Here

we perform this for a system parameterized by a matrix product state in contact with

a harmonic bath as described in Eqs 4.5,4.6.

Writing a path integral over Matrix Product States

A path integral over matrix product states was introduced in [65], where the key

insight was to introduce resolutions of the identity into the time evolution over matrix

product states. Ignoring the bath for now, we can insert resolutions of the identity

into the time-evolution operator ÛC at regular time intervals ∆t and take the limit

∆t → 0. This gives us a path integral Z =
∫
DAeiS[A], where A(t) represents the

matrix product state variables at time t, and DA is a gauge-invariant measure over

these variables. The existence and construction of a suitable gauge was demonstrated

in [65], where it was also shown how the path integral may be made local, meaning

the standard techniques for manipulating path integrals may be applied.

2.2.2 Derivation

This derivation consists of standard manipulations of a non-standard MPS Keldysh

path integral [119, 65]. Starting with the partition function in Eq 4.22, we insert

resolutions of the identity into the forwards and backwards time evolution operators

to write Z as a path integral. The system is parameterized by matrix product state

variables A, and the baths by their positional and moment operators xk, pk. Because

the Keldysh contour runs the length of the time axis and back again, it is necessary to

distinguish fields on the forward part of the contour (‘+’) from those on the backwards

part (‘-’). A Keldysh rotation is then performed, forming ‘classical’ and ‘quantum’

fields as the sum and difference of the forward and backwards fields. Ie, Acl = (A+ +

A−)/2 and Aq = (A+−A−)/2. These are so-called because the saddle point equations

derived from a Keldysh path integral become recognizable classical equations in the

classical fields, provided fluctuations in the quantum field can be considered small. In

a path integral over matrix product states the saddle point gives the time-dependent

variational principle equations over matrix product states, which include a degree of
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quantum entanglement. So that this doesn’t become misleading, the ‘cl’ superscript

will be dropped for the classical fields.

The next step is to expand to linear order in the quantum fields. Starting with

a linear coupling between the system and harmonic baths, as described in equations

4.5, 4.6, the action is now of the following form

S =

∫ +∞

−∞
(LS + Lint + Lbath)dt, (4.23)

with system, bath and interaction Lagrangians given by

LS = 2
∑
α

Aq
α

(
∂L0

∂Aα
− d

dt

∂L0

∂Ȧα

)
(4.24)

Lbath = 2
∑
k

(
xk xq

k

)F q

F

 (4.25)

Lint =
∑
k

(
xk xq

k

) 0 [DA
k ]−1

[DR
k ]−1 [D−1

k ]K


xk
xq
k

 . (4.26)

The system Langrangian is given in terms of the bare Lagrangian L0. Matrix product

state variables are indexed by α, and bath oscillators by k. F and F q are the classical

and quantum parts of the expectations of the system operator F̂ that couples to the

oscillators (ie. F q = Aq ·∂F/∂A). This action is quadratic in the bath variables, a fact

which is used later to integrate these variables out. DA, DR, DK are the advanced,

retarded and Keldysh correlators, and appear in the action in an inverted form:

D−1 =

DK
k DR

k

DA
k 0


−1

=

 0 [DA
k ]−1

[DR
k ]−1 [D−1

k ]K

 . (4.27)

The Keldysh correlator originates at the turning point of the Keldysh contour ie.

t = +∞, and encodes a fluctuations dissipation relation between the system and

bath. For bath temperature T , the Fourier components of these correlators are [119]:

D
R(A)
k (ω) =

1

2

1

(ω ± i0)2 − ω2
0

, (4.28)

DK
k (ω) = coth

( ω
2T

) [
DR
k (ω)−DA

k (ω)
]
, (4.29)

where the latter equation is a statement of the fluctuation dissipation theorem.

As already mentioned, this action is quadratic in each of the bath fields, ie. the

partition function is a Gaussian integral over these. This integral may be performed
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to give a dissipative action for the system:

Sdiss =

∫ +∞

−∞

(
F F q

) 0 DA

DR DK


 F

F q

 , (4.30)

where the unindexed correlators are defined through DX =
∑
k g

2
kG

X
k for X =

A,R,K. This dissipative action is quadratic in the system’s quantum fields Aq, ie. it

looks like the result of a Gaussian integral. A Hubbard-Stratonovich transformation

‘undoes’ this hypothetical Gaussian integral, with the effect of linearizing the action

in the Aq fields, and introducing the integration variable η(t). This will become the

stochastic factor in the Langevin equation. The result of the Hubbard-Stratonovich

transformation is

Sdiss =

∫ +∞

−∞
dt
(
2F qDRF + 2F qη − η[DK ]−1η

)
(4.31)

=

∫ +∞

−∞
dtAq ·

(
2
∂F

∂A
DRF + 2

∂F

∂A
η − η[DK ]−1η

)
. (4.32)

The total action now looks like S =
∫
R
L0dt+Sdiss, with both of these terms linear in

the matrix product state fields Aq. These may now be integrated out of the partition

function to yield a delta function action for the system variable. This leads to the

following equation of motion for the system matrix product state. Working in a

Markovian approximation, in which GR(t− t′) = ±γδ(t− t′)∂t′ , we have

d

dt

∂L0

∂Ȧα
− ∂L0

∂Aα
+ γ

∂F

∂Aα

dF

dt
=

∂F

∂Aα
η. (4.33)

The first two terms are in fact the time-dependent variational principle equations for

closed evolution of the system through the matrix product state manifold. The next

term, proportional to γ, is the dissipative term, depending also on dF/dt. The term

on the RHS accounts for fluctuations in the system via the (Gaussian, white noise)

stochastic variable η. The fluctuation dissipation relation is reflected in the properties

of η, having zero mean and a variance given by

〈η(t)η(t′)〉 = 2γTδ(t− t′), (4.34)

where T is the bath temperatures.

Evaluating Eq 4.33 with L0 = 〈iδt − Ĥ〉 we obtain Langevin modifications to the

time-dependent variational principle equations for matrix product states. A matrix

product state typically describes a spin-chain system, or equivalent. In such a system

a reasonable model of the environmental coupling is that each subsystem should be
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coupled to its own oscillator bath. If the interaction Hamiltonian is duplicated to

account for multiple local couplings F̂k to independent oscillator baths, the above

derivation is easily extended to yield

i
∑
β

〈∂Āαψ|∂Aβψ〉Ȧβ = 〈∂Āαψ|Ĥ|ψ〉+
∑
k

(
γk
d〈F̂k〉
dt
〈∂Āαψ|F̂k|ψ〉 − ηk(t)〈∂Āαψ|F̂k|ψ〉

)
.

(4.35)

These equations are worked through for the particular example of two spin-1/2s in

box 2.2.2.

Discussion

The Langevin equation over matrix product states (4.35) models a system in thermal

contact with oscillator baths, and parameterized by matrix product states. In addition

to the time-dependent variational principle, the evolution of the system through the

matrix product state manifold is affected by friction and noise terms. The friction

terms depend on a friction parameter γ and the rate of change of the relevant coupling

operator d〈F̂ 〉/dt. The fluctuating noise terms have a Gaussian white noise η(t) as

a prefactor, having zero mean and delta-correlated variance equal to 2γT at equal

times.

Forming the Keldysh path integral over a basis of matrix product states, instead

over non-entangled product states as is usual, allows the resulting saddle-point dynam-

ics to capture quantum entanglement. This engenders a difference of interpretation in

the ‘quantum’ and ‘classical’ fields along the Keldysh contour. Usually path integrals

are constructed over product states, and expanding to linear powers in the quantum

fields leads to classical equations of motion in just the classical fields - hence the ter-

minology. However here the prescription has been to use matrix product states, and

expanding to linear powers in the quantum fields leads in fact to the time-dependent

variational principle for the system. For unbounded bond dimension this recovers the

time-dependent Schrödinger equation.

This approach allows the tunability of matrix product state manifolds to be com-

bined with Langevin modelling of an open quantum system, where noise and friction

effects can be independently tuned. One downside to Langevin equations is that they

can get the wrong thermal equilibrium values for certain systems. Averages over

Langevin trajectories sample over the variational manifold instead of energy eigen-

states. This is particularly apparent in the case of a single spin, which is examined in

more depth in Sec 2, but less of a problem in larger collections of spins. The above

derivation is applicable to more than just matrix product states, and would look the

same for any complex variational parameterization of the system state.

90



One technical challenge in evaluating the matrix product state Langevin equation

comes from the non-locality of matrix product states - in effect, each tensor sees not

just its own bath, but all the other baths too. This leads to non-locality in 〈F̂k〉,

the time-derivative of which appears in the friction term. Expanding this we have

∂t〈F̂k〉 = 〈ψ|F̂ |(∂t|ψ〉)+h.c. = 〈ψ|F̂
∑
β |∂Aβψ〉Ȧβ +h.c., where the summation index

β runs over all the subsystems, not just that relating to F̂k. The dissipation term

therefore couples this matrix product state tensors via a transcendental set of equa-

tions. Solving these requires methods beyond those used to solve the closed-system

time-dependent variational principle for matrix product states.

Box 2.2.2 Simple case: two spins

Here we apply the matrix product state Langevin equation to the

case of two spin-1/2s, each coupled to a bath via local operators F̂i,

where i = 1, 2 indexes the spins. Using the left-gauge tangent basis,

only the second site’s tensor will be updateda: Ȧ[1] = 0, Ȧ
[2]σ
i =∑

j V
σ
L,ijẊ. Applying the Langevin equation (4.35), we find i. the

Hamiltonian and noise parts looks like regular TDVP with a stochas-

tic Hamiltonian Ĥst = Ĥ +
∑
i ηiF̂i; ii. the friction terms look like

γi∂t〈F̂i〉〈∂ ˙̄X
ψ|F̂i|ψ〉, (4.36)

where

∂t〈F̂i〉 = 〈ψ̇|F̂i|ψ〉+ 〈ψ|F̂i|ψ̇〉 (4.37)

= ˙̄X〈∂X̄ψ|F̂i|ψ〉+ 〈ψ|F̂i|∂Xψ〉Ẋ. (4.38)

The consequences for evaluating the Langevin equation are twofold:

i. this is a stochastic differential equation and will need to be treated

as such, and ii. the equation for Ẋ is transcendental: it depends in

a non-trivial way on itself and its complex conjugate. These aspects

will be treated in more detail in Sec. 3.

aAs long as there is some entanglement in the system so that A[1] is full rank.

Integrating the matrix product state Langevin equation numerically is not straight-

forward. In the following we discuss the techniques developed to achieve this.
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3 Numerical Implementation

A numerical algorithm for evolving the Langevin equation over matrix product states

will allow the study of systems of many spins/qubits, revealing the interplay of inter-

nal entanglement structure with the coupling to the bath. In this section I describe

how the methods for numerically integrating the time-dependent variational principle

are extended to deal with the Langevin equation. These extensions are i. proper treat-

ment of the stochastic element, and ii. evaluating the non-local and transcendental

dissipative term.

I begin with the noise effect and the elements of stochastic calculus required to

evaluate it. The dissipative effect is particularly troublesome: without dissipation,

the equation of motion can be integrated by updating one tensor at a time. However,

even with a bath of independent local harming oscillators, the non-local entanglement

structure embodied by the tensor network allows distant parts of the environment to

affect the tensors on any given site. In the latter part of this section we show how

this can be accounted for, and simplified in the case where the subsystems are only

entangled locally.

3.1 Noise term

Setting the dissipative term to one side for the moment, the matrix product state

Langevin equation with just the noise term looks the same as the time-dependent

variational principle, only with a stochastic effective Hamiltonian. They can therefore

be evaluated with the techniques discussed in chapter 2. However convergence for

stochastic differential equations works quite differently.

In this subsection I will give a brief summary of relevant stochastic differential

equation methods, starting with how convergence criteria are defined, going on to

discuss Ito and Stratonovich definitions of the differential, and finally focussing in on

some strongly convergent methods. A full discussion can be found in the book by

Kloeden and Platen [149].

3.1.1 Numerical methods for stochastic differential eqns

A stochastic different equation in one dimension X can be written in the form

dXt = a(Xt)dt+ b(Xt)dWt. (4.39)

The first term depends non-deterministically on some function a(Xt) of the current

value of X and the time differential dt. The second term depends on the differential
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of a (stochastic) Wiener process Wt. This is a zero-mean, unit variance stochastic

process, which has no degree of autocorrelation: 〈WtWt′ 6=t〉 = 0.

Apart from particular examples where the stochastic differential equation can

be solved exactly, the usual approach to studying such equations is to numerically

integrate forwards with a finite stepsize ∆t. The corresponding step in the Wiener

process is ∆Wt = Wt+∆t −Wt and satisfies

〈∆Wt〉 = 0, 〈(∆Wt)
2〉 = ∆t. (4.40)

These can be simulated in practice by generating a random number from a zero

mean, unit variance Gaussian distribution, and then multiplying by
√

∆t. Sampling a

realization of the Wiener process Wt realizes a particular trajectory. Many trajectories

can be found to study the statistical properties of the solution to the underlying

equation.

Unfortunately, numerical methods for integrating deterministic differential equa-

tion can’t usually be ported straightforwardly to stochastic different equations. For

many techniques, the resulting trajectories do not converge in any meaningful way

as the stepsize ∆t → 0. There are two criteria used to define convergence in nu-

merical methods for stochastic differential equations, known as ‘strong’ and ‘weak’

convergence criteria.

A numerical method is weakly convergence if the trajectories it produces give,

on ensemble average, converging values for 〈Xn
t 〉 for n = 1, 2, . . . as the stepsize

∆t → 0. A strongly convergent method on the other hand should give trajectories

that converge individually as the stepsize is decreased.

For integrating the matrix product state Langevin equation, stepsizes are chosen

so that the trajectories produced are converged in the strong sense, allowing an in-

terpretation of the results as possible realizations of a physical process. The method

used is a simple Euler step, which has a basic convergence order of 0.5 in ∆t.

3.1.2 Ito and Stratonovich differentials

One subtlety in dealing with stochastic differential equations relates to how the un-

derlying Wiener process Wt is sampled. In general, for a step from time t to t+ ∆t,

Wt can be taken from anywhere in the interval [t, t + ∆t]. The two most common

choices are the Itô differential, where Wt is taken at the end of the interval, and the

Stratonovich differential, where Wt is taken at the centre.

The choice of Itô or Stratonovich leads to self-consistent, but potentially quite

different strongly convergent trajectories. In this research the Stratonovich interpre-
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tation is used. This is motivated by the Wong-Zakai theorem [149, 150, 151], which

shows that the Stratonovich differential is most appropriate when the Wiener pro-

cess is an approximation of a time-correlated process. This is indeed the case for the

Markovian fluctuations from the environment characterized in Eq. 4.34.

3.1.3 Strong convergence in the MPS Langevin equation

Here I discuss strongly convergent methods for evaluating the matrix product state

Langevin equation. First I describe the Euler- Maruyama method, which is a straight-

forward application of the regular Euler method to the Wiener increment ∆Wt, and

is straightforward to evaluate. A demonstration of the code written for this research

finding strongly converged trajectories is given.

Euler-Maruyama method

The Euler-Maruyama method approximates the solution of Eq. 4.39 with the process

Yn, where n indexes times tn = t0 + n∆t [149]:

Yn+1 = Yn + a(Yn)∆t+ b(Yn)∆Wn. (4.41)

For well-behaved functions a and b the trajectories Y will strongly converge as (∆t)0.5.

Fig 4.1 demonstrates the convergence of solutions of the matrix product state

Langevin equation for a system of x qubits under the influence of a randomized

Hamiltonian and anisotropic coupling to oscillator baths. This can be achieved by

running with the same parameters at different stepsize. Care needs to be taken that

this is done properly for the underlying Wiener process, here this is achieved by using

a reference process with 2520 steps and coarse grained processes with exact divisors

as the number of steps. 2520 is a highly composite number, so this allows 16 different

levels of coarse-graining above 100 steps each. This is repeated for 10 different noise

processes, and the average error in fidelity compared with the stepsize, showing in

this case strong convergence scaling with (∆t)2 for this particular error measure.

Higher order schemes involve calculating derivatives in the prefactor of dW in the

stochastic term. This is highly non-trivial for the multi-dimensional matrix product

state Langevin equation, and so the Euler-Maryama method is used here.

3.2 Friction term

The dissipative friction term is the source of the fundamental difficulty of evaluating

the matrix product state Langevin equation. Whereas in closed evolution the equation
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Figure 4.1: Demonstrating convergence of stochastic matrix product state Langevin
equation. A 2-qubit system anisotropically coupled to oscillator baths evolves accord-
ing to the matrix product state Langevin equation in the dephasing limit, γ → 0, γT
finite. Trajectories are calculated for 10 different Wiener processes and the resulting
errors averaged to give an estimate of the order of strong convergence. Top: evolution
of the expectations of the x,y and z spin operators for the first and second site in one
of the reference trajectories |ψr(t)〉. This uses 2520 steps to evolve through 10 units of
time. The Hamiltonian terms and temperatures are of order 1. Bottom: convergence
in final state fidelity error for trajectories with larger stepsize dt sampling the same
Wiener process. The order of convergence can be estimated from the slope of this
graph as ' 2.
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of motion for the tensors on each site decouple, the friction is fundamentally non-

local and couples the sites together. This has consequences for the scaling of such

an approach, giving a quadratic increase in the number of terms to be evaluated.

