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a b s t r a c t 

This article presents an improved batch-to-batch optimisation technique that is shown to be able to bring 

the yield closer to its set-point from one batch to the next. In addition, an innovative Model Predictive 

Control technique is proposed that over multiple batches, reduces the variability in yield that occurs as 

a result of random variations in raw material properties and in-batch process fluctuations. The proposed 

controller uses validity constraints to restrict the decisional space to that described by the identification 

dataset that was used to develop an adaptive multi-way partial least squares model of the process. A fur- 

ther contribution of this article is the formulation of a bootstrap calculation to determine confidence in- 

tervals within the hard constraints imposed on model validity. The proposed control strategy was applied 

to a realistic industrial-scale fed-batch penicillin simulator, where its performance was demonstrated to 

provide improved consistency and yield when compared with nominal operation. 

© 2019 Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

In the pharmaceutical industry, regulatory authorities such as

he Food and Drugs Agency (FDA) are encouraging the adoption

f Quality by Design (QbD) enabling improved product quality

hrough enhanced process control ( Yu et al., 2014 ). Optimal con-

rol strategies can maximize product quality by reducing product

ariability and defects. 

To implement these strategies in the production of specialty

hemicals, such as pharmaceutical products, several approaches are

resented in Bonvin et al. (2006) . These approaches deal with

perational issues commonly found in industry such as the ab-

ence of a steady state and highly non-linear behaviour. Additional

hallenges include infrequent or delayed on-line measurements of

roduct quality, which is typical for the majority of pharmaceutical

perations. 

A variety of modelling approaches have been proposed to

mprove batch operations, these include mechanistic based ap-

roaches, such as in Birol et al., 2002 and Goldrick et al. (2015) ,

here the authors used first principle models to found an optimal

ed-batch strategy in different penicillin production case studies.

nother approach is referred to as Batch–to-Batch (B2B) or run-to-
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un optimisation. B2B manipulates the conditions from one batch

o the next, with the objective of gradually increasing an economic

ost function and/or bringing the end-point quality closer to a de-

ired set-point in the presence of disturbances. Recent studies have

emonstrated the benefits of using B2B in industrial applications,

ee for example ( Liu et al., 2018 ), which provides a review of this

ork. Of particular note to the work proposed in this paper is that

f Yabuki et al. (20 0 0) , where the authors used mid-correction

olicies to control the final quality using a predictive model that

as developed using a knowledge-based approach. A related study

y Camacho et al. (2007) proposed a B2B evolutionary optimiza-

ion methodology, which they demonstrated was able to signifi-

antly increase the end-point quality of a simulated fermentation

rocess, when compared with knowledge based approaches. How-

ver, if the behaviour of the disturbances change from batch to

atch, then model predictive control (MPC) has been shown to be

 more effective technique for ensuring that the end-point quality

f the process meets its desired value ( Flores-Cerrillo and MacGre-

or, 2003 ). 

End-point, or run-end MPC uses the available on-line measure-

ents to provide an estimate of the expected end-point quality at

egular intervals during the batch. The controller then applies cor-

ective action as and when required, to ensure that the product

uality at the end of the batch meets its target. The corrective ac-

ion applied by the MPC will be the adjustment of the manipu-

ated variable trajectories (MVTs). These trajectories can be manip-
BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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ulated from the current time, through to the expected end-point

of the batch. An extensive review of MPC, specifically focused on

its application to chemical engineering applications was reported

by Kumar and Ahmad (2012) . There have been many MPC strate-

gies that have been proposed for chemical process system, which

include the use of classical state-space models to provide quality

predictions, such as the article presented by Sheng et al. (2002) ,

where the authors proposed a new generalised predictive con-

troller for systems where sampling is non-uniform. Alternative ap-

proaches include the use of Multivariate Statistical Process Con-

trol (MSPC) models, such as the one implemented into an end-

point controller by Flores-Cerrillo and MacGregor (2003) to reg-

ulate particle-size distribution in an emulsion polymerization pro-

cess. 

MSPC refer to a collection of statistical-based techniques that

attempt to condense the information contained within large num-

bers of sensor measurements, into a reduced number of compos-

ite variables. In batch control applications, Multi-way Partial Least

Squares (MPLS) has been shown to be a powerful regression tool,

which in combination with adaptive techniques can be used to

provide an approximation of the dynamic characteristics of a batch

process with only a limited quantity of data ( Joe Qin, 1998 ). For

example, Flores-Cerrillo and Macgregor (2004) demonstrated how

MPLS models could be identified for a condensation polymeriza-

tion process and then used within a cost function, that when

solved, using a Quadratic Programming (QP) optimisation approach

could adjust the MVTs to improve the consistency of the process.

The main advantage of using an MPLS model is that the optimisa-

tion could be achieved in the latent variable space of the model,

resulting in significantly less computational overheads. A similar

approach was employed by Wan et al. (2012) for the control of fi-

nal quality in a batch process, but their approach also considered

hard and soft manipulated variable constraints in the QP problem

and applied disturbance rejection control. Their results showed

that a disturbance model in the MPLS-based controller improved

final quality and that the inclusion of constraints in the manipu-

lated variable in the optimisation problem ensured that the upper

and lower bounds were respected. A limitation with the proposed

control system was that the soft constraints, used within the QP

optimisation formulation, needed to be tuned to ensure that the

final quality predictions remained within the score space defined

by the identification data-set. 

Laurí et al. (2013) demonstrated that in the application of end-

point MPC to a fermentation process, there were considerable ben-

efits resulting from the inclusion of hard validity constraints. These

constraints were applied to the MPLS model’s Hotelling’s ( T 2 ) and

Square Prediction Error (SPE) during the optimisation of the con-

troller cost function to ensure that the model did not extrapo-

late too far from the conditions used to identify the model. The

same constraints with adaptations to a B2B optimisation strategy

were applied in ( Duran-Villalobos et al., 2016 ) for a B2B optimisa-

tion, which modified the control strategy presented by Wan et al.

(2012) and solved the QP in the real space, whilst including the ef-

fect of the projection of the future changes in the MVT to the ‘la-

tent’ space. The addition of these terms in the control strategy sig-

nificantly improved its performance; however, the confidence lim-

its used for the constraints ( Laurí et al., 2013 ; Nomikos and Mac-

gregor, 1995a , b Ündey et al., 2003 ) were not clearly specified and

assumed that the data could be approximated by normal and chi-

squared distributions for T 2 and SPE respectively, which was only

true in specific applications. 

