
0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 1

The Impact of Code Review on
Architectural Changes

Matheus Paixao, Jens Krinke, DongGyun Han, Chaiyong Ragkhitwetsagul, and Mark Harman

Abstract—Although considered one of the most important decisions in the software development lifecycle, empirical evidence on how
developers perform and perceive architectural changes remains scarce. Architectural decisions have far-reaching consequences yet, we
know relatively little about the level of developers’ awareness of their changes’ impact on the software’s architecture. We also know little
about whether architecture-related discussions between developers lead to better architectural changes. To provide a better
understanding of these questions, we use the code review data from 7 open source systems to investigate developers’ intent and
awareness when performing changes alongside the evolution of the changes during the reviewing process. We extracted the code base
of 18,400 reviews and 51,889 revisions. 4,171 of the reviews have changes in their computed architectural metrics, and 731 present
significant changes to the architecture. We manually inspected all reviews that caused significant changes and found that developers are
discussing the impact of their changes on the architectural structure in only 31% of the cases, suggesting a lack of awareness. Moreover,
we noticed that in 73% of the cases in which developers provided architectural feedback during code review, the comments were
addressed, where the final merged revision tended to exhibit higher architectural improvement than reviews in which the system’s
structure is not discussed.

Index Terms—Software Architecture, Code Reviews, Empirical Software Engineering

F

1 INTRODUCTION

A RCHITECTURAL decisions are among the most impor-
tant decisions to be taken by practitioners [1], due

to the high risks and costs accrued by poor architectural
design [2]. Recent studies have empirically shown that bug-
prone files are more architecturally connected than clean
files [3], [4], and that architectural flaws can lead to increased
maintenance effort [5].

The notions of cohesion and coupling as guides for
software architecture design have been extensively asso-
ciated with different aspects of software quality, such as,
maintainability [6], [7], comprehensibility [8], [9] and code
smells [10], [11]. Structural dependencies between code
components were the most used assets for cohesion and
coupling measurement for many years [12]–[15], where other
sources of information have been taken into account more
recently, such as semantics [16] and revision history [17],
[18]. Nevertheless, recent studies [19], [20] have revealed
structural dependencies to be one of the best proxies for
developers’ perception of cohesion and coupling.

The structural dependencies between source code files
alongside the organisation of the code base in its directory
structure (or package structure for Java systems) represent
the structural view of a software’s architecture. In both the
original 4+1 architectural model proposed by Kruchten [21]

• Dr. Matheus Paixao is a research assistant at State University of Ceara,
Brazil. Corresponding e-mail: matheus.paixao@uece.br

• Dr. Jens Krinke and DongGyun Han are members of the Centre for Research
in Search, Testing and Evolution (CREST) at University College London

• Dr. Chaiyong Ragkhitwetsagul is a lecturer at the Faculty of Information
and Communication Technology, Mahidol University.

• Prof. Mark Harman is a professor at the Centre for Research in Search,
Testing and Evolution (CREST) at University College London and an
Engineering Manager at Facebook London

Manuscript received xxx xx, xxxx; revised xxx xx, xxxx.

and in the seminal book by Rozanski and Wood [1], the
authors indicate that the architecture of a software system
cannot be expressed by a single artefact or diagram. Hence,
a system’s architecture is composed of different views and
perspectives, each of which is tailored to a different subset
of stakeholders [1]. In this context, the structural view of the
architecture is the one with which developers interact most.
Moreover, this is the architectural view that practitioners
commonly use as the groundwork for the design of the other
architectural views [22]. Hence, in this paper, we focus our
analysis on the structural view of the software’s architecture.
In other words, the architectural discussions presented in this
paper refer to the structural organisation of source code in
its directory structure and the dependencies between source
code files.

Despite the large body of work aimed at aiding develop-
ers in the structural organisation of systems [23]–[25], we still
see evidence of structural erosion as systems evolve [26],
[27]. Developers sometimes choose to accept suboptimal
solutions in order to achieve a desired goal, such as short-
term delivery [28]; thereby accruing technical debt [29].
Nevertheless, the reasons for a developer to accept a solution
that will damage the software architecture or to neglect
the refactoring of an eroded architecture are still open for
investigation. As pointed out by recent studies with develop-
ers [19], [20], different systems and different developers work
under different conditions and have different perspectives
regarding architectural quality. This diversity indicates the
need for studies aimed at a better understanding of how
developers deal with structural changes.

In this paper, we extend the body of empirical knowledge
regarding structural changes in software systems by studying
these changes on a day-to-day basis. We investigate the intent
of developers when performing changes that will impact the

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 2

system’s structural architecture. Moreover, we also assess
whether developers are aware of the architectural impact
of their changes at the time these changes are being made.
Finally, we study how architectural changes evolve between
the first proposed version of the change until the last version
of the change that is merged into the system’s repository.

Quantitative studies evaluating metrics and techniques
for structural optimisation [23], [24], [30] show how much
architectural improvement can be achieved in software
systems, but the feedback from developers is usually insuf-
ficient. Qualitative studies interview developers regarding
architectural quality by either using toy systems [31] or
selected past changes [19], [20]. Since surveys are subjective
to bias [32] and the questionnaires usually target the software
system as a whole, such studies fail to capture details and
nuances of each particular architectural change.

In order to investigate the developers’ intent and aware-
ness when performing architectural changes alongside the
evolution of these architectural changes on a day-to-day
basis, we used code review data. During the process of code
review, a change is only incorporated into the system after
an inspection of the patch (code change) being submitted.
The author of the change submits the patch and a natural
language description of the change, where other developers
will have the opportunity to review the code and provide
feedback. Depending on the feedback from the reviewers, the
author of the change may need to improve the patch. In these
cases, the author submits new revisions to the patch until the
change is incorporated into the system or it is discarded.

The code review process provides detailed information
about each change and each revision, which enables us to
perform the empirical study on which we report here. In
this paper, we adopt CROP [33], a recently published open
source code review dataset that links code review data to
complete versions of software systems at the time of review.

In CROP, we provide data for all code reviews and all
revisions of a certain software system. Thus, for each change
and each revision, we have the source code from which
cohesion and coupling metrics can be computed, and a
natural language description that was submitted alongside
the change from which the intent can be inferred.

Based on the change’s description and the feedback
provided by other developers, we can seek evidence of
developers’ awareness, at the time the change was being
made, of the architectural impact of each specific change.
Moreover, by studying the different revisions of architectural
changes during code review, we can investigate how changes
that impact the system’s architecture evolve from when
they are first proposed to when they were finally merged.
We anonymised and protected the developers’ names and
identities in CROP to the best of our ability. Moreover,
all code included in CROP retains its original license and
distribution policies.

After analysing a total of 18,400 code reviews and 51,889
revisions from 7 software systems, we used a metric-based
approach to identify reviews that changed the structural
architecture of the systems. For 731 reviews that significantly
changed the architecture, we performed a manual analysis
and classification of the reviews according to the intent of
the review and the architectural awareness of the developers
involved in the review. The inference of each review’s intent

and architectural awareness is based on the reviews’ descrip-
tion and feedback provided by developers (no interviews
have been performed).

As well as a framework for the identification of significant
architectural changes, this paper made the following specific
contributions:

1) We found that developers discuss the architectural
impact of their changes in only 31% of the reviews
with a noticeable impact on the system’s architecture.
In addition, reviews in which the architecture is
discussed tend to have higher architectural improve-
ment than reviews in which the system’s structure is
not discussed.

2) When considering the reviews in which we iden-
tified architectural discussion, we found that the
architectural quality of the patch was decreased
in 33% of the cases in which developers provided
architectural feedback via comments during the
reviewing process.

3) A dataset of 1,139 manually classified code reviews
that include the intent of each review and the
architectural awareness of developers involved in
each review.

4) A dataset of 103,778 structural architectures extracted
from the source code of 7 open source software
systems.

As this work in an extended version of our conference
paper [34], we present the primary novel contributions of
this extension as follows.
Expansion of evaluation corpus: In our previous work, only
the last merged revision was considered in the empirical
study, while for this paper we included in the analysis
versions of the system for all revisions submitted during the
reviewing process. We now consider 7 open source systems
in our study instead of the 4 previously studied. In total,
these extensions meant we studied 9,500 more code reviews
and 42,989 more revisions than our previous paper.
Sensitivity analysis for threshold selection: Our method
for identification of reviews that caused significant changes
to the architecture is based on an outlier detection procedure.
Instead of selecting the default threshold, as we have done
in the previous submission, we now perform a sensitivity
analysis to select the best-suited threshold for the study.
The evolution of architectural changes: As previously
mentioned, we have now collected data for all revisions
submitted during code review instead of only the last merged
revision (as in our previous work). This allowed us to ask
a new research question: How do architectural changes evolve
during code review?.
Qualitative analysis of negative refactorings: During the
empirical study, we observed cases in which refactorings
caused a degradation to the system’s architecture. In this
paper, we describe a qualitative analysis in which we
investigated in details the causes of such phenomena.

2 BACKGROUND

In an object-oriented context, structural metrics of cohesion
and coupling assess how the code is organised in terms of its
structural dependencies between classes and packages. These

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 3

p1

p2

p3

f1
f2 f3 f6

f4 f5 f8

f9

f7

Fig. 1: Example of a Module Dependency Graph that is used
to represent the structural modularisation of the Java systems
under study. Nodes represent files and edges represent
dependencies between files. Clusters of files (grey regions)
indicate packages.

dependencies capture compile time dependencies, such as
method calls, data access and inheritance. In this paper, the
architectural structure of a system is represented as a Module
Dependency Graph (MDG) [15].

Figure 1 shows an example of an MDG. An MDG is a
graph G(F,D) where the set of nodes F represents the files
in the system and D represents the dependencies between
files. The clusters of files in the MDG are indicated by the
grey areas in the figure and they represent the modules in
the system (i.e. packages in Java systems).

Once the MDG of a system is computed, structural
cohesion and coupling measurements can be used to assess
the system’s structure. In this paper, we employ structural
metrics for cohesion and coupling measurement that have
been quantitatively and qualitatively evaluated in a recent
study [20].

The structural cohesion of the MDG M of a certain
system, consisting of m packages P1, ..., Pm, is assessed by
measuring the lack of structural cohesion, which is computed
as

LStrCoh(M) =

∑m
j=1 LCOFPj

m
, (1)

where LCOFPj
represents the Lack of Cohesion of Files for

package Pj . LCOFPj
is computed as the number of pairs of

files in Pj without a structural dependency between them.
Packages with a high amount of unrelated files will be scored
a high LCOF, and, accordingly, packages with only a few
unrelated files will be scored a low LCOF.

Consider a review that changed the system’s structural
architecture. LStrCoh is used to measure the cohesion of the
system both before (Mi) and after (Mi+1) the review. In this
case, LStrCoh is an inverse metric, where a positive differ-
ence in LStrCoh(Mi+1)−LStrCoh(Mi) indicates higher lack
of cohesion, and therefore, a degradation in structural cohesion
as a result of the review. Similarly, a negative difference in
LStrCoh indicates an improvement in structural cohesion.

The structural coupling of M , StrCop, is computed as

StrCop(M) =

∑m
j=1 FanOutPj

m
, (2)

where FanOutPj
indicates the number of files outside pack-

age Pj that depend on files inside Pj . Similarly to LStrCoh,
a positive difference in StrCop(Mi+1)− StrCop(Mi) after a
review indicates a degradation in structural coupling, and a
negative difference after a review indicates an improvement
in structural coupling.