However frictional inter-site coupling between weakly entangled parts of the system

will be correspondingly weak, so if local entanglement is expected then savings can

be made by imposing a maximum length for frictional coupling.

In this subsection I explain the techniques developed to compute the friction term.

First I show how the matrix product state Langevin equation may be rearranged to

find an explicit form for the tensor updates. Then I present an algorithm for adapting

finite-chain time dependent variational principle methods for the Langevin equation.

Finally I discuss how, by approximating the friction as being local to some degree, a

more efficient friction update may be made.

3.2.1 Explicit expression for friction

Following the notation of Chapter 2, the update for the ith component of a matrix

product state in the matrix product state Langevin equation can be written in terms

of the tangent vector |δψ〉 as

∆Xi = −i〈∂X∗i δψ|
(
Ĥ∆t− F̂∆W

)
|ψ〉 − iγ d〈F̂ 〉

dt
〈∂X∗i δψ|F̂ |ψ〉, (4.42)

where the system Hamiltonian is Ĥ and for now we consider a single coupling to a

bath via F̂ . Writing d〈F̂ 〉/dt = 〈∂tψ|F̂ |ψ〉+ 〈ψ|F̂ |∂tψ〉 and expanding in terms of the

matrix product state updates ∆Xj we can see that

d〈F̂ 〉
dt

=
∑
j

(
∆X∗j 〈∂X∗j δψ|F̂ |ψ〉+ 〈ψ|F̂ |∂Xjδψ〉∆Xj

)
. (4.43)

These expressions illustrate the difficulty of solving for the frictional update. Whereas

the first term on the RHS of Eq 4.42 can be straightforwardly calculated for each

tensor in the matrix product state, the frictional part couples all of these updates

together with their complex conjugates.

This can be made more clear by defining hj = −i〈∂X∗j δψ|Ĥ|ψ〉 (so that the time-

dependent principle is ∆Xj = −ihj∆t), and qj = −i〈∂X∗j δψ|F̂ |ψ〉. Furthermore, if

the elements of ∆X,h, j are reshaped into column vectors ∆ ~X,~h,~k, we have

∆ ~X = ~h∆t− ~q∆W + γ~q
(
i∆ ~X†~q − i~q†∆ ~X

)
(4.44)

= ~h∆t− ~q∆W − iγ~q

 ~q

−~q∗


†∆ ~X

∆ ~X∗

 , (4.45)
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together with the conjugate equation for ∆ ~X∗. Note that since d〈F̂ 〉/dt is real, this

looks the same in the conjugate equation. Finally, these equations can be merged

by combining the vectors with their conjugates to define ∆X =

(
∆ ~X, ∆ ~X∗

)ᵀ

,

H =

(
~h,~h∗

)ᵀ

, Q =

(
~q, ~q∗

)ᵀ

and Q′ =

(
~q,−~q∗

)ᵀ

. This gives

∆X = H∆t−Q∆W − iγQQ′†∆X , (4.46)

or for the case of multiple couplings to the bath, labelled by k, via system operators

{F̂ [k]}:

∆X = H∆t−
∑
k

(
Q[k]∆W [k] + iγ[k]Q[k]Q[k]′†∆X

)
. (4.47)

In these equations ∆X appears on both the LHS and RHS, which demands an exten-

sion to the techniques of evaluating the time-dependent variational principle.

One coupling operator The case of just one coupling operator is simple enough that

Eq 4.46 can rearranged for ∆X . This can be done by working in the 2D subspace of Q

and Q′. If the updates ∆ ~X are found in the central gauge, then it is straightforward

to show that ~q†~q = 〈F̂ 2〉, and therefore Q and Q′ are orthogonal and have norm

2〈F̂ 2〉. The friction term can then be brought onto the LHS and inverted:

∆X = H∆t−Q∆W − iγQQ′†∆X (4.48)

=⇒
(
1+ iγQQ′†

)
∆X = H∆t−Q∆W (4.49)

=⇒

P̂TQQ′ +

1 2iγ〈F̂ 2〉

0 1


∆X = H∆t−Q∆W, (4.50)

where in the last line P̂TQQ′ is the projector onto the orthogonal space to Q and Q′,

and the 2x2 matrix is written the basis of normalized Q and Q′ vectors. This matrix

can be inverted to find

∆X =

P̂TQQ′ +

1 −2iγ〈F̂ 2〉

0 1


 [H∆t−Q∆W ] (4.51)

=
(
1− iγQQ′†

)
[H∆t−Q∆W ] , (4.52)

where the norms of Q and Q′ have been re-absorbed in the last line.

Defining the frictionless change in X as ∆X0 =

(
∆ ~X0, ∆ ~X∗0

)ᵀ

and the (first-

order) variation in 〈F̂ 〉 due to ∆X0 as ∆〈F̂ 〉0 = ∆ ~X†0∂ ~X∗〈F̂ 〉+∆ ~Xᵀ
0 ∂ ~X〈F̂ 〉 = −iQ′†∆X0,

we get

∆X = ∆X0 + γQ∆〈F̂ 〉0. (4.53)
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In terms of ∆ ~X this reads:

∆ ~X = ∆ ~X0 + γ~q ∆〈F̂ 〉0, (4.54)

or if we unpack the notation,

∆ ~Xj = −i〈∂X̄jδψ|(Ĥ∆t− F̂∆W + γF̂∆〈F̂ 〉0)|ψ〉, (4.55)

where

∆〈F̂ 〉0 = Ĥ∆t− F̂∆W )|ψ〉〈ψ|F̂ |∂Xkδψ〉+ c.c. (4.56)

= −i
〈

[Ĥ, F̂ ]∆t− [F̂ , F̂ ]∆W
〉

(4.57)

= −i
〈

[Ĥ, F̂ ]
〉

∆t, (4.58)

finally giving us

∆ ~Xj = −i〈∂X̄jδψ|(Ĥ∆t− F̂∆W − iγF̂ 〈[Ĥ, F̂ ]〉∆t)|ψ〉 (4.59)

= ~hj∆t− ~qj∆W − iγ〈[Ĥ, F̂ ]〉 ~qj∆t (4.60)

We see the friction term recast as deterministic and imaginary, and proportional to

the commutator between the Hamiltonian and the coupling operator.

Multiple coupling operators In the general case of multiple coupling operators we

can get as far as Eq 4.49:

(
1+ i

∑
k

γ[k]Q[k]Q[k]′†

)
∆X = H∆t−

∑
k

Q[k]∆W [k], (4.61)

where k indexes coupling operators. However, the structure of the LHS is more

complicated. The approach taken in this research is to explicitly compute and invert

this matrix. Defining P the matrix premultiplying ∆X , the updates are then found

as

∆X = P−1

(
H∆t−

∑
k

Q[k]∆W [k]

)
. (4.62)

In the following I describe how this can be combined with the ‘sweeping’ algorithm

for updating via the time-dependent variational principle as described in Chapter 2.

3.2.2 Algorithm for finding friction update to MPS

In the closed-system time dependent variational principle equations for matrix prod-

uct states, the state can be updated one site at a time. This can be combined with

98



Figure 4.2: Flowchart describing in-sweep update algorithm for matrix product state
Langevin equation, starting in right canonical form. The update takes the form of two
sweeps, the first used to calculate the frictionless updates. After this the frictional
updates are found, as descibed in the main text. Finally a new sweep is performed,
on a new copy of the input state, feeding in the frictional updates.

a gauge-transforming sweep through the matrix product state, updating each site in

the central gauge, and avoiding the inversion of Schmidt coefficients [64]. Friction

however couples the updates on different sites, as discussed above. Here I describe a

sweep-based algorithm for updating a matrix product state according to the Langevin

equation.

Starting with Eq 4.62, the first step is to sweep through the system finding the

components ~h and {~q[k]} of the frictionless update. For this algorithm to be consistent,

the state is updated with just the Hamiltonian and noise terms during this sweep.

The resulting state is then thrown away, while ~h and {q[k]} are used to form the

frictionless updates ∆X0 and the matrix P. Next, the frictional updates are found by

numerically solving the linear problem P∆X = ∆X0 for ∆X . This can be done using

any numerical linear solver; here I used the built-in MATLAB functions. Finally, the

sweep starts again with the original state, this time simply feeding in the updates

∆X . This algorithm is summarized in flowchart form in Fig 4.2.

The code written for this research follows this algorithm to find the frictional
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Figure 4.3: Verifying friction update for matrix product states against independent
implementation in Mathematica. Left two columns: expectations of Pauli operators
for first and second spin for both MATLAB and Mathematica results. Right two
columns: differences between these expectations are small, providing a check of the
MATLAB code.

update. This was verified by comparing it with a separate implementation, for a par-

ticular two-spin problem that can be manipulated into a closed form, and is integrated

using Wolfram Mathematica. The details of the model and the Mathematica imple-

mentation are found in Appendix B. Fig. 4.3 shows the results of this check, showing

that the quite different matrix product state implementation of the Langevin equa-

tion matches the alternative formulation. Checks of larger systems can be made by

embedding the two interacting systems, and doing this shows agreement also.

3.2.3 Imposing locality

The numerical difficulty in evaluating the friction term comes from the fact that it

couples each site’s update to every other site. This arises from factors like d〈F̂ 〉/dt =

〈ψ|F̂ |∂tψ〉+ c.c. appearing in the update of a single site. The state derivative |∂tψ〉 =∑
i |∂Xjδψ〉Ẋj depends on updates on all of the sites. However if the entanglement in

the state is local, then the inter-site frictional coupling is less important. Essentially

this long-range coupling arises because the tensors A of the matrix product state

encode long-range entanglement in general. However when entanglement is small, the

coupling will be short-ranged.

This can be seen by considering the off-diagonal parts of the quadrants of P.

These contain terms in ~q†~q, ~q†~q∗ and the complex conjugates thereof. Assume that
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the coupling operators are local, so that F̂ [k] acts only on the site nk corresponding

to k. Assume also that the elements of ~X are organized so that the updates relating

to the first site come first, then the second, and so on. Then the off-diagonals of the

quadrants of P are proportional to those elements of ~q[j] that determine the update

on sites 6= nj due to the coupling on site nj . For example, elements in the top-left

quadrant of P are given by

P
(top-left)
j,l = δj,l −

∑
k

γ[k]〈∂X∗j δψ|F̂
[k]|ψ〉〈ψ|F̂ [k]|∂Xlδψ〉, (4.63)

where k indexes coupling operators, and δj,l is the Kronecker delta. These elements

couple sites nj and nl. The distance of such an element from the diagonal of the

quadrant it sits in reflects the distance between sites: |nj − nk|.

Working in the left-gauge tangent basis, the contribution is zero unless nk >

min(nj , nl). Therefore the terms in 4.63 involve coupling sites a distance nj − nk

away (for the first factor) and sites a distance nl − nk away (second factor). Each

term involves at least one factor coupling sites a distance |nj − nl| apart. A similar

analysis holds for each of the other quadrants of P. Furthermore, it is a property

of matrix product states1 that any correlations decay exponentially with distance

between sites[62]. Therefore, the distance of an element of P from its quadrant’s

diagonal is equal to the (minimum) coupling distance that element represents. For a

finitely correlated state such terms decay with coupling distance. So we can reduce

the number of non-zero elements of P by assuming a degree of locality in the matrix

product state.

In practice this can be achieved by deciding on a maximum friction correlation

width wF - so that −i〈∂X∗j δψ|F̂
[k]|ψ〉 is taken to be zero if |nj − nl| ≤ wF . This

produces a P with fewer non-zero elements, which can be stored as a sparse matrix

with a higher degree of sparsity. Numerical techniques that are optimized for sparse

matrices can then be used for solving the linear system of equations P∆X = ∆X0.

In MATLAB the mldivide function is pre-optimized for this.

The effects of limiting wF are explored further in Chapter 5. This truncation

dramatically reduces the number of elements of P that need to be calculated and

realizes an assumption of locality in the frictional cooling.

Having shown how the Langevin equation for matrix product states can be eval-

uated numerically, we now proceed to a summary discussion of the usefulness and

limitations of this approach, and how it compares with other techniques.

1Strictly this is the case for matrix product states describing infinite systems, however finite
matrix product states behave in a similar fashion. For example if a state is separable at any cut, the
parts of the system either side of the cut are not correlated with one another.
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4 Discussion

In this chapter I have presented a Langevin equation for matrix product states in

thermal contact with oscillator baths. This has been derived using a Keldysh path

integral formulation, following the approach in [119], and constructed over matrix

product states following the formalism of [65]. The resulting equation adds two sorts

of terms to the time-dependent variational principle equations for Hamiltonian dy-

namics, corresponding to dissipative friction and noisy fluctuations. These are related

by a temperature-dependent fluctuation dissipation relation through the second mo-

ments of the noise fields underlying the fluctuating terms. For this research code was

written in MATLAB to integrate the Langevin equation forwards. I have explained

how I have extended the algorithms in the literature for the time-dependent varia-

tional principle to handle the friction and noise terms. The code has been tested

for strong convergence of noisy trajectories, and the frictional part has been checked

against an separate implementation for a particular problem.

The matrix product state Langevin equation combines the features of both Langevin

equations and matrix product state parameterizations. Langevin methods are advan-

tageous because they give prescriptions for finding stochastic trajectories of pure

states, and separate the frictional drift and noisy fluctuation effects of the environ-

ment in a tunable way. Matrix product states can describe spin chains/multi-qubit

systems to varying degrees of approximation, by tuning the bond dimension of the

parameterization. In effect this provides three degrees of freedom to explore open

quantum system effects with: the temperature of the baths, the coupling strength

(via the friction prefactors γ), and the bond dimension of the matrix product state.

This allows larger systems of fixed bond dimension entanglement to be investigated,

and invites study into when the environment might restrict the system to a manifold

of fixed bond dimension matrix product states.
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Chapter 5

Applications of Langevin

equation for MPS

A Langevin equation over matrix product states may be used to study a variety of

physics. In this chapter I present three studies.

First I discuss using the frictional effect to drive a system to its ground states, and

applications to numerical ground state finding.

Next is a study of sampling the thermal distribution of a system and bath in equilib-

rium. While a quantum Langevin equation will find incorrect thermal averages - it

gives a classical thermal distribution over the restricted state space - this error de-

creases with increasing system size. The matrix product state Langevin equation may

therefore be used as a tool for sampling such distributions in systems where this error

is expected to be small and exact analysis is impossible.

Finally I investigate how the environmental interaction restricts the entanglement in

a system. I study the process of generating entanglement in an initially unentangled

state using a static Hamiltonian, and how noise and friction impede this.

The work in this chapter is original and in preparation for publication.
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1 Real-time frictional cooling to the ground state

An important limit of the long-time equilibriation with a thermal bath occurs when

the bath is at zero temperature. In this case, the system will equilibriate with its

environment by settling near to its ground state. In the Langevin formulation, we

can go further and completely turn off the noise term.

1.1 Ground state finding for quantum spin chains

Numerical techniques for ground state finding are a key tool in studying the physics

of interacting many-body quantum systems [36]. In strongly correlated condensed

matter systems, knowledge of the low-energy eigenstates can be used to study static

and dynamical properties [152], even at finite temperatures [153]. Sophisticated ex-

perimental techniques can simulate the Hamiltonians of such systems with highly

tuneable interactions [154] and readout of individual particles [155], make for a rich

testbed for joint experimental and theoretical development, in which ground state

finding plays a key role.

Matrix product states are well-suited to numerical ground state finding when these

states have a degree of locality. In this case they can be well-described with matrix

product states of fixed bond dimension. It can be proven that local Hamiltonians of

one-dimensional systems that have a gap between their ground state and first excited

states exhibit area-law entanglement in their low energy states[62].

The most established matrix product state methods for ground state finding in

strongly correlated quantum spin chains are the density-matrix renormalization group

(DMRG) techniques, developed by White in 1992 [53]. An alternative method for

ground state finding with matrix product states is imaginary-time evolved block dec-

imation (iTEBD). This adapts real-time evolution in the TEBD algorithm. TEBD

works for a Hamiltonian with only local and nearest-neighbour terms by splitting the

time-evolution operator e−Ĥt via a Suzuki-Trotter decomposition. By grouping the

terms that act on alternating pairs of sites, the time update can be made locally,

resulting in an efficient evolution algorithm [156, 64].

Here I present a complementary scheme for ground state finding with matrix

product states. By taking the friction-only limit of the Langevin equation, a real-time

evolution that drives the system to its ground state can be found. This mimics the

physical process of cooling the system with a zero-temperature bath, while neglecting

zero-point fluctuations entirely.
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1.2 Langevin cooling to ground state with MPS

The ground state of a system described by matrix product states can be found using

the Langevin equation discussed in the previous chapter. Taking the temperature of

the system’s environment to zero, the Langevin equation reads:

i
∑
β

〈∂Āαψ|∂Aβψ〉Ȧβ = 〈∂Āαψ|Ĥ|ψ〉+
∑
k

γk
d〈F̂k〉
dt
〈∂Āαψ|F̂k|ψ〉. (5.1)

This can be integrated numerically using the methods described in chapter 4.