The MPLS-based end-point control strategy, proposed in this ar-

ticle, defines confidence limits that are applied to the hard va-

lidity constraints used by Duran-Villalobos et al. (2016) , which

addressing the limitations encountered with the constraints pro-

posed when using in similar control strategies ( Laurí et al., 2013 ;
omikos and Macgregor, 1995a , b ; Ündey et al., 2003 ). The main

ifferences between the work proposed in this article and similar

pproaches ( Flores-Cerrillo and MacGregor, 20 05 , 20 04 ; Wan et al.,

012 ) are that the current approach uses adaptive techniques to

mprove the model from one batch to the next and that the MVT

ptimisation is solved not in the score space but in the real space.

ppendix A shows a comparison of the results using previous

trategies against the proposed approach. 

MPLS-based end-point control requires the future progress of

he process to be estimated. There are various approaches that

ave been proposed for achieving this and the accuracy of the re-

ulting controller is very much dependent on the technique cho-

en. Future estimates of the process variables are determined in

he latent variable space and ‘missing data’ techniques are typi-

ally used for doing this. In this article, the capabilities of two such

echniques are compared and a novel approach is proposed that in-

egrates two control objectives for the regulation of multiple batch

uns. The capabilities of the proposed controller is demonstrated

sing a benchmark simulation of an industrial penicillin fed-batch

ermentation process ( Goldrick et al., 2015 ). Previous studies have

emonstrated how fault detection and diagnosis tools can be ap-

lied to this simulated process ( Luo and Bao, 2018 ). However, there

ave been no studies that have applied model-based control tech-

iques to it. 

The two objectives of the controller proposed in this article are

o: 1. Reach an optimal final penicillin concentration in a B2B op-

imisation campaign, beginning with an a-priori trajectory for the

rimary manipulated variable (glucose feed); 2. Reduce variability

n the final penicillin concentration by adjusting the glucose feed

rajectory within the batch using MPC. 

The structure of this paper begins with an overview of the

ndustrial penicillin simulation and operation methodology in

ection 2 . MPLS and its identification and adaption from one batch

o the next is defined in Section 3 . The two control objectives are

hen formulated in Section 4 and the cost function and QP solu-

ion is described in Section 5 . The results of the B2B optimisation

nd end-point MPC control when applied to the simulation is pre-

ented and discussed in Section 6 . Finally, conclusions are provided

n Section 7 . 

. Case study 

Regarding the test and comparison of alternative strategies for

ndustrial control, Bonvin (1998) holds the view that there is a def-

nite need for realistic benchmarks and that the developed con-

rol strategies should not be oversold but rather evaluated exper-

mentally on pilot-plant and industrial reactors. A notable exam-

le of a realistic simulation of an industrial fermentation process

s presented in Goldrick et al. (2015) . This simulation (IndPenSim:

ww.industrialpenicillinsimulation.com ), available in MATLAB, de-

cribes a complex mechanistic model of a penicillin fermentation

rocess that has been validated using data collected from an in-

ustrial process. The industrial process was a 10 0,0 0 0 l bioreactor,

hich produced the Penicillium chrysogenum strain. 

The main simulation parameters that were used in both the

2B and MPC campaigns described in this article are provided in

able 1 . 

IndPenSim includes random variations in the initial conditions

or several variables, including initial volume and seed concentra-

ions. The simulation also includes within-batch variation in the

enicillin specific production rate, biomass specific growth rate,

ubstrate concentration, acid/base concentration, phenylacetic acid

oncentration, coolant inlet temperature and oxygen inlet concen-

ration. The addition of disturbances in the simulation seeks to

resent a more realistic challenge, with similar variability in pro-

ess parameters typically encountered in industrial operation. 

http://www.industrialpenicillinsimulation.com
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Table 1 

IndPenSim simulation parameters for the B2B and MPC cam- 

paigns. 

Simulation parameter B2B MPC 

Batch total time 230 h 230 h 

Control action interval 230 h 10 h 

Start of the control action 1 h 50 h 

Optimal Penicillin conc. 30 g/L 30 g/L 

Campaign length 50 batches 80 batches 

Measurements interval 1 h 1 h 

Table 2 

IndPenSim simulation parameters used in the MPLS model. 

Input variable Initial condition Initial variability ( + / −) 

CO 2 conc. Off gas 0.038% 0.001% 

DO 2 conc. 15 mg/l 0.5 mg/l 

O 2 conc. Off gas 0.02% 0.05% 

Penicillin conc. 0 g/l 0 g/l 

pH 6.5 ( −) 0.1 ( −) 

Temperature 297 (K) 0.5 (K) 

Volume 5.8e4 l 500 l 
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Table 2 shows the nominal values for the process parameters

hat were used to identify the MPLS model in this work. 

The simulations and control strategies for the B2B and MPC

ampaigns were implemented in Matlab R2017a, utilizing the

lobal Optimization and Optimization toolboxes. 

. MPLS model identification 

The control strategies presented in this article use an MPLS

odel that is extensively described in Duran-Villalobos et al.

2016) . However, this section will present a brief description of the

odel identification process for clarity. 

.1. PLS regression 

PLS regression is a multivariate statistical technique where a

inear regression model is found by projecting the predictor, X , and

esponse, Y , variables into orthonormal vectors in a ‘Latent Vari-

ble’ (LV) space, which explains the maximum covariance between

 and Y . In contrast with standard regression techniques, this re-

ression is particularly well suited when the matrix of predictors,

, presents high multicollinearity among its values, such as mea-

urements over time of typical fermentation processes. 

Eqs. (1) and (2) show the bi-diagonal PLS model proposed my

artens and Naes (1989) . 

 = T P T + E (1)

 = T Q 

T + F (2)

here the matrix of scores, T , contains the values of each row (ob-

ervations) of X in the LV space. The matrix of loadings, P and Q ,

ontain the projection of each column of X and Y , respectively, in

he LV space. And the matrix of residuals, E and F , are matrices of

esiduals between the regression and the data in the identification

et. 

The matrix of responses, Y , can be defined as a vector, y , for

nd-point qualities, such as final penicillin concentration. The work

resented in this article assumes that measurements of the re-

ponse variable are only available at the end of the batch. As a

esult, the estimated value of a response for a new batch, i , can be

escribed as in Eq. (3) . 