3 EXPERIMENTAL DESIGN

The goal of this paper is to study the intent and the
architectural awareness of developers when performing
architectural changes on a day-to-day basis. To this end,
we ask the following research questions:
RQ1: What are common intents when developers perform sig-
nificant changes to the architecture? This research question
investigates architectural changes and identifies common
intents behind these changes. Thus, we classify architectural
changes regarding their intent at the time the change was
reviewed, such as New Feature, Refactoring and so on. Using
this approach we can perform our analysis on the most
recurrent intents, thereby achieving a better understanding
of the conditions under which architectural changes were
performed.
RQ2: How often are developers aware of the architectural impact
of their changes on a day-to-day basis? Given the large number
of ramifications of an architectural change, this research
question investigates how often developers are aware of the
impact of their changes on the system’s structure. To answer
it, we inspect changes that had an impact on the architectural
structure to identify whether developers discuss the system’s
architecture during the review of that change.
RQ3: How do awareness and intent influence architectural changes
on a day-to-day basis? Considering the changes with the most
common intents, we assess how the architectural awareness
of developers influences the improvement or degradation of
cohesion and coupling for each change.
RQ4: How do architectural changes evolve during code review? By
comparing the last merged revision to all the other previous
revisions of a certain architectural change, we study how the
code review process influences the evolution of changes that
cause a significant impact on the system’s architecture.

The rest of this section reports the experimental method-
ology we used to answer the research questions presented
above.

3.1 Code Review Data

Code review in modern software development is a
lightweight process in which changes proposed by develop-
ers are first reviewed by other developers before incorpora-
tion in the system. In this paper, we focus on Gerrit [35], one
of the most popular code review systems currently in use
by large open source communities, such as Eclipse [36] and
Couchbase [37]. Although we focus on Gerrit in this paper,
the methodology presented here is adaptable and extensible
for other code review systems.

In Gerrit, a developer submits a new patch (code change)
for review in the form of a git commit, where the commit mes-
sage is used as the review’s description and the commit id is
stored for future reference. For each new submission, Gerrit
creates a Change-Id to be used as a unique identifier of that

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 4

review throughout its reviewing cycle. Other developers of
the systems will then inspect the patch, and provide feedback
in the form of comments. Improved patches are submitted
in the form of revisions according to the feedback until the
review is merged or abandoned, where the first indicates the
code change was incorporated to the system and the latter
indicates the code change was rejected. For the rest of this
paper, we use review and (code) change interchangeably
to indicate a code submission that was manually inspected
by developers and later merged or abandoned. In addition,
we use revisions to indicate intermediate patches submitted
during the reviewing process of a single review according to
the feedback from other developers.

In this paper, we make use of CROP [33], an open source
dataset that links code review data with their respective
software changes. We designed CROP as an extended and
more comprehensive version of the dataset we employed
in our previous paper [34]. Given a software system, CROP
provides a complete reviewing history that includes not only
the code review data such as descriptions and comments
from developers, but also versions of the code base that
represent the software system at the time of review. In CROP,
we collected the Gerrit code review data from both Eclipse
and Couchbase communities. For each of these communities,
CROP provides data for the software systems with most
reviewed changes. We made CROP publicly available to
support other researchers, where we carefully handled de-
velopers anonymisation and software license compliance to
ensure the CROP dataset meets data protection and licensing
policies. For the interested reader, we recommend CROP’s
website1 and original paper [33] for additional information
on the dataset.

For this particular paper, we adopt all the Java systems
included in the CROP dataset. For the Eclipse community, we
study egit, jgit, linuxtools and platform.ui. For the Couchbase
community, we adopt couchbase-java-client, couchbase-jvm-
core and spymemcached. For brevity, the Couchbase systems
will be abbreviated as java-client and jvm-core, respectively.

The consideration of these 7 systems yielded a manual
inspection and classification of 731 code reviews, highlight-
ing the high level of manual analysis involved in this study.
This high level of painstaking manual analysis is required
to form a ground truth, which will assist other researchers
in subsequent studies. Table 1 reports the number of merged
reviews for each system and the time span of the system’s
history we are investigating. Moreover, we also report the
proportion of Java code for each system and size metrics.
Since the proportion of Java code and the size of the systems
have changed throughout their history, we additionally
report median, maximum and minimum values for these
statistics.

Both egit and jgit are aimed at providing git support in
Eclipse. While jgit is a full Java implementation of the git
version control system, egit integrates jgit into the Eclipse
IDE. Linuxtools provides a C/C++ IDE for linux developers,
and platform.ui provides the basic building blocks for user
interfaces built with Eclipse.

Couchbase as a whole is a NoSQL database solution
for both server-side and mobile, where java-client is the

1. https://crop-repo.github.io

official driver to access the Couchbase database using Java,
and jvm-core is a low-level API mostly used by java-client.
Spymemcached is a lightweight Java implementation of a
memory caching system that later became the groundwork
for the development of java-client.

3.2 Computing the Difference in Structural Cohesion
and Coupling for Reviewed Changes

For each system selected to participate in our empirical
study, we computed the difference in structural cohesion and
coupling for each review and revision that have undergone
a process of code review as described in Section 3.1, where
the formal definitions of the metrics being computed are
presented in Section 2. All the metrics considered in this
paper were recently validated by developer studies [19],
[20], in which they were found to be good proxies for the
developers’ perceptions of cohesion and coupling.

The computation of the difference in structural cohesion
and coupling for all code reviews and revisions we collected
is depicted in the first steps of the framework presented in
Figure 2. For each submitted revision, we use CROP to access
the versions of the system before and after the revision took
place, guaranteeing that the observed difference between
them was solely induced by the code change in the revision.

We subsequently filter all the test code in the system’s
code base. Although part of the project, test code is not
included in the end product, and so we chose not to include
it as part of the structural architecture. In this paper, we
employ a two-stage procedure for test code filtering. In the
first stage, every file under a test/ folder is filtered. Next, all
remaining files with Test or test in the file name are manually
analysed, where a decision is reached to either include or
filter the file from the structural architecture analysis.

After filtering test code, we extract the MDG representing
the structural architecture of the system for the versions
before and after the revision. Previous studies that performed
architectural analyses in Java systems relied on bytecode
analysis for structural architecture extraction [20], [24], [38]–
[42]. However, building and compiling the systems for
each revision is a time consuming and error prone activity.
Hence, for this investigation, we extract the architectural
structure of a system directly from its source code by using
Understand [43], a commercial tool for static code analysis
whose set of features include dependencies extraction and
visualisation.

Given the system’s MDG before and after the revision, we
compute the structural cohesion and coupling as defined in
Equations 1 and 2 and compare the cohesion and coupling of
the system before and after the revision. The measurements
of structural cohesion and coupling are separately computed
for each package in the structural architecture, and then
aggregated in an overall score. Hence, when comparing the
cohesion and coupling before and after the revision, we store
not only the overall difference, but also the biggest difference
in a single package. We thus expand our analysis to consider
not only changes to the overall structural architecture, but
also changes that highly affect a single package.

At the end of this process, four different values are
stored for each revision, where each of which indicates
the difference in overall cohesion/coupling and the biggest

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 5

TABLE 1: Descriptive statistics for the systems under study. We report the number of merged reviews and revisions in each
system followed by the time span of our investigation. In addition, we report the median, maximum and minimum values
of size metrics.

Systems No. of
Reviews

No. of
Revisions Time Span

Proportion of Java
Code (%) kLOC Number of

Packages Number of Files Number of Dependencies

Med Max Min Med Max Min Med Max Min Med Max Min Med Max Min

egit 4,502 11,430 9/09 to 11/17 91 98 84 70 1071 16 59 81 19 641 839 137 2,720 4,017 356
jgit 4,463 11,891 10/09 to 11/17 99 99 98 84 114 34 47 71 19 776 990 338 5,650 7,304 1,965
platform.ui 3,802 12,005 2/13 to 11/17 98 99 98 460 472 453 393 404 380 4,386 4,520 4,265 31,237 32,375 30,593
linuxtools 3,695 10,892 6/12 to 11/17 90 93 85 170 205 89 346 434 214 1,776 2,197 1,082 6,473 8,773 3,310
java-client 798 2,394 11/11 to 11/17 100 100 97 9 29 0 16 45 3 184 467 10 704 1,898 14
jvm-core 785 2,184 4/14 to 11/17 100 100 100 13 24 1 43 55 17 328 457 70 1,317 2,093 204
spymemcached 383 1,098 5/10 to 7/17 98 99 98 10 13 7 14 17 11 192 235 133 917 1,113 606

…
code reviews

Description
Comments

c1

cn
Sbefore

Safter

architecture
extraction

MDGbefore

MDGafter

for each code review c1 .. cn

Outliers

test
filtering

system S

cx

cy

Description
Comments

Δ cohesion
Δ coupling

cohesion
coupling

computation

significant reviews

Δ cohesion
Δ coupling

Fig. 2: Framework for the identification of code reviews with significant changes to the system’s architecture. Given a set of code
reviews, our automated framework identifies significant reviews in terms of the impact to system’s architectural structure.

difference in cohesion/coupling for a single package, respec-
tively. In this paper, we computed the differences in cohesion
and coupling for 18,400 code reviews and 51,889 revisions,
which generated a dataset of 103,778 structural architectures
automatically extracted from source code. The data used
as input to our analysis is publicly available [33]. We also
make available all extracted structural architectures and the
respective cohesion and coupling values computed for each
revision [44].

3.3 Identification of Reviews with Significant Architec-
tural Changes

A code review is formed by a collection of revisions that
were sequentially submitted for review until the code change
was merged or abandoned. In this context, the intermediate
revisions of a certain code review can be seen as iterations of
a code change that is not yet ready to be introduced in the
code base. Hence, the final merged revision is the version
of the code change that incorporates all the feedback from
the reviewing process and represents the code review as a
whole. Therefore, when identifying the code reviews that
performed significant changes to the structural architecture
of the system, we rely on the last merged revision of each
code review.

In order to identify the reviews that performed significant
changes to the system’s architecture, we employed an outlier-
based approach. At first, we grouped the set of code reviews
according to the following criteria: We identified all reviews
that showed an improvement in overall cohesion, followed
by all reviews with an improvement in overall coupling.
We then identified all reviews that showed a cohesion
improvement for a certain package, followed by all reviews
with a coupling improvement for a certain package. Similarly,
we identified all reviews that showed a degradation in the
cohesion and coupling measurements presented above. In
total, we grouped the reviews on 8 different subsets, which
stand for the reviews that improve or degrade the cohesion

TABLE 2: Number of reviews identified as significant cohe-
sion and coupling outliers according to Tukey’s method‘. We
report the number of outliers for the reviews with an overall
improvement (⊕) or degradation () in cohesion and/or
coupling. We also report the number of outliers for a single
package. The number of unique outliers considers all aspects
discussed above.

System
Coupling Cohesion Unique

OutliersOverall Single P. Overall Single P.
⊕ 	 ⊕ 	 ⊕ 	 ⊕ 	

egit 5 65 13 78 7 36 18 35 148
jgit 16 93 15 92 14 38 32 33 192
platform.ui 40 57 26 57 12 11 25 17 147
linuxtools 25 49 28 50 20 47 22 48 160
java-client 3 14 2 14 5 12 2 11 32
jvm-core 1 20 2 18 1 6 1 10 34
spymemcached 0 6 1 14 2 2 3 5 18

All 90 304 87 323 61 152 103 159 731

and coupling of either the overall structural architecture or a
single package.

Next, for each of the 8 subsets, we identified the outliers
using Tukey’s method [45], and defined the outlier “fence”
as 1.5 × IQR (interquartile range) from the third quartile
(Q3) over the distribution of measurements in the specific
subset. The outliers indicate the reviews with “significant”
differences in cohesion and coupling relative to the overall
distribution. Table 2 presents the number of reviews iden-
tified as outliers for each subset discussed above, and for
each system under study. Additionally, since reviews can be
identified as outliers in more than one subset, we also report
the number of unique reviews identified as outliers when
considering all subsets.

As one can see from the table, 731 reviews were automat-
ically identified as the ones presenting the biggest changes
in structural cohesion and coupling, indicating that these
reviews are the ones that performed significant changes to
the systems’ architecture. The subset of 731 unique reviews
identified as outliers consists of 17.5% of all reviews with

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 6

architectural change.
We motivate, discuss and validate this methodology for

identification of reviews with significant architectural change
in a study described in Section 4.

3.4 Manual Inspection and Classification of Reviews

Following the automated process described in the previous
section, we considered all 731 outlier reviews, and performed
a manual inspection and classification inspired by the work
of Tufano et al. [46]. The manual classification process con-
sisted of two authors analysing each review and providing
values for a set of tags. Each tag can assume true or false, and
aim at describing a review in two dimensions: intent of change
and architectural awareness.

