
 

 

THE NEURAL BASIS OF AUDIO-VISUAL 

INTEGRATION AND ADAPTATION 

by Dr. AGOSTON MIHALIK 

 

 

 

A thesis submitted to the University of Birmingham for the degree of 

DOCTOR OF PHILOSOPHY 

 

 

School of Psychology 

College of Life and Environmental Sciences 

University of Birmingham 

March 2017 

 



 
 
 
 

 
 
 
 
 

University of Birmingham Research Archive 
 

e-theses repository 
 
 
This unpublished thesis/dissertation is copyright of the author and/or third 
parties. The intellectual property rights of the author or third parties in respect 
of this work are as defined by The Copyright Designs and Patents Act 1988 or 
as modified by any successor legislation.   
 
Any use made of information contained in this thesis/dissertation must be in 
accordance with that legislation and must be properly acknowledged.  Further 
distribution or reproduction in any format is prohibited without the permission 
of the copyright holder.  
 
 
 



ii 

 

ABSTRACT 

The brain integrates or segregates audio-visual signals effortlessly in everyday life. In order to 

do so, it needs to infer the causal structure by which the signals were generated. Although 

behavioural studies extensively characterized causal inference in audio-visual perception, the 

neural mechanisms are barely explored. The current thesis sheds light on these neural 

processes and demonstrates how the brain adapts to dynamic as well as long-term changes in 

the environmental statistics of audio-visual signals. In Chapter 1, I introduce the causal 

inference problem and demonstrate how spatial audio-visual signals are integrated at the 

behavioural as well as neural level. In Chapter 2, I describe methodological foundations for 

the following empirical chapters. In Chapter 3, I present the neural mechanisms of explicit 

causal inference and the representations of audio-visual space along the human cortical 

hierarchy. Chapter 4 reveals that the brain is able to use recent past to adapt to the 

dynamically changing environment. In Chapter 5, I discuss the neural substrates of encoding 

auditory space and its adaptive changes in response to spatially conflicting visual signals. 

Finally, in Chapter 6, I summarize the findings of the thesis, its contributions to the literature, 

and I outline directions for future research. 
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CHAPTER 1: GENERAL INTRODUCTION 

Human perception is based on five traditional senses: vision, hearing, taste, smell and touch. 

There are clear differences in our senses, but they convey information from the same entity: 

our environment. Of course, the processes by which the brain extracts information, 

differentiates signal from noise and integrates all the signals into a coherent picture are not 

trivial and have inspired research for many decades. The principles of multisensory 

integration have been established for more than 20 years (Stein & Meredith, 1993), yet our 

understanding is limited, and a great deal of discovery is ahead of us to really understand how 

humans perceive the ever-changing environment through multiple senses. 

Integration and segregation of audio-visual signals 

To illustrate the fundamental problem of multisensory integration, let us consider two 

everyday situations. When bombarded concurrently with many signals at busy crossroads, the 

brain has to decide which sensory information to bind together and which ones to keep 

separate. It is essential to correctly determine the sources of the signals to avoid confusion and 

accidents. By contrast, in a quiet two person conversation the signals are limited. Yet, 

integrating the signals might be challenging, and at the same it could be necessary in order to 

understand the conversation. 

 It is important to know that the integration-segregation problem exists in various 

formulations. The most commonly used include: the binding problem; the correspondence 

problem; object identity decisions; unity judgement; common source judgement; and causal 

inference ( Figure 1.1; Trommershäuser, Kording, & Landy, 2011). 
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Figure 1.1 Integration and segregation of audio-visual stimuli. Left: Audio-visual signals 

generated by a single event Right: Audio-visual signals generated by multiple events. 

(Original figure provided by the courtesy of Samuel Jones, adapted for the thesis.) 

 

The current section is divided up to three parts. Firstly, I will describe the various 

factors the brain utilizes to solve the binding problem. Secondly, I introduce two general 

mechanisms by which humans process multisensory information. I show how audio-visual 

integration can be optimal by maximum-likelihood estimation using bottom-up characteristics 

of sensory signals. Finally, a generative hierarchical Bayesian model is presented that 

combines bottom-up characteristics of the sensory signals with top-down influences to infer 

estimates of the sensory signals and solve the binding problem at the same time. 