Fig 5.1 shows this in action for a system of 6 spins with an Ising Hamiltonian

Ĥ = −J

(
5∑

n=1

Ŝnz Ŝ
n+1
z +

6∑
n=1

gŜnx

)
, (5.2)

where Ŝnx and Ŝnz are the x- and z- spin operators on the nth spin, J = 1 and

g = 0.5. Initially the spins are all aligned in the z−direction, |ψinit〉 = | ↑z〉⊗6.

The system is modelled by the matrix product state Langevin equation, in which

the spins are each coupled isotropically to environments, ie. the coupling operators

are {F̂} = {Ŝnx , Ŝny , Ŝnz }. The temperature of the environment is taken to be zero,

and the friction rate γ > 0. The system is sufficiently small that in this case exact

diagonalization can be used to find the ground state of the Hamiltonian.

The first interesting thing to note is that higher friction rates don’t necessarily

perform better. As shown in the top two plots of Fig 5.1, values of γ that are too

low or too high exhibit under- and over-damping behaviours respectively. For these

results a near-critical value of γ = 2 was found by running for a short time at a range

of values γ and identifying which friction rates led to most rapid decrease in energy.

The entanglement between the left and right halves of the chain is shown at the

top of Fig 5.1. This is the contiguous bipartitioning with the maximum potential

for entanglement entropy, with a maximum value of log2 23 = 3. It is thus a good

indication of how far the bond dimension of the matrix product state may be truncated

before errors are significant. In this case the ground state has fairly low entanglement,

and the initial state is entirely separable. This guides the critically damped and

overdamped simulations towards states of low entanglement. However the under-

damped simulation sees a significant ramping up of entanglement. These results

suggest provided the initial and ground states are sufficiently low in entanglement,

and a near-critical value of friction γ is used, low bond dimension matrix product

states may provide an efficient route to finding the ground state.
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Figure 5.1: Frictional cooling to the ground state for a 6-spin Ising chain. Top and

middle: evolution of entropy S(t) and a local operator 〈Ŝ[3]
x 〉 during cooling with low

γ = 0.1, near-critical γ = 2 and high γ = 10 friction strengths. These reveal under-
damping, critical damping and overdamping characteristics in the cooling. Bottom:
the effect of imposing locality on the simulated Langevin cooling at γ = 2 for untrun-
cated ‘global’ friction, and restriction to on-site friction effects only. The right plot
shows ∆E = ELocal − EGlobal.
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1.2.1 Imposing locality

One issue with applying the matrix product state Langevin equation to find ground

states via frictional cooling is the non-locality of the friction term. Using the methods

described in chapter 4 requires solving a system of equations relating all of the tensors

to one another. However this can be made more efficient if we impose a locality

condition on the friction. This can be justified by noting that the terms coupling

different spins are proportional to the transfer matrix between those spins - if two

spins aren’t very entangled, they won’t feel one another’s frictional effects so much.

However if our goal is simply to find the ground state then we need no justification,

as long as the method is successful.

The bottom row of plots in Fig 5.1 shows the effect of imposing locality on the

ground state energy of the 6-spin Ising chain. Shown are results for completely local

frictional coupling, in which each spin only sees its own contribution to the friction,

and an untruncated global coupling. The truncation to local friction has a remarkably

small effect on the reduction in energy. At later times, it even drives the system to

lower energies than the globally coupled case.

In this section we have discussed friction dominated dynamics, where the temper-

ature of the environment is negligible. The real-time evolution to the ground state

from the Langevin equation may provide a complementary technique for ground-state

finding. While the frictional term in the Langevin equation is problematic in general,

the preliminary results presented here suggest that truncating the length scale of the

frictional effect on one spin due to another can work well.

This technique – working in the friction dominated limit as a tool for finding

ground states – could be developed further to increase its usefulness. In particular, it

would be interesting to explore how well the method could be extended to the time-

dependent variational principle for infinite spin chains, in the case of entirely local

friction. This could be achieved by replacing the d〈F̂ 〉/dt factor by N〈ψ|F̂ |∂Āψ〉Ȧ+

c.c., where N is the length of the chain and cancels out as explained in chapter 4, and

A defines the matrix product states. The resulting linear system Ȧ = Ȧ(A, Ȧ) can

be straightforwardly solved at each timestep. The result would be an approximation

for frictional cooling of the system, and may prove to be a useful numerical tool for

ground state calculations.
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2 Sampling of the thermal distribution

In this section we use Langevin dynamics to sample matrix product states from a

thermal distribution, by allowing the system to equilibriate with the bath in the long-

time limit. For small systems, Langevin dynamics will find incorrect thermal values,

however the error gets smaller with increasing system size. For a single spin-1/2 there

are two energy eigenstates and a Langevin average will sample continuously over the

Bloch sphere. However for N spins there are 2N states, and sampling continuously

over a matrix product state manifold is a better approximation. We study this ther-

malization and the resulting distribution by comparing observables to those found in

true thermodynamic equilibrium, and in the Langevin limit.

2.1 Techniques for sampling thermal distributions

Many aspects of many body quantum systems can be revealed by studying thermal

distributions of their states. Thermal properties such as heat capacities, correlation

functions, and susceptibilities can be extracted from the partition function; a trace

over the Gibbs thermal state of the system. Sampling thermal distributions are envi-

sioned to be an application of quantum computers [157].

The full Gibbs state ρ̂ = exp(−βĤ) for inverse temperature β is intractable for all

but the smallest systems or the most simple Hamiltonians. Thermal expectations can

however be approximated with stochastic trajectories. The most common approach

is to use Monte-Carlo methods.

It is also possible to sample the thermal distribution using Langevin equations.

After a sufficiently long period of time, a system in thermal contact with a bath at

temperature T will reach thermal equilibrium. This scenario is naturally modelled by

the Langevin equation: thermal equilibrium will be reached by a balance between the

dissipative and fluctuating effects. However care must be taken in the sampling, as a

uniformly sampled time average will not always correspond to the canonical average

[158].

2.2 Results

Here we demonstrate thermal sampling using the matrix product state Langevin

equation, as a proof-of-concept. First we look at a single spin under a Hamilto-

nian Ĥ = Ŝz, isotropically coupled to an environment with temperature T = 0.1 with

friction strength γ = 0.5. The system starts in the excited state |ψinit〉 = | ↑z〉.

The resulting distributions of energies are shown in Fig 5.2. We expect a system-

atic difference between the correct quantum average (shown in magenta) and that
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obtained by the coherent state Langevin modelling. These two different averages can

be analyzed in this case as follows. The true thermal average of σ̂z = 2σ̂z is

〈σz〉 =
∑
σ

σe−βhσ
/∑

σ

e−βhσ (5.3)

= tanh(βh).

The Langevin average however results from averaging uniformly over the surface of

the Bloch sphere, by integrating over the vector n = (〈σx〉, 〈σy〉, 〈σz〉)ᵀ:

〈σz〉 =

∫
dnδ(n2 − 1)nze−βhn

z

/∫
dn δ(n2 − 1)e−βhn

z

(5.4)

=

∫
dθdφ sin θ cos θe−βh cos θ∫
dθdφ sin θe−βh cos θ

=−
(

coth(βh)− 1

βh

)
.

We can interpolate between the two cases by including an even function of nz in the

integrals in Eq 5.4. These three thermal averages are plotted in Fig 5.3.

A justification for this biasing of integration can be made by returning to the path

integral. The integration measure in the resolution of the identity – 1 =
∫
Dn|n〉〈n|

for coherent states – is usually chosen to be an unbiased measure (uniform over the

Bloch sphere for coherent states or Haar uniform for matrix product states). However,

the resolution of the identity can be made using a biased measure. For a single spin,

this bias can be chosen to be the energy eigenbasis. For many-body systems this

requires knowledge a priori of the eigenbasis. This is clearly not possible.
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Figure 5.2: Thermal sampling of a single spin in a magnetic field Ĥ = −BŜz. The
spin thermalizes with its environment from initially being in the excited state | ↑z〉,
with B = −1. Modelled by the matrix product state Langevin equation, energy
decays under noise and dissipation for temperature = 0.1 and γ = 0.5. Shown is
the average over 20 trajectories (solid, black), as well as half a standard deviation
either side of this (solid, gray). Horizontal lines indicate the equilibium energy in the
true thermal average (dot-dashed, red) and in the Langevin average (dotted, blue)
respectively.
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Figure 5.3: Discrepancy between Langevin averaging and correct thermal averaging
for a single spin. Averages are shown as a function of inverse temperature β and field
strength h. The canonical average over energy eigenstates is shown in the solid black
line, and the Langevin average over the Bloch sphere is shown in the blue dotted line.
Interpolated averages, where even powers npz have been included in the integrals in
Eq 5.3, are shown in gray dot-dashed lines. The values of p shown, from lightest to
darkest, are 2, 4, 10 and 50.
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3 Restriction of entanglement by noise

Coupling to the environment restricts the growth of entanglement in a system by de-

phasing and ultimately leads to the emergence of classicality [159, 160, 161]. Growing

entanglement requires a growing bond order for a faithful description. Our results

show that increasing dephasing increases the time up to which a given bond-order

provides a good description of the system. When friction is added, we this effect is

even more pronounced.

3.1 Environmental degradation of entanglement generation

Entanglement, and entangled states, are a key resource in many quantum information

processing tasks. The ability to generate entangled states is therefore important. One

barrier to generating entangled states is dealing with unwanted interactions with the

system’s environment. While entanglement in a many body system – say a collection

of qubits – is hard to quantify in general, matrix product states can prove to be

a useful tool in elucidating the entanglement structure in such a system. This can

be achieved by looking at the smallest bond dimension required to give a faithful

description of the systems state.

A system initially in a separable state, and evolving under a quasi-local Hamilto-

nian, will become more entangled as time goes on. This corresponds to successively

higher bond dimensions being required for a faithful matrix product state descrip-

tion [145]. Here we study such a process for generating quantum entanglement, in

the presence of an environment as modelled by the matrix product state Langevin

equation.

3.1.1 Choosing a Hamiltonian

The system consists of N spin-1/2s, or qubits. The Hamiltonian used consists of a uni-

form transverse field in the x-direction, and an anisotropic Heisenberg-type coupling

between nearest neighbours:

Ĥ = J

N−1∑
n=1

(
Ŝ[n]
x Ŝ[n+1]

x − 1.5Ŝ[n]
y Ŝ[n+1]

y + 0.3Ŝ[n]
z Ŝ[n+1]

z

)
+ ∆

N∑
n=1

Ŝ[n]
x , (5.5)

where Ŝ
[n]
x,y,z are the x, y, z spin operators for the nth site. J was taken to be −3.2

and ∆ equal to 1. This Hamiltonian and these parameters were chosen as they give

a dynamics that rapidly grows the entanglement in the system, while still containing

only nearest-neighbour interactions.
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3.1.2 Approach

The results presented in this section were generated using the code library written

for this project, for a system of N = 15 spins/qubits. The environment was mod-

elled using the matrix product state Langevin equation described in chapter 4. Each

spin/qubit is coupled isotropically to oscillator baths, of temperature T and friction

strength γ taken as uniform across the entire system. The system is initialized in a

product state of positive eigenstate of Ŝz: |ψinit〉 = | ↑z〉N .

3.2 Results

In this subsection I show i. how the closed system gradually increases in effective

bond dimension, ii. the effect of the environment in a noise-only dephasing limit, and

iii. the effect of increasing friction. I find dephasing noise restricts the entanglement

growth rate. Friction takes the system towards its ground state and so reduces en-

tanglement. In combination there is a limit where friction wins, limiting the amount

of entanglement that can be generated.

3.2.1 Closed system dynamics

We start by examining the closed system dynamics, ie temperature T = γ = 0 for

each site. Since the Hamiltonian of Eq 5.5 generates entanglement in the system, the

trajectory of the system state will move away the manifold of product states. We

can get a measure of this by running first at a high bond dimension, and then at

successively smaller bond dimensions. By comparing the truncated trajectories it is

clear when the system moves into manifolds corresponding to higher bond dimension

matrix product states.

Fig 5.4 shows this for the closed system at bond dimensionsD = 2,4,6,8,16,32,64,128.

Here D = 128 is sufficient to describe any state in the Hilbert space, ie. for no trunca-

tion to take place, and is used as the reference case. The trajectories are compared in

two ways, i. by fidelity, F = |〈ψ128|ψD〉|, and ii. by comparing entropy at the middle

cut via ∆S = S128 − SD. Each of the truncated trajectories can be seen to agree

well with the full description, until a certain time where the errors quickly become

significant.

As expected, higher bond dimensions provide good descriptions for longer time. A

simple way to characterize this is by looking for the first time that the error exceeds

some threshold. In this way a time t∗(D) at which the state requires a higher bond

dimension can be found. This is shown for a fidelity threshold of Fthresh = 0.9 and an

entropy difference threshold of ∆Sthresh = 0.1. Both curves t∗(D) line up rather well,
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and show a monotonic increase in t∗ with bond dimension, with a decreasing slope.

For higher bond dimensions 64 < D < 128 we would expect a more rapid increase

in t∗(D) towards D = 128: since a D = 128 matrix product state can describe a

generic state, by definition t∗(D = 128) = ∞. If the Hamiltonian happened to keep

the system in a manifold of matrix product states at some reduced bond dimension

D′, then we would have t∗(D ≥ D′) =∞.
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Figure 5.4: Effective increase in bond dimension of the system state with time. The
evolution from initial state | ↑z〉N via the Hamiltonian given in Eq 5.5 is simulated
using bond dimensions D = 2, 4, 6, 8, 16, 32, 64, 128. Left: Fidelity F = |〈ψD=128|ψD〉|
as a function of time for each of the D values below the maximum of 128. Shown in the
magenta dashed line is a cutoff of 0.9 fidelity agreement. Middle: Comparing entropy
at the 7th cut, ie between the sites 1 − 7 and 8 − 15. A cutoff of 0.1 discrepancy is
shown by the magenta dashed line. Right: times at which thresholds are crossed t∗ as
a function of bond dimension D, measured by fidelity (dashed) and entropy (dotted).
This charts out the trajectories’ journey into successively higher bond dimension as
the Hamiltonian generates more entanglement in the system.

3.2.2 Open system dynamics

Now we have benchmarked the closed Hamiltonian dynamics, we can investigate the

dephasing limit. We can do this by taking the Langevin equation in the noise-only

limit: negligible friction γ = 0 but a finite value of γT . This corresponds to an

infinitesimally weak coupling to a bath of very large temperature T .

Simulating noisy trajectories throws up a few practical challenges. Firstly, stochas-

tic trajectories converge at a worse rate than their deterministic counterparts1. This

means that smaller timesteps and hence more computational effort is required. Sec-

ondly, while a trajectory may have converged for a particular noise realization, to

draw meaningful conclusions it is necessary to compare many such trajectories at a

given noise strength. Fortunately the task of repeated runs of different noise realiza-

tions is straightforward to parallelize. Finally, when repeating runs at different bond

dimensions, it is important to ensure that the same noise realizations are used for

1Notwithstanding higher-order numerical methods. As discussed in Chapter 4 such methods are
highly non-trivial for matrix product states and not used here
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each coupling - in this case three Wiener processes for each of the 15 sites.

Dephasing slows entanglement growth but does not stop it

To study the dephasing limit T = 0, γT → const., trajectories were generated at

a variety of bond dimensions up to 24 at values of γT = 0, 0.2, 0.5, and 1, for 8

noise realizations each. The entropy across the central cut of the system was then

calculated for each trajectory, and then averaged across trajectories of the same noise

value. Fidelities with the higher bond dimension2 calculated, and t∗(D) extracted

from these fidelity time series.

Fig 5.5 shows the results of this analysis. The left plot shows the entanglement

S(t) for bond dimension D = 16. The closed system γT = 0 case shows an increase in

entanglement until near the maximum value allowed by the bond dimension, Smax =

log2 16 = 4. As the strength of dephasing is increased, the rate of entanglement

growth is decreased. This effect is more pronounced for higher dephasing strengths.

This is reflected in the plots of t∗(D) at the different dephasing strengths: when

there is more dephasing, lower bond dimension matrix product states are a better

approximation for longer.

The overall effect of dephasing appears to be a general frustration of the Hamil-

tonian’s tendency to generate entanglement in the system. However, this doesn’t

appear to have a significant effect on the maximum amount of entanglement that

can ultimately be generated in the system. This behaviour might be expected: here

the fluctuations due to the system’s coupling to its environment have been modelled,

however the related dissipative effect has been ignored. In effect the environment

is being allowed to heat the system, eventually to an arbitrarily high temperature.

The trajectories of the system state would then be expected to become ergodic ie.

statistically biased towards higher entangled states. To properly account for a flow of

energy back from the system to the environment, friction needs to be added.