In order to identify the reviews’ intent, we performed
an open coding classification process. As a starting point,
we considered the set of tags originally proposed by Tufano
et al. During the open coding classification, we augmented
the set of tags with different intents that emerged from the
reviews’ data in a bottom-up fashion. The first column of
Table 3 presents the final set of tags used in the reviews’
classification. A short description of each tag is presented in
the second column of Table 3.

To assess architectural awareness, we rely on the review’s
description and/or comments to ascertain the developers’
awareness of the architectural impact of the change. When
developers discuss the structural architecture in the review’s
description or comments, we can be certain of the developers’
awareness. However, when the architecture is not discussed,
two scenarios are possible. In the first scenario, developers do
not discuss the architecture because they are not aware of the
impact of their changes. In the second scenario, developers
are aware of the architectural impact, but choose not to discuss
it during code review. We are therefore careful to couch over
scientific conclusions in the conduct of our analysis which
is a conservative, safe, under-approximation of developers’
awareness.

Our analysis is focused on reviews that performed
significant changes to the system’s structural architecture. In
this case, when the author does not discuss the architecture
in the review’s description, reviewers who are not familiar
with the change might not be able to understand its impact
on the architecture. Similarly, if a reviewer does not raise
the architecture discussion during the reviewing process, the
author of the change might not perceive the ramifications
of the change being performed. In both cases, the lack of
discussion in regard to the system’s architecture during code
review will lead to a lack of awareness of the developers
involved in the review, which will ultimately lead to a poor
reviewing process. Therefore, the (lack of) discussion of
structural architecture during code review can be used as a
proxy for the developers’ awareness regarding the impact of
their changes.

In order to mitigate threats to internal validity during
the classification process, we employed a two stages classi-
fication. In the first stage, two authors of the paper solely
inspected and classified the reviews according to a guideline
that was discussed, reviewed and agreed by all authors. In
the second stage, the authors discussed all the reviews for
which there was a disagreement in the classification. For

this paper, there was no disagreement in any review after
the second stage of classification. Nevertheless, to make the
classification process as transparent as possible, we present
in the third column of Table 3 excerpts from the description
and/or comments of a subset of code reviews as examples of
relevant discussions we found during our study. Finally, the
complete set of manually classified code reviews is available
at our supporting webpage [44].

4 VALIDATION OF EXPERIMENTAL DESIGN

In this section, we discuss and validate the experimental
design we propose to study code reviews that performed
significant changes to the structural architecture of software
systems. We first evaluate whether the metrics we propose
to measure the architectural change caused by a code review
are appropriate. Next, we perform a sensitivity analysis on
the effect of different thresholds when identifying the code
reviews with significant architectural change.

4.1 Measurement of Architectural Change

We compare measurements of cohesion and coupling be-
tween versions of a software system to detect code reviews
that caused a significant change to the system’s structural
architecture. Even though we employ metrics that have been
recently proposed and validated by developers as good
proxies for their perception of architectural quality [19], [20],
measurements in object-oriented systems may be subjective
to a size bias [47].

To alleviate and comprehend the size bias we might have
in our evaluation corpus, we performed a correlation analysis
between the cohesion and coupling metrics we employ and
commonly used size and churn metrics. In particular, for
each merged revision, we took the before and after versions
of the system and measured the difference in the following
size metrics: LOC, number of packages, number of files and
number of dependencies.

Regarding churn metrics, we collected the number of
changed files, number of changed lines and number of hunks
for each merged revision. After collecting both the size and
churn metrics, we noticed the data was comprised of many
ties. Hence, we employed the Kendall-τ correlation test [48],
which is designed to better deal with ties in the distribution
(Spearman rank correlation can be adversely affected by ties,
for example).

Finally, the correlation coefficients were interpreted as
proposed by Cohen [49] in his seminal book. Cohen’s book
is the de facto guide and reference for statistical analysis not
only in social sciences but also in many software engineering
papers. Thus, the correlation analysis and interpretation
were performed by following the original book and related
software engineering papers. Nevertheless, we report all
correlation coefficients in our supporting webpage [44] to
allow for full replication and validation of our study and
analysis.

For all systems under study, most of the structural metrics
presented either no or small correlation to both size and
churn metrics, where most of the correlation coefficients lie
below 0.4. An exception was observed when considering
structural coupling and number of dependencies, where the

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 7

TABLE 3: Tags used in the manual classification of code reviews. We first present the tag, followed by a short description of
its meaning. Next we present excerpts from the description and/or comments of a subset of code reviews as examples of
relevant discussions we found during our study.

Intent of Change

New Feature Developer is adding a new feature to the system “Add option to replace selected files with version in the git index.”

Enhancement Developer is enhancing an existing feature or code “DfsReftableDatabase is a new alternative for DfsRefDatabase that
handles more operations (...)”

Feature Removal Developer is removing an obsolete feature “Retire org.eclipse.ui.examples.presentation plug-in”

Platform Update Developer is updating the code for a new platform/API “Bump to BREE 1.6 to be consistent”

Refactoring Developer is refactoring the system “Refactor View mapping into distinct class (...) query handling is
moved into a separate class”

Bug Fixing Developer is fixing a bug “Fix failing unit tests introduced by (...)”

Merge Commit Developer is merging two branches “Merge branch stable-0.8”

Not Clear There’s no evidence to suggest any of the previous -

Architectural Awareness

In Description Architectural impact is discussed in the description “Puts the code from IgnoreActionHandler into (...) and reuses it in the
Staging view.”

In Comments Architectural impact is discussed in the comments “Make this public (...) actually I might just say put it in the main JAR
under the io.util package.”

Never Architectural impact is never discussed -

correlation coefficients for these metrics varied from 0.65 to
0.75 between the systems under study. This correlation was
expected as structural coupling is directly computed from
dependencies. Nevertheless, structural coupling performs
a qualified assessment of the system’s structural coupling
as it evaluates not only the number of dependencies as
it is but also how dependencies affect each other in an
overall fashion. In a similar case, the number of files added
and/or removed by a review tend do have a medium to
high correlation with the cohesion of the system. Again, this
correlation was also expected because the number of files in
a package directly affects the computation of the system’s
cohesion. Likewise, the cohesion measurement we employ
performs a qualified assessment of the relationship between
files and dependencies in a package.

4.2 Threshold Sensitivity Analysis
We focus our analysis on the reviews with significant changes
to the system’s architecture as identified by the outliers
over the distribution of the reviews’ cohesion and coupling
measurements (see Section 3.3). There exist many different
techniques for outlier identification, each of which is better
suited to a different scenario. For each code review in our
dataset, we compute the impact of the code change in the
system’s cohesion and coupling. Since we need to identify
the outliers for each metric separately (there might be a code
review that greatly impacts coupling but only negligibly
impacts cohesion), our dataset is composed of univariate data
points. Moreover, the cohesion and coupling metrics do not
follow a Gaussian distribution. Hence, we chose the Tukey’s
method for outlier identification, which is a widely accepted
outlier detection technique for univariate data points with
unknown distribution (non-parametric) [45].

The outlier identification in Tukey’s method relies on
creating a ‘fence’ that functions as a threshold to identify
outliers on the distribution. The fence is computed as

α × IQR, where IQR stands for the interquartile range.
In this scenario, the value attributed to α plays an important
role in our experimental design, as it is the parameter that
will define whether a review had a significant impact on the
architecture or not.

The default configuration for Tukey’s outlier identifica-
tion is α = 1.5 [45], which is the value we have adopted in
our previous work [34]. However, different choices for the
value of α would alter the threshold for the identification
of significant architectural changes, which might thereby
change the results of our research questions. Thus, for this
paper, we performed a study to evaluate how sensitive our
results are to different choices of values for α.

In order to perform this validation study, we need to
manually inspect all the code reviews that impacted the
metrics of cohesion and coupling for a certain system. This
is necessary to build a ground truth of code reviews with
architectural discussion so that we can evaluate different
values of α. A complete analysis of all code reviews that
affected the cohesion and coupling metrics for all systems
we collected would yield an analysis of 4,721 code reviews,
which is an infeasible task. Hence, we restricted this analysis
to include only the systems from the Couchbase community,
which resulted in an analysis of 492 code reviews. Thus,
for each review in the Couchbase systems, we performed
a manual classification regarding the intent of the review
and the developers’ architectural awareness, as described in
Section 3.4.

After the classification, we configured our outlier iden-
tification method to employ different values of α, ranging
from α = 2.0 to α = 0.0, with small decrements of 0.5.
Next, we computed the ratio of code reviews in which the
architecture is discussed for each subset of reviews identified
as outliers for the different values of α. When considering
the default setting (α = 1.5), 84 code reviews were identified
as performing significant architectural changes, out of which

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 8

developers discuss the architecture in 21 of them, accounting
for a 25% architectural discussion ratio. For α = 2.0, we
identified 73 outliers with a 26% discussion ratio. Similarly,
for the other values of α (1.0, 0.5, 0.0), the discussion ratio is
24%, 23% and 24%, respectively.

As one can see, the ratio of architectural discussion for
the different subsets of outliers is consistent regardless of the
value one may attribute to α. Since we have a different ratio
of architectural discussion for the different subset of outliers,
we employed a two-tailed pooled test to infer a statistical
difference in the mean of architectural discussion between
these different populations. Our statistical analysis did not
detect any statistical difference (at the 0.01 significance level)
in the discussion ratio between reviews identified by different
α values. Given the observations we drew from this study, it
is safe to assume that the results of our research questions are
not likely to be affected by the threshold we select to identify
significant architectural changes. Therefore, we choose to use
the default configuration of Tukey’s method (α = 1.5) for
the rest of this paper.

5 EXPERIMENTAL RESULTS

This section describes the results we found for each of our
research questions.

5.1 RQ1: What are common intents when developers
perform significant changes to the architecture?

Table 4 reports the number of reviews identified under
different intents for the 731 outliers. Most of the reviews
that caused a significant change to the system’s structural
architecture were introducing a new feature to the system,
followed by refactoring, enhancement, bug fixing, feature removal,
merge commit and platform update, respectively. An interesting
observation is that most architecturally significant changes
introduce a new feature, even though we have found a weak
correlation between the metrics we used for architectural
change and metrics of size and churn (see Section 4). This
is expected because new code usually has dependencies to
existing code, which affects the structural architecture of
the system, where changes that add/modify several lines of
code, but that do not affect the dependencies will have no
effect in the architecture.

A surprising result is that 9% of architecturally significant
reviews are classified as bug fixing, as one would expect
that bug fixing would not alter the system’s architectural
structure. After an in-depth analysis, we noticed that the
majority of bugs being fixed in these reviews are bugs that
affect the behaviour of the system, instead of bugs that simply
cause an error or throw an exception. For this kind of bugs,
developers had to rework the code so that the system would
exhibit the correct behaviour, which in turn would result in
significant architectural changes.

We found few reviews that performed a feature removal
or a platform update in comparison to the other intents. In
fact, only 6% and 1% of architecturally significant changes
removed a feature or updated the platform, respectively. As
one can see, platform.ui has a considerably higher number of
reviews that perform a feature removal when compared
to the other systems under study. We noticed that the

New Feature
(397)

Enhancement
(163)

Refactoring
(195)

Bug Fixing
(73)

259
(40.5%)

86
(13.4%)

41
(6.4%)

7
(1.1%)

17
(2.6%)

24
(3.7%)

3
(0.4%)

2
(0.3%)

132
(20.6%)

2
(0.3%)

9
(1.4%)

47
(7.3%)

4
(0.6%)

2
(0.3%)

4
(0.6%)

Fig. 3: Classification of reviews with significant architecture
changes for each of the most common intents.

developers of platform.ui tend to often move part of their
modules to Github instead of having the source code in their
own repository.

When considering the most common intents behind
the architectural changes, i.e. new feature, enhancement,
refactoring and bug fixing, we noticed that 22.5% of the
reviews have more than one intent. This is also an expected
finding since architectural changes are usually large and
touch several files at once. Figure 3 presents the number of
reviews for each of the most common intents, including the
number of reviews that share more than one intent.