Numerous studies investigated the factors influencing audio-visual integration in the 

last couple of decades. A series of pioneering studies date back to the 1970s performed by 

Radeau & Bertelson (Radeau & Bertelson, 1974, 1976, 1977, 1978). After some debate of the 

nature and importance of certain factors, the general consideration is that both bottom-up 

sensory correspondences and top-down cognitive mechanism influence audio-visual 

integration (Bedford, 2001; Recanzone & Sutter, 2008; Talsma, Senkowski, Soto-Faraco, & 

Woldorff, 2010; Welch, 1999). 
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The most studied top-down factor is attention. It is considered to influence audio-

visual integration at many levels (Santangelo & Macaluso, 2012; Talsma et al., 2010), and 

attentional effects have been studied in many audio-visual paradigms both in behavioural and 

neuroimaging studies: the McGurk illusion (Alsius, Navarra, Campbell, & Soto-Faraco, 

2005), the ventriloquist effect (Busse, Roberts, Crist, Weissman, & Woldorff, 2005), the 

double flash illusion (T. S. Andersen, Tiippana, & Sams, 2004) or other AV paradigms 

(Fairhall & Macaluso, 2009; Johnson & Zatorre, 2005; Mozolic, Hugenschmidt, Peiffer, & 

Laurienti, 2008; Nardo, Santangelo, & Macaluso, 2014; Santangelo, Olivetti Belardinelli, 

Spence, & Macaluso, 2009). Perceptual load has also been shown to interfere with 

audiovisual integration by modulating selective attention (Eramudugolla, Kamke, Soto-

Faraco, & Mattingley, 2011). Another focus of cognitive factors concerns the role of 

participants’ belief that the stimuli originate from the same source, which is also called a 

‘unity assumption’ (Bedford, 2001; Warren, Welch, & McCarthy, 1981; Welch & Warren, 

1980). It has also been suggested that task instructions have an influence on the unity 

assumption (Warren et al., 1981). In recent years, more direct relationships have been 

uncovered between cognitive factors and audio-visual integration. It has been shown that 

expectations of stimulus characteristics can alter reaction times in an audio-visual integration 

task (Van Wanrooij, Bremen, & John Van Opstal, 2010). Röder and colleagues demonstrated 

that emotional (Maiworm, Bellantoni, Spence, & Röder, 2012) and motivational factors 

(Bruns, Maiworm, & Röder, 2014) can both influence how audio-visual stimuli are bound 

together. 

Three main bottom-up factors help the brain to decide whether audio-visual signals 

should be integrated or segregated: stimulus spatial and temporal correspondence and their 

semantic or associative relationship (Chen & Vroomen, 2013; Recanzone, 2009; Slutsky & 
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Recanzone, 2001; Wallace et al., 2004; Welch, 1999). Integration of AV stimuli degrades 

with increasing spatial disparity or temporal asynchrony (Slutsky & Recanzone, 2001; 

Wallace et al., 2004), since the larger the spatio-temporal discrepancy, the less likely the two 

signals are to originate from a common source. The semantic relationship of audio-visual 

signals is most studied in speech perception, but can also occur in forms of synesthetic 

experiences (Calvert, Campbell, & Brammer, 2000; Krugliak & Noppeney, 2016; Laurienti, 

Kraft, Maldjian, Burdette, & Wallace, 2004; HweeLing Lee & Noppeney, 2011; van 

Atteveldt, Formisano, Goebel, & Blomert, 2004). The compellingness of the stimuli (Warren 

et al., 1981; Welch & Warren, 1980) determines how strongly audio-visual signals are 

associated in a given situation. It includes the number of features redundantly specified by the 

two signals and so-called historical factors. 

