Supplementary data

Table	S1 .	Summary	of	demographic	characteristics	of	the	patient	population	from	the
PreDi(CT-TE	3 and CPTR	da	tabase.							

	Demographic characteristics							
Study	N (F/M)ª	Age (yrs)	Weight (kg)	Height (cm)	BMI (kg/m²)	HIV (N/P/U) ^ь	Study locations	
Benator_2002 (CDC22/TB-1001) ¹	1073 (264/809)	43 (18-88)	62 (34-129)	170 (132-203)	21 (13-57)	1002/71/0	North-America	
Burman_2006 (CDC27/TB-1006) ²	332 (112/220)	32 (18-81)	55 (34-141)	166 (131-193)	20 (14-48)	290/42/0	North-America/ Uganda/ South-Africa	
Dorman_2009 (CDC28/TB-1009) ³	435 (123/312)	31 (17-79)	56 (35-105)	168 (130-195)	20 (13-44)	413/22/0	North-America/ Uganda/ South- Africa/Brazil/ Spain	
Johnson_2006 ⁴	51 (7/44)	35 (18-58)	56 (41-76)	169 (149-184)	20 (17-25)	51/0/0	Brazil	
Johnson_2009⁵	393 (154/239)	28 (18-59)	54 (32-98)	165 (142-199)	20 (12-38)	393/0/0	Brazil/Uganda/ Philippines	
Rustomjee_20086	119 (48/71)	34 (18-65)	52 (32-79)	163 (136-185)	20 (15-33)	96/23/0	South-Africa	
Sokolova_2009 ⁷	60 (27/33)	30 (18-55)	62 (45-91)	-	-	60/0/0	Russia	
Thwaites_2011 ⁸	61 (25/36)	35 (15-70)	49 (21-68)	-	-	53/3/5	Vietnam	
Total	2524 (760/1764)	36 (15-88)	58 (21-141)	168 (130- 203) ³	20 (12-57) ^c	2358/161/5		
Continuous variables are presented as median and range; categorical variables are presented as absolute number. N=size of the population; BMI=body mass index.								

^aF= female, **M**= male; ^bN= HIV negative, **P**=HIV positive, **U**= HIV status unknown; ^cCalculated from 2054 patients.

Table S2. Median height values stratified by sex and WHO weight band that were imputed to patients with missing value.

	Height (cm)				
Weight band	Female	Male			
<40 kg	151.0	158.0			
40-54 kg	157.5	166.0			
>54-70 kg	160.0	172.0			
>70 kg	164.0	178.0			

Figure S1. A schematic representation of the selected PK models used for simulations. A) Rifampicin PK model included one-compartment disposition and a transit absorption compartment model ⁹. The drug is absorbed into the central compartment via the rate constant Ktr. Auto-induction was characterized by an enzyme turnover mechanism which assumed RIF concentration (Cp) increasing enzyme production rate (KENZ) and subsequently the enzyme pool (ENZ) in a nonlinear manner, which leads to increased RIF clearance (CL). Normal fat mass (NFM) was included as covariate for CL and volume of distribution (V). B) Isoniazid PK model included a two-compartment disposition with absorption lag time (ALAG) and first-order elimination ¹⁰. Body weight was a covariate on drug disposition (Vc, Vp) and elimination (CL, Q) whereas sex was found to influence central volume of distribution. C) Population PK of pyrazinamide was best described with one-compartment model with firstorder absorption (Ka), first-order elimination and duration of zero-order release (Dur) of the drug from formulation into the absorption site ¹¹. Sex and body weight were included as covariate on Vc and CL. D) Ethambutol PK was described with a two-compartment model with one transit compartment prior to absorption and first order ¹². Body weight was found to influence distribution and elimination process. Allometric scaling was used to describe the effect of size on the disposition of rifampicin, isoniazid and ethambutol. A proportional relationship was used to describe weight effect on CL of pyrazinamide ¹¹.

REFERENCES

- 1. Benator D, Bhattacharya M, Bozeman L *et al.* Rifapentine and isoniazid once a week versus rifampicin and isoniazid twice a week for treatment of drug-susceptible pulmonary tuberculosis in HIV-negative patients: a randomised clinical trial. *Lancet* 2002; **360**: 528-34.
- 2. Burman WJ, Goldberg S, Johnson JL *et al.* Moxifloxacin versus ethambutol in the first 2 months of treatment for pulmonary tuberculosis. *Am J Respir Crit Care Med* 2006; **174**: 331-8.
- 3. Dorman SE, Johnson JL, Goldberg S *et al.* Substitution of moxifloxacin for isoniazid during intensive phase treatment of pulmonary tuberculosis. *Am J Respir Crit Care Med* 2009; **180**: 273-80.
- 4. Johnson JL, Hadad DJ, Boom WH *et al.* Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. *Int J Tuberc Lung Dis* 2006; **10**: 605-12.
- 5. Johnson JL, Hadad DJ, Dietze R *et al.* Shortening treatment in adults with noncavitary tuberculosis and 2-month culture conversion. *Am J Respir Crit Care Med* 2009; **180**: 558-63.
- 6. Rustomjee R, Diacon AH, Allen J *et al.* Early bactericidal activity and pharmacokinetics of the diarylquinoline TMC207 in treatment of pulmonary tuberculosis. *Antimicrob Agents Chemother* 2008; **52**: 2831-5.
- 7. Sokolova GB, Krasnov VA, Reikhrud TA *et al.* [Rifapex, a new antituberculosis agent]. *Antibiot Khimioter* 2009; **54**: 38-41.
- 8. Thwaites GE, Bhavnani SM, Chau TT *et al.* Randomized pharmacokinetic and pharmacodynamic comparison of fluoroquinolones for tuberculous meningitis. *Antimicrob Agents Chemother* 2011; **55**: 3244-53.
- 9. Smythe W, Khandelwal A, Merle C *et al.* A semimechanistic pharmacokinetic-enzyme turnover model for rifampin autoinduction in adult tuberculosis patients. *Antimicrob Agents Chemother* 2012; **56**: 2091-8.
- 10. Wilkins JJ, Langdon G, McIlleron H *et al.* Variability in the population pharmacokinetics of isoniazid in South African tuberculosis patients. *Br J Clin Pharmacol* 2011; **72**: 51-62.
- 11. Wilkins JJ, Langdon G, McIlleron H *et al.* Variability in the population pharmacokinetics of pyrazinamide in South African tuberculosis patients. *Eur J Clin Pharmacol* 2006; **62**: 727-35.
- 12. Jonsson S, Davidse A, Wilkins J *et al.* Population pharmacokinetics of ethambutol in South African tuberculosis patients. *Antimicrob Agents Chemother* 2011; **55**: 4230-7.