The biggest intersection occurs between new feature and
enhancement. This happens due to the incremental nature of
software development, where a system is developed in an
iterative fashion, and existing features are improved by small
increments of new functionality. According to our manual
inspection, 67% of the reviews that enhance an existing
feature are doing so by introducing new features, and 27%
of reviews introducing a new feature also have the intent of
enhancing an existing feature.

As an answer to RQ1, we found that new feature, refac-
toring, enhancement and bug fixing are the most common
intents behind architectural changes, accounting for 87%
of the significant architectural changes we collected and
inspected. Moreover, 22.5% of these changes have more than
one intent, and 67% of changes enhancing an existing feature
do so by adding a new feature.

5.2 RQ2: How often are developers aware of the archi-
tectural impact of their changes on a day-to-day basis?
Considering the intents behind architectural changes de-
scribed in RQ1, Table 5 reports the number of reviews
with different levels of architectural awareness according
to our inspection and classification. Reviews for which the
intent is not clear were left out of the analysis. In total, the
number of reviews where the architecture is never discussed
is higher than the number of reviews where the architecture
is discussed in the description, comments or both. This

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 9

TABLE 4: Number of reviews that performed architecturally significant changes grouped by different intents.

Systems New
Feature

Feature
Enhancement

Feature
Removal

Platform
Update Refactoring Bug

Fixing
Merge

Commit
Not

Clear

egit 92 (62%) 43 (29%) 5 (3%) 4 (2%) 33 (22%) 19 (12%) 14 (9%) 0 (0%)
jgit 111 (57%) 31 (16%) 2 (1%) 1 (1%) 49 (25%) 5 (2%) 20 (10%) 0 (0%)
platform.ui 54 (36%) 24 (16%) 25 (17%) 1 (0%) 35 (23%) 32 (21%) 0 (0%) 0 (0%)
linuxtools 83 (51%) 44 (27%) 8 (5%) 3 (1%) 64 (40%) 11 (6%) 1 (1%) 6 (3%)
java-client 25 (78%) 10 (31%) 2 (6%) 1 (3%) 5 (15%) 2 (6%) 1 (3%) 0 (0%)
jvm-core 20 (58%) 7 (20%) 1 (2%) 1 (2%) 7 (20%) 2 (5%) 0 (0%) 3 (8%)
spymemcached 12 (66%) 4 (22%) 2 (11%) 0 (0%) 2 (11%) 2 (11%) 0 (0%) 1 (5%)

All Systems 397 (54%) 163 (22%) 45 (6%) 11 (1%) 195 (26%) 73 (9%) 36 (4%) 10 (1%)

TABLE 5: Number of reviews, for each intent, where the
architecture is not discussed, is discussed only in the review’s
description, only in its comments, or in both.

Intent Discussion (Awareness)
None Description Comments Both

New Feature 297 (74%) 34 (8%) 48 (12%) 18 (4%)
Enhancement 116 (71%) 20 (12%) 17 (10%) 10 (6%)
Feature Removal 36 (80%) 8 (17%) 1 (2%) 0 (0%)
Updating Platform 4 (36%) 4 (36%) 3 (27%) 0 (0%)
Refactoring 92 (47%) 69 (35%) 11 (5%) 23 (11%)
Bug Fixing 60 (82%) 8 (10%) 4 (5%) 1 (1%)
Merge Commit 36 (100%) 0 (0%) 0 (0%) 0 (0%)

Total 641 (69%) 143 (15%) 84 (9%) 52 (5%)

indicates a substantial lack of architectural awareness from
developers when performing changes with significant impact
on the system’s architecture.

For reviews where developers are adding a new feature,
only in 8%, 12% and 4% of the time the architecture was
discussed in the description, comments or both, respectively.
Considering enhancements of an existing feature, the archi-
tecture was discussed 12% of the time in the description, 10%
of the time in comments and 6% of the time in both. Given
that these are among the most common intents when devel-
opers are performing architectural changes (see RQ1), these
results point to an alarming lack of architectural awareness
from developers during the changes where the architectural
impact is the greatest. Finally, for all 731 architecturally
significant reviews, we could find evidence of architectural
awareness in the reviews’ description, comments and both
in only 15%, 9% and 5% of the reviews, respectively.

For the reviews which performed a refactoring to the
system, the total number of reviews where the architecture
is discussed either in the description, comments or both is
higher than the number of reviews where the architecture
is not discussed. Developers were aware of the architectural
impact of their refactorings in 51% of the cases. We noticed
that most of the reviews with a refactoring intent but no
architectural awareness were removing dead code. Dead
code removal is indicated as an architecturally significant
change because of the amount of apparent static dependen-
cies usually removed by such operations. However, this is a
straightforward operation in which its impact on the system
as a whole is minimum and only apparent dependencies are
removed, by definition.

As an answer to RQ2, by inspecting and classifying 731
reviews that performed significant architectural changes, we
found that developers were aware of the impact of their

change in only 29% of the time. Although being one of
the most common intents when performing architectural
changes, reviews that add a new feature or enhance an exist-
ing feature present a poor level of architectural awareness.
Finally, developers present a higher level of awareness when
refactoring the systems, where the architecture is discussed
in the reviews’ description, comments or both in 51% of the
cases.

5.3 RQ3: How do awareness and intent influence archi-
tectural changes on a day-to-day basis?

Table 6 reports the number of reviews that either improved
or degraded the cohesion and coupling of each system under
study for different intents. In RQ1 we showed that there
is a considerable overlap of reviews introducing a new
feature and reviews enhancing existing features. Therefore,
since both these intents are concerned with augmenting and
improving the system’s features, we combined these two
intents under Feature in Table 6. Finally, we consider under
Awareness all reviews in which the structural architecture
was discussed in the review’s description or comments (as
absolute numbers and as percentage of the total number of
reviews).

Consider the coupling degradation of egit, for example.
When the intent was to add a new feature and/or enhance
a feature, we found 78 reviews where the change led to a
degradation of either the overall coupling of the system or the
coupling of a single package. For 10 reviews, corresponding
to 12%, the architecture was discussed during the review.
Similarly, we identified a total of 24 reviews that improved
the cohesion of jgit through refactoring. However, in only 10
(41%) of these the architecture was discussed.

As one can see from the table, when considering all
reviews under study (with and without architectural aware-
ness), most of the reviews identified as performing significant
architectural changes caused a degradation in the systems’
structural cohesion and coupling. This is arguably the
moment which developers should be most aware of the
architectural impact of their changes since poor architectural
decisions might lead to bug proneness [3] and increased
maintenance effort [5].

For feature-related reviews, changes that improve the
architecture tend to discuss the structure of the system more
often than reviews in which the architecture is degraded. In
fact, the ratio of architecture discussion in feature-related re-
views that improve the structure of the system is considerably
higher than the overall discussion ratio for all reviews (see

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 10

TABLE 6: Number of reviews that either improved or degraded the systems’ cohesion and coupling for different intents and
the subset of reviews with evidence of developers’ awareness.

System Intent
Coupling Cohesion

Improvement Degradation Improvement Degradation
Total Awareness Total Awareness Total Awareness Total Awareness

egit
Feature 8 4 50% 78 10 12% 8 5 62% 32 4 12%

Refactoring 7 5 71% 17 10 58% 8 3 37% 7 5 71%
Bug Fixing 2 1 50% 10 3 30% 4 0 — 4 1 25%

jgit
Feature 16 5 31% 88 18 20% 11 5 45% 24 9 37%

Refactoring 9 5 55% 16 13 81% 24 10 41% 13 11 84%
Bug Fixing 1 0 — 1 0 — 1 0 — 3 1 33%

platform.ui
Feature 21 7 33% 35 2 5% 5 2 40% 10 3 30%

Refactoring 21 6 28% 9 3 33% 12 4 33% 1 0 0%
Bug Fixing 3 1 33% 24 1 4% 1 0 0% 8 0 0%

linuxtools
Feature 25 12 48% 46 24 52% 15 7 46% 46 16 34%

Refactoring 16 8 50% 28 16 57% 17 9 52% 21 12 57%
Bug Fixing 5 3 60% 2 0 — 4 3 75% 3 0 —

java-client
Feature 3 2 66% 16 8 50% 4 3 75% 14 4 28%

Refactoring 1 1 100% 3 3 100% 2 2 100% 0 0 —
Bug Fixing 0 0 — 1 1 100% 1 0 — 0 0 —

jvm-core
Feature 0 0 — 20 2 10% 0 0 — 9 2 22%

Refactoring 2 1 50% 4 3 75% 1 1 100% 2 2 100%
Bug Fixing 1 0 — 1 1 100% 0 0 — 0 0 —

spymemcached
Feature 0 0 — 14 1 7% 2 0 — 4 1 25%

Refactoring 0 0 — 2 0 — 0 0 — 0 0 —
Bug Fixing 0 0 — 1 0 — 1 0 — 0 0 —

RQ2). This indicates that architecture discussion during code
review might lead towards code that improves the structure
of the system even when developers are incorporating new
features into the system.

Considering only the reviews in which a Refactoring
was performed, this behaviour is not so pronounced. Based
on our inspection, developers tend to have a similar level
of awareness when the cohesion/coupling of the system is
both improved and degraded. As an example, we found
that developers of linuxtools are aware of the architectural
impact in 52% and 57% of the refactorings that improved
and degraded the system’s cohesion, respectively. This is
a counterintuitive finding as one expects that refactorings
should lead to improvements instead of degradations. In
Section 6 we present a qualitative analysis that sheds light
on these unexpected phenomena.

In order to assess the effect that architectural awareness
has on the improvement and degradation of structural
cohesion and coupling, we report in Figure 4 the distribution
of cohesion and coupling for reviews we found evidence
of architectural awareness and for reviews where we did
not. Since the Couchbase systems have a small number
of significant architectural changes, we include only the
Eclipse systems in Figure 4. For each system, we computed
8 box-plots. First, we report the distribution of cohesion
and coupling for the reviews that improved or degraded
the overall cohesion and coupling of the system. Next, we
report cohesion and coupling for the reviews that improved
or degraded the cohesion and coupling of a single package
in the system. In all box-plots, smaller values of cohesion
and coupling are more desirable for the system’s structural
architecture. For some of the box-plots, the number of
observations is insufficient to perform a meaningful statistical
test. For example, when considering the jgit system and
the number of reviews that improved the single cohesion of
the system, we only had 10 and 22 reviews with and without

architectural awareness, respectively. Hence, we rely on a
manual (and visual) investigation of the box-plots for this
analysis.

Consider the box-plots that depict the distribution of
cohesion and coupling for the reviews that improved either
the system’s overall cohesion and coupling or the cohesion
and coupling of a single package. As one can see, the reviews
in which the architecture was discussed presented larger
improvements in structural cohesion and coupling. When
looking at jgit in particular, reviews with evidence of architec-
tural discussion presented considerably larger improvements
to the coupling and cohesion of single packages in the system,
as can be seen in boxplots (xiii) and (xiv), respectively.

When considering the reviews that degraded the system’s
cohesion and coupling, we found few cases in which the
reviews with evidence of architectural discussion caused less
degradation than reviews in which the architecture was not
discussed. In (xii) for example, reviews with architectural
discussion caused less degradation to the overall cohesion of
jgit than their counterparts with no architectural discussion.
However, this did not replicate to most of the other cases,
where both reviews with and reviews without architectural
discussion had a similar degradation in cohesion and cou-
pling.

The observations from the box-plots provide an indication
that architectural awareness has a positive effect on the
cohesion and coupling of the systems we study for the
reviews in which the structural architecture was improved.
However, our data suggests that, when considering reviews
that degrade the system’s architecture, apart from specific
cases, architectural awareness does not have a noticeable
effect on the actual degradation caused by the review.