So far, we have not addressed an important aspect of audio-visual integration, namely 

how to process sensory information in an optimal way, and which sensory modality should 

dominate the integrated percept. Early studies suggested that inter-sensory conflict is resolved 

based on the modality precision or the modality appropriateness hypotheses (Welch & 

Warren, 1980). This hypothesis states that the more precise (e.g. vision versus audition due to 

its better spatial resolution) or the more appropriate modality (e.g. vision in spatial tasks and 

audition in temporal tasks) dominates the percept in conflict situations of multisensory 

signals. These models focus on the qualitative aspect of multisensory integration, and they 

also do not explain how integration occurs if certain modalities are degraded. 

Before we turn to the quantitative models of multisensory integration, I am 

introducing two general strategies that the brain utilizes to optimize multisensory processing. 

Multisensory signals can be either complementary or redundant. Multisensory information is 

complementary if the sensory signals are in different coordinate systems, units or the sensory 
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signals provide different aspects of the property to be estimated. In this case the optimal 

strategy appears to maximize the multisensory information via sensory combination. 

Disambiguation is an example for this type of mechanism, when e.g. an accompanying sound 

creates a motion bounce illusion of moving visual circles. Multisensory information is 

redundant when the sensory signals refer to the same sensory property using the same 

coordinate system and unit. In this case the optimal strategy appears to increase the reliability 

of the sensory estimate via sensory integration (Ernst & Bülthoff, 2004).This strategy is 

mathematically equivalent to the maximum-likelihood estimation (MLE) (Ernst & Banks, 

2002) The MLE states that the unified sensory percept is weighted by the relative reliabilities 

of the sensory signals with the more reliable signal to dominate the percept. By definition, the 

reliability and the variance of a signal are the inverse of each other, therefore the MLE model 

maximizes the reliability and minimizes the variance of the multisensory estimate at the same 

time. In their seminal paper, Alais & Burr (Alais & Burr, 2004) showed that audio-visual 

integration follows MLE and the optimal percept is weighted by the relative reliabilities of the 

constituent signals. They demonstrated that the more reliable sensory signal always dominates 

the percept, and it can be either the auditory or the visual stimulus. 

MLE has been shown in many studies as an adequate model of bottom-up sensory 

correspondences, however, a more general approach is needed to account also for top-down 

influences. Bayesian decision theory provides this framework with the introduction of priors 

(Shams & Beierholm, 2010; Yuille & Bülthoff, 1996). Specifically, the Bayesian model 

combines sensory representations (likelihood) with previous knowledge or the statistics of the 

environment (prior) to make an estimate of the sensory signals (posterior) using Bayes’ rule. 

Interestingly, MLE can be considered as a subcase of Bayesian inference when no (uniform) 

prior is used. It is important to note that the Bayesian decision theory provides a generative 
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model, in other words, it models explicitly how the signals are generated by events. The first 

study to apply Bayesian causal inference for audio-visual integration adopted an implicit 

causal inference model (Shams, Ma, & Beierholm, 2005), but shortly after, a hierarchical 

Bayesian model was introduced that allowed explicit inference not only on the sensory 

estimates, but on the causal structure of audio-visual signals (Körding et al., 2007; Sato, 

Toyoizumi, & Aihara, 2007).The hierarchical causal inference proved to be a very fruitful 

model for audio-visual integration, and different aspects of the model have been further 

studied or extended in the following years (Beierholm, Quartz, & Shams, 2009; Wozny, 

Beierholm, & Shams, 2008, 2010; Wozny & Shams, 2011a). For instance, it has been shown 

that Bayesian priors are encoded independently from likelihoods (Beierholm et al., 2009), and 

modelling auditory spatial adaptation can be described as a change in the likelihood function 

(Wozny & Shams, 2011a). 