ˆ 
 = t Q 

T (3) 
i i 
here the score vector, t i , for a new batch can be obtained by

rojecting the new vector of measurements, x i , into the projection

eight matrix, W , as shown in Eq. (4) 

 i = x i W (4) 

.2. Data structure 

The measured variables in the identification data set, which

ontains measured variables (of size J ), time intervals (of size K )

nd batch number (of size I ); are transformed into a 2-dimensional

rray as shown in Eq. (5) . This transformation allows the PLS

odel to capture time varying dynamics within multivariate data

 Nomikos and MacGregor, 1995a ). 

 3 D ∈ R 

I ×J×K → X 2 D ∈ R 

I ×JK (5) 

n addition, the vector of measurements at each new batch, x i , the

atrix of weights, W , and the matrix of loadings, P , are divided as

hown in Eqs. (6)–(8) . 

 i = 

[
x p u n + �u x f 

]
= 

[
x pu x f 

]
(6) 

 = 

[ 

W p 

W u 

W f 

] 

= 

[
W pu 

W f 

]
(7) 

 = 

[ 

P p 
P u 
P f 

] 

= 

[
P pu 

P f 

]
(8) 

here u n is a vector containing the nominal values for the MVT,

u is a vector containing the optimal change in the MVT. The sub-

cripts represent: p past horizon for measurements, u control hori-

on for the MVT, p u past and control horizon for the MVT, and f

he prediction/future horizon for the measurements. 

.3. Model adaptation 

The MPLS model used in this work is updated at the end of

ach batch that the control system is applied. The objective of this

pdate, which is achieved using the recursive techniques proposed

n Dayal and MacGregor (1997) and Joe Qin (1998) , is to allow

he controller to track the dynamics of the process as the oper-

ting conditions vary as a consequence of the changes imposed by

he B2B optimiser and to ‘refine’ the MPLS model used within the

PC, This adaptation is necessary because the PLS regression can

epresent only the linear dynamics of the process local to the re-

ion of operation that has been used to identify the model. The

ecursive technique employed in this article is shown in Eq. (9) . 

 = 

[
λX i −1 

x i 

]
and y = 

[
λy i −1 

y i 

]
(9) 

here a forgetting factor, λ, is applied to the data collected from

revious batches to ensure that the model forgets the behaviour

f historical batches, but remembers the most recent batches. This

llows the controller to follow substantial changes in the pro-

ess dynamics, which may be non-linear. The approach for select-

ng a suitable value for λ is formulated in Duran-Villalobos et al.

2016) and it must be chosen such that the number of batches is

elevant to the conditions around which the process is currently

perating. In the work presented in this article, the dynamics of

he process did not seem to change substantially through the B2B

nd MPC campaigns, as changes to the value of λ did not offer any

ignificant improvement to the prediction accuracy of the MPLS

odel. Therefore, λ was set to a value of 1 for all the studies pre-

ented in this article. 
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3.4. Number of latent variables 

The dimension of the LV space is usually determined by cross-

validation (CV) to ensure that the resulting model provides a ro-

bust prediction of the response variables ( Camacho et al., 2007 ).

A commonly applied method for determining the dimension of

the LV space for a PLS models is leave-one-out cross-validation

( Martens and Naes, 1989 ). However, this method can result in un-

necessarily large models that can introduce increased risks of over-

fitting. This was demonstrated by Xu and Liang (2001) , where the

results obtained from a multivariate simulation study showed that

a method known as Monte Carlo Cross-Validation (MCCV) provided

improved performance when compared with leave-one-out cross-

validation. 

As a consequence of these results, MCCV was used to find the

number of LVs for each of the models used in this work. The MCCV

approach determines the appropriate number of LVs, A , by ran-

domly drawing a collection of observations, of size v , and using

these observations to identify a PLS model. This process is repeated

N times for each number of LVs, a , as shown in Eq. (10) . Then, the

results for each value of a are compared and the one with the min-

imum value is selected to be A . A basis to select the value of v and

N are presented in Xu and Liang (2001) . 

MC C V ( a ) = 

1 

Nv 

N ∑ 

i = n 
‖ y v , n − ̂ y v , n ‖ (10)

4. Control objectives 

4.1. B2B optimisation 

The first control objective that was applied in this work was

initially formulated in the article by Duran-Villalobos et al. (2016) .

This technique attempts to bring the end-point quality (final peni-

cillin concentration for the case study considered in this work)

closer to the desired set-point by allowing the B2B optimiser to

make adjustments to the MVT (which in this work is the glucose

feed rate). These MVT adjustments were made through considera-

tion of the data collected from previous batches, which were used

to improve the accuracy of an adaptive MPLS model. 

Fig. 1 shows a simplified flowchart of the iterative control strat-

egy used within the B2B optimiser. First, the plant is excited with

a Pseudo Random Binary Signal (PRBS) that was passed through

a low-pass filter and then added to a pre-optimised MVT over a
Fig. 1. Batch to batch (B2B) optimisation flowchart. 
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mall number of batches. Duran-Villalobos et al. (2016) showed

hat 3–8 batches provided enough data to obtain an MPLS model

ith sufficient accuracy and similar results were obtained in this

ork, although it is expected that this is likely to be problem de-

endent. The MPLS model is then used within the QP cost func-

ion that is solved to find an optimal MVT that minimises the

ifference between the desired and predicted end-point qualities.

he optimised MVT is filtered, using a low-pass Finite Impulse Re-

ponse filter with a cut-off frequency of 10% of the maximum fre-

uency as this has been shown to be beneficial in previous stud-

es ( Camacho et al., 2015 , 2007 ; Duran-Villalobos et al., 2016 ). This

ltered MVT is excited with low-amplitude PRBS (3%) and used

hroughout the subsequent batch, and finally, the data collected

rom this new batch is used to update the model and the next

atch run. 1 

A major difference to the approach applied in this

ork, compared with the techniques proposed by Duran-

illalobos et al. (2016) is that the proposed approach, determines

hether or not the current optimised MVT will bring the process

loser to the set-point for the end-point product quality. This

ddition was found to improve significantly the convergence speed

f the B2B optimiser. Eqs. (11)–(13) show how the decision is

arried out from batch to batch. 

 past = min 

(
( y − y sp ) 

2 
)

(11)

 i = ( y i − y sp ) 
2 (12)

 i +1 = 

{
u i if e i < e past 

u epast if e i > e past 
(13)

here e past is the minimum quadratic error found between the

easured end-point qualities, y , and the desired set-point y sp ; e i 
s the quadratic error between the i th end-point quality, y i , and

he set-point, y sp ; u i is the MVT for the i th batch and u epast is the

VT corresponding to e past . 