In summary, we found that the architecture is more often
discussed in the reviews that improve the cohesion and
coupling of the system when compared to reviews that
degrade cohesion and coupling. By contrast, the architecture

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 11

-2.4
-2.0
-1.6
-1.2

Aware Not Aware
(i)

Improvement of
 Overall Coupling

-25
-20
-15
-10
-5

Aware Not Aware
(ii)

Improvement of
 Overall Cohesion

0.25
0.50
0.75
1.00
1.25

Aware Not Aware
(iii)

Degradation of
 Overall Coupling

5

10

15

20

Aware Not Aware
(iv)

Degradation of
 Overall Cohesion

-14
-12
-10
-8
-6

Aware Not Aware
(v)

Improvement of
 Single Coupling

-600

-400

-200

Aware Not Aware
(vi)

Improvement of
 Single Cohesion

10

15

20

Aware Not Aware
(vii)

Degradation of
 Single Coupling

200

400

600

Aware Not Aware
(viii)

Degradation of
 Single Cohesion

-4.0
-3.5
-3.0
-2.5
-2.0

Aware Not Aware
(ix)

Improvement of
 Overall Coupling

-25

-20

-15

-10

Aware Not Aware
(x)

Improvement of
 Overall Cohesion

0.4

0.8

1.2

Aware Not Aware
(xi)

Degradation of
 Overall Coupling

5

10

15

Aware Not Aware
(xii)

Degradation of
 Overall Cohesion

-60

-40

-20

Aware Not Aware
(xiii)

Improvement of
 Single Coupling

-500
-400
-300
-200
-100

Aware Not Aware
(xiv)

Improvement of
 Single Cohesion

10

20

30

40

Aware Not Aware
(xv)

Degradation of
 Single Coupling

100
150
200
250
300
350

Aware Not Aware
(xvi)

Degradation of
 Single Cohesion

-0.3

-0.2

-0.1

Aware Not Aware
(xvii)

Improvement of
 Overall Coupling

-3

-2

-1

Aware Not Aware
(xviii)

Improvement of
 Overall Cohesion

0.0

0.1

0.2

0.3

Aware Not Aware
(xix)

Degradation of
 Overall Coupling

1

2

3

4

Aware Not Aware
(xx)

Degradation of
 Overall Cohesion

-150

-100

-50

0

Aware Not Aware
(xxi)

Improvement of
 Single Coupling

-400

-300

-200

-100

Aware Not Aware
(xxii)

Improvement of
 Single Cohesion

10

20

30

Aware Not Aware
(xxiii)

Degradation of
 Single Coupling

150
200
250
300
350

Aware Not Aware
(xxiv)

Degradation of
 Single Cohesion

-0.16

-0.12

-0.08

Aware Not Aware
(xxv)

Improvement of
 Overall Coupling

-0.5

-0.4

-0.3

-0.2

Aware Not Aware
(xxvi)

Improvement of
 Overall Cohesion

0.05

0.10

0.15

0.20

Aware Not Aware
(xxvii)

Degradation of
 Overall Coupling

0.5
1.0
1.5
2.0

Aware Not Aware
(xxviii)

Degradation of
 Overall Cohesion

-25
-20
-15
-10
-5

Aware Not Aware
(xxix)

Improvement of
 Single Coupling

-80

-60

-40

-20

Aware Not Aware
(xxx)

Improvement of
 Single Cohesion

10

15

20

25

Aware Not Aware
(xxxi)

Degradation of
 Single Coupling

100

200

300

400

Aware Not Aware
(xxxii)

Degradation of
 Single Cohesion

egit

jgit

platform.ui

linuxtools

Fig. 4: Distribution of cohesion and coupling for reviews where we found evidence of architectural awareness and for
reviews where we did not. We report box-plots for the reviews that improve and degrade the overall cohesion/coupling of
the system and also for the reviews that improve and degrade the cohesion/coupling of a single package in the system.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 12

is similarly discussed in reviews that perform a refactoring.
Finally, by assessing the distribution of cohesion and cou-
pling of the reviews we studied, we noticed that reviews in
which we found evidence of architectural awareness tend
to present larger improvements in cohesion and coupling
when compared to reviews where the architecture was not
discussed.

As an answer to RQ3, architectural awareness is mostly
found in reviews that improve the system’s architecture,
where the architecture discussion often leads to larger
improvements in cohesion and coupling in these reviews.

5.4 RQ4: How do architectural changes evolve during
code review?
In RQ1–3, we focused our analysis on the final merged
revision of each code review as a representative of the
architectural change being introduced to the system. How-
ever, as discussed in Section 3.1, the reviewing process is
iterative, and a single code review goes through a series
of revisions based on the reviewers’ feedback before it is
incorporated into the system. Thus, in this research question,
we investigate how architectural changes evolve during the
code review process.

To answer this question, we consider the architectural
changes identified as outliers that have more than one
revision, and compare the cohesion and coupling values
between the last merged revision and all the previously
submitted revisions. In this paper, we collect 8 different
values of cohesion and coupling for each code review, where
a review might be identified as an outlier for more than one
of these 8 different metrics. As an example, a review may
be identified as architecturally significant for considerably
improving the coupling of a single package even though the
impact on the overall coupling is small. For this particular
review, we only compare the values for improving the
coupling of a single package since this was the metric in
which the review was identified as an outlier. This procedure
avoids accounting for variation in metrics in which the
reviews did not cause a significant impact on the structural
architecture.

In the context of this paper, a code review may evolve in
four different patterns, as detailed next.
Invariant: the cohesion and coupling values are the same for
all revisions submitted during the code review. In this case,
there was no cohesion and coupling evolution. All revisions
submitted during the reviewing process presented the same
improvement or degradation to the system’s structure.
Positive: the last merged revision presents better cohesion
and coupling values than all the previous revisions. Con-
sider a code change where the first revision improved the
cohesion and coupling of the system. In this case, a positive
evolution indicates that the merged revision enhanced the
improvement to the system’s structure in comparison to the
first revision. Differently, if the first revision presented a
degradation to cohesion and coupling, a positive evolution
indicates that the merged revision had a smaller degradation
than the first revision. Although positive, the last revision
still degraded the system’s structure, albeit been ‘less bad’
than the first revision.
Negative: the last merged revision presents worse cohesion
and coupling values than all the previous revisions. Consider

a code change in which the first revision degraded the
system’s structure. In this case, a negative evolution indicates
that the merged revision had a bigger degradation than the
first revision. In other words, the architectural impact only
got worse during the reviewing process. Differently, when
the first revision presents an improvement to the system’s
structure, a negative evolution indicates that the impact of
the merged revision in the system’s structure was not as
good as in the first revision submitted.
Mixed: there are revisions exhibiting both better and worse
cohesion or coupling values than the last revision. In this
particular case, for a code review in which the first revision
improves the system’s structure, we can observe subsequent
revisions with both smaller and bigger improvements than
the first one. Similarly, a code review that degrades the
system’s structure presents a mixed evolution when the
subsequent revisions of a code review present both smaller
and bigger degradations than the first revision.

Consider code review 83313 from egit, for example. This
review was identified as an outlier due to its significant
improvement in the cohesion of a single package in the
system. The cohesion value itself has not changed during
four revisions, which characterises this review as having an
invariant evolution pattern.

By contrast, we now look at review 22194 from jgit, which
has been identified as an outlier because of the significant
degradation it caused to the system’s overall cohesion. For
this code review, the degradation caused by the last merged
revision is smaller than the degradation caused by the first
revision submitted for review. In fact, during its 8 revisions
cycle, twice the developers changed the patch in a way
that ameliorated the degradation in the system’s overall
cohesion. Thus, this review is considered to have had a
positive evolution during code review.

Alternatively, we now consider code review 7633 from
linuxtools. The improvement in the system’s overall coupling
caused by the last revision is smaller than the coupling
improvement of its previous 3 revisions. In this case, the
structural improvement that was finally merged into the
system was not as good as it was on previous revisions of
the code change. Hence, this review is identified as having a
negative evolution.

Finally, we look at review 13688 from java-client, which
caused a significant degradation to the coupling of a single
package in the system. This review had a total of 13 revisions,
and the coupling value of the final revision is, at the same
time, better than the coupling of revision 1, and worse than
the coupling of revision 6. In this scenario, this review is
considered as having a mixed evolution.

Table 7 presents the evolution of architectural changes
during code review according to the scenarios discussed
above and the impact they caused to the system’s structure.
In addition, we group the reviews by different intents and
different levels of architectural discussion. Reviews that
exhibit an invariant evolution pattern are indicated by the
columns Same in the table. Similarly, reviews in which
we observe a positive, negative and mixed evolution are
indicated by the columns Pos, Neg and Mix, respectively.

As one can see from the table, when considering feature-
related reviews, the ratio of reviews in which the architectural
impact remained the same during the reviewing process

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 13

TABLE 7: The evolution of architectural changes during code review. For the reviews that improve or degrade the system’s
architecture, we present the ratio of reviews in which the architectural impact remains the same. In addition, we provide the
ratio of reviews in which the architectural impact only improved during the reviewing process (positive evolution) as well
as the ratio of reviews in which the architectural impact only got worse during the reviewing process (negative evolution).
Finally, we present the ratio of reviews that the final merged revision exhibit both better and worse architectural impact
than previous revisions (mixed evolution). All the reviews are grouped by the developers’ intent and level of architectural
discussion during review.

Intent Discussion
Coupling Cohesion

Improvement Degradation Improvement Degradation
Same Pos Neg Mix Same Pos Neg Mix Same Pos Neg Mix Same Pos Neg Mix

Feature

Never 25% 35% 15% 23% 37% 13% 36% 12% 45% 40% 5% 10% 56% 11% 22% 9%
Description 35% 23% 11% 29% 37% 11% 40% 11% 46% 30% 15% 7% 40% 3% 43% 13%
Comments 13% 34% 26% 26% 14% 10% 41% 33% 15% 30% 46% 7% 15% 5% 50% 30%

Overall 25% 30% 19% 23% 34% 12% 36% 15% 40% 30% 19% 9% 48% 9% 30% 12%

Refactoring

Never 68% 6% 20% 3% 56% 17% 21% 4% 69% 19% 11% 0% 81% 9% 9% 0%
Description 60% 12% 20% 8% 52% 8% 28% 10% 70% 16% 8% 4% 37% 8% 37% 16%
Comments 36% 18% 27% 18% 40% 5% 40% 15% 71% 14% 14% 0% 18% 0% 54% 27%

Overall 61% 10% 21% 7% 52% 10% 26% 10% 70% 17% 9% 1% 46% 7% 34% 12%

Bug Fixing

Never 75% 25% 0% 0% 40% 16% 30% 13% 85% 14% 0% 0% 63% 18% 18% 0%
Description 40% 20% 20% 20% 40% 0% 40% 20% 50% 0% 0% 50% 50% 0% 50% 0%
Comments 0% 100% 0% 0% 0% 0% 100% 0% 100% 0% 0% 0% — — — —

Overall 50% 30% 10% 10% 37% 13% 35% 13% 80% 10% 0% 10% 61% 15% 23% 0%

is often below 50%. In fact, for all feature-related reviews,
cohesion and coupling values are the same in only 31%
of the cases, which indicates that reviews that implement
new features or enhance existing features tend to change
during code review in a rate of 69%. On the other hand, for
reviews where developers had the intent of refactoring or
fixing a bug, the number of reviews in which the metrics of
cohesion and coupling remained the same is considerably
higher. For reviews in which developers refactored the
system, the architectural impact remained the same in 55%
of the cases, for example. In feature-related reviews, we
observed that the code review process is often used to discuss
the behaviour of the system for the new feature, which
explains the higher amount of architectural variation during
the reviewing process of these types of reviews. Differently,
during our manual inspection, we noticed that reviews that
refactor the system or fix a bug tend to be accepted as they
are, without much feedback on how the revision can be
improved.

In addition, one should note that reviews tend to present
changes in their architectural impact when developers pro-
vide feedback regarding the system’s architecture as com-
ments during the reviewing process. For feature, refactoring
and bug fixing reviews, the architectural impact of the latest
revision was different than the initial revision in 85%, 59%
and 75% of the cases, respectively.