The immediate effect of audio-visual conflict: spatial ventriloquism 

The most studied and probably the best known audio-visual integration phenomenon is the 

spatial ventriloquist effect (Bertelson & Aschersleben, 1998; Chen & Vroomen, 2013; Choe, 

Welch, Gilford, & Juola, 1975; Howard & Templeton, 1966; Radeau & Bertelson, 1976). It 

refers to the illusory percept by which the apparent location of a sound is perceived toward a 

visual signal presented simultaneously in a separate location. The phenomenon is named after 

the ventriloquist situation, when the speech of the performing ventriloquist is mislocalized 

toward the mouth movements of the puppet. Similarly, the ventriloquist effect happens 

watching the TV when the speech originating from loudspeakers is mislocalized to the actors’ 

lips. The ventriloquist illusion is a prime example of audio-visual integration, since various 

top-down and bottom-up factors contributing to a unified multisensory percept (see the 

previous section) can be studied using this paradigm (Radeau & Bertelson, 1987; Recanzone, 
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2009; Welch, 1999). Here, I demonstrate some milestones of these studies, and I introduce the 

discussions that are most relevant for the current thesis. 

One of the early discussions in the field concerned the nature of the ventriloquist 

effect, namely: does the ventriloquist effect reflect a true perceptual phenomenon or is it 

confounded by decisional bias at some level (Bertelson & Radeau, 1976; Choe et al., 1975)? 

Choe et al used a very tempting approach applying signal detection theory, and found that 

participants’ unity percept of synchronous vs. asynchronous AV signals was accompanied by 

a change in their decision criteria, not the perceptual sensitivity between these stimuli (Choe 

et al., 1975). The study received some critique (Bertelson & Radeau, 1976), and later studies 

agreed that the ventriloquist effect is based on a perceptual phenomenon (Vroomen & de 

Gelder, 2004). Different approaches have been provided to minimise or avoid the 

contamination of AV integration effects by decisional factors. The most common approach is 

to instruct participants explicitly to ignore the V stimulus during the sound localization task 

(Bertelson & Radeau, 1981; Howard & Templeton, 1966; Radeau & Bertelson, 1987). 

Another suggested approach is to use small or undetected AV discrepancies e.g. by applying 

staircase procedures (Bertelson & Aschersleben, 1998). New experimental designs were 

proposed that measured the ventriloquist effect indirectly using non-spatial (Driver, 1996), 

attentional (Spence & Driver, 2000; Vroomen, Bertelson, & de Gelder, 2001a) or auditory 

motion tasks (Dong, Swindale, & Cynader, 1999). A study using patients with spatial neglect 

further corroborated the results showing that ventriloquist effect occurs even without 

awareness of the attracting visual stimulus (Bertelson, Pavani, Ladavas, Vroomen, & de 

Gelder, 2000). 

A similar discussion have been the topic of much interest in the last two decades, 

questioning whether the ventriloquist effect is an automatic process or can be influenced by 
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cognitive factors. One of the hot topics regarded the role of attention, where behavioural 

studies indicated no influence on the illusion (Bertelson, Vroomen, de Gelder, & Driver, 

2000; Vroomen, Bertelson, & de Gelder, 2001b). Recent neuroimaging studies provided 

conflicting evidence using various AV paradigms (Alsius et al., 2005; T. S. Andersen et al., 

2004; Busse et al., 2005; Fairhall & Macaluso, 2009; Johnson & Zatorre, 2005; Nardo et al., 

2014; Santangelo et al., 2009), however, only one study examined the role of attention in the 

ventriloquist illusion (Busse et al., 2005). Roder and colleagues investigated the role of 

motivation and emotion using learning paradigms. They showed that both emotional aversive 

learning and reward learning can reduce a subsequently measured ventriloquist effect (Bruns 

et al., 2014; Maiworm et al., 2012). Finally, another aspect of top-down control as prior 

knowledge has been also demonstrated to influence reaction times in a ventriloquist paradigm 

(Van Wanrooij et al., 2010). The role and the mechanisms of top-down effects in the 

ventriloquist illusion hence remains an open question for future studies. 