One of the main challenges in an industrial control strategy is

o deliver the set-point in the presence of disturbances and po-

entially to changes in the dynamics of the process. If any of the

isturbances are highly correlated from one batch to the next, the

nformation from previous batches can be used in the B2B opti-

isation to determine how the current batch should be operated

o mitigate any similar disturbances. However, if the behaviour of

he disturbances is stochastic and changes from batch to batch,

hen within-batch control, using techniques such as MPC, is rec-

mmended ( Flores-Cerrillo and MacGregor, 2003 ). 

.2. MPC 

To ensure that the set-point is met and that variation in prod-

ct quality is reduced, MPC is applied. The MPC strategy adjusts

he MVT at different control action points through the batch, solv-

ng the same QP problem as the B2B optimiser and using a similar

ata-driven adaptive MPLS model. 

Fig. 2 shows a simplified flowchart of the iterative control strat-

gy for the MPC. First, the iterative process uses the same strategy

s the B2B optimiser: the plant is excited with a low filtered PRBS

nd an MPLS model is identified; however, when MPC is applied, a

RBS is applied to a ‘golden’ trajectory which has been previously

ptimised. Then, the MPC strategy is executed using a nested loop

tructure. 
1 The reader is invited to read Duran-Villalobos et al. (2016) for further details. 
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Fig. 2. Model Predictive Control (MPC) flowchart. 
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The inside control loop calculates the future optimal changes

o the MVT, �u , at each m th control point until the batch is com-

lete. This calculation is similar to the strategy presented in Flores-

errillo and MacGregor (2005) , where a QP searches for the score

alue that keeps the change in the score closer to those used in

he identification dataset. The MVT is then obtained by projecting

his new optimised score into a Multivariate Principal Component

nalysis (MPCA) model. In contrast, the MPC strategy described in

his article calculates directly the necessary changes that should be

pplied to the MVT within the QP. This QP, described in Section 5 ,

ncludes a cost function which has the objective of minimizing the

ifference between the future predicted end-point quality and its

et-point. In addition, the constraints imposed on the QP ensure

hat the changes in the MVT remain within the physical capabil-

ties of the plant and the score space region used to identify the

PLS model. 

Once the optimal steps for the MVT are calculated, at control

oint, the batch is run until the next control point, m + 1, were the

ata vector x i , used to predict the end-point quality, is updated

ith the new process measurements to calculate the future opti-

al steps at the m + 1 control point. This process is repeated at

ach control point until the end of the batch. 

At the end of each batch, the outer control loop is imple-

ented: the data from the batch, i, is collected and the MPLS

odel is updated. Then batch, i + 1, is run until the first control

oint using the same ‘golden’ trajectory for the MVT. At this stage,

he control loop is executed again to obtain the optimal MVT at

ach control point until the end of batch, i + 1. This process is re-

eated for each batch until the end of the MPC campaign. 

During the MPC experiments, it was found that at each con-

rol point, the available measurements improved the quality of

he model’s predictions during every batch. It was also found

hat the predictive accuracy of the model was reduced when

onger intervals in the control action were used, which is expected

 Bonvin et al., 2006 ). 

In the results presented in this article, the control interval was

et to 10 h. Reducing the control interval below this was not found

o improve the performance of the control system. The most suit-

ble value for the control interval will be dependent upon the dy-

amics of the process being studied. 
. QP optimisation 

.1. Cost function 

As explained in Section 4 , the optimisation of the MVP seeks to

ring the end-point quality closer to the set-point, while respect-

ng the limits in the decision space defined by the data sued to

dentify the MPLS model. This objective was formulated in Duran-

illalobos et al. (2016) , where a widely used cost function ( Qin and

adgwell, 2003 ) to be minimised is defined as a trade-off between

he square of the error between the set-point and the predicted

utput and the square of any changes made to the MVT. This cost

unction is presented in Eq. (14) . 

in 

�u 

(
ˆ y i − y sp 

)T (
ˆ y i − y sp 

)
+ �u 

T M�u 

s.t. 

⎧ ⎪ ⎨ ⎪ ⎩ 

ˆ y i = t i Q 

T 

lb ≤ u n + �u ≤ ub 
V o l ini + �Vol ≤ V o l max 

J e ≤ 1 and J t ≤ 1 

(14) 

here: 

• The cost function includes a diagonal matrix of weights, M ,

that is used to moderate the change in the MVT made by

the QP optimisation. The diagonal elements in the matrix of

weights, M , were set to a value of 0.01. This value was found

to be a good trade-off between the convergence speed and

aggressiveness of the control action in the MPC. However, in

the B2B optimisation any value less than 0.1 was found to

reach the same convergence speed. 
• The cost function is subject to the calculation of the es-

timated end-point quality expressed in the first constraint.

However, as the values of the future process measurements

are unknown, when the control action is implemented, the

score value for the current batch needs to be estimated us-

ing the missing data techniques, described in Section 5.2 .

The second constraint introduces limits to the MVT, which

are imposed through physical restrictions to the magnitude

of the feed-rate. These constraints, mean-centred, are repre-

sented by the lower and upper bound vectors, lb and ub . 
• The third constraint ensures that the feed rate restricts the

maximum volume in the reactor to below the physical limit

imposed by the vessel, which in this work was 10 0,0 0 0

litres. This constraint is briefly described in Section 5.3 . 
• Finally, the validity constraint limits J e and J t restrict the so-

lution space over which the QP optimisation searches to en-

sure that the solution is within the space of the data used to

identify the MPLS model. Validity constraints were proposed

in Duran-Villalobos et al. (2016) and Laurí et al. (2013) . How-

ever, in this article, the confidence limits that are applied

do not assume that the data follows a normal distribution,

which is explained further in Section 5.4 . 

In the work presented in Duran-Villalobos et al. (2016) , the pre-

icted values of the future measurements were used to calculate

he effect that the change in the MVT had on the predicted out-

ut. In contrast, in this work, the score for the optimised batch is

efined as the sum of the estimated score vector for the past mea-

urements ̂ t i , and the effect in the score change in the MVT, as in

q. (15) . Using this strategy, the value of future measurements is

nnecessary for the calculation of the predicted output. 