We noticed that reviews that improve the system’s
structure tend to have a higher ratio of positive evolution
when compared to reviews that degrade the structural
architecture. Similarly, the ratio of reviews with a negative
evolution is higher in reviews that degrade the architecture
than in reviews that improve the architecture. For reviews
that improve the system’s cohesion and/or coupling, we
observe a positive and negative evolution of 24% and 13%,
respectively. In contrast, we observe a positive and negative
ratio of 7% and 37% for reviews that degraded the system’s
cohesion and/or coupling.

These observations indicate that architectural changes
tend to follow their initial trend, i.e., improvement or

degradation, during the code review process. As an exam-
ple, the architectural impact of reviews that degrade the
system’s structural architecture is only ameliorated (positive
evolution) in 8% of the cases for feature-related reviews.

As previously mentioned, reviews in which the architec-
ture is discussed in the comments tend to exhibit changes
during the code review process. We expected that architec-
tural feedback from other developers during code would
lead to code reviews with a positive evolution, i.e., archi-
tectural changes that improve the system’s structure would
become even better and architectural changes that degrade
the system’s structure would be ameliorated through the
feedback.

We observed the opposite though. We noticed that
reviews in which we can observe architectural feedback
most often result in worst values of cohesion and coupling,
where the ratio of negative evolution for reviews with
architectural discussion in the comments is 33%, compared to
only 18% in its positive counterpart. This is a counterintuitive
finding as we expected that architectural feedback during
code review would lead to architectural improvements,
i.e., architectural improvements would be enhanced and
architectural degradation would be ameliorated.

Finally, the number of reviews with a mixed evolution
is the smallest when compared to the reviews with positive
and negative evolution. In total, only 11% of reviews exhibit
a mixed evolution, while 15% and 25% of reviews present a
positive and negative evolution, respectively.

As an answer to RQ4, we noticed that apart from feature-
related reviews, the impact that architectural changes cause
tend to remain the same during the code review process.
Moreover, when the architectural impact does change, it
tends to follow the trend of the initial revision, where
degradations to the system’s architecture tend to become
worse as the review progresses and improvements tend to
become better.

In addition, we noticed that architectural feedback during
code review leads to adjustments in the patch. However,
these adjustments tend to be negative, indicating that the

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 14

current architectural feedback provided by developers dur-
ing code review is not assisting their peers in improving
patches that cause significant architectural changes, i.e.,
improvements to the systems’ structure are decreased instead
of enhanced and degradations to the systems’ structure are
aggravated instead of ameliorated.

6 QUALITATIVE ANALYSIS OF REFACTORINGS
THAT DEGRADE THE ARCHITECTURE

In RQ3 and RQ4 we observed architectural changes in which
the developers had the intent of refactoring the system but
the merged revision resulted in a degradation of the system’s
structural architecture. This is a counterintuitive finding as
one expects that refactorings should have a positive effect on
the system’s structure. Hence, inspired by the recent study by
Cedrim et al. [50], we define negative refactorings as reviews
in which the developers have the intention of refactoring the
system but the merged revision caused a worsening in the
system’s cohesion and/or coupling metrics. In order to shed
light on this issue, we performed a qualitative analysis of
all code reviews in which developers performed a negative
refactoring.

For this analysis, we identified 81 code reviews that
performed a negative refactoring. This accounts for 40% of
the reviews in which developers performed a refactoring, and
11% of all significant architectural reviews. We qualitatively
analysed these 81 code reviews, where we carefully read the
reviews’ description, comments and source code to better
understand the details of the change.

In 31 (38%) of these reviews, the refactoring was per-
formed as a side operation due to a bigger change. For all
these cases, in order to implement a new feature or enhance
an existing feature, developers extracted existing code to
be reused by the new feature. In this scenario, since we
cannot isolate the refactoring itself for source code analysis,
we are unable to know for certain whether the refactoring
was positive or negative. Consider review 724 from egit,
for example. The developer describes the review as “this
change adds commit functionality to the staging view. The
commit message part of the commit dialog was extracted
to a reusable component and is now both used by commit
dialog and staging view”. As one can see, part of the existing
code was extracted to a reusable component to enable the
implementation of a new feature.

The overload of the “refactoring” term is also a common
reason for negative refactorings to be observed. We noticed
that in 16 (19%) reviews the developers claimed a refactoring
was being made when the change actually consisted of a
feature improvement. When looking at review 7801 from
spymemcached, the developer describes the review as
“Refactored Operations to improve correctness of vbucket
aware ops”. In this case, the developer is clearly improving
a functional property of the system but is using the term
“refactoring” to describe it.

Among the 81 reviews that performed a negative refac-
toring, we identified 13 reviews (16%) where the developers
attempted an improvement to the structural architecture
but failed to achieve so. Review 9818 from linuxtools is
described as “Decouple the double click listener from the
editor internals”. In this review, the developer extracted part

of the logic from the CEditor class into an internal package
actions.hidden. However, classes from the package that
CEditor belongs were now depending on a class from another
package, which considerably degraded the coupling of the
ui.ide.editors package. This is an indication that even with
the intent of improving the system’s architecture, developers
sometimes are not able to see all the ramifications of their
architectural changes.

In 13 (16%) reviews that caused a degradation to the
system’s cohesion and/or coupling, we identified an attempt
of improvement to the code base where the developer
exhibits a semantical reasoning instead of a structural one.
Consider review 970 from jgit, for example. In this review, the
developer “isolates all of the local file specific implementation
code into a single package”. By moving a large portion of
the code base that was related to a particular feature to a
separate package, there was a steep increase in the number
of dependencies between packages, which significantly dete-
riorated the system’s overall coupling. With this example, we
provide evidence that developers consider not only structural
cohesion and coupling, but also other aspects when carrying
out architectural changes. Such observation is aligned with
findings reported in previous empirical studies [19], [20].

The remaining set of refactoring reviews that caused a
degradation to the system’s structure consists of isolated
scenarios that are not related to the cases discussed above.
The reasoning behind such reviews include, but are not
limited to, removal of dead code, removal of code duplication
and refactoring claims that were not actually implemented
in the source code.

7 DISCUSSION

In this section, we discuss the main contributions of this
paper and reason about their implication in future software
engineering research and practice.

7.1 Architectural Awareness Expectations and Obser-
vations

The first expectation one would have regarding architec-
tural awareness is that developers would often discuss the
system’s architecture for the changes with most significant
impact. However, the data we collected shows that de-
velopers do not discuss the system’s structure in 69% of
the cases. Moreover, only 15%, 9% and 5% of the reviews
discuss the architecture in the discussion, comments and
both, respectively. These observations indicate a large lack
of architectural awareness during the changes that most
impacted the system’s structure, which goes against general
expectations.

Next, we would expect that reviews in which the devel-
opers were aware of the system’s structure would exhibit
better architectural changes. When considering the reviews
that caused an improvement to the system’s structure, we
noticed considerably larger improvements for the reviews
in which developers discussed the architecture in either
the description or comments. Hence, the observations drew
from the paper support the expectations that architecture
discussion and awareness during code review leads to better
architectural changes.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 15

Finally, we expected that the code review process would
lead to improvements in architectural changes. That is, for
a change that initially degrades the system’s architecture,
we would expect that architectural discussion would lead
to a merged revision that ameliorates the degradation pre-
sented in the first submitted revision. Similarly, for revisions
that initially improve the system’s structure, we expected
that architectural discussion would enhance this structural
improvement. However, our data suggests the opposite,
where 33% of the reviews with architectural discussion in
the comments exhibited a negative evolution. This indicates
that more often than not, architectural feedback during code
review caused both decreases to architectural improvements
instead of enhancements and aggravations to architectural
degradations instead of amelioration.

7.2 Tool Support for Architectural Changes During
Code Review

In the course of this empirical study, we observed that the
implementation of a new feature and/or the enhancement of
an existing feature account for 54% of the changes that cause
a significant impact on the system’s structure, followed by
refactoring (26%) and bug fixing (10%), respectively.

Moreover, for the code reviews we investigated, we
noticed that the architecture is discussed in 31% of the
cases. In addition, when considering feature-related reviews,
developers discuss the system’s structure in only 26% of the
cases. Hence, developers are least discussing the system’s
architecture during the changes that most often affect it.

The lack of architectural discussion and the amount of
code that is usually introduced in feature-related reviews
add up to make these changes the most likely to introduce
problems to the architecture of the system and the code base
as a whole, such as architectural debt and code smells. This
indicates that we should design approaches and build tools
that assist developers not only when they refactor the system,
but mostly when they are working on features.

By measuring and comparing cohesion and coupling
quality metrics for before and after versions of the code base
in reviews that performed significant architectural changes,
we were able to assess the impact of architectural discussion
in the quality of the architectural change being made. For
reviews that improve the cohesion and/or coupling of the
system, we observed that reviews in which the architecture is
discussed tend to exhibit considerably bigger improvements
in the system’s structure when compared to reviews that do
not discuss the architecture.

We consider this as evidence that architectural awareness
and discussion during code review leads to better architec-
tural changes. This points out to the need of tool support for
architectural changes during code review, where developers
would automatically be made aware of the architectural
impact of their changes, possibly fostering discussion and
leading to changes with bigger improvements and less
degradation to the system’s structural architecture.

Code review is an iterative process, in which a certain
code change undertake a series of revisions until the final
version of the change is merged into the system. By studying
the evolution of architectural changes during code review,
we noticed that reviews in which developers perform a

refactoring or bug fix tend to largely remain the same
during the reviewing process, i.e., the values of cohesion
and coupling are not altered during all revisions.

Differently, for feature-related reviews, the architectural
impact changed more often than not during the reviewing
process. In addition, when developers gave architectural
feedback in the form of comments during code review, we
observed a 73% ratio of architectural change throughout the
reviewing process. This indicates that developers are willing
to consider architectural feedback during code review and
adjust their changes accordingly.

However, we observed that most of the architectural
changes had a negative evolution during code review, i.e.,
the values of cohesion and coupling of the last merged
revision are worse than the first revision submitted for
review. This illustrates that the current architectural feedback
being provided by developers is not assisting their peers in
improving architectural changes that undergo code review.

The results from RQ1–4 strongly indicate that developers
need tool support for architectural changes during code
review, in special for when they are introducing new features
or enhancing existing features in the system. In the course
of this study, we found feature-related changes where the
developers were aware of the architectural impact of their
changes, yet the changes were merged into the system
regardless of their architectural impact (even when highly
negative).

This indicates that there do exist circumstances where
some tasks, e.g., feature implementation and bug fixing, can
take priority over structural quality. Thus, having a tool
integrated into code review that would make developers
aware of the architectural impact of their changes can be
beneficial in assisting developers to deal with architectural
debt and code smells. Moreover, the tool could suggest
modifications to the patch that would enhance architectural
improvements and ameliorate architectural degradations.
Hence, providing a feedback that is focused on the constant
improvement of architectural quality and prevention of
architectural problems.

7.3 Leveraging Code Review Data for Empirical Studies
During our empirical study, we observed a non-negligible
number of reviews in which the developers performed a
refactoring that degraded the structural architecture of the
system. In hindsight, one could conclude that these were all
cases in which developers have attempted to improve the
system but failed.

However, after a careful analysis of the code review data
for each of these changes, we noticed that in 38% of the
cases, the refactoring was mixed with feature-related changes,
which caused the review to have a negative effect in the
system’s structure.

Moreover, we observed that 19% of the negative refac-
torings were due to developers overloading the phrase
‘refactoring’ by performing feature-related changes instead.
In parallel, out of the 81 refactorings that degraded the
system’s structure, 13 were improvements to the code base
in which the developers were trying to improve semantical
aspects of the code rather than structural. Finally, in only
16% of the reviews we could identify a failed attempt at pure
structural improvement.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 16

The empirical study performed in this paper, and the
above qualitative analysis in specific, could only be achieved
by leveraging code review data. During code review, de-
velopers provide reasoning and rationale for the changes
they make in the system, both when they submit and
review code from their peers. Thus, code review data is a
valuable source of knowledge regarding motivation for and
explanation of software changes, from which properties such
as intent and awareness can be inferred. In this context, code
review datasets, such as CROP [33], provide data that can
be leveraged by empirical studies in software engineering to
answer questions that previously required interactions with
developers, such as interviews and surveys.