Friction and noise above a threshold prevent entanglement growth

To study the effect of both friction and noise, bond dimension D = 16 trajectories

were simulated at γ = 10 with noise strengths γT = 0, 0.05, 0.1, 0.2, and 0.4. The

friction was approximated as acting locally, using the methods described in chapter

4. The entropy across the 7th cut was then calculated.

Fig 5.6 shows the results of this for individual trajectories. At zero noise γT = 0

the dissipation severely restricts the growth of entanglement, eventually decreasing

2For γT = 0 a reference bond dimension D = 128 was used. For finite noises at γT = 0.2, 0.5, 1
the reference bond dimensions were 16, 24, and 16 respectively
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Figure 5.5: Restriction of the growth of entanglement in the dephasing limit. Left:
Entanglement growth along the middle of the chain (7th cut) at varying values of noise
strength γT at bond dimension D = 16. For non-zero noise the mean over 8 different
noise realizations is shown, with ± half a standard deviation shown in dotted lines.
The higher the noise strength, the more the growth of S(t) is restricted. Right: Time
t∗(D) at which truncated bond dimension runs deviate from higher bond dimension
reference trajectories. t∗(D) is larger for higher noise strengths.

it after an initial period of growth to S(t) ' 1. This prevention of entanglement

growth is also seen for the case of γT = 0.05, where the system has trouble increasing

S(t) much further than about 1.2. Notably, friction in this case reverses the effect

of increasing noise on entanglement growth – when there is more noise entanglement

grows to larger values – suggesting that the dephasing effect of the noise frustrates

the ability of dissipation to drive the system to its ground state and hence restrict

the entanglement growth.

These results suggest that friction above a noise-dependent threshold prevents

entanglement growth. The consequences of this would be a restriction to manifolds

of MPS of lower bond dimension for longer, as the system is limited to fluctuations

around a low bond dimension ground state. These results further suggest that noise

frustrates the tendency of friction to drive the system to its ground state, as well as

the tendency of the Hamiltonian to generate entanglement in the system.
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Figure 5.6: Effect of local friction and noise on entanglement growth. (a) Comparison
of entropy growth with and without friction, in the case of zero noise, and finite noise
with γT = 0.2. The effect is much more pronounced at zero noise. The γ = 10
plots show individual trajectories with no noise averaging. (b) Frictional restriction
of entanglement growth for a fixed friction strength γ = 10 and varying values of
noise. Friction will act to take the system towards its ground state, decreasing its
entanglement in the process. This is strongest for smaller values of noise, and for
γT = 0, 0.05 the competing effects of the Hamiltonian, noise, and dissipation balance
out and entropy growth is prevented entirely.
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4 Discussion

In this chapter I have presented three studies of using the matrix product state

Langevin equation derived in chapter 4 to study the dynamics of many body quan-

tum systems under the influence of noise and dissipation from their environment. If

the environment is at temperature T and the strength of dissipation is γ then the

associated fluctuation-dissipation relation puts the variance of the noise at γT .

The first application is to work in the dissipation-only limit γT = 0, where the

environment acts to take energy from the system and drives it to its ground state. This

provides a real-time evolution to the ground state, which may prove complementary

to other methods of numerical ground state finding, such as DMRG [36] or iTEBD

[156, 64]. A second application is to use the noise and dissipative effects to drive the

system to thermal equilibrium with its environment, so that thermal distributions of

the system can be sampled. Finally, the dynamical process of generating entanglement

in a spin chain was studied. The results of this suggest that in the noise-only limit,

the growth of entanglement in the system is slowed down but not prevented. When

dissipation is present the environment is able to draw energy from the system which

therefore decreases in entanglement as it is driven towards its ground state.

These studies demonstrate the usefulness of the matrix product state Langevin

equation for studying noise and dissipation in spin chains, especially when efficient

matrix product states of restricted bond dimension are accurate. As well as pro-

viding new methods for ground state finding and thermal sampling, it allows finite-

temperature, real-time studies of quantum dynamics.

This research is in preparation for publication. Next steps will include further

work on Section 3: by simulating more frictional trajectories it will be possible to

explore the effect of friction more thoroughly, in particular the effect on t∗(D), shown

in Fig 5.5 for the frictionless case.
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Chapter 6

Hybrid approaches to

quantum searching

In this chapter I present a comparative study of adiabatic and quantum walk algorithms

for solving the unstructured search problem, both of which provide the optimal quantum

performance. I show how an interpolation of these two approaches yields a family of

hybrid search algorithms. The robustness of the hybrid algorithms to environmental

effects is studied, both in the limit of an infinite temperature bath and with a Langevin

equation over matrix product states.

Early parts of this work were previously submitted for a degree at University College

London. The new work in this thesis consists of demonstrating quadratic speedup

(section 2), extending the infinite-temperature bath analysis to a larger system, and

in applying the matrix product state Langevin equation to the problem (section 3).

This work was carried out in collaboration with Nicholas Chancellor, Viv Kendon,

and Sougato Bose, and is published here [162]. My contribution to the work was the

study of the hybrid search algorithms as part of multiple-run search algorithms, and

in the presence of both high and low-temperature baths, as well as involvement in the

analysis of the scaling properties of the algorithms.
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1 Quantum speedup in unstructured searching

Manipulating a smoothly-varying, time-dependent Hamiltonian in order to solve com-

putational problems is an approach without classical analogue. However such continuous-

time quantum computing schemes are a practical and realistic route to achieving a

useful quantum speedup. The unstructured search problem, as studied by in a quan-

tum context by Grover [163], is a good case study where more than one continuous-

time quantum algorithm can achieve speedup over classical approaches. In this section

I will discuss how the unstructured search problem may be encoded into the states

of qubits. Then I will show how quadratic speedup can be achieved using the tech-

niques of quantum walks and adiabatic quantum computation. The particular case

of hypercube connectivity is considered instead of the complete graph because it is

more physically realistic.

1.1 Encoding search into quantum states

The search problem can be framed in terms of the N = 2n computational basis states

of an n-qubit system {|j〉} = {|0〉, |1〉}⊗n, where {|0〉, |1〉} is the computational basis

of a single qubit. We are given that one of the basis states behaves differently from

the others and denote this ‘marked’ state by |m〉, where m is an n-digit bit string

identifying one of the basis states. Because of the difference in behaviour, we can

easily verify whether a given state is the marked states. One way to implement this

is to offset the energy of the marked state from all the others, which can be achieved

using a bias term in the Hamiltonian like 1̂−|m〉〈m|. In terms of Pauli operators this

can be realized by mapping jth bit of m to qj ∈ {−1, 1} according to the rule 1→ 0

and −1→ 1 and writing

Ĥp = 1̂− |m〉〈m| = 1̂− 1

2n

n∏
k=1

(qkσ̂
z
k + 1̂). (6.1)

The search problem is then to determine which of the basis labels j corresponds to

the marked state label m, given that a priori we have no knowledge of m, apart from

it being a basis state. We can represent this ignorance of the marked state by starting

with the system in a uniform superposition of all the basis states,

|ψinit〉 =
1√
N

N−1∑
j=0

|j〉. (6.2)

The search algorithms discussed here then proceed by evolving the system into a

state with large overlap with the marked state, so that a measurement can be made
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to return the marked state label m with high probability. This is achieved by applying

a (generally time-dependent) Hamiltonian to evolve the system from |ψinit〉 to |ψfinal〉.

Performing a measurement of this state in the basis {|j〉} will yield the marked state

label with probability |〈ψfinal|m〉|2. If |〈ψfinal|m〉|2 = 1 then the search is perfect and

the problem solved. If the search is imperfect then the problem can be solved by

searching multiple times: Since the result of each search is checked independently, a

single successful search is sufficient. As long as |〈ψfinal|m〉|2 is greater than 1/poly(n)

this form of amplitude amplification will be efficient. Multiple runs however will have

a cost, eg. of repeated measurement and (re)initialization.

The search problem as stated here has a full permutation symmetry, up to local

rotations, and as such is considered to be a toy problem from a practical point of view.

A näıve implementation of Eq 6.1 requires exponentially many single-qubit terms in

the Hamiltonian. However, it has recently been shown [164] that the spectrum of

permutation-symmetric terms can be reproduced at the cost of n extra qubits and ∼

n2 extra two-qubit terms, moreover that these models may be realized perturbatively

[165, 166]. While single and two-qubit terms are closer to what can be realized

experimentally, an implementation would still be highly non-trivial. However the

general insights gained from studying the search problem may still be applied to

realistic problems of practical interest.

1.2 Quantum searching by quantum walk

A continuous-time quantum walk can be defined by considering the labels j of the n-

qubit basis states {|j〉} to be the labels of vertices of an undirected graph G. The edges

of G can be defined through its adjacency matrix A, whose elements satisfy Ajk = 1 if

an edge in G connects vertices j and k and Ajk = 0 otherwise. Since G is undirected,

A is symmetric, hence it can be used to define a Hamiltonian. Although we can use

the adjacency matrix A directly, it is in general more convenient mathematically to

define the Hamiltonian of the quantum walk using the Laplacian L = A −D, where

D is a diagonal matrix with entries Djj = dj the degree of vertex j in the graph.

We follow this convention here, but note that in this work we use regular graphs for

which the degree dj = d is the same for all vertices, so that D = d1, where 1 is the

identity matrix of the same dimension as A.

The quantum walk Hamiltonian is defined as ĤQW = −γL̂, where L̂ is the Lapla-

cian operator, and γ is the hopping rate of the quantum walk. For any regular graph
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of degree d we thus have

ĤQW = γ

d1̂−∑
jj′

Ajj′ |j〉〈j′|

 ≡ γ(d1̂− Â). (6.3)

The effect of ĤQW is to move amplitude between connected vertices, as specified

by the non-zero entries in A. During a quantum walk, a pure state |ψ(0)〉 evolves

according to the Schrödinger equation to give

|ψ(t)〉 = exp(−iĤQWt)|ψ(0)〉 (6.4)

after a time t, where units are chosen so that ~ = 1.

Quantum walk dynamics can be used to solve the seach problem by lowering the

energy of the marked state via Ĥp as given in Eq 6.1:

ĤQWS = γ(d1̂− Â) + (1̂− |m〉〈m|). (6.5)

The net effect is to offset the energy of the marked state |m〉 against the other basis

states |j 6= m〉. Applying ĤQWS to the initial state |ψinit〉 in Eq 6.2 induces a periodic

dynamics where the overlap with the marked state oscillates. The frequency and

amplitude of these oscillations depends on the hopping rate γ. Therefore γ, and the

time of measurement tf , must be chosen carefully in order to maximize the final

success probability P = |〈ψ(tf )|m〉|2, where |ψ(tf )〉 = exp(−iĤQWStf )|ψinit〉 is the

state at time tf .

Clearly the graph G underlying the quantum walk Hamiltonian affects how the

quantum walk search performs. Most choices of graph will work, as long as the

connectivity isn’t too sparse of low-dimensional [167, 168]. A convenient choice, both

mathematically and physically, is to use a hypercube graph. Quantum walks on a

hypercube are analytically solvable [169, 170, 171], and a hypercube graph is easily

implemented on a system of qubits as local bitflips.

For our system of n qubits with computational basis {|j〉}, the associated hyper-

cube graph is n-dimensional, and takes these basis states as its vertices. The adjacency

matrix elements Ajj′ = 1 if and only if the corresponding bitstrings j and j′ have a

Hamming distance of one, ie are only one bitflip apart. The adjacency operator for

the graph can be conveniently expressed as a uniform transverse field

Â(h) =

n∑
k=1

σ̂(k)
x , (6.6)
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where σ̂
(k)
x is the Pauli-X operator applied to the kth qubit1.

Including a factor 1/2 in γ to match Refs [167, 172, 173] and to facilitate a mapping

to a symmetric subspace, a Hamiltonian for a quantum walk search on the hypercube

is given by

Ĥ
(h)
QWS =

γ

2

(
n1̂−

n∑
k=1

σ̂(k)
x

)
+ (1̂− |m〉〈m|). (6.7)

Solving the search problem using quantum walks was studied by Childs and

Goldstone[167] for both the fully-connected and hypercube graphs. For each graph

they found optimal values of hopping rate γ to match the quadratic quantum speedup

provided by the Grover search algorithm. These optimal values are found by consid-

ering the low energy spectrum of ĤQWS. The γ/2 term has |ψinit〉 as a ground state,

and remaining term (1̂− |m〉〈m|) has the marked state |m〉 as a ground state. If γ is

tuned so that both the ground state |E0〉 and the first excited state |E1〉 of the search

Hamiltonian have significant overlap with |ψinit〉 and |m〉, transitions between these

states are induced. The greater the mutual overlaps, the higher the success proba-

bility P. The optimal point occurs near to where the gap g = E1 − E0 is smallest,

and the period of the oscillations is proportional to 1/gmin. The optimal value for the

hypercube graph is

γ(h)
o =

1

N

n∑
r=1

(
n

r

)
1

r
≡ R1, (6.8)

where
(
n
r

)
= n!/(r!(n − r)!) is the usual binomial coefficient, and we abbreviate this

quantity as R1. We also define a related quantity R2 as

R2 ≡
1

N

n∑
r=1

(
n

r

)
1

r2
. (6.9)

The time taken to reach the first maximum in |〈ψ(t)|m〉|2 is t
(h)
o ' (π/2)

√
N , matching

the quadratic speedup of Grover’s original search algorithm.

1.3 Quantum searching by adiabatic dynamics

Adiabatic quantum computing (AQC), first introduced by Farhi et al. [172], works

as follows. The problem of interest is encoded into an n-qubit ‘problem’ Hamiltonian

Ĥp in such a way that the solution can be derived from the ground state of Ĥp. The

system is initialized in the ground state of a different Hamiltonian Ĥ0, for which

this initialization is easy. The computation then proceeds by implementing a time-

dependent Hamiltonian that is transformed slowly from Ĥ0 to Ĥp. In general this

adiabatic ‘sweep’ Hamiltonian can be parameterized in terms of a time-dependent

1ie σ̂
(k)
x =

(⊗k−1
r=1 1̂2

)
⊗ σ̂x ⊗

(⊗n
r=k+1 1̂2

)
.
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schedule function s ∈ [0, 1] as

ĤAQC(s) = (1− s)Ĥ0 + sĤp, (6.10)

with s ≡ s(t) such that s(t = 0) = 0 and at the final time tf we have s(t = tf ) = 1.

It is useful to define a reduced time τ = t/tf , with 0 ≤ τ ≤ 1. Whereas τ is linear

in t, the schedule function s(τ) - written as a function of t or τ - can be nonlinear in

order to obtain a quantum speedup.

The adiabatic theorem of quantum mechanics [174] says that the system will

stay in the instantaneous ground state of the time-dependent Hamiltonian ĤAQC(s)

provided the following two conditions are satisfied: (i) there is at all times an energy

gap g(s) > 0 between the instantaneous ground and first excited states, and (ii) the

Hamiltonian is changed sufficiently slowly. Provided these are both true the system

will be in the desired ground state of Ĥp at the end of the computation, thus solving

the problem encoded in Ĥp. In practice, the duration of this adiabatic sweep would

be prohibitively long, so a realistic sweep will incur some probability of error. A

comprehensive overview of AQC, is given by Albash and Lidar [175].

Roland and Cerf [176] describe how adiabatic quantum computing can be used to

solve the search problem with a quadratic quantum speed up. Define the problem

Hamiltonian as

Ĥp = 1̂− |m〉 〈m| , (6.11)

whose non-degenerate ground state is equal to the marked state |m〉 with eigenvalue

zero. We then need to choose our easy Hamiltonian Ĥ0 such that it has |ψinit〉 as its

non-degenerate ground state. There are many possible choices, Roland and Cerf use

Ĥ0 = 1̂− |ψinit〉〈ψinit|. With the system initialized in |ψinit〉, the algorithm proceeds

by implementing the time-dependent Hamiltonian in Eq 6.10, with a suitable schedule

function s(τ), so that after a time tf the final state of the system is close to the marked

state |m〉. In this case it is necessary to use a nonlinear s(τ), whose rate of change

is in proportion to the size of the gap g(s) at that point in the schedule, in order to

produce the quadratic speed up of Grover’s search algorithm.

It is easy to show that Ĥ0 = 1̂ − |ψinit〉〈ψinit| is proportional to the adjacency

operator of the fully-connected graph with N = 2n vertices. Here the hypercube

graph is used, since this also has |ψinit〉 as its non-degenerate ground state, with

Hamiltonian (in its Laplacian form) given by

Ĥ
(h)
0 =

1

2

n1̂− n∑
j=1

σ̂(j)
x

 (6.12)
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where we have again included a factor of a half for mathematical convenience. This

is realized by a transverse field applied to the qubit, and is a common choice for

quantum annealing hardware [177]. Combining Eqs. (6.11) and (6.12), we have the

adiabatic quantum computing Hamiltonian for search on a hypercube,

Ĥ
(h)
AQC = (1− s)1

2

n1̂− n∑
j=1

σ̂(j)
x

+ s (1− |m〉 〈m|) . (6.13)

We note that Ĥ
(h)
AQC contains the same terms as Ĥ

(h)
QWS in Eq 6.7, only in different,

time-varying proportions. It remains to specify the function s(τ) for the optimal

performance of this Hamiltonian for searching.