 = ̂

 t + �u W u (15) 
i i 
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By substituting Eq. (15) into Eq. (14) , the QP problem, to optimise

the MVT, can be expressed as shown in Eq. (16) . 

min 

�u 

1 
2 
�u 

T H�u + f T �u 

s.t. 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

H = W u Q 

T QW 

T 
u + M 

f T = 

(̂ t i Q 

T − y sp 

)
QW 

T 
u 

lb − u n ≤ �u ≤ ub − u n 

V o l ini + �Vol ≤ V o l max 

J e ≤ 1 and J t ≤ 1 

(16)

5.2. Estimation with missing data 

To optimise the MVT, it is necessary to estimate the future

end-point quality. However, the values of the future measurements

necessary to obtain the score vector, t i , are not available at each

control point. To solve this problem, Flores-Cerrillo and MacGre-

gor (2004) proposed the use of missing data algorithms to estimate

the scores using an existing MPCA or MPLS model. These predic-

tions are possible because such models capture the time varying

structure of the data over the entire batch trajectory, described by

the covariance of the measurements vector. 

There have been many missing data estimation techniques that

have been proposed ( Arteaga and Ferrer, 2002 ), with the Projec-

tion to the Modal Plane (PMP) and the Trimmed Score Regression

(TSR) often cited as the most suitable methods ( Arteaga and Fer-

rer, 2002 ; Ed, 2013 ; García-Muñoz et al., 2004 ; Gins et al., 2009 ;

Vanlaer et al., 2011 ). . 

In the PMP method, the score is estimated by regressing the

vector of known measurements and nominal values of the MVT

into the score space defined by their respective loading matrix val-

ues, P p u , in the identification dataset. The equation to obtain a pre-

diction of the score value, using PMP, is shown in Eq. (17) . 

 

 i = 

[
x p u n 

]
P pu 

(
P T pu P pu 

)−1 
(17)

If the MPLS model is identified using the diagonal method pro-

posed by Wold et al. (1987) instead of the bi-diagonal method pro-

posed by Martens (2001) , then the matrix of weights, W , must be

used instead of the loading matrix, P , ( Nelson and Taylor, 1996 ). 

In contrast, the TSR method seeks to reconstruct the score T

from the trimmed scores T pu through a least squares estimator ma-

trix B , as shown in Eq. (18) . 

T = T pu B = X pu W pu B (18)

This regression model, can then be used to estimate the score

vector for a new batch with missing measurements as shown in

Eq. (19) . 

 

 i = 

[
x p u n 

]
W pu 

(
W 

T 
pu X 

T 
pu X pu W pu 

)−1 × W 

T 
pu X 

T 
pu X W (19)

This method is equivalent to the PMP method if the data matrix,

X is of rank A and, after extracting all the LV there is no error

remaining ( Arteaga and Ferrer, 2002 ). 

5.3. Volume constraints 

The constraint for keeping the volume below the maximum ca-

pacity is similar to the one proposed in Duran-Villalobos et al.

(2016) . However, the case study simulation contains multiple feeds

and discharge rates in addition to an evaporation rate, which all af-

fect the volume. Consequently, the impact of the other variables af-

fecting volume, E ( �V) , were also considered, as shown in Eq. (20) .

K ∑ 

k =1 

u n ( k ) + �u ( k ) ≤ V max − V ini − E ( �V ) (20)

where the expected value of other variables impacting the volume

E( �V ) are defined as the average value of the final volume in the
nitial identification dataset. The reason for this, is that in a real

pplication, the precise values of some of the variables affecting

olume, such as evaporation rate, may not be known. 

Following the mean-centring of the data prior to the MPLS

odel identification, Eq. (20) can be written as Eq. (21) . 

 u S u �u ≤ V max − V ini − μV − i u ( μu + S u u n ) (21)

here i u is a vector of ones with the same length as the MVT, S u 
s a diagonal matrix of the MVTs standard deviation in the identi-

cation dataset and μV is the average value of the final volume in

he identification dataset. 

Having defined E ( �V ) as the mean value in the identification

ataset, μV , introduces a small error into the calculation. However,

espite this, the proposed methodology obtained good approxima-

ions of volume in the case study investigated in this article, en-

uring that the constraints were respected. This can be illustrated

n Fig. 3 , which shows the final volume in the vessel for 50 batches

hat were part of a B2B campaign. 

.4. Validity constraints 

Validity constraints were included to restrict the score space of

he QP solution into a region described by data collected from the

atches used to identify the MPLS model. A useful methodology

or this purpose are the hard validity constraints presented in Laurí

t al. (2014) , where constraints are imposed on the Hotelling’s (T 2 )

nd the Q statistics. 

The T 2 -statistic based validity indicator, J t , is shown in Eq. (22) .

his validity indicator measures the deviation of t i from the score

egion covered by the identification dataset. 

 t = 

t i 
(
S 2 α

)−1 
t T 

i 

J tmax 
(22)

here ( S 2 α) −1 is a diagonal matrix that contains the covariance of

ach LV in the score matrix, T ; and J tmax provides a normalization

ariable for J t in the identification dataset. 

The Q -statistic based validity indicator, J e , is shown in Eq. (23) .

his validity indicator provides a measure of the error between

he predictor vector, x i , and its reconstructed value from the MPLS

odel. 

 e = 

e i e 
T 
i 

J emax 
(23)

here e i is the squared error of projection of the predictor vari-

bles; and J emax provides a normalization variable for J e in the

dentification dataset. 

The squared error of projection for the QP optimisation, for-

ulated in Duran-Villalobos et al. (2016) can be reformulated as

hown in Eq. (24) by adding the effect of �u on the future mea-

urements. 

 i = ̂

 x i 
(
I − W P T 

)
+ �u 

(
I − W u P 

T 
u 

)
+ �uθ

(
I − W f P 

T 
f 

)
(24)

here the future measurements can be estimated by projecting

he estimated score vector, obtained from the missing data algo-

ithms, into the loadings values corresponding to the future mea-

urements. As a result, the vector of predictors, ̂ x i , can be con-

tructed as shown in Eq. (25) . ̂ 

 i = 

[̂ x i u n 
̂ t i P 

T 
f 

]
(25)

The estimator for the effect of �u on the future measurements,

, is obtained from the PMP and TSR missing data algorithms as

hown in Eq. (26) . 