8 THREATS TO THE VALIDITY

Internal validity: We use a metric-based approach to auto-
matically identify reviews that performed significant changes
to the system’s structural architecture. Using this approach,
one cannot guarantee all architecturally significant reviews
were inspected. To alleviate this threat, we performed a
sensitivity analysis of the parameters thresholds involved
in the identification of significant reviews. By inspecting all
reviews of the Couchbase system that exhibited any change
in structural cohesion and/or coupling, we showed that
the ratio of reviews that exhibit architectural discussion
is statistically the same at the 0.01 confidence level. This
indicates that the results of our research questions are not
likely to be affected by the threshold choice we employed.

The metrics of structural cohesion and coupling we used
are based on structural dependencies between files, in which
differences in size might affect the cohesion and coupling
measurement. Thus, we collected size and churn metrics of
all systems and performed a correlation analysis with the
cohesion and coupling metrics we employed. Most of the
correlation coefficients were identified as low or medium,
which is aligned with what is usually expected from object-
oriented metrics computed from source code [47]. The low
and medium correlation indicates that the cohesion and
coupling metrics we employed are indeed capturing changes
in the structural architecture of the system and not only size
fluctuations.

Manual classifications are naturally subjected to bias.
To mitigate this threat, we employed a two-stage manual
classification procedure. In the first stage, all reviews were
separately classified by two authors following a strict guide-
line previously discussed and agreed by all authors. In the
second stage, for all reviews in which a disagreement was
found, both authors discussed the review until a unified
classification was reached.
External validity: Our study focuses on seven Java projects
that were selected from a recently published open dataset of
code review data. Even though the metrics we use and the
analysis framework we employ are language agnostic, the
results may not be generalisable to software systems written
in other languages.

The analysis of the systems’ architecture is based on
structural metrics of cohesion and coupling. One might
expect different results using different metrics. However,
we rely on structural cohesion and coupling since they

are widely-adopted for architecture analysis and have been
thoroughly evaluated in previous studies [20], [24], [30].
Construct validity: We focus our analysis on the structural
view of the software architecture, which is a low-level rep-
resentation of the systems’ architecture. Hence, our analysis
and observations do not generalise to all the views and
perspectives [1], [29] in the systems’ architecture, especially
the more abstract ones. Nevertheless, our empirical study
focuses on architectural changes as performed by developers
in the context of code review. Thus, it is fitting that we chose
to study the structural view of the software architecture, as
this is the one developers interact the most. Moreover, the
structural architecture is the one practitioners commonly use
as the groundwork for the design of the other architectural
views [22].

9 RELATED WORK

Tufano et al. [46] performed an empirical study to understand
the lifecycle of code smells in software projects. They
manually inspected and classified commits in regard to
commit goal, project status, and developer status. While
their classification is mostly based on commit messages and
patches, the code review process adopted in our analysis
provides a richer set of artefacts for each software change.
Besides having access to each commit and patch, a code
review also includes feedback provided by other developers
and often links to both tickets in the issue tracking system
and related reviews performed in the past. As such, during
our manual inspection, we extend Tufano et al.’s classification
of the commit goal to include a wider set of intents we found
during our open coding analysis.

In a more recent work, Palomba et al. [51] extended the in-
vestigation on the lifecycle of code smells by considering code
smells co-occurrences. By analysing open source systems,
they identified the most common pairs of smells that appear
together in a code entity as well as the patterns in which the
co-occurrences are commonly introduced and removed from
the system. Different from their previous work, they have not
manually inspected the changes that introduce and remove
code smells, and mostly relied on source code analysis to
investigate the lifecycle of code smells co-occurrences.

In a similar work, Cedrim et al. [50] performed an
empirical study to investigate how effective refactoring
operations are as a way of removing code smells from a
software system. They found that refactoring operations
rarely remove code smells from the system, where they even
observed cases in which refactorings create new code smells
in the code base. This finding is similar to our observation
of reviews in which developers performed a refactoring
by negatively impacted the system’s structural architecture.
However, their study only considered the source code and
commit message to identify the presence of refactoring
operations, which might include a bias for when refactoring
operations are used as a complement to a larger change, as
we have observed in this study.

Several studies have been performed to qualitatively
evaluate the developer’s perception of cohesion and coupling
metrics. Simons et al. [31] prepared a set of toy examples and
surveyed developers to assess whether metrics represent
the developer’s perception of quality. Bavota et al. [19]

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 17

and Candela et al. [20] also surveyed developers with the
same purpose, where in this case the questionnaire was
focused on selected past changes. By inspecting code reviews,
we are able to assess developers intent and awareness on
a day-to-day basis, focusing on how developers perceive
the architectural changes at the time these changes are
being reviewed. As a result, we can study the developers’
behaviour for each different architectural change in particular,
without the bias of interviews that involve toy systems or
past changes.

The measurement of architectural difference between
two versions of the same system has been extensively
discussed in the literature [52]–[54]. However, the early
metrics were mostly focused on measuring the distance
between two different modularisations of the same system,
lacking the capacity to consider the addition and/or removal
of components between two versions.

Hence, Le et al. [26] proposed a2a, a new metric for
architectural change that is inspired by the original suite
of MoJo metrics but now addresses the issue of added and
removed components between versions. After the publication
of our previous paper, Shahbazian et al. [55] extended
our analysis framework to use a2a as a metric to infer
the architectural impact of changes. After identifying the
architecturally significant changes, the authors propose a
machine learning method to predict the impact of architec-
tural changes based on textual information extracted from
the change request in the issue tracking system. a2a was
originally proposed to evaluate high-level architectural views
automatically recovered from source code through the usage
of an architectural recovery technique such as ACDC [56]
and ARC [57]. Since our study focuses on the low-level
structural view of the software systems’ architecture, we did
not consider a2a in our study.

Recent studies have evaluated different metrics of struc-
tural cohesion and coupling as suitable measurements
for architectural quality. In the context of search based
software modularisation, Paixao et al. [24] compared the
modularisation developers implemented in their systems
against baselines generated by different search procedures.
The solutions implemented by developers outperformed
most of the solutions generated by naive search procedures,
indicating that structural measurements of cohesion and
coupling are properties of interest for developers.

In a similar setting, Ó Cinnéide et al. [30] evaluated a set
of structural cohesion metrics for automated refactoring.
In this case, different cohesion metrics led to different
refactorings, which indicates these metrics do not capture the
same property, even though they have been all suggested as
structural cohesion measurements. Although providing quan-
titative evidence on how structural cohesion measurement
can be used to improve software systems, these work lack
a qualitative analysis to better understand how developers
perform architectural changes on a day-to-day basis.

Other empirical studies have been performed to study
the effectiveness of code review in other aspects of software
quality. McIntosh et al. [58] investigated the relationship
between software defects to code coverage and participation
during code review. In a similar study, Morales et al. [59]
extends the investigation of code coverage and participation
during code review, but now with a focus on the design

patterns and anti-patterns.

10 CONCLUSION AND FUTURE WORK

Architectural decisions have implications on the develop-
ment and evolution of software systems. In spite of the
large body of research dedicated to aid developers in such
decisions, architectural erosion remains a problem faced by
software developers. In this context, a better understanding
of how developers perform architectural changes on a day-
to-day basis is required.

Thus, we performed an empirical study that involved
the inspection and classification of 731 architectural changes
mined from 7 software systems. We focused our investigation
on changes that had undergone a process of code review, and
we assessed the common intents behind these architectural
changes. Moreover, we investigated whether developers
were aware of the architectural impact of their changes when
performing and/or reviewing such changes. In addition, we
evaluated the effect that intent and awareness have on the
structural “quality” of the software architecture as measured
by structural metrics of cohesion and coupling. Finally, we
looked at how changes with significant architectural impact
evolve during the code review process.

After analysing 731 reviews that performed significant
changes to the system’s structural architecture, we noticed
that the intent behind 54% of the architectural changes is
to either introduce a new feature or to enhance an existing
feature. In addition, we found that refactorings and bug
fixing accounted for 26% and 10% of the reviews with
significant architectural changes, respectively.

Surprisingly, we found that the system’s architecture is
discussed only in 31% of the reviews we studied, which
indicates a lack of architectural awareness when performing
significant architectural changes. Moreover, developers tend
to be more often aware of the architecture when the change is
improving the system in terms of cohesion and coupling. We
noticed that changes in which developers are aware of the
architectural impact tend to present larger improvements in
cohesion and coupling than changes where the architecture
is not discussed.

In regards to the evolution of architectural changes during
code review, we observed that reviews in which develop-
ers performed a refactoring or bug fix tended to remain
the same during the reviewing process. However, feature-
related changes tended to undergo adjustments during code
review, especially when fellow developers provide feedback
regarding the architecture as comments during code review.

Such observations indicate the need for tools and ap-
proaches that aim to assist developers when performing
architectural changes, especially when they introduce a new
feature or enhance an existing one. Since developers tend to
take architectural feedback into account during code review,
we set out, as future work, the development of an approach
that will automatically identify architecturally significant
reviews and make the developers aware of the impact of
their change. In addition, the approach should provide
feedback and suggestions to developers and reviewers, so
that the architectural change can be guided in a direction
that will ameliorate architectural degradation and enhance
architectural improvement.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 18

Moreover, in future work, we plan to incorporate other
metrics of architectural change into our analysis framework.
Metrics such as Decoupling Level [25], semantic coupling [19]
and co-change dependencies [18] are likely to be good
candidates to enhance our knowledge about developers’
behaviour when performing architectural changes during
code review.

REFERENCES

[1] N. Rozanski and E. Woods, Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives, 2nd ed. Addison
Wesley, 2011.

[2] B. J. Williams and J. C. Carver, “Characterizing software archi-
tecture changes: A systematic review,” Information and Software
Technology, vol. 52, no. 1, pp. 31–51, Jan 2010.

[3] R. Schwanke, L. Xiao, and Y. Cai, “Measuring architecture quality
by structure plus history analysis,” in Proceedings of the 35th
International Conference on Software Engineering (ICSE ’13). IEEE,
May 2013, pp. 891–900.

[4] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek,
and Y. Cai, “A Study on the Role of Software Architecture in
the Evolution and Quality of Software,” in 2015 IEEE/ACM 12th
Working Conference on Mining Software Repositories, vol. 2015-Augus.
IEEE, may 2015, pp. 246–257.

[5] L. Xiao, Y. Cai, R. Kazman, R. Mo, and Q. Feng, “Identifying
and quantifying architectural debt,” in Proceedings of the 38th
International Conference on Software Engineering (ICSE ’16). New
York, USA: ACM Press, 2016, pp. 488–498.

[6] W. Li and S. Henry, “Object-oriented metrics that predict maintain-
ability,” Journal of Systems and Software, vol. 23, no. 2, pp. 111–122,
Nov 1993.

[7] Y. Zhou and H. Leung, “Predicting object-oriented software
maintainability using multivariate adaptive regression splines,”
Journal of Systems and Software, vol. 80, pp. 1349–1361, Aug 2007.

[8] Zhifeng Yu and V. Rajlich, “Hidden dependencies in program
comprehension and change propagation,” in Proceedings of the 9th
International Workshop on Program Comprehension (IWPC ’01). IEEE,
2001, pp. 293–299.

[9] S. Counsell, S. Swift, and A. Tucker, “Object-oriented cohesion as
a surrogate of software comprehension: an empirical study,” in
Proceedings of the 5th International Workshop on Source Code Analysis
and Manipulation (SCAM ’05). IEEE, 2005, pp. 161–172.

[10] M. Fowler and K. Beck, Refactoring: improving the design of existing
code. Addison-Wesley Professional, 1999.

[11] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using
software metrics to characterize, evaluate, and improve the design of
object-oriented systems. Springer Science & Business Media, 2007.

[12] M. Hitz and B. Montazeri, “Measuring coupling and cohesion in
object-oriented systems,” in Proceedings of International Symposium
on Applied Corporate Computing, 1995.