1.4 Optimizing adiabatic search schedules

We have seen that QW and AQC searching may be achieved with Hamiltonians that

have the same terms but different, time-varying, coefficients. Next we would like

to interpolate these coefficients to generate hybrid search algorithms. However, we

must first determine an optimal schedule s(τ) for the AQC search. In fact this is not

entirely straightforward: it is possible to find more than one optimal schedule. In this

section the method for deriving a schedule from the adiabatic condition is discussed,

followed by a comparison of two such schedules, derived by analytical and a numerical

approaches.

Adiabatic condition and method

A more quantitative statement of the adiabatic theorem [176, 172, 178, 179, 175]

proceeds as follows: Consider a time-dependent Hamiltonian of the form in Eq 6.10,

with initial and final Hamiltonians Ĥ0, Ĥp respectively, and parameterized by the

schedule function s(τ) that sweeps from s(0) = 0 to s(1) = 1 over a time tf , the

runtime of the sweep. Denote by |Ej(t)〉 the jth energy eigenstate of the Hamiltonian

at time t and its energy by Ej(t), where j = 0, 1 denotes the ground and first excited

states respectively. Provided that E1(t) > E0(t) for t ∈ [0, tf ] and transitions to

higher energy eigenstates can be ignored, the final state obeys

| 〈ψ(tf )|E0(tf )〉 |2 ≥ 1− ε2, (6.14)

for small parameter ε� 1, provided that at all times

∣∣∣ 〈dĤdt 〉
0,1

∣∣∣
g2(t)

≤ ε� 1, (6.15)
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where the matrix element 〈dĤ/dt〉0,1 is given by

〈
dĤ

dt

〉
0,1

=
〈
E0(t)

∣∣∣ dĤ
dt

∣∣∣E1(t)
〉

(6.16)

and the gap g(t) is given by

g(t) = E1(t)− E0(t). (6.17)

However, adiabatic protocols derived from Eq 6.15 are not always optimal. This

equation accounts for probability amplitude leaking from the ground state into a

nearly empty first excited state. Thus it will break down in situations where tran-

sitions to higher excited states are important, or where the population of the first

excited state is significant. Eq 6.15 is therefore a two-level approximation. In the

context of the search algorithms studied here, such an approximation turns out to be

good for all but the smallest values of n, becoming more accurate for larger search

spaces.

Equation (6.15) also does not take into account the return of probability ampli-

tude which has already entered the excited state. Such effects can become the most

relevant to the dynamics under two circumstances. If the first excited state is popu-

lated significantly, then non-adiabatic dynamics can occur such that this amplitude

returns and interferes with the ground state amplitude. This is the regime which we

primarily study in this work. Quantum walk dynamics are an extreme example of such

behaviour as they can be viewed as time independent coherent evolution bracketed by

instantaneous quenches, which are the ultimate non-adiabatic transitions. The second

and more subtle case is deep in the adiabatic regime, where the Hamiltonian sweep

rate is so slow that the rate of excitation formation is very low during the middle of

the anneal. In these cases, boundary effects become important, which depend in a

complicated way on both the nature of the annealing schedule and the total runtime

[180, 181, 182]2.

Roland and Cerf [176] derive a schedule s(τ) for searching on the fully connected

graph by optimizing Eq 6.15. This is done by matching the instantaneous rate of

change of the schedule function s(t) to the size of the gap at that time. Using

〈
dĤ

dt

〉
0,1

=
ds

dt

〈
dĤ

ds

〉
0,1

(6.18)

2While this regime is very interesting, it is outside of the scope of this study, and not relevant
for practical implementation of algorithms. For this reason, we limit our numerical studies to a
maximum runtime of ∼ 5π/gmin, about ten times the typical runtime derived from the minimum
gap. With runtimes tf . 5π/gmin, we do not observe any appreciable boundary effects in our
numerical results.
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in the adiabatic condition of Eq 6.15 gives

∣∣∣∣dsdt
∣∣∣∣ ≤ ε g2(t)∣∣∣∣〈dĤds 〉

0,1

∣∣∣∣ . (6.19)

The instantaneous gap g(t) and 〈dĤ/ds〉0,1 can be calculated from the eigensystem

of the Hamiltonian, which is analytically tractable for the complete graph.

Two hypercube schedules

For this study, the adiabatic condition was solved in two ways to yield two schedules:

by expanding the gap around its minimum point following Roland and Cerf [176], a

‘calculated’ schedule s(c) is derived; alternatively the gap can be numerically calcu-

lated throughout the sweep to find a ‘numerical’ schedule s(n). Here I give a brief

account of these two approaches. Further details can be found in Appendix C.

We are interested in the hypercube AQC search Hamiltonian given by Eq 6.13. The

eigensystem of this Hamiltonian has been solved in Refs. [172, 173, 167] by mapping

it to the symmetric subspace. From here the position and size of the minimum gap

can be found exactly, and the eigenvalue equations expanded about this point. This

is combined with the saturation of Eq 6.19 at the minimum gap point, where the

RHS takes its minimum value. From the resulting expressions it is possible to derive

an analytical expression for the schedule s(t). The full calculation is outlined in

Appendix C. The resulting optimal schedule is

s(c)(t) =
2
√
R2√

N(1 +R1)2
tan

{
8ε
√
R2R

2
1t

n
√
NR2

2

− c

}
+

1

1 +R1
, (6.20)

where terms up to O(1/N) have been dropped,

c = arctan

{
(1 +R1)

√
N

2
√
R2

}
, (6.21)

the constant R1 is defined in Eq 6.8 and R2 by

R2 ≡
1

N

n∑
r=1

(
n

r

)
1

r2
. (6.22)

This analytical schedule is guaranteed to satisfy Eq 6.19 only in the region of the

minimum gap, however it is here that transitions to unwanted higher energy levels

are most rapid, so the net effect is that this schedule still manages to produce optimal
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Figure 6.1: Energy eigenstates of hypercube search Hamiltonian. (Top) Energy levels
and (bottom) gap for a hypercube of size n = 9 (left) and complete graph (right).
Both the true gap (blue, solid) and the approximate, analytical, gap (red, dashed)
are shown for the hypercube (bottom left). The analytical gap is only accurate near
the true minimum gap, however it is here that transitions to higher energy levels are
most rapid, so the resulting analytical schedule still yields optimal quantum speedup.
Energy units defined by Eq 6.13.

quantum speedup. For N � 1, the runtime is given by

ε t
(c)
f '

π
√
N

4
, (6.23)

where the approximation of the arctans by π/2 becomes exact as N → ∞. Note

that choosing a value for ε – the accuracy with which the system stays in the ground

state, see Eq 6.14 – determines the corresponding runtime tf , and vice versa. For

our numerical calculations we have chosen to specify tf , since this enables direct

comparisons with QW searching to be made. The energy levels of Ĥ
(h)
AQC are shown

in Fig. 6.1 (top left) for n = 9, and for comparison the energy levels of the search

Hamiltonian for the complete graph (which is the same for any size) are shown top

right.

We also solve Eq 6.15 numerically to obtain s(n) using an explicit numerical calcu-

lation of the gap g(t), and using the maximum value of 〈dĤ(h)
AQC/dt〉0,1, which is shown

in Appendix C to be n/4. Our numerical algorithm is also described in Appendix C.

While it does not provide a closed form solution, results using s(n) do provide insight

on the accuracy of s(c). Provided the numerics are performed to a sufficient accuracy,

s(n) will always provide an optimal
√
N speed up. The analytically and numerically

calculated gaps are plotted in the bottom left of Fig. 6.1 for n = 9, and the cor-
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responding gap for the complete graph is shown bottom right. For the hypercube,

the analytical and numerical gaps are strikingly different, yet both produce schedules

that obtain a quantum speed up. As we will see, this is because for the quantum

search problem only the position and size of the gap are important. Elsewhere, the

transition probabilities are so small it does not matter how fast the schedule proceeds.

Both of these schedules assume a two-level approximation, as they start from

Eq 6.15. While for small system sizes the higher energy levels do affect the perfor-

mance, for large N this is a good approximation.
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2 Hybrid adiabatic and quantum walk searching

Having seen the similarities between quantum walk and adiabatic searching on the

hypercube, in this section we show how they may be interpolated to find hybrid

approaches to searching. Then we see how the hybrid searches may be shown to

provide the full quadratic quantum speedup. Finally their performance is compared,

in terms of single searches and also multiple search protocols. The latter is important

in cases where possible solutions can be checked quickly, and the results depend on

the time taken for initialization and readout.

2.1 Hybrid searching

We have already noted that QW and AQC search algorithms both use the same terms

in the Hamiltonian, differing only in the time dependence. With appropriate choice of

parameters, both provide a quadratic quantum speed up: a search time proportional

to
√
N for a search space of size N . This suggests the question of whether we can map

smoothly between QW and AQC searching, while maintaining the quantum speed up.

To construct the mapping, we generalize the AQC Hamiltonian of Eq 6.10 by

defining a time-dependent Hamiltonian

Ĥ(τ) = A(τ)Ĥ0 +B(τ)Ĥp (6.24)

as a function of the reduced time τ = t/tf , where the annealing schedules A(τ), B(τ)

satisfy A(0)� B(0) and B(1)� A(1). The AQC algorithm as described by Eq 6.10

is obtained by setting

AAQC(τ) = 1− s(τ), BAQC(τ) = s(τ). (6.25)

The QW search Hamiltonian with hopping rate γ, described by Eq (6.5), can also be

obtained by setting

A
(γ)
QW(τ) =


γ τ < 1

0 τ = 1

, B
(γ)
QW(τ) =


1 τ > 0

0 τ = 0.

(6.26)

We can make this even closer to the AQC form by defining β = 1/(1 + γ) and setting

AQW(τ) =


1− β τ < 1

0 τ = 1

, BQW(τ) =


β τ > 0

0 τ = 0.

(6.27)
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For QW search on the hypercube, using Eq 6.8 for γ
(h)
o , to achieve optimal

√
N scaling

we must set β equal to

β(h)
o =

1

1 +R1
. (6.28)

For 0 < τ < 1, the re-parameterization of Eq 6.26 in Eq 6.27 maintains the

ratio of AQW(τ)/BQW(τ) = γ. However, it also introduces a global energy rescaling

AQW(τ) = βA
(γ)
QW(τ) and BQW(τ) = βB

(γ)
QW(τ)3.

In the way we have parameterized them above, the AQC and QW protocols differ

only in the annealing schedules A(τ) and B(τ). Hence, we can use the QW and AQC

schedules as end-points of a smooth interpolation between these two search algorithms

to define a continuum of hybrid protocols. Using a parameter α ∈ [0, 1], where α = 0

corresponds to QW and α = 1 corresponds to AQC, we can define

A(α, β, τ) =
1− s(τ)

α+ (1− α) (1−s(τ))
(1−β)

, B(α, β, τ) =
s(τ)

α+ (1− α) s(τ)
β

. (6.29)

giving a family of hybrid quantum algorithms defined by the Hamiltonian

ĤAB = A(α, β, τ)Ĥ0 +B(α, β, τ)Ĥp. (6.30)

This interpolation is quite general, for well-behaved Ĥ0 and Ĥp, with the caveat

about the extra dependence of the energy scale on the QW hopping rate through β

mentioned above. The nature of this interpolation functions is illustrated in Fig. 6.2

for a search over a 5- qubit hypercube graphs.

Note that, although it is plausible, it doesn’t follow a priori from the construction

that these interpolated AQC-QW schedules will yield a quantum speed up at all for

searching, let alone an optimal
√
N scaling. This is because the different mechanisms

in QW and AQC could be incompatible in combination. We return to this important

question in Sec. 2.2, where we show that properly specified interpolations can indeed

achieve the theoretical optimum
√
N scaling.

Small system examples

To gain intuition for how our interpolated schedules behave, we can look at a small

systems of five qubits. These have been simulated using the full Hamiltonian on the

hypercube; for numerical methods, see Appendix D. Fig. 6.2 shows how the final suc-

cess probability varies with the search duration tf for QW, AQC and an intermediate

3Note that the since the optimal γ
(h)
o is dependent on the size of the system, this re-

parameterization introduces a weak dependence of the global energy scale on system size N = 2n.

However, since β
(h)
o → 1 in the large N limit, this weak dependence cannot affect the leading or-

der term in the asymptotic scaling, and the re-parameterized quantum walk search algorithm still
provides optimal

√
N scaling.
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Figure 6.2: Comparison of QW, AQC and hybrid search dynamics. (Top) Numerically
calculated hybrid schedules A and B against runtime τ for quantum search on a 5-
qubit hypercube graph for α = 0 QW, (black, top left), α = 0.5 (red, mid gray in print,
top middle), and α = 1 AQC, (cyan, light gray in print, top right). (Bottom) Success
probability of the corresponding searches (indicated by matching colour/shade of gray
in print) against total search time tf , in units given by Eq 6.24. Note that this does
not show time evolution against t or τ .

α = 0.5 search over the 5-qubit hypercube graph. Note that, because the schedules

A and B are in general nonlinear functions of time, in all plots against tf each point

represents a separate run of the quantum search algorithm for that value of tf ; the

plots do not also represent the time evolution 0 ≤ t ≤ tf , except for α = 0 when the

schedule functions are constant. Also plotted in Fig. 6.2 are the annealing schedules A

and B as a function of the reduced time τ , illustrating how the shape of the functions

A(α, τ) and B(α, τ) changes for different values of α, from flat for a quantum walk to

a curving AQC annealing schedule for α = 1.

We see that the qualitative behaviour of adiabatic evolution is fundamentally dif-

ferent from that of the quantum walk search. For the optimal AQC schedule the

success probability increases monotonically to a value very close to one. In contrast,

QW shows oscillatory behaviour, and although the success probability does not ap-

proach one, it does show a faster initial increase than for AQC. The intermediate

schedule shows a mix of both behaviours, with a locally oscillating but globally in-

creasing success probability that shows an initial increase rate between that of QW

and AQC.
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2.2 Demonstrating quadratic speedup with single runs

Our strategy for analyzing the scaling of the hybrid quantum search algorithms is to

show that the performance is dominated by a single, low energy, avoided crossing (as

seen in Fig 6.1), which is present at the same position in all our hybrid algorithms.

We then show that the essential features of the behaviour are captured by a simple,

two-state single avoided crossing model which all the hybrid algorithms map to in the

large size limit. For this simple avoided crossing model we can easily show that the

hybrid algorithms all provide an optimal quantum speed up. It then follows that our

full-size hybrid algorithms have the same asymptotic scaling.

Dominance of a single avoided crossing is the method used to solve analytically

for all Hamiltonian-based quantum search algorithms treated to date, including the

complete graph [176] and Cartesian lattices (which provide a quantum speed up for

d ≥ 4 dimensions) [167]. It is also the typical behaviour for a broad class of random

search graphs [168].

2.2.1 Reduction to single avoided crossing model

We first consider the end points of the interpolation, QW and AQC search. For AQC

search, the optimal schedule s(c)(τ) or s(n)(τ) is derived directly from the functional

form of lowest energy gap, ensuring that the Hamiltonian is changed slowly enough to

avoid transitions to higher energy levels. We only need to show that the low energy

structure of the Hamiltonian is dominated by a single avoided crossing throughout

the process. This is shown numerically in Fig. 6.3. The width w(n) of the avoided

crossing decreases rapidly with n. Even for a modest size of n = 50 qubits, the switch

from 95% overlap with the hypercube Hamiltonian ground state to 95% overlap with

the marked state occurs in less than 10−6 of the total dynamic range of the protocol,

which runs from s(τ) = 0 to s(τ) = 14. In contrast, for QW search, transitions to

higher energy levels are a necessary part of the evolution to the marked state, so

we need to determine the scaling of several related quantities to show that a single

avoided crossing dominates in determining the behaviour.

For QW search, to show numerically that the lowest avoided crossing is the only

relevant feature in the large N limit, we must demonstrate two things. First, that

the minimum gap gmin = (E1 − E0) between the ground state and the first excited

state becomes much smaller than the minimum gap between the ground state and

the second excited state. Second, that the lowest avoided level crossing, where g(τ) =

4While the dynamical range w(n) = ∆s(τ) in which the state rotates between the two nearly-
orthogonal states |ψinit〉 and |m〉 becomes exponentially small, the total runtime tf ∼

√
N =

exp(n/2) grows even more quickly so that the time taken w(n)/tf increases with n.
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Figure 6.3: Scaling of QW Hamiltonian properties tuned by s(τ). Main figure: s(τ)
scaled by (1+1/n) against number of qubits n for 90% (blue, dark gray in print), 93%
(red, light gray in print), 95% (green, mid gray in print) overlap of |ψ(t)〉 with |m〉
(solid) and with |ψinit〉 (dot-dashed). Magenta stars are the transition point, the value
of s(τ) when the minimum gap gmin occurs. Left inset: gmin = min(E1 − E0) (lower
black stars) and min(E2 − E0) (upper red stars, light gray in print). Energy units
given by Eq 6.24. Right inset: width of the transition w(n) = ∆s(τ), the difference
between solid and dot-dashed curves of the same color in the main figure. Calculated
using the AQC search hypercube Hamiltonian mapped to the line, see Appendix D.

gmin, dominates the transition between the ground state of the hypercube Hamiltonian

Ĥ
(h)
0 and the ground state of the marked state Hamiltonian Ĥp, and becomes more

dominant as system size increases. Noting that around the minimum gap, where all

the schedules cross, we have (1 − s(τ)) ' γ
(h)
o , Figure 6.3 shows that both of these

do, in fact, occur. The left inset shows that at the avoided crossing, the gap between

the ground state and first excited state shrinks exponentially faster in n than the gap

between the ground state and second excited state. The main figure and right inset of

Fig. 6.3 show how the transition between the two ground states becomes dominated

by the dynamics at gmin as n increases.

