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Abstract. We investigate one aspect of the functional role played by astrocytes 
in neuron-astrocyte networks present in the mammal brain. To highlight the ef-
fect of neuron-astrocyte interaction, we consider simplified networks with bidi-
rectional neuron-astrocyte communication and without any connections be-
tween neurons. We show that the fact, that astrocyte covers several neurons and 
a different time scale of calcium events in astrocyte, alone can lead to the ap-
pearance of neural associative memory. Without any doubt, this mechanism 
makes the neuron networks more flexible to learning, and, hence, may contrib-
ute to the explanation, why astrocytes have been evolutionary needed for the 
development of the mammal brain. 
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1 Introduction 

The functional role of astrocyte calcium signaling in brain information processing was 
intensely debated in recent decades. Astrocytes play crucial roles in brain homeostasis 
and are emerging as regulatory elements of neuronal and synaptic physiology by re-
sponding to neurotransmitters with Ca2+ elevations and releasing gliotransmitters that 
activate neuronal receptors [1]. The characteristic times of calcium signals (1-2 sec) 
are three orders of magnitude longer than the duration of spikes in neurons (1 msec). 
It was shown that astrocyte can act as temporal and spatial integrator, hence, detecting 
the level of spatio-temporal coherence in the activity of accompanying neuronal net-
work. Currently actively discussed hypothesis is that the astrocytic calcium activity 
can induce spatial synchronization in neuronal circuits defined by the morphological 
territory of the astrocyte [2-4]. In other words one can draw an analogy with the Hop-
field network. Calcium events in astrocytes that induce synchronization in surround-
ing neural ensembles work as a temporal Hopfield network, and, hence,  can be inter-
preted as an associative memory model. 
In this paper, we consider one of the simplest model of the neuron-astrocyte network 
(NAN), where we implement a kind of the Hopfield network with forgetting. There is 
just a few of previous works studying role of astrocyte in learning tasks. Porto-Pazos 
and collaborators investigated the performance of an astrocyte-inspired learning rule 
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to train deep learning networks in data classification and found that the neuron-
astrocyte networks were able to outperform identical networks without astrocytes in 
all classification tasks they implemented [5-7]. In the presented studies they taken into 
account only temporal features of astrocytic modulation of the signal transmission in 
neural network. In contrast to this approach, we concentrate on the local spatial syn-
chronization organized by astrocyte, which, due to its different time scale, work as a 
kind of neural associative memory.	

2 Model and architecture of neuron-astrocyte network 

The proposed neuron-astrocyte network consists of 2 layers, first layer of neurons 
with dimensions 40x40 and second layer of astrocytes with dimensions 13x13. To 
focus only on associative learning, the elements in each layer are not interconnected. 
We consider bidirectional neuron-astrocytic communication between layers. Each 
astrocyte interacts with neuronal ensemble dimensions of 4x4 with overlapping in one 
row (see Fig. 1).  Experiments show that astrocytes and neurons communicate via a 
special mechanism modulated by neurotransmitters from both sides. The model is 
designed so that when the calcium level inside an astrocyte exceeds a threshold, the 
astrocyte releases neuromodulator (e.g., glutamate) that may affect the release proba-
bility (and thus a synaptic strength) at neighboring connections in a tissue volume. 
Single astrocyte can regulate the synaptic strength of several neighboring synapses. 
The membrane potential of a single neuron is described by Izhikevich model and 
evolves according to the following equations [8]: 
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If V ≥ 30 mV, then V→ c, U→ U + d. 
We use the following parameter values: a = 0.1, b = 0.25, c = -65, d = 2. The applied 
currents Iapp simulating input signal Iapp = 5 if input signal is presented. The astrocytic 
modulation of the synaptic activity is modeled by current Iastro, which has a value  Iastro 
=30, if Ca2+ level in astrocyte exceeds 0.15 µM and more than 50% of neurons, corre-
sponding to this astrocyte, are activated. 
Calcium dynamics in astrocyte is described by the Li-Rinzel model. State variables of 
each cell include IP3 concentration IP3, Ca2+ concentration Ca, and the fraction of 
activated IP3 receptors h. They evolve according to the following equations [9]: 
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Biophysical meaning of all parameters in Eqs. (2) and their values determined exper-
imentally can be found in Refs. [6]. For our purpose we use the following parameter 
values c0 = 2.0µM, c1 = 0.185, v1 = 6 s− 1, v2 = 0.11 s− 1, v3 = 2.2 µMs− 1, v5 = 0.025 µMs− 1, 

v6 = 0.2 µMs− 1, k1 = 0.5 s− 1, k2 = 1.0 µM, k3 = 0.1 µM, a2 = 0.14µM− 1s− 1, d1 = 0.13 µM, d2 

= 1.049 µM, d3 = 0.9434 µM, d5 = 0.082 µM, α = 0.8, τr = 7.143 s, IP3= 0.16 µM, k4 = 
1.1 µM [6]. 
The current Ineuro describes production of IP3 due to the synaptic activity of nearbour 
neurons. The current Ineuro is modeled by rectangular pulse signal with amplitude 5 µM 
and duration 60 msec. Ineuro ≠ 0 if more than 50% of neurons, interacting with this astro-
cyte,  are activated. 
Note that the time unit in the neuronal model Eqs. (1) is 1 msec. Due to a slower 
timescale, in the astrocytic model Eqs. (2) all empirical constants are indicated using 
seconds as time units. When integrating the joint system of differential equations, the 
astrocytic model time is rescaled so that the units in both models match up. 