θPMP = P u 
(
P T u P u 

)−1 
P T 

f 

Or 

T SR = W u 

(
W 

T 
u X 

T 
u X u W u 

)−1 
W 

T 
u X 

T 
u X W P T f 

(26)
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Fig. 3. Volume constraints for a B2B optimisation campaign. 
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s previously stated, J tmax provides a normalization parameter for

he T 2 -statistic based validity indicator. This normalization can be

epresented as a confidence interval from which we want to keep

he decision space in the QP optimisation. A well-known upper

onfidence limit for the T 2 -statistic was described in Qin (2003) ,

here the author presented an upper control limit that can be well

pproximated as a chi-squared distribution. This approximation is

nly possible under the condition that the data follows a multi-

ariate normal distribution. Then the normalization variable, J tmax ,

an be defined by Eq. (27) . 

 tmax = χ2 
A,α (27) 

here χ2 is a chi-squared distribution with A degrees of freedom

nd for a significance level α (where the tolerance is 1 − α). 

On the other hand, J emax provides a normalization parameter for

he Q-statistic based validity indicator. This normalization can also

e represented as a confidence interval from which we want to

eep the decision space in the QP optimisation. A good example

or an upper control limit for Q was formulated in Jackson et al.

1979) . This control limit, under the assumption that the data fol-

ows a normal distribution, was calculated from a Gaussian approx-

mation of a normal distribution. Therefore, the normalization vari-

ble, J emax , can be defined by Eq. (28) . 

 emax = δ2 
A,α. (28) 

here χ2 is the approximation of a normal distribution, defined in

in (2003) . 

The assumption that the data follows a normal distribution

s a drawback of these control limits since not all process data

ill present this characteristic. For instance, in the B2B optimisa-

ion campaign presented in this article, the probability distribution

f the data is constantly changing since the end-point quality is

hanging from one batch to the next. This change in the obser-

ations is not random, and causes the data to have a non-normal

istribution. In this work, this was confirmed using a Kolmogorov-

mirnov test ( Ramani, 1974 ). 

A more general approach to defining confidence intervals,

hich do not make assumptions as the distribution of the data

s described in Desharnais et al. (2015) , where the author uses

 bootstrap-resampling technique to calculate confidence intervals

n non-normal datasets. This technique infers confidence intervals

rom an empirical distribution function, assuming that the col-

ected data, having being drawn from the population, are the best

vailable representatives of the population. The confidence inter-
als are estimated from ‘resampled’ datasets, which are formed by

ndividual randomly chosen samples from the original dataset. 

The normalized variables J tmax and J emax can then be defined,

espectively, as shown in Eqs. (29) and (30) 

 tmax = βnb,αdiag 

(
T 
(
S 2 α

)−1 
T T 

)
(29) 

 emax = βnb,αdiag 
(
E E 

T 
)

(30) 

here β is the upper confidence interval calculation using

ootstrap-resampling ( Desharnais et al., 2015 ) and nb is the num-

er of resample datasets (typically 10 0 0–10,0 0 0). 

By using Eqs. (27)–(30) , the validity constraints can then

e formulated as the nonlinear inequality constraints shown in

qs. (31) and (32) . 

J t 

J tmax 
≤ 1 (31) 

J e 

J emax 
≤ 1 (32) 

espite the fact that both Q and T 2 statistics are used for process

onitoring, it is necessary to point out that they provide different

oles in process monitoring. The Q-statistic measures the predic-

ors’ correlation consistency of a certain batch with the identifica-

ion data-set, while the T 2 -statistic measures the distance to the

rigin in the LV subspace. 

. Results and discussion 

The results shown in this section use the same starting seed for

he random number generator that was used in Matlab to intro-

uce variability into the process. This allows an accurate compar-

son to be made of different approaches for a given control cam-

aign, since the generated random numbers are the same for each

pproach. 

The initial pre-optimised feed, used to identify the initial MPLS

odel consisted of 5 batches with a nominal feed trajectory for

oth B2B and MPC campaigns. This nominal feed trajectory con-

isted of a gradual increase from 0 l/h to 50 l/h for the first 4 h and

hen a constant value of 50 l/h for the remainder of the batch. A

ltered ( Duran-Villalobos et al., 2016 ) PRBS of + / −25 l/h was then

dded to the constant feed. 
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Fig. 4. MVT progression for a B2B-TSR optimisation campaign. 
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Other parameters used in the experiments were: 

• Low-pass filter characteristics: Zero–phase low pass Finite

Impulse Response (FIR) filter with a cut-off frequency of 10%

of the maximum frequency (Nyquist frequency). 
• Lower bound constraints for the actuator = = 0 l/h. 
• Upper bound constraints = = 200 l/h. 
• nb for the bootstrap calculation = = 20 0 0. 
• Confidence tolerance of 97%, therefore α = = 0.03. 

6.1. Validity constraints in the B2B campaign 

The objective of the B2B optimisation was to bring the final

penicillin concentration (end-point quality) to a pre-established

set-point (30 g/l), by optimising the trajectory of the sugar feed

flow rate (manipulated variable) from one batch to the next. An

important aspect of the work presented in this article was to ob-

serve the effect of the validity constraints in the B2B campaign. 

Fig. 4 shows how the trajectory of the substrate feed changed

during a typical B2B campaign. What stands out in this figure is

the sharp change in the amplitude of the MVT at the beginning of

the optimisation (from batches 1 to 6, and from batches 6 to 10)

and a very moderate change afterwards (from batches 20 to 50). In

other words, the trajectory converges relatively quickly for the first

10 batches. 

The results for the final penicillin concentration of the B2B

campaign were collected from 30 replicated experiments to ob-

serve the effect of random variability in the progression of the

yield improvement. Each replicate, with different initial random

seeds, collected the results from 50 batches. 

Fig. 5 shows the average final penicillin concentration of 30

replicates for a nominal run and 3 different validity constraint ar-

rangements, of the B2B optimisation campaign using the TSR miss-

ing data technique. In this figure we can observe that the fastest
Table 3 

Evaluation parameters for the B2B-TSR campaign under different validity constrain

Control methodology Yield: mean of batch 50 Dispersion

Nominal run (Open-loop) 21.84 g/l 1.22 g/l 

B2B-TSR without validity constraints 29.31 g/l 1.83 g/l 

B2B-TSR J e < 1 30.12 g/l 1.63 g/l 

B2B-TSR J e < 1 J t < 1 27.16 g/l 4.98 g/l 
onvergence and highest yield is achieved when only the validity

ndicator for the Q-statistic, J e is applied. Fig. 5 also shows that

ith this validity constraint the final penicillin concentration in-

reased gradually to approximately 30 g/l. 