The hybrid algorithms on the full hypercube map onto the hybrid single avoided

crossing model algorithms for large n. This follows from the solution methods for the

end points, QW and AQC searching, which all use the two-level approximation to

prove the quadratic speed up. Since the full hypercube hybrid algorithms are defined

from these in the same way as the single avoided crossing model hybrid algorithms are

defined, the hybrid algorithms also map to the corresponding single avoided crossing

hybrid algorithm.
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Figure 6.4: Single avoided crossing search. Probability P of finding the marked state
versus runtime tf and interpolation parameter α for the single avoided crossing model.
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2.2.2 Analyzing the single avoided crossing model

We have shown that a single avoided crossing dominates for large N for both QW

and AQC search algorithms on the hypercube. In Appendix E we describe how the

hybrid searches can be mapped to a simple, two state, single avoided crossing model.

By analyzing this model it can be demonstrated that the hybrid searches provide

optimal quadratic quantum speedup. This model also allows us to see how the hybrid

searches perform in the large size limit.

Fig 6.4 shows the final success probability of the single avoided crossing model of

hybrid searching, in terms of α and runtime. Runtime is given in units of π/gmin,

which is the timescale required to obtain quadratic speedup since gmin ∝ 1/
√
N .

Fig 6.4 demonstrates clearly that that all of the hybrid searches reach high success

probability in this quadratic runtime. The white contours highlight the difference

between the pure QW search, which succeeds with certainty, and the AQC and hybrid

algorithms, which always have a probability of error ε2 that can be traded against

the runtime tf . The shallow upward curve of these contours towards the AQC end of

the hybrid protocols shows in what sense the QW search is better than AQC in the

large size limit.
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2.3 Performance in multiple search protocols

In the previous sections we derived hybrid search Hamiltonians for the hypercube,

and studied their dynamics. However this doesn’t yet give us a full picture of the

relative usefulness of the different dynamics. In this section we study the relative

performance of the different searches when we allow for the possibility of multiple

searches.

Motivation

In a realistic setting of the search problem we can easily check whether the result of

a search is the correct answer or not. Hence, we must consider not only single run

strategies, but also multi-run strategies, where the success probability is defined as

the probability of succeeding in at least one of several runs. In the context of quantum

search on the hypercube, we measure which site of the hypercube our state is on, and

then determine the energy of this state with respect to the search Hamiltonian. If this

energy is zero, then we have found the state we are looking for, otherwise, we should

re-initialize and run the search again. However, we also need to account for a non-zero

‘initialization’ time tinit associated with each run of the search. Such an initialization

time is mathematically as well as physically necessary. The fidelity between the

initial state and marked state | 〈ψinit|m〉 |2 = 1
N is non-zero. An arbitrarily short run

is equivalent to making a random guess. Therefore, without an additional penalty

per run, it would be possible to guess an arbitrarily large number of times for free,

thus finding the marked state in a total arbitrarily short time. Any physical device

will take a significant amount of time both to setup the initial state and to measure

the final state. For the purposes of our study, the effects on the total search time of

initialization and readout times are the same, therefore the quantity we call tinit should

be taken to include all of the time associated with a single run other than the actual

runtime of the algorithm tf , i.e., as including both initialization and measurement.

Multiple run searching

As examples, we consider n = 12 and n = 14 qubits using the numerically calculated

optimal strategy s(n). It turns out that n = 12 still shows finite size effects, while n =

14 is just into the smoothly scaling regime. We find for chosen success probabilities in

the range 0.95−0.99, the optimal strategy depends on both tinit and Ptarget as shown in

Fig. 6.5. For the range of tinit we examine, both sizes show a transition from a single

run able to reach the required success probability to a region requiring two runs.

The single runs are hybrid, becoming progressively more AQC-like as the required
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Figure 6.5: Multiple run searching on finite systems. Optimal number of runs r
(bottom) and optimal α (top) for the numerically optimized strategy s(n) with n = 12
(left) and n = 14 (right) qubits versus tinit and search success probability P. tinit is
in inverse energy units, given by Eq 6.24.

probability increases. At the point where two runs can do better than one AQC run,

the two run strategy is much closer to quantum walk, but becomes progressively more

hybrid as target success probability increases further. Finite size effects are visible

for n = 12 in the non-monotonic shape of the boundary between one run and two

runs in Fig. 6.5 (left). For smaller n < 12, these effects become more complicated,

there is no single “best strategy” for a small search space. Indeed, we also found that

the optimal strategy changes significantly when any of the parameters are varied.

The complexity in the optimal search strategy for small n is because the two-level

approximation does not hold well in this regime, and interactions with higher excited

states have a non-negligible effect. This suggests that a similarly complex situation

will likely be present in more sophisticated optimization Hamiltonians, whenever a

two-level approximation is not valid.

In this section we introduced continuous-time search algorithms that combine the

features of quantum walk and adiabatic dynamics, and assessed their performance in

a closed setting. However a full picture of their performance must take into account

the robustness to decoherence by the environment.
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3 Noisy searching

An important practical consideration when comparing continuous-time quantum al-

gorithms is how the performance depends on interactions with the environment. In

this section we explore this in two limits, first when the system is in contact with

an infinite temperature bath, and second using the matrix product state Langevin

equation to model the interaction.

3.1 Infinite temperature bath

Another realistic situation where multiple runs can be helpful is when there is a sig-

nificant level of unwanted decoherence or other forms of noise acting on the quantum

hardware. In this case, shorter runs that end before decoherence effects are too strong,

but consequently have lower success probabilities and hence need more repeats, may

be able to maintain a quantum speed up. Decoherence in QW dynamics has been

studied in [183, 184], and the effects of noise in AQC search have been studied in

[185, 186]. Here we focus on hybrid algorithms, and the extra options these provide

for optimizing the search.

3.1.1 Model

We choose a simple model of decoherence by adding a Lindblad term to the von-

Neumann equation for the system density operator ρ̂(t),

∂ρ̂(t)

∂t
= − i

~
[Ĥ(t), ρ̂(t)] + κP[ρ̂(t)], (6.31)

where Ĥ(t) is the search Hamiltonian and κP[ρ(t)] is a decoherence term tuned by a

rate κ. We choose a form for P that uniformly reduces the coherences between states

corresponding to vertices of the hypercube (the computational basis). This type of

decoherence has been well-studied in the context of quantum walks [183, 187, 188]

and, for high decoherence rate κ� γ, can be thought of as continuous measurement in

the search space resulting in a quantum Zeno effect [189]. It is equivalent to coupling

with an infinite temperature bath.

We begin by looking at how the instantaneous success probability P(t) = 〈m|ρ(t)|m〉

evolves during a search, where m denotes the marked site. Figure 6.6 shows the evo-

lution of P(t) during a search over an 8-qubit hypercube graph. The broad effect of

the decoherence is to reduce the instantaneous success probability towards a value of

1/N , equivalent to classical guessing. The QW, AQC and hybrid search algorithms

retain their characteristics up to an overall decoherence damping, which is indepen-

138



0

0.5

1

P

0

0.5

1

P

0 50 100 150 200 250 300
0

0.5

1

P

Figure 6.6: Decohered searching. Evolution of success probability P(t) = 〈m|ρ(t)|m〉
during a single search over the n = 8 hypercube, dashed line is QW (α = 0), dotted
line is AQC (α = 1), solid line is a hybrid search (α = 0.5), with decoherence rate κ
increasing from zero to 0.002 to 0.02 from the top to the middle to the bottom plot.
Analytic expression (6.20) used for AQC schedule. Time units given by Eq 6.24.

dent of α. This suggests that the QW search, which spreads out more quickly over

the search space, makes hybrid searches with more QW character better under deco-

herence. Indeed, for the higher decoherence rate in Fig. 6.6, QW run for a short time

can obtain a reasonably high success probability, whereas longer hybrid or AQC runs

fail entirely. The AQC search example in this figure relies on coherence sustained

for longer times to reach high values of P. However, the results in Fig. 6.6 do not

preclude the possibility that running AQC for a shorter period of time with lower

success probability may still provide better performance than QW. As Fig. 6.7 shows,

this does indeed happen over the range of parameters we examine.

3.1.2 Single search

Since we now have three parameters to optimize over for a given search size n, (tf , α,

and r for a decoherence rate κ), we first consider single run searches by calculating

P(tf , α, κ). This is the final success probability of a hybrid search specified by α of

duration tf in the decoherence model of Eq 6.31 with decoherence rate κ. We simu-

late the searches for durations 0 ≤ tf ≤ 200, and define the search duration to that

maximizes P for a particular choice of α and κ. We also define αo as the value of α

which maximizes P(to, κ, α), this corresponds to the search that reaches highest suc-
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Figure 6.7: Single noisy run analysis. Quantum searching on the n = 7 hypercube for
QW (red, mid gray in print)), AQC (blue, dark gray in print), and the hybrid search
which yields the maximum P (orange, light gray in print) given by αo. Top: search
time to which maximizes P versus κ. The first data point (not shown) for the AQC
and αo series exceeds tf = 200, the upper limit of search times sampled. Bottom:
search probability P(tf , α, κ) versus decoherence rate κ maximized over search times
0 ≤ tf ≤ 200 (left axis). αo as κ varies (black, right axis label). The α values sampled
are 0.0, 0.1, . . . , 1.0. Analytic expression (6.20) used for AQC schedule. Time and rate
units given by Eq 6.24.

cess probability for a given decoherence rate κ. Note that, for computational reasons,

we limited α to the values 0.0, 0.1, 0.2 . . . 0.9, 1.0 when performing the maximizations;

intermediate values are of course possible.

Figure 6.7 (bottom) shows the results of simulating this for searches over a n = 7

dimensional hypercube graph. As the decoherence rate is increased, the hybrid

searches which combine QW and AQC characteristics are able to reach slightly higher

success probabilities P. The optimal hybrid schedule given by αo reduces as the deco-

herence rate κ increases, confirming our hypothesis that QW is more useful for high

decoherence rates, due to its faster spreading. Our simulations find that, for small

values of κ, we have αo = 1, i.e., AQC gives the highest peak success probability,

because for n = 7 QW has a success probability significantly below one. As κ is

increased, the highest-scoring search changes and αo decreases monotonically, indi-

cating hybrid searches perform the best overall for intermediate levels of decoherence.

In the limit of very high decoherence we are in a quantum Zeno effect regime which

keeps the search in the initial superposition over all possible states. This means all

searches will succeed with the same probability P = |〈ψinit|m〉|2 = 1/N , equivalent

to classical guessing. The usefulness of a search is also determined by how quickly
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it can be performed. The results for tf in Fig. 6.7 (top) show that, while QW never

has the highest success probability in the range we examine, it can be substantially

quicker. This means that as the decoherence rate is increased, hybrid schedules take

on more QW character and soon begin to achieve higher success probabilities than

AQC in shorter search times.

3.1.3 Multiple searches

Having characterized the effects of decoherence on a single run, we now consider

multiple-run search strategies where each search is of the same duration tf . We define

the optimal annealing schedule as that which minimizes the time taken to reach a

given success probability, optimized over all equal duration multiple-run hybrid search

strategies, with durations of individual searches in the range 0 < tf ≤ 200. There are

three variables to examine: the success probability P, the initialization time between

searches tinit, and the decoherence rate κ. We denote the number of runs by r, so the

combined search time is rtf , the combined initialization time is rtinit, and the total

time taken is r(tf + tinit). By tuning r, α, and tf , the multiple-search algorithm can

be optimized.

To make this multiple parameter optimization tractable, we considered a discrete

set of values for α = 0, 0.1, . . . , 1.0, and then minimized the total time r(tf + tinit)

while varying P, tinit and κ. The results for a 7-dimensional hypercube are shown

in Fig. 6.8. The optimal hybrid schedule α and number of runs r taken by the best

performing multiple-run hybrid search are shown as a function of κ, tinit, and P.

There is a small threshold initialization time below which the best strategy is to

take multiple measurements of the system state as soon as it is prepared at a small

cost rtinit, indicating that our device can do no better than classical random guessing.

Other than this threshold, there is little dependence on initialization time. There is

a broad tendency towards AQC-like searches as P is increased, however for larger

values of κ an AQC search ceases to ever be optimal and hybrid or QW searches are

preferred. As κ is increased, there is a localized trend for more AQC-like searches to

be optimal, however this is punctuated with discontinuous changes to a more QW-like

search. The reason for these discontinuous changes can be seen in the right plots of

Fig. 6.8. The boundaries where another run is required correspond exactly to the

regions where the optimal value of α suddenly drops. This transition arises when the

decoherence rate κ and/or target success probability P have increased such that the

best performing strategy with r searches drops below P, and another run is required.

In this case the target can be reached by r + 1 lower quality searches. This drop in

the quality required of the single search means a faster, more QW-like search can be
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Figure 6.8: Multiple noisy runs. Optimal hybrid search parameter αo and number
of runs ro for multiple-run searching on an n = 7 hypercube. The optimal search
is that which achieves the target success probability P in the shortest total time
r(tinit + tf ), where tinit and tf are the initialization and run times respectively. Top
row: dependence on tinit and decoherence rate κ when P is fixed to 0.95. Black
indicates the region of instantaneous measuring with tf = 0, where r = 382. Bottom
row: dependence on P and κ when tinit is fixed to 10. LHS plots show αo, RHS plots
show ro. Analytic expression (6.20) used for AQC schedule. Time and rate units
given by Eq 6.24.
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used to succeed, and therefore the optimal value of α drops.

3.2 Finite temperature bath

3.2.1 Model and approach

Hybrid quantum searching using a system in contact with a finite temperature envi-

ronment can be modelled using the matrix product state Langevin equation derived

in chapter 4. Here we model the effects of friction and dissipation on the hybrid

searches. An isotropic coupling is assumed, where each qubits is coupled through

σ̂x, σ̂y and σ̂z. In the Langevin description these coupling are accounted for by a fric-

tion term γF,i∂t〈σ̂i〉〈∂X̄jψ|σ̂i|ψ〉, and a noise term ηi(t)〈∂X̄jψ|σ̂i|ψ〉 in the equation of

motion for the matrix product state description of the system in terms of Xj . Here i

denotes the coupling operator, and γF,i denotes frictional coupling strength, and the

friction and noise effects obey a fluctuation dissipation relation 〈ηi(t)ηi(t′)〉 = 2γF,iTi

where Ti is the temperature of the corresponding bath. In these simulations no local

approximation was made for the friction term.

The search problem as formulated here is not well suited to being efficiently simu-

lated for large systems with matrix product states. This is because the marked state

term −|m〉〈m| is highly non-local. However we can still apply the technique of the

matrix product state Langevin equation introduced in chapter 4 to get some insight

into how the hybrid searches fare under noise and dissipation. While the results of the

previous subsection are valid at the limit of high-temperature, the Langevin equation

lets us look at lower temperatures.

3.2.2 Frictional searching

We have seen already the effect of dephasing on the hybrid quantum searches – overall

the fidelity with the marked state P(t) is adversely affected, with QW dynamics being

more robust to this. At cooler temperatures, noise from the environment will no longer

dominate over dissipation, and so dissipation will be more important.

We can explore this by simulating quantum searches in the friction-only limit,

T = 0. The effect of the environment will then be to draw energy out of the system

by driving it to its ground state. Fig 6.9 shows the effect of this for a 3-qubit search

in the case of QW (α = 0), hybrid (α = 0.5) and AQC (α = 1) searches, for search

durations either side of and equal to the optimal QW measuring time. By looking at

the overlap with the marked site in the ground state we can see that the dissipative

effect of the environment is sometimes helpful, and sometimes detrimental. For t < 4

the friction improves the performance of the QW search, and the short-time α = 0.5, 1
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Figure 6.9: Frictional hybrid quantum searching. Evolution of marked state proba-
bility P for α = 0 (left), α = 0.5 (centre), and α = 1 (right), both without friction
(dashed) and with friction (dot-dashed). Evolution times less than (top row), equal
to (middle row) and greater than (bottom row) tha optimal QW measuring time are
used. Shown in a dotted line is the marked state probability of the instantaneous
ground state. The effect of friction is to drive the system towards its ground state,
which can prove useful – eg for a short-time QW search – or detrimental, as in the
case of the longer-time hybrid and AQC searches. Time units given in units defined
by Eq 6.24

hybrid and AQC searches. Moreover, at later times the friction delays the first QW

peak and increases its amplitude slightly. On the other hand, for the hybrid and AQC

searches where adiabatic dynamics are used to follow the ground state, the effect of

friction is seen to hamper this process for the two longer search times.

These results give an insight into how dissipation affects the quantum search algo-

rithms presented in this chapter. Friction affecting the system will drive it towards its

ground state, which is quite different for the QW and AQC searches. The QW search

relies on coherent oscillations between eigenstates to rotate the system close to the

marked state. Friction will act to dampen these oscillations towards the ground state.