[13] L. Briand, J. Daly, and J. Wust, “A unified framework for cohesion
measurement in object-oriented systems,” in Proceedings of the 4th
International Software Metrics Symposium (Metrics ’98), vol. 3. IEEE,
1998, pp. 43–53.

[14] L. Briand, D. J.W., and J. Wust, “A unified framework for coupling
measurement in object-oriented systems,” Transactions on Software
Engineering, vol. 25, no. 1, pp. 91–121, 1999.

[15] S. Mancoridis, B. Mitchell, C. Rorres, Y. Chen, and E. Gansner,
“Using automatic clustering to produce high-level system organiza-
tions of source code,” in Proceedings of the 6th International Workshop
on Program Comprehension (IWPC ’98). IEEE, 1998, pp. 45–52.

[16] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, “Using
information retrieval based coupling measures for impact analysis,”
Empirical Software Engineering, vol. 14, no. 1, pp. 5–32, Feb 2009.

[17] F. Beck and S. Diehl, “On the impact of software evolution on
software clustering,” Empirical Software Engineering, vol. 18, no. 5,
pp. 970–1004, Oct 2013.

[18] N. Ajienka, A. Capiluppi, and S. Counsell, “An empirical study on
the interplay between semantic coupling and co-change of software
classes,” Empirical Software Engineering, pp. 1–35, nov 2017.

[19] G. Bavota, B. Dit, R. Oliveto, M. Di Penta, D. Poshyvanyk, and
A. De Lucia, “An empirical study on the developers’ perception of
software coupling,” in Proceedings of the 35th International Conference
on Software Engineering (ICSE ’13). San Francisco, CA: IEEE, 2013,
pp. 692–701.

[20] I. Candela, G. Bavota, B. Russo, and R. Oliveto, “Using cohesion and
coupling for software remodularization : Is it enough ?” Transactions
on Software Engineering and Methodology, vol. 25, pp. 1–28, 2016.

[21] P. B. Kruchten, “The 4+1 view model of architecture,” IEEE software,
vol. 12, no. 6, pp. 42–50, 1995.

[22] T. Lutellier, D. Chollak, J. Garcia, L. Tan, D. Rayside, N. Medvidovic,
and R. Kroeger, “Measuring the Impact of Code Dependencies on
Software Architecture Recovery Techniques,” IEEE Transactions on
Software Engineering, vol. 44, no. 2, pp. 159–181, feb 2018.

[23] B. Mitchell and S. Mancoridis, “On the automatic modularization
of software systems using the bunch tool,” Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, Mar 2006.

[24] M. Paixao, M. Harman, Y. Zhang, and Y. Yu, “An empirical study
of cohesion and coupling: Balancing optimisation and disruption,”
IEEE Transactions on Evolutionary Computation, pp. 1–21, 2017.

[25] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling
level,” in Proceedings of the 38th International Conference on Software
Engineering. Austin, Texas: ACM Press, 2016, pp. 499–510.

[26] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in
open-source software systems,” in Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR ’15). IEEE, May
2015, pp. 235–245.

[27] L. de Silva and D. Balasubramaniam, “Controlling software archi-
tecture erosion: A survey,” Journal of Systems and Software, vol. 85,
no. 1, pp. 132–151, Jan 2012.

[28] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, and I. Gorton,
“Measure it? manage it? ignore it? software practitioners and
technical debt,” in Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE ’15). Bergamo, Italy:
ACM Press, 2015, pp. 50–60.

[29] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From
metaphor to theory and practice,” IEEE Software, vol. 29, no. 6, pp.
18–21, Nov 2012.

[30] M. Ó Cinnéide, L. Tratt, M. Harman, S. Counsell, and I. Hemati
Moghadam, “Experimental assessment of software metrics using
automated refactoring,” in Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM ’12).
Lund, Sweden: ACM Press, 2012, p. 49.

[31] C. Simons, J. Singer, and D. R. White, “Search-based refactoring:
Metrics are not enough,” in Proceedings of the 7th International
Symposium on Search Based Software Engineering (SSBSE ’15), 2015,
vol. 9275, pp. 47–61.

[32] P. Runeson and M. Höst, “Guidelines for conducting and reporting
case study research in software engineering,” Empirical Software
Engineering, vol. 14, no. 2, pp. 131–164, Apr 2009.

[33] M. Paixao, J. Krinke, D. Han, and M. Harman, “Crop: Linking
code reviews to source code changes,” in International Conference on
Mining Software Repositories, ser. MSR, 2018.

[34] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman,
“Are developers aware of the architectural impact of their changes?”
in ASE 2017 - Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, 2017.

[35] S. Pearce, “Gerrit code review for git,” https://www.
gerritcodereview.com, 2006, accessed in: May 2018.

[36] “Eclipse projects,” https://eclipse.org/projects, 2018, accessed in:
May 2018.

[37] “Couchbase Projects,” https://developer.couchbase.com/
open-source-projects, 2018, accessed in: May 2018.

[38] M. Hall, M. A. Khojaye, N. Walkinshaw, and P. McMinn, “Estab-
lishing the source code disruption caused by automated remod-
ularisation tools,” in Proceedings of the International Conference on
Software Maintenance and Evolution. IEEE, 2014, pp. 466–470.

[39] F. Beck and S. Diehl, “On the congruence of modularity and code
coupling,” in Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering
(SIGSOFT/FSE ’11). Szeged, Hungary: ACM Press, 2011.

[40] M. Hall, N. Walkinshaw, and P. McMinn, “Supervised software
modularisation,” in Proceedings of the 28th International Conference
on Software Maintenance (ICSM ’12). IEEE, 2012, pp. 472–481.

[41] J. Garcia, I. Krka, C. Mattmann, and N. Medvidovic, “Obtaining
ground-truth software architectures,” in Proceedings of the 35th
International Conference on Software Engineering (ICSE ’13). IEEE,
2013, pp. 901–910.

[42] M. d. O. Barros, F. d. A. Farzat, and G. H. Travassos, “Learning
from optimization: A case study with apache ant,” Information and
Software Technology, vol. 57, no. 1, pp. 684–704, Jan 2015.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2019.2912113, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. XX, NO. X, XXX XXXX 19

[43] Scitools, https://scitools.com/features, 2018, accessed in: May
2018.

[44] M. Paixao, J. Krinke, D. Han, C. Ragkhitwetsagul, and M. Harman.
We will create a results section at crop’s webpage upon publication
because we do not wish to make the results publicly available
for a paper under review. however, we are happy to provide
data confidentially to reviewers by request if needed. [Online].
Available: https://to.be.disclosed

[45] J. W. Tukey, Exploratory data analysis. Addison-Wesely, 1977.
[46] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De

Lucia, and D. Poshyvanyk, “When and why your code starts to
smell bad (and whether the smells go away),” Transactions on
Software Engineering, vol. 1, pp. 1–27, May 2017.

[47] K. El Emam, S. Benlarbi, N. Goel, and S. Rai, “The confounding
effect of class size on the validity of object-oriented metrics,”
Transactions on Software Engineering, vol. 27, no. 7, pp. 630–650,
Jul 2001.

[48] M. G. Kendall, Rank correlation methods. Griffin, 1948.
[49] J. Cohen, Statistical power analysis for the behavioral sciences, 2nd ed.

Routledge, 1988.
[50] D. Cedrim, A. Garcia, M. Mongiovi, R. Gheyi, L. Sousa, R. de Mello,

B. Fonseca, M. Ribeiro, and A. Chávez, “Understanding the impact
of refactoring on smells: a longitudinal study of 23 software
projects,” in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering - ESEC/FSE 2017. New York, New York,
USA: ACM Press, 2017, pp. 465–475.

[51] F. Palomba, G. Bavota, M. Di Penta, F. Fasano, R. Oliveto, and
A. De Lucia, “A large-scale empirical study on the lifecycle of code
smell co-occurrences,” Information and Software Technology, vol. 99,
no. September 2017, pp. 1–10, jul 2018.

[52] V. Tzerpos and R. Holt, “MoJo: a distance metric for software
clusterings,” in Sixth Working Conference on Reverse Engineering (Cat.
No.PR00303). IEEE Comput. Soc, 1999, pp. 187–193.

[53] B. Mitchell and S. Mancoridis, “Comparing the decompositions
produced by software clustering algorithms using similarity mea-
surements,” in Proceedings IEEE International Conference on Software
Maintenance. ICSM 2001. IEEE Comput. Soc, 2001, pp. 744–753.

[54] Zhihua Wen and V. Tzerpos, “An effectiveness measure for software
clustering algorithms,” in Proceedings. 12th IEEE International
Workshop on Program Comprehension, 2004. IEEE, 2004, pp. 194–203.

[55] A. Shahbazian, D. Nam, and N. Medvidovic, “Toward predicting
architectural significance of implementation issues,” in International
Conference on Mining Software Repositories, ser. MSR, 2018.

[56] V. Tzerpos and R. Holt, “ACCD: an algorithm for comprehension-
driven clustering,” in Proceedings Seventh Working Conference on
Reverse Engineering. IEEE Comput. Soc, 2000, pp. 258–267.

[57] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic, and Yuanfang
Cai, “Enhancing architectural recovery using concerns,” in 2011
26th IEEE/ACM International Conference on Automated Software
Engineering (ASE 2011). IEEE, nov 2011, pp. 552–555.

[58] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan, “The impact
of code review coverage and code review participation on software
quality: a case study of the qt, VTK, and ITK projects,” in Proceedings
of the 11th Working Conference on Mining Software Repositories - MSR
2014. New York, New York, USA: ACM Press, 2014, pp. 192–201.

[59] R. Morales, S. McIntosh, and F. Khomh, “Do code review practices
impact design quality? A case study of the Qt, VTK, and ITK
projects,” in 2015 IEEE 22nd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, mar 2015,
pp. 171–180.

Matheus Paixao is currently a Research As-
sistant in the Computer Science Department
at the State University of Ceara. He recently
received the PhD degree in Computer Science
at University College London, where he was
part of the Centre for Research on Evolution,
Search, and Testing (CREST) and Software Sys-
tems Engineering (SSE) Group. His research
interests include software architecture, search-
based software engineering, mining software
repositories, modern code review and empirical

software engineering.

Jens Krinke is Associate Professor in the Soft-
ware Systems Engineering Group at the Uni-
versity College London, where he is Director of
CREST, the Centre for Research on Evolution,
Search, and Testing. His main focus is software
analysis for software engineering purposes. His
current research interests include software simi-
larity, modern code review, program analysis, and
software testing. He is well known for his work on
program slicing and clone detection.

DongGyun Han is currently working toward the
PhD degree in the Department of Computer Sci-
ence, University College London, London, United
Kingdom, and a member of the CREST centre.
He received his MPhil degree in the Department
of Computer Science and Engineering at the
Hong Kong University of Science and Technology.
Before, he was a researcher at the KAIST Insti-
tute for IT Convergence. His research interests
include modern code review, mining software
repositories, and empirical study.

Chaiyong Ragkhitwetsagul is a lecturer at the
Faculty of Information and Communication Tech-
nology, Mahidol University, Thailand. He received
the PhD degree in Computer Science at Uni-
versity College London, where he was part of
the Centre for Research on Evolution, Search,
and Testing (CREST). His research interests
include code search, code clone detection, soft-
ware plagiarism, modern code review, and mining
software repositories.

Mark Harman is an engineering manager at
Facebook London, where he manages the
Sapienz team. Sapienz has been deployed to
continuously test Facebook’s Android and iOS
apps, leading to thousands of bugs being auto-
matically found and in multimillion line commu-
nications and social media apps used by over
a billion people worldwide every day. Mark is
also a full professor at University College London.
He is known for his scientific work on Search
Based Software Engineering (SBSE), source

code analysis, software testing, app store analysis and empirical software
engineering. He co-founded the field SBSE, an active and impactful re-
search area with authors spread over more than 40 countries. Automated
Software Engineering research and practice is now the primary focus
of his current work in both the industrial and scientific communities. In
addition to Facebook itself, Mark’s scientific work is also supported by an
ERC advanced fellowship grant and by the UK EPSRC funding council.