Table 3 shows several important evaluation parameters taken

rom the results displayed in Fig. 5 and compares them with the

esults if open-loop control was applied. The second column shows

he mean of the final penicillin concentration averaged over each

f the 30 replicates for the 50th batch. The third column shows the

nal penicillin concentration standard deviation of the 30 repli-

ates for the 50th batch. Finally, the fourth column shows the

atch at which the final penicillin concentration converges a max-

mum regular value. 

From the results in Fig. 5 and Table 3 we can observe that when

sing only J e , the process converges to a value closer to the set-

oint (30 g/l) than when other constraints were used or when the

rocess is operated in open-loop. This configuration also has the

owest standard deviation at the end of the campaign. By contrast,

he configuration including both validity constraints has the lowest

onvergence speed and the highest standard deviation. 

This high variability caused by the validity constraint imposed

n the T 2 -statistic, J t , can be explained by the wide non-stationary

ange of the identification data that is used at each MPLS model

pdate. This was also observed by Qin (2012) , who states that the

imits on T 2 are not reliable in practice when the scores from pro-

ess data do not follow the assumptions of multivariate normal-

ty. Therefore, limits on Q may reduce type I and type II errors

ompared with limits on T 2 ( Qin, 2003 ). This was corroborated

ith the experimental results of the MPC, which did not show this

etrimental effect. 

Regarding the use of confidence intervals when assuming a nor-

al distribution in the dataset, Fig. 6 shows the average final peni-

illin concentration of 30 replicates, when the 3 different confi-

ence intervals were applied to the B2B optimisation campaign
ts configurations. 

: standard deviation of batch 50 Batch at which convergence achieved 

n/a 

≈Batch 20 

≈Batch 15 

≈Batch 30 



C.A. Duran-Villalobos, S. Goldrick and B. Lennox / Computers and Chemical Engineering 132 (2019) 106620 9 

Fig. 5. Final penicillin concentration mean for the B2B-TSR campaign under different validity constraints configurations. 

Fig. 6. Final penicillin concentration mean for the B2B-TSR campaign under different confidence intervals methodologies. 

Table 4 

Evaluation parameters for the B2B-TSR campaign under different confidence intervals methodologies. 

Control methodology Yield: mean of batch 50 Dispersion: standard deviation of batch 50 Batch at which convergence achieved 

B2B-TSR J e < 1 30.12 g/l 1.63 g/l ≈Batch 15 

B2B-TSR Normal dist. J e < 1 27.00 g/l 4.80 g/l ≈Batch 35 

B2B-TSR Normal dist. Je < 4 30.10 g/l 1.64 g/l ≈Batch 15 
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sing TSR. The methodologies that assumed a normal distribu-

ion used Eqs. (27) and (28) for the confidence intervals, while

he methodologies that did not assume a normal distribution used

qs. (29) and (30) . 

Table 4 shows the same evaluation parameters as Table 3 taken

rom the results displayed in Fig. 6 , the B2B-TSR campaign under

ifferent confidence interval methodologies. 

From Fig. 6 and Table 3 we can observe that the results from

he configuration which assumed the dataset to have a normal dis-

ribution and have the validity constraint J e < 1 has a much lower

onvergence speed and higher standard deviation than the results

rom the configuration which did not assume the dataset to have

 normal distribution. The results of the latter, are similar to those

hich have the validity constraint J e < 4 and assumed the dataset

o have a normal distribution. This result suggests that the QP opti-

isation space is too constrained with the assumption of the data

ollowing a multivariate normal distribution. 
A problem using validity constraints in the B2B optimisation is

hat it can often lead to infeasible problems in the MVT optimisa-

ion. This was found by looking at the poor performance and failed

ptimisations observed in a second case study shown in Appendix

 and previous studies ( Duran-Villalobos et al., 2016 ) when using

alidity constraints. A possible explanation for this issue is that the

roblem is overly constrained due to the changing conditions of

he score space and the variability in the raw materials from one

atch to the next. 

.2. Missing data algorithms in the B2B optimisation campaign 

Another interest of the work presented in this article is to com-

are the use of different missing data algorithms in the estimation

f the end-point quality over the B2B optimisation campaign. 

Fig. 7 shows the average final penicillin concentration of 30

eplicates, for 2 different missing data algorithms (PMP and TSR),
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Fig. 7. Final penicillin concentration mean for the B2B campaign under different missing data algorithms. 

Table 5 

Evaluation parameters for the B2B campaign under different missing data algorithms. 

Control methodology Yield: mean of batch 50 Dispersion: standard deviation of batch 50 Batch at which convergence achieved 

B2B-PMP 30.13 g/l 1.64 g/l ≈Batch 15 

B2B-TSR 30.12 g/l 1.63 g/l ≈Batch 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6 

Evaluation parameters for the B2B campaign under different missing 

data algorithms. 

Control methodology Yield average MSE from the set-point 

No control 29.48 g/l 1.32 g/l 

MPC-PMP 30.05 g/l 0.99 g/l 

MPC-TSR 29.99 g/l 1.08 g/l 

1  

t  

e  

u  

f  

c  

c  

t

 

M  

a  

u  

t

 

p  

c  

f  

o  

e  

p  

p

 

t  

a  

i  

w

of an IndPenSim B2B optimisation campaign. Both methodologies

use the validity constraint J e < 1 without the assumption of mul-

tivariate normal distribution in the dataset. Additionally, Table 5

shows a series of metrics associated with the results displayed in

Fig. 7 . 

Fig. 7 and Table 5 show no significant difference in the results

obtained using PMP or TSR when applied to the QP optimiser in

the B2B campaign. This similarity in these results could be at-

tributed to the equivalence of both methods when the residuals

are negligible. 

The results for the B2B campaign show a significant improve-

ment in the yield. This improvement goes from a mean value of

21.84 g/l to approximately 30 g/l. The improvement also occurs very

quickly, with the yield increasing sharply for the first 10 batches

after the B2B campaign starts (5 batches after the control action

starts), and then a gradual improvement of the yield over several

more batches. Similarly, in Fig. 3 the volume reaches the maximum

volume allowed by the optimisation by batch 10. This suggests a

strong link between the volume in the MVT and the yield, which

is to be expected. 

6.3. Missing data algorithms in the MPC campaign 

As previously stated, the MPC campaign had the objective to

reduce the batch-to-batch variation in the final penicillin concen-

tration under the presence of initial variability in the raw mate-

rials and in-batch fluctuations in the process. This objective was

achieved by repeatedly taking measurements and optimising the

trajectory of the sugar feed flow rate during the batch. For exam-

ple, Fig. 8 shows the progression of the substrate feed rate during

a typical batch of the MPC campaign. The graph shows only small

changes were made to the ‘golden trajectory’ during this batch.