In the regime of critical or overdamping this will be detrimental as the ground state

will be farther from the marked state than the system can achieve without friction.

However in the underdamped regime the friction can accelerate the initial motion, and

lead to an overshooting of the ground state that can outperform the closed system

dynamics. This initial acceleration is seen in Fig 6.9 for α = 0 at smaller times, and
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the overshooting can be seen in frictional peak in the bottom-left plot.

On the other hand, the adiabatic dynamics relies on following the system ground

state. Fig 6.9 shows that friction can either help or hinder this depending on timescales

involved. At shorter times – ie. faster sweeps far from the adiabatic regime – friction

helps the system follow the ground-state more closely. At longer times the friction

hampers the system’s ability to follow the instantaneous ground state.
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4 Discussion

This chapter has provided a detailed study of the scaling of continuous-time quantum

search algorithms on a hypercube graph. This work is published here [162]. A family

of hybrid search algorithms, that interpolate between quench-like dynamics of a quan-

tum walk (QW) and adiabatically following a slowly-changing Hamiltonian (AQC),

are defined. By demonstrating that in the limit of large systems the dynamics are

dominated by a two-level model we are able to show that the whole family achieve

the optimal
√
N speedup in the large N limit. This provides an ideal scenario to

studying the optimization of a realistic quantum computer – far from the large N

limit, and with imperfect control and isolation from the environment – by tuning the

relative strengths of QW and AQC dynamics.

Our hybrid QW-AQC schedules are an example of the advantages we gain by

treating both QW and AQC as part of the same method of continuous-time quantum

computing [190]. We find that hybrid strategies intermediate between QW and AQC

provide the best quantum search algorithm under a range of realistic conditions.

This work has focussed on the simple case of quantum searching on a hypercube

graph, where optimal AQC schedules5 and QW hopping rates can be derived. The

techniques we used here could easily be extended to hybrid quantum search on other

graphs, and to other quantum walk or adiabatic quantum computing algorithms. For

example, more general ‘fixed point’ searches, where more than one state is marked,

have been studied in the context of both QW [191] and AQC [192], so a similar

hybridization of QW and AQC effects should be straightforward. The single avoided

crossing arguments used here are similar to those used in [168] for random graphs,

suggesting that study of QW-AQC hybridization may be possible here too.

The physical implementations of the hybrid search algorithms studied here can be

thought of as quantum control for optimization and search, with slowly varying con-

trol fields corresponding to the schedules A and B. The result that optimal quantum

speedup is yielded by hybrid schedules, part QW and part AQC, suggests a promis-

ing flexibility in continuous-time quantum computing algorithms. For example, the

Quantum Approximate Optimization Algorithm [193, 194], in which the controls are

rapidly switched between extreme values [195], can be shown to provide optimal quan-

tum speedup for searching [196]. While such a scheme is unfeasible in practice, the

success of hybrid QW-AQC searches suggest that a time-smoothed approximation

may still provide speedup.

5The derivation for searching on the hypercube graph can be found in Appendix C.
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As well as problem size, the performance of a quantum search in a realistic setting

will depend on many other factors. By performing a fairly general and multi-faceted

analysis of such factors, we uncover a landscape where no single protocol dominates.

In asymptotically large systems with perfectly specified problems, a straightforward

QW approach is best. However, this limit is approached slowly, since the success

probability for QW scales only as n, i.e., logarithmically in problem size N . A rich

structure exists for computationally interesting, non-asymptotic sizes. On the other

hand, for asymptotically large systems with some degree of problem misspecification,

interpolated protocols can outperform the QW approach6.

Another important aspect of a realistic setting is the impact of open system ef-

fects. Two regimes were considered: a high-temperature dephasing bath, and a low-

temperature dissipative bath that drives the system towards its ground state. This

reveals a rich structure in the optimal level of hybridization, depending on factors

such as the initialization and readout time, the coupling strength and temperature of

the system’s environment.

This work is motivated by the premise that quantum computing protocols must in

the end take place in physical systems. Protocols involving continuously changing the

Hamiltonian are easier to control than those involving discretely applied logic gates,

and quantum computers implementing such protocols on large numbers of qubits

already exist [197, 198, 199]. The methods and results of this research will enable

better optimization of realistic machines.

6This analysis can be found in the related paper [162]
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Chapter 7

Discussion

In this final chapter I summarize the work of this thesis and describe how its different

aspects relate to the evolution of entanglement structure in open quantum systems.

Suggestions for future developments of this work are given.
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Key to developing new quantum technologies is the ability to manipulate entangled

states of many-body quantum systems. Quantum entanglement has been shown to be

a resource for quantum computing [5], and appears in important bounds in quantum

communication [200]. However for many-body systems entanglement is a structured

concept: many bipartitions of the system can be chosen, and even partitionings into

more than two parts.

In this thesis I have presented research into the both the physics of such systems

and their potential use for quantum technologies. The main techniques used relate

to matrix product state parameterizations of the many-body Hilbert space, which

provide a natural encoding of entanglement structure. In Chapter 3 it was shown

how accurate long-time simulation of matrix product states can be used to study

thermalization of many-body quantum systems in terms of dynamical chaos. This

provides a bridge between quantum and classical accounts of thermalization in many

body quantum systems and gives a complementary account of quantum thermaliza-

tion and integrability. Chapters 4 and 5 describe the development and application of a

Langevin open systems model that uses matrix product state trajectories to account

for a thermal coupling between the system and its environment. Proof-of-concept

studies into using this for real-time ground state finding and sampling thermal dis-

tributions of state variables are presented, as well as a study into how noise and

dissipation affect the generation of entanglement in a spin chain. Chapter 6 focusses

on the practical problem of using continuous-time quantum computing algorithms on

realistic near-term hardware: of intermediate size and subject to unwanted environ-

mental effects. The nature of two different physical processes that can be used to

achieve the same quantum speedup in the unstructured search problem is explored.

The two schemes are hybridized, and the resulting family of algorithms are studied

in the presence of high-temperature and low-temperature baths.

One of the major difficulties in studying many-body quantum systems is the expo-

nentially growing size of the Hilbert space as more bodies are added. The advantage

of using matrix product state based techniques is that for locally entangled states in

one dimension, a finite bond dimension can be sufficient. The resulting manifolds of

matrix product states of fixed bond dimension grows only polynomially with systems

size. By extending matrix product state techniques to the study of chaotic diverg-

ing trajectories, and open systems effects, this advantage is built on to provide new

methods for studying many-body quantum systems.

The main achievements of the research presented here are i. a new technique for

studying quantum thermalization via extracting Lyapunov spectra for chaotic matrix
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product state trajectories, ii. a new technique, and publicly available code library1,

for matrix product state simulations of a Langevin open systems model, and iii. A

detailed study into interpolating different physical mechanisms to gain advantage in

quantum searching on realistic machines.

1Available at github.com/JGMorley/mps_langevin.
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[182] Mária Kieferová and Nathan Wiebe. On the power of coherently controlled quantum

adiabatic evolutions. New Journal of Physics, 16(12):123034, 2014.

[183] Gorjan Alagic and Alexander Russell. Decoherence in quantum walks on the hyper-

cube. Phys. Rev. A, 72:062304, 2005.

[184] Viv Kendon. Decoherence in quantum walks – a review. Mathematical Structures in

Computer Science, 17(6):1169–1220, 2007.
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Appendix A

Extracting the classical

Lyapunov spectrum

Here we provide some additional details of how to extract Lyapunov spectra from

linearised equations of motion, describing the evolution of the displacement between

neighbouring trajectories X(t) and X(t)+dX(t). The asymptotic rate at which these

two trajectories diverge (or converge) is characterized with a Lyapunov exponent. If

the solution for this equation is dX(t) = Y (X, t)dX(0) then the Lyapunov exponent

associated with these trajectories is1

λ = lim
t→∞

1

t
log
|dX(t)|
|dX(0)|

= lim
t→∞

1

t
log |Y (X, t)dX(0)|. (A.1)

For almost all trajectories X(t) and almost all tangent vectors dX(t) the limit in

Eq.(A.1) converges to the largest Lyapunov exponent of the system [91, 92].

Using a similar approach it is possible to calculate the entire Lyapunov spectrum.

Instead of a single trajectory, consider a d-dimensional parallelepiped defined by d

vectors tangent to the manifold at point X(t), U(t) = {dX1(t), dX2(t), ..., dXd(t)}.

The volume of the parallelepiped will evolve over time in a manner determined by the

d Lyapunov exponents

d∑
i=1

λi = lim
t→∞

1

t
log (Vold(Y (X, t)U(0))). (A.2)

Unfortunately, the Lyapunov spectrum cannot be easily extracted using this method.

As t → ∞ the different tangent vectors comprising the parallelepiped all begin to

point in the direction of the largest Lyapunov exponent. Many methods have been

1Here the dX(0) in the denominator leads to zero contribution in the infinite time limit. The
dX(0) in the numerator is left in for consistency with the vectorized expression.
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used to circumvent this issue. We use an algorithm introduced by Bennetin et al.

[99].

An orthonormal basis for the tangent space V(t) = {dX̂1(t), dX̂2(t), ..., dX̂d(t)}

is defined and then evolved for a short time:

U(t+ δt) = Y (X, t)V(t). (A.3)

This evolution rotates and changes the length of each of the unit vectors in V(t). By

performing a QR decomposition on U(t+ δt) we can separate these two effects:

U(t+ δt) = Q(t+ δt)R(t+ δt). (A.4)

V(t+ δt) ≡ Q(t+ δt) is a new orthonormal basis for the tangent space, obtained by

rotating the basis vectors from the previous time step. Since det[U(t+ δt)] =
∏
iRii

the diagonal elements of R(t + δt) capture the extent to which the volume of the

parallelepiped at the previous time step has changed.

This process is repeated iteratively to obtain a sequence of matrices R(t) from

which me may extract the Lyapunov spectrum using

λi = lim
N→∞

1

Nδt

N∑
n=1

log |Rii(nδt)|. (A.5)

When studying finite systems it may be more convenient to calculate Lyapunov ex-

ponents using a time-series approach [201, 202, 203, 204]. This would involve extract-

ing exponents from the evolution of observables, it is currently unclear if exponents

can be accurately calculated in the quantum context using this approach.

172



Appendix B

Testing frictional matrix

product state update

In this appendix I give the background to the checks made of the matrix product

state Langevin code, discussed in Chapter 4, for a dissipative system. This was done

by deriving closed-form equations of motion for a system of two spin-1/2s evolving

under a Heisenberg coupling with local fields:

Ĥ = J
(
σ̂(1)
x σ̂(2)

x + σ̂(1)
y σ̂(2)

y + σ̂(1)
z σ̂(2)

z

)
+ h1σ̂

(1)
z + h2σ̂

(2)
x , (B.1)

where σ̂x,y,z are the usual Pauli operators. Additionally the system is coupled isotop-

trically to oscillator baths. These equations were evolved in Wolfram Mathematica

and the resulting trajectories compared with the MATLAB implementation of the

matrix product state Langevin equation discussed in chapter 4. This allows for a

check of the MATLAB code under entangling and dissipative dynamics, using an

entirely separate implementation.

System parameterization

A system of two spin-1/2s can be parameterized in terms of an orthogonal basis

{|l1, l2〉, | − l1,−l2〉} of joint coherent states, where l is an O(3) vector on the Bloch

sphere. The resulting parameterization is a permanent Schmidt decomposition of the

state partitioned into the individual spins:

|ψ〉 = n1|l1, l2〉+ n2| −l1,−l2〉, (B.2)

where (n1, n2) is a SU(2) spinor whose components give the Schmidt coefficients via

|n1|2 and |n2|2. The spin coherent states | ± li〉 also permit an SU(2) description

173



(li,1, li,2) for spin index i = 1, 2. The spinor components of the n, l1 and l2 can be

parameterized in terms of polar and azimuthal angles on the Bloch sphere:

n1

n2

 =

 cos(ψ/2)

sin(ψ/2)eiβ

 ,

li,1
li,2

 =

cos(θi/2)e−iφi/2

sin(θi/2)e+iφi/2

 . (B.3)

Deriving equations of motion

We can now derived equations of motion for the two-spin system under the Langevin

equation derived in Chapter 4, in the dissipation-only limit of zero temperature. The

method is to start with the Euler-Lagrange equation of motion

d

dt

∂L0

∂q̇
− ∂L0

∂q
+ γ

2∑
i=1

∑
α=x,y,z

d〈σ̂(k)
α 〉
dt

∂〈σ̂(k)
α 〉
∂q

= 0, (B.4)

where the system parameters q ∈ {ψ, β, θ1, φ1, θ2, φ2}, γ is the frictional coupling rate,

and the system-only Lagrangian L0 is given by

L0 = 〈ψ|
(
i∂t − Ĥ

)
|ψ〉 = i〈ψ|ψ̇〉 −H, (B.5)

using the abbreviation H = 〈ψ|Ĥ|ψ〉. The resulting equations of motion for the

system variables can be manipulated into a closed form, which is then integrated

forwards using the NDSolve function in Mathematica.

Computing the Langrangian: The system Lagrangian L0 can be found to be equal to

L0 =
nz
2

(
β̇ +

2∑
k=1

lzkφ̇k

)
−H, (B.6)

where nz = cosψ and lzk = cos θk are the z−components of the corresponding O(3)

vectors.

Deriving Euler-Langrange equations: Choosing q = nz, β, l
z
k in Eq B.4 leads to the

following respective equations of motion:

β̇ +

2∑
k=1

lzkφ̇k − 2∂nzH − 4γṅz = 0 (B.7)

ṅz + 2∂βH = 0 (B.8)

nzl
⊥
k φ̇+ 2∂θk + 2γn2

z θ̇ = 0, (B.9)

where l⊥k = sin θk is the component of l perpendicular to the z-axis. A further equation

174



can be derived by taking q = φk and using Eq B.8 to find

nz l̇
z
k − 2lzk∂βH + 2∂φkH + 2γn2

z(l
⊥
k )2φ̇k = 0. (B.10)

Changing back to the angular variables (ψ, β, θ1, φ1, θ2, φ2) and splitting into the

Hamiltonian and dissipative contributions (so that q̇ = q̇H + q̇diss) we get for the

Hamiltonian parts

β̇H =

2∑
k=1

2 cot θk∂θkH

cosψ
− 2∂ψH

sinψ
, (B.11)

ψ̇H =
2∂βH

sinψ
, (B.12)

θ̇k,H =
−2 cot θk∂βH

cosψ
+

2∂φkH

cosψ sin θk
, (B.13)

φ̇k,H =
−2∂θkH

cosψ sin θk
, (B.14)

and for the dissipative parts

β̇diss = 2γ cosψ

2∑
k=1

cot θkθ̇
k − 4γ sinψ ψ̇, (B.15)

ψ̇diss = 0, (B.16)

θ̇k,diss = 2γ cosψ sin θkφ̇k, (B.17)

φ̇k,diss =
−2γ cosψ

sin θk
θ̇k. (B.18)

The structure of these equations is that each of the Hamiltonian terms depends on

derivatives of the energy H, and each of the dissipative terms depends on a time-

derivative of one of the system variables.

Final equations of motion: These coupled equations of motion can be written as a ma-

trix equation. Letting v = (ψ, β, θ1, φ1, θ2, φ2)ᵀ and ∇ = (∂ψ, ∂β , ∂θ1 , ∂φ1 , ∂θ2 , ∂φ2)ᵀ
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the equations can be written as v̇ = M∇H +N v̇ with

M = −2



0 − 1
sinψ

0 0 0 0

1
sinψ 0 − cos θ1

cosψ sin θ1
0 − cos θ2

cosψ sin θ2
0

0 cos θ1
cosψ sin θ1

0 − 1
cosψ sin θ1

0 0

0 0 1
cosψ sin θ1

0 0 0

0 cos θ2
cosψ sin θ2

0 0 0 − 1
cosψ sin θ2

0 0 0 0 1
cosψ sin θ2

0


,

(B.19)

N = −γ



0 0 0 0 0 0

4 sinψ 0 −2 cosψ cos θ1
sin θ1

0 −2 cosψ cos θ2
sin θ2

0

0 0 0 −2 cosψ sin θ1 0 0

0 0 2 cosψ
sin θ1

0 0 0

0 0 0 0 0 − cosψ sin θ2

0 0 0 0 2 cosψ
sin θ2

0


.

(B.20)

The solution is v̇ = (1 − N)−1M∇H, which can be evaluated by inverting (1 − N).

It turns out an analytical expression can be found for this inversion:

(1−N)−1 =



1 0 0 0 0 0

−2γ sinψ 1 γ cosψ cot θ1
γ2 cos2 ψ+1

γ2 cos θ1 cos2 ψ
γ2 cos2 ψ+1

γ cosψ cot θ2
γ2 cos2 ψ+1

γ2 cos θ2 cos2 ψ
γ2 cos2 ψ+1

0 0 1
γ2 cos2 ψ+1

γ cosψ sin θ1
γ2 cos2 ψ+1 0 0

0 0 −γ cosψ cosecθ1
γ2 cos2 ψ+1

1
γ2 cos2 ψ+1 0 0

0 0 0 0 1
γ2 cos2 ψ+1

γ cosψ sin θ2
γ2 cos2 ψ+1

0 0 0 0 −γ cosψ cosecθ2
γ2 cos2 ψ+1

1
γ2 cos2 ψ+1


.