 
Fig. 1. A network structure. Input images 40x40 pixels size fed into the neuronal network con-
taining 40x40 neurons. Gray fields correspond to the astrocyte, which overlap by one neuron 
wide layer. 

3 Results 

We have used as input signals the  black and white images of digit 0 or 1, with size 
40x40 pixels as shown in Figure 2. The training set included 10 samples for each 
image with 10% of salt and pepper noise added to every sample fed into the NAN 
(see Fig.3a). 
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Fig. 2. Patterns for network training. 
 
A 40 × 40 pixel input is processed by a 40 × 40 neuron layer (1600 neurons), ob-

taining the applied currents, Iapp, in Eq. (1) for each input which will be further con-
verted into spikes. The neural response, shown in Figure 3 b, is the membrane poten-
tial map, further converted into spike trains. Each sample was presented to the net-
work during 4 msec with period between samples 40 msec. In Figure 4, the membrane 
potential change is shown. During the training, each astrocyte monitored activity as-
sociated with it 16 neurons in time window of 400 msec. If more than 8 neurons were 
spiking and spiking frequency was more than 17.5 sec-1, astrocyte received an input 
signal, Ineuro (see Eq. (2)), inducing an increase in intracellular calcium concentration 
(see Fig. 3c).  

 

 
After training, our neuron-astrocyte network remembers the pattern for a period of 

time that is determined by the duration of the calcium pulse in astrocyte. Testing sam-
ple was presented to the network for 20 msec. While Ca2+ concentration in astrocyte 
exceeded the threshold in 0.15 µM and more than 8 neurons were still active, a feed-
back from astrocytes to neurons is turned on. This feedback is determined by biophys-
ical mechanisms of astrocytic modulation of synaptic transmission and modeled as 
additional current Iastro in Eq. (1). Example of this test is shown in the Figure 5. 

a

 

b 

 

c 

 
Fig. 3. (a) The training sample with 10% of salt and pepper noise. (b) The response of the neu-
ronal network. The values of the membrane potentials are shown. (c) The intracellular Ca2+ 

concentrations in astrocytic layer.  
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Fig. 4. (a-c) Membrane potentials of neurons during and after training. (a)   Neuron in target 
pattern interacted with active astrocyte. (b)  Neuron, which are not in target pattern, interacted 
with active astrocyte. (c)  Neuron not in target pattern interacted with quiet astrocyte. (d) The 
intracellular Ca2+ concentration in active astrocyte.  

a  b  

c  d  

Fig. 5. The testing sample with 40% of salt and pepper noise. (a) The response of the 
neuronal network after an input with 4,4 (b) and  11,6 (c)  msec duration. (d) The 
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Tests showed that the network can not only clean noise inside the target pattern 

(Fig. 5b) as expected but also can separate in time the pattern and noise around (Fig. 
5c). The latter is due to the fact that neuronal spiking frequency is proportional to 
value of applied current. 

 
Fig. 6. The dependences of the accuracy on noise level. Red dotted line corresponds to manual 
selected threshold of accuracy. 

To test robustness to noise of the proposed network we calculated the dependencies 
of the accuracy on noise level (see Fig. 6). Here the accuracy was not equal to 100% 
in ideal sample without noise because of the fact, that resolution of our system have 
been determined by the interaction radius astrocytes with neurons. Capacity of the 
proposed network is determined by orthogonality of images, number of astrocytes,  
and the radius of overlap between the territories of the astrocyte. In the Figure 7 we 
presented the example of the training proposed network to 2 patterns, represented by 
digits 1 and 0.  
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Fig. 7. (a) and (d) The training sample with 10% of salt and pepper noise. (b) and (e) The re-
sponse of the neuronal network. The values of the membrane potentials are shown. (c) and (f) 
The intracellular Ca2+ concentrations in astrocytic layer. (g) The testing sample with 40% of salt 
and pepper noise. The response of the neuronal network after the 4,4 (h) and  11,6 (j) msec 
input. 

 

4 Conclusions 

In this paper, we describe a simple neuron-astrocyte network architecture having the 
capabilities for associative memory. The proposed neuron-astrocyte network works as 
a temporal Hopfield network. The effect considered occurs because of the local spa-
tial synchronization organized by the astrocyte and working on a different time scale. 
No links between cells have been required. Astrocytic modulation of the activity of 
nearby neurons during elevation of calcium concentration imitates Hebbian temporary 
synapse. In the future, the proposed neuron-astrocyte network will be developed by 
incorporation of the Hebbian learning algorithm.  

As we know from working with artificial intelligence algorithms, the flexibility of 
learning strongly depends on the complexity of the network. As we have demonstrat-
ed, astrocytes increases the complexity of the neural network by the coordination 
induce by calcium events, and this mechanism alone can lead to the organization of 
the neural associative memory. Without any doubt, it would be extremely interesting 
to investigate how this learning mechanism will work together with deep learning. 

Another important direction of the future research will include identification of 
conceptual markers of malfunction associated either with age-related disease or grows 
disorders. In both these situation, the brain loses ability to learn properly, hence, the 
question arises whether we could model these processes without simple conceptual 
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model, and, probably, shed light on the methodology how to identify pathology mark-
ers in real medical applications. 

This work was supported by the Ministry of Science and Education of Russian 
Federation (Grant No. 075-15-2019-1192 (МК-1940.2019.4)). 
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