The golden trajectory was the optimal feeding profile suggested in

( Goldrick et al., 2015 ). 

The final penicillin concentration measurements made during

80 batches when MPC was applied, were collected. In each batch,
8 control points were applied. The control action started 50 h af-

er the start of each batch and was repeated every 10 h until the

nd of the batch. The QP optimisation used at each control point

sed validity constraints on both T 2 and Q, as the detrimental ef-

ect of the T 2 -statistic-based validity constraint, present in the B2B

ampaign, was not observed in the MPC campaign. The validity

onstraints were defined without assuming that there was a mul-

ivariate normal distribution in the dataset. 

Fig. 9 shows the final penicillin concentration of an IndPenSim

PC campaign when both of the missing data algorithms (PMP

nd TSR) were applied for a typical batch. This graph show a grad-

al drop in the variability of the final penicillin concentration along

he MPC campaign. 

Table 6 highlights several metrics taken from the results dis-

layed in Fig. 9 . The first column presents the final penicillin con-

entration during the MCP campaign. This metrics record any bias

rom set-point that might exist during the MPC campaign. The sec-

nd column presents the Mean Square Error (MSE) of the actual

nd-point quality relative to the set-point during the MPC cam-

aign. This parameter is a measure of the dispersion from the set-

oint during the MPC campaign. 

The results in Table 6 , along with the results from Fig. 9 , reveal

hat there is no significant difference using the PMP or the TSR

lgorithms in the QP optimisation. The results also show a clear

mprovement in the average yield and the MSE in the campaigns

here MPC was applied. 
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Fig. 8. ‘Golden’ MVT progression for a typical batch using MPC. 

Fig. 9. Final penicillin concentration for the MPC campaign under different missing data algorithms. 
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Table 7 

Evaluation parameters for the B2B campaign under different miss- 

ing data algorithms. 

Control methodology Yield average MSE to the set-point 

MPC-TSR 29.99 g/l 1.08 g/l 

MPC-TSR + B2B-TSR 29.92 g/l 0.69 g/l 

p  

f

 

p  

f  

3  

t  

o  

w

 

s  

i  
.4. MPC campaign after B2B campaign 

The results shown in this section provide a comparison of the

erformance of the MPC campaign using the ‘golden trajectory’

dentified in Goldrick et al. (2015) with the final trajectory that was

etermined following the B2B-TSR campaign. The objective of this

omparison is to observe the effect of using an MPLS-model with

n extensive set of batches and the reproducibility of the MPC per-

ormance when using different ‘golden’ trajectories. 

Fig. 10 compares the final penicillin concentration of an In-

PenSim MPC campaign using the ‘golden trajectory’ feed from

ection 6.3 against the feed trajectory that was optimised using the

2B-TSR approach. To compare approaches using the same seeds

or the random number generator, the batch number shown in

ig. 10 starts from batch 6 since MPC-TSR requires 5 batches of

ata to initialise the model. The graph shows there is slightly less

ariability at the beginning of the MPC campaign, after the process

as optimised using the B2B-TSR technique. 

Table 7 show the same evaluation parameters from

able 6 taken from the results displayed in Fig. 10 . This table

hows no significant difference in the yield from the two ap-
 r  
roaches. However, it highlights the reduction in MSE that results

ollowing B2B-TSR optimisation. 

What stands out from the MPC campaign results is a slight im-

rovement in the final penicillin concentration mean, by moving

rom values of 29.48 g/l in nominal runs to values very close to

0 g/l. Similarly, the consistency when applying MPC was substan-

ially improved by reducing the MSE to the set-point from values

f 1.32 g/l in nominal runs to values close to 1 g/l when the MPC

as applied. 

The MSE was further improved to 0.69 g/l when using the data-

et from a B2B campaign beforehand. A likely explanation for this

s that the MPLS model is much more accurate for the first MPC

uns. This can be inferred from Fig. 10 , where the MPC-TSR tech-



12 C.A. Duran-Villalobos, S. Goldrick and B. Lennox / Computers and Chemical Engineering 132 (2019) 106620 

Fig. 10. Final penicillin concentration for the MPC campaign under different control strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F

 

e  

o  

H  

n

D

S

 

f  

1

R

A  

 

B  

 

B  

 

 

C  

 

C  

D  

 

D  

 

 

D  

 

E  

F  

 

nique, using the B2B-TSR campaign dataset, shows much less vari-

ability than the one without the B2B-TSR campaign, whereas the

variability at the end of the MPC-campaign shows little difference

with both approaches. 

7. Conclusions 

In this article, an improved B2B optimisation strategy was suc-

cessfully implemented on an industrial fed-batch penicillin simu-

lation, greatly improving the yield from a nominal pre-optimised

feed trajectory. The results showed that this control strategy con-

verges to an optimal MVT, reaching the desired end-point quality

consistently, after 10 batches, with only 5 batches used to identify

the initial model. 

An innovative Model Predictive Control strategy was success-

fully applied to the same simulation. This controller brought the

values of the yield closer to the set-point and reduced process

variability along multiple runs. The main advantage of this control

strategy was its ability to reduce the influence of B2B variation in

the quality of the raw materials and process variation through ad-

justments in the feeding strategy rate at multiple times along a

batch. 

Regarding the performance of the different missing data algo-

rithms that were applied when optimising the MVT using QP, the

results did not show a considerable difference when using TSR or

PMP to estimate the end-point quality through the batch. However,

PMP has a more straightforward interpretation and requires less

computing power. 

With respect to the benefits of applying the proposed confi-

dence limits in the validity constraints of the QP, the results were

improved in the B2B campaign when using a bootstrap calcula-

tion than when using other literature approaches which considered

the dataset to have a multivariate normal distribution. This finding

suggests that applying the bootstrap calculation in the validity con-

straints offers a more robust approach than other techniques which

typically require tuning. In spite of these results, previous findings

and a second case study shown in Appendix B suggest that the use

of validity constraints in the B2B optimisation and varying initial

conditions in the raw materials can lead to infeasible QP problems.

This study suggests that the application of the proposed control

strategies, together or individually, to an industrial fed-batch pro-

cess would lead to improved consistency and yield in the existence

of plant and raw materials variability. 
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