(B.21)

giving a closed form expression for v̇ and hence the system state.

Using this to test MATLAB code

This closed system of equations was coded in Wolfram Mathematica and integrated

forwards to find trajectories for the variables q(t), from which expectation values for

the local Pauli operators can be derived. This provided an invaluble tool in testing the

MATLAB implementation of the matrix product state Langevin equation: by turning

on and off the parameters J, h1, h2 in the Hamiltonian of Eq B.1, different parts of

the dynamics could be probed. This was particularly useful in rooting out more

subtle bugs in the MATLAB code. Fig 4.3 in Chapter 4 shows agreement between
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the MATLAB and Mathematica implementations when all of J, h1, h2 are non-zero.

As a further tests of cases of the MATLAB when the system is larger than two spins,

this 2-spin dynamics was embedded at various points in a larger spin chain.
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Appendix C

Calculation of optimal

schedule for hypercube search

In this appendix two different schedules for adiabatic search on the hypercube are

presented, both based on a saturation of the adiabatic condition (Eq 6.15). First an

analytical derivation, based on approximate expressions for the energy eigenvalues

of the system. Second, using an exact numerical calculation of the gap. For large

systems the difference between these schedules is small.

1 Analytical derivation of hypercube schedule

Starting from the Hamiltonian for the AQC search on a hypercube, Eq 6.13,

Ĥ(s) = (1− s)
n∑
j=1

1

2
(1− σ̂(j)

x ) + s(1− |m〉〈m|),

we first assume, without loss of generality, that the marked state label m is all zeros.

We then express the Hamiltonian in the symmetric subspace in terms of total spin

operators

Ŝa =
1

2

n∑
j=1

σ̂(j)
a (C.1)

for a ∈ {x, y, z}, which have eigenstates |n2 − r〉a for r ∈ {0, . . . , n}. In this represen-

tation, the marked state is |n2 〉z, and the AQC search Hamiltonian becomes

Ĥ(s) = (1− s)(n2 − Ŝx) + s(1− |n2 〉z 〈
n
2 |). (C.2)

Following Farhi et al [172] to analyze the eigensystem, we obtain the eigenvalue
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equation

1− s
s

=
1

N

n∑
r=0

(
n

r

)
1

r − λ
(C.3)

for the energy eigenvalues Ek = s + (1 − s)λk. Farhi et al [172] solve this at the

minimum gap, occuring at s = sm:

1− sm
sm

=
1

N

n∑
r=1

(
n

r

)
1

r
≡ R1, (C.4)

and show that λ
(gmin)
1,0 ' ±n/(2

√
N) for the two lowest eigenvalues corresponding the

the ground state E0 and first excited state E1.

To obtain the optimal schedule following the method in Roland and Cerf [176],

we need an expression for the gap as a function of time, not just at its minimum. We

expand the eigenvalue equation (Eq C.3) for λ� 1

1− s
s

=
−1

Nλ
+

1

N

n∑
r=1

(
n

r

)
1

r
(1 + λ/r) +O(λ2). (C.5)

Using R1 and R2 from Eqs 6.8, C.4, and 6.22 we obtain

1− s
s

=
−1

Nλ
+R1 + λR2. (C.6)

This quadratic equation in λ has roots

λ =
1

2R2

{
1− s
s
−R1

}
± 1

2

{
1

R2
2

(
1− s
s
−R1

)2

+
4

NR2

} 1
2

(C.7)

and gives for the gap g(s) = (1− s)(λ1 − λ0)

g(s) = (1− s)

{
1

R2
2

(
1− s
s
−R1

)2

+
4

NR2

} 1
2

. (C.8)

To optimize the schedule, we need to solve Eq 6.15

∣∣∣∣dsdt
∣∣∣∣ ≤ ε g2(s)∣∣∣∣〈dĤds 〉

0,1

∣∣∣∣
using the expression for g(s) in Eq C.8. To obtain a suitable approximate value for

〈dĤds 〉0,1, we first calculate dĤ
ds in the symmetric subspace representation of Eq C.2,

dĤ

ds
= −(n2 − Ŝx) + (1− |n2 〉z 〈

n
2 |). (C.9)

It is sufficient to use the maximum value of 〈dĤds 〉0,1, which occurs at sm, where the
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eigenstates |E1,0〉 ' (|n2 〉x ± |
n
2 〉z)/

√
2, giving 〈dĤds 〉

(max)
0,1 ≤ n

4 . We then have the

following equation to solve for s(t)

ds

dt
=

4ε

nR2
2

(1− s)2

{(
1− s
s
−R1

)2

+
4R2

N

}
(C.10)

This can be integrated to obtain

4εt

nR2
2

+ c =
R2

1 − 4R2/N

2
√
R2/N(R2

1 + 4R2/N)2
arctan

{
((1 +R1)2 + 4R2/N)s− (1 +R1)

2
√
R2/N

}

+
1

(1− s)(R2
1 + 4R2/N)

+
R1

(R2
1 + 4R2/N)2

ln

{
(1− s−R1s)

2 + 4R2

N s2

(1− s)2

}
(C.11)

where c is the constant of integration. To obtain the constant, set s = t = 0, giving

c′ = arctan

{
(1 +R1)

√
N

2
√
R2

}
+
R2

1 + 4R2/N

R2
1 − 4R2/N

2
√
R2√
N

(C.12)

where the factors in front of the arctan term have been rearranged to give a more

convenient form for the constant. One can then in principle solve for s(t). However,

the terms on the RHS, apart from the arctan, are potentially problematic as s → 1.

Given that we started with the approximation λ � 1, which occurs at the position

of the minimum gap, we can’t necessarily expect that the solution will be valid for

s → 1. We first note that taking only the arctan term on the RHS gives a schedule

that is valid for all 0 ≤ s ≤ 1, and it provides a runtime proportional to
√
N . If we

don’t discard these extra terms, we can show that they can be neglected, provided we

stop the anneal very slightly before s = 1, but still well past the minimum gap.

To solve for s(t) retaining the full expression, invert the arctan to give

s(t) =
2
√
R2√

N{(1 +R1)2 + 4R2/N}
tan

{
8εt
√
R2

nR2
2

√
N

R2
1 + 4R2/N

R2
1 − 4R2/N

− c′′
}

+
1 +R1

(1 +R1)2 + 4R2/N
, (C.13)
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where c′′ now contains the awkward extra terms,

c′′ =c′ − 1

(1− s)
R2

1 + 4R2/N

R2
1 − 4R2/N

2
√
R2√
N

− R1

R2
1 − 4R2/N

2
√
R2√
N

ln

{
(1− s−R1s)

2 + 4R2

N s2

(1− s)2

}

= arctan

{
(1 +R1)

√
N

2
√
R2

}
+

s

(1− s)
R2

1 + 4R2/N

R2
1 − 4R2/N

2
√
R2√
N

− R1

R2
1 − 4R2/N

2
√
R2√
N

ln

{
(1− s−R1s)

2 + 4R2

N s2

(1− s)2

}
. (C.14)

The arctan argument is large, so the arctan is close to π/2. We note that the extra

terms are small for most values of s, and only become large as s→ 1. To check when

these terms become O(1), for the first extra term we solve

s

(1− s)
R2

1 + 4R2/N

R2
1 − 4R2/N

2
√
R2√
N
' 1 (C.15)

to obtain

s ' 1

1 + 2
√
R2/N

' 1

1 + 4/(n
√
N)

. (C.16)

This is well past the minimum gap, which occurs at s = 1/(1 + R1) ' 1/(1 + 2/n).

Applying the same procedure to the second extra term gives to leading order

s ' 1− e−
√
N/4, (C.17)

which is even closer to s = 1 and further from the minimum gap. Since the transition

probabilities are only significant close to the minimum gap, and hence all the impor-

tant slowing down of the schedule occurs around the gap, what happens this close to

s = 1 has essentially no effect on the success or runtime of the algorithm.

Dropping the extra terms from the solution provides an expression for s(t)

s(t) =
2
√
R2√

N(1 +R1)2
tan

{
8ε
√
R2R

2
1t

n
√
NR2

2

− c′′′
}

+
1

1 +R1
(C.18)

where we have also dropped terms O(1/N), and

c′′′ = arctan

{
(1 +R1)

√
N

2
√
R2

}
. (C.19)

Strictly speaking, this is valid for s . 1
1+4/(n

√
N)

, although in fact it is well-behaved

right up to and including s = 1. From this we can obtain the runtime

ε tf '
π
√
N

4
, (C.20)
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where the two arctan terms have each been approximated by π/2, since their argu-

ments are large, O(
√
N).

2 Numerical derivation of hypercube schedule

The above approach is based on an approximate analytical expression for the gap,

in the large-size limit and expanded around the minimum gap. An alternative is to

calculate the gap exactly at all points s(t) using numerical methods. We do this using

the iterative eigensolving modules in Numpy [205], which enables us to iteratively

solve
∣∣ds
dt

∣∣ = ε4g2(s)/n.

We first define a normalized function

F (s) =

∫ s

0

ds′
1

εg2(s′)
×
[∫ 1

0

ds′
1

εg2(s′)

]−1

, (C.21)

where s is a function of the reduced time τ . To obtain s(τ), we need to invert this

function, s(τ) = F−1(τ). This can be accomplished by the following method.

First define τList to be a linearly spaced list of points between τ = 0 and τ = 1,

and sList to be a list of the corresponding values of s(τ), obtained by applying

F−1(τ) to each element of τList. Defining j(s) equal to the number of elements

in sList which are strictly less than s, we approximate F (s) numerically by F̃ (s),

where we replace the integral by a finite sum plus linear interpolation. Writing s̃j =

1
2 (sList(j(s)) + sList(j(s) + 1))

F̃ (s) =

j(s)∑
j′=1

sList(j′ + 1)− sList(j′)

N g2 (s̃j′)

+
s− sList(j(s))

N g2 (s̃j)
, (C.22)

where N is a normalization factor which is included to ensure that F̂ (s = 1) = 1.

It is straightforward to numerically invert F̂ (s). This can be accomplished by first

finding jmax(s), the largest value of j(s) for which F̂ (s) < τ , and then solving

F̂ (s)|j(s)=jmax(s) = τ (C.23)

for s. Based on this numerical function inversion, we define an iterative method of

converging on the solution for s(n)(τ),

1. Set a linearly spaced sList ∈ [0, 1] and τList ∈ [0, 1] each with the same number

of elements.
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2. Using the values of s in sList, apply F̂−1(τ) to each corresponding element in

τList to generate a new sList.

3. Repeat step 2. with the new sList as input, until it has converged.

The advantage of this iterative method is that, at each iteration, more points in sList

will concentrate in areas where 1/g2 is larger, for instance near the dominant avoided

crossing. By using the previously calculated sList as a mesh in the current iteration,

the protocol can continuously improve the quality of the numerical inverse with a

fixed number of points in sList.
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Appendix D

Numerical methods for

Chapter 6

Our numerical calculations were carried out using the Python programming language

(both Python 2.7 and Python 3.5), making considerable use of the NumPy, SciPy and

Matplotlib packages [206, 205, 207, 208]. High performance computing resources were

not used in this study, although some of the simulations took several days to run on

standard desktop workstations. Most of the simulations consisted of solving the time

evolution of the quantum search algorithm by numerically integrating the Schrödinger

equation using the appropriate Hamiltonian. This was done by diagonalising the

Hamiltonian and exponentiating it in the diagonal basis, before applying it to the

wave function. This process was iterated for time dependent Hamiltonians, rotating

from one instantaneous diagonal basis to the next at small time intervals. For the

high-temperature dephasing studies in Chapter 6, the same process was applied to

the density matrix, with dephasing operators also applied along with the unitary time

evolution.

For larger simulations, we can take advantage of the symmetry in the hypercube

to map the dynamics to a search on the line with appropriately weighted edges, as

given by Eq. (C.2) in appendix C. Provided the initial state is also invariant with

respect this symmetry, the evolution will be restricted to this symmetric subspace.

This allows us to perform simulations for much larger numbers of qubits n . 100,

and hence extract reliable information about the scaling with n from numerics alone.

This provides important checks of the validity of the two-level approximations made

to facilitate the analytical calculations.
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Appendix E

Single avoided crossing model

for quantum search

There are several ways to parameterize a two-state single avoided crossing model. If

we designate the marked state to be the |0〉 state of a qubit, this will be the end

point of the schedule. The initial state needs to be orthogonal to |0〉, i.e., it has to

be |1〉. These two states are the lowest energy eigenstates of 1
2 (1+ σ̂z) and 1

2 (1− σ̂z)

respectively, where the factor of 1
2 makes the eigenenergies zero and one in our units.

We also need a hopping Hamiltonian term σ̂x, to drive transitions between |1〉 and

|0〉. The relative strength of the hopping Hamiltonian is gmin, the minimum gap at

the avoided crossing. The single avoided crossing AQC search Hamiltonian is

Ĥ(AC)(s) = (1− s)Ĥ(AC)
0 + sĤ(AC)

p

= (1− s)
{

1

2
(1+ σ̂z)− gminσ̂x

}
+ s

1

2
(1− σ̂z). (E.1)

The initial state |1〉 is only an approximate eigenstate of Ĥ
(AC)
0 but the approximation

improves as gmin decreases. Solving the eigensystem for this Hamiltonian gives

g(AC)(s) = {(1− 2s)2 + 4g2
min(1− s)2} 1

2 (E.2)

for the gap between the two energy levels. In the limit of small gmin the minimum

gap is gmin and occurs for s = 1
2 . We can then apply the method of [176] to find the

optimal schedule s(t) for this system. Calculating dĤ/ds we find

dĤ

ds

(AC)

= −σ̂z + gminσ̂x (E.3)
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giving a maximum value of one1 for |〈dĤ
(AC)
ds 〉0,1| in the large-size limit. Using

Eq. (6.19) to find the optimal schedule, we need to solve

ds

dt
=
ε[g(AC)(s)]2

|〈dĤAC

ds 〉0,1|
= ε{(1− 2s)2 + 4g2

min(1− s)2}, (E.4)

where the maximum value is used for |〈dĤ
(AC)
ds 〉0,1|. This can be integrated straight-

forwardly to give

arctan

{
2gmin(s− 1) +

2s− 1

gmin

}
= 2gminεt+ c (E.5)

with

c = − arctan

{
2gmin +

1

gmin

}
. (E.6)

From this we find for s = 1 that the runtime t
(AC)
f is given by

ε t
(AC)
f =

π
2 − arctan(gmin)

gmin
' π

2 gmin
− 1, (E.7)

where the approximate expression uses arctan(1/gmin) ' π
2 − gmin for gmin � 1 and

terms of order g2
min have been dropped. The runtime of the optimal schedule thus

depends inversely on the size of the minimum gap, as expected. Solving for s(t) and

dropping terms of order g2
min gives

s(t) ' 1

2
{1− gmin cot [gmin(2εt+ 1)]} . (E.8)

In this limit where gmin � 1, an equivalent way to parameterize Ĥ(AC) is

Ĥ(AC) =
gmin

2
[f(t)σ̂z − σ̂x] , (E.9)

where −∞ < f(t) <∞. This form is obtained by taking (1− 2s(t))/gmin → f(t) and

shifting the zero point of the energy scale to the middle of the avoided crossing. As

f(t) changes from −∞ to∞ it passes through zero as the sign of the σ̂z term changes,

when the σ̂x term drives the transition from |1〉 to |0〉. Although the σ̂x term is no

longer turned off at the end of the schedule, it becomes negligible in comparison to

the σ̂z term and does not significantly alter the dynamics. This can be intuitively

thought of as scaling all features of Ĥ(AC) other than the avoided crossing to ±∞.

The QW form of the single avoided crossing search Hamiltonian is also simple

to analyze. We deduce the optimal value of γo = 1 from the value of s = 1
2 at the

1Strictly the maximum value is
√

1 + g2min = 1+O(g2min), however this correction simply modifies

ε in what follows, and disappears altogether when terms of order g2min are dropped.
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avoided crossing. We then use Eqns. (6.27) in which βo = 1/(1 + γo) = 1
2 , whence

ĤAC
(QWS) = (1− βo)Ĥ(AC)

0 + βoĤ
(AC)
p

=
1

2

{
1

2
(1+ σ̂z)− gminσ̂x +

1

2
(1− σ̂z)

}
=

1

2
(1− gminσ̂x) (E.10)

The σ̂x term causes deterministic transitions between the two states regardless of their

energies, at a rate determined by gmin. By solving for the dynamics, the time for the

input state |1〉 to evolve to the marked state |0〉 can be shown to be t
(qw)
f = π/gmin.

We can now map between QW and AQC in the avoided crossing model using

Eqs. (6.29) for A(α, β, τ) and B(α, β, τ). Using β = 1
2 = 1/(1 + γo), for s(t) from

Eq. (E.8) we have hybrid schedules

AAC(α, t) =
1− s(t)

α+ 2(1− α)(1− s(t))

BAC(α, t) =
s(t)

α+ 2(1− α)s(t)
. (E.11)
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