On the other side, there is clear and overwhelming evidence about the role of bottom-

up sensory correspondences in the immediate ventriloquist effect. Several studies 

demonstrated that spatial proximity (Körding et al., 2007; Slutsky & Recanzone, 2001; 

Wallace et al., 2004) and temporal coincidence (Radeau & Bertelson, 1987; Slutsky & 

Recanzone, 2001; Thomas, 1941; Wallace et al., 2004) is needed for a strong illusory percept. 

Early studies also suggested the role of compellingness as a key factor (Warren et al., 1981; 

Welch & Warren, 1980). In their seminal paper, Alais & Burr (Alais & Burr, 2004) 

demonstrated that the ventriloquist effect is a near-optimal percept based on reliability 

weighting and MLE that opened a whole new era of modelling approaches. 

It has been shown that Bayesian causal inference provides a more general and 

generative model for multisensory integration (Bresciani, Dammeier, & Ernst, 2006; Roach, 
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Heron, & McGraw, 2006; Rowland, Stanford, & Stein, 2007; Shams et al., 2005). Two 

studies produced evidence in the same year that a hierarchical Bayesian causal inference 

accounts for the ventriloquist effect (Körding et al., 2007; Sato et al., 2007). Since then, many 

studies applied the model successfully (Beierholm et al., 2009; Odegaard, Wozny, & Shams, 

2015, 2016, Rohe & Noppeney, 2015a, 2015b, 2016).  

The aftereffect of audio-visual conflict: visually-induced auditory space 

adaptation 

In addition to the immediate ventriloquist effect, prolonged audio-visual spatial conflict 

results in the adaptation of the auditory space, called the ventriloquist aftereffect (Bertelson, 

Frissen, Vroomen, & de Gelder, 2006; Canon, 1970, 1971; Chen & Vroomen, 2013; Frissen, 

Vroomen, de Gelder, & Bertelson, 2003, 2005; Lewald, 2002; Radeau & Bertelson, 1974, 

1977; Recanzone, 1998; Wozny & Shams, 2011b). The aftereffect refers to a shift in auditory 

localization toward the visual signal even when the visual signal is no longer present. The 

adaptation process is also called as recalibration or plasticity (Held, 1965). The discrepant 

visual signal is not necessary for auditory space adaptation, in experimental conditions it can 

occur using ear blocks, ear molds, even altering HRTFs or in natural conditions using 

electronic hearing devices (Mendonça, 2014). 

It is important to note that aftereffects are truly perceptual in contrast to the intricate 

and multi-faceted immediate effects (Choe et al., 1975). Generally, aftereffects are measured 

using a design with 3 phases: pre-test, adaptation period and post-test comparing e.g. sound 

localization performance between pre- and post-test, hence the changes in performance cannot 

be attributed to cognitive factors or response biases. It could be speculated that response 

learning can contribute to the adaptation effect, namely, that a tendency to localize in a certain 

direction during adaptation persists even in the absence of conflicting stimulus (e.g. visual 
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signal) due to motor learning or response tendency (Choe et al., 1975). Using a different task 

(e.g. visual detection) during adaptation eliminates this possible confound, that was indeed 

implemented in most of the classical studies. Interestingly, some recent recalibration 

experiments interleaved the exposure period with post-test and/or measuring the ventriloquist 

effect together with the aftereffect raising the concern of contaminating the aftereffect with 

response biases (Mendonça, Escher, van de Par, & Colonius, 2015; Wozny & Shams, 2011a, 

2011b). 

Natural conflicts are always present between inter-sensory or more specifically, audio-

visual signals (de Gelder & Bertelson, 2003; Ernst & Di Luca, 2011). On one hand, small 

temporary conflicts are perceived between audio-visual signals due to sensory and neural 

noise all the time. This noise is spontaneous and random, and it does not really interfere with 

the estimation of signal characteristics. Some examples of sensory noise in the visual domain: 

bad lightning conditions, visual reflections; some examples of sensory noise in the auditory 

domain: sound reverberations, changes in sound travel due to temperature or humidity. On the 

other hand, permanent conflicts are also experienced, when there is a systematic bias in one or 

both of the modalities. A natural example is growth when the physical properties of the body 

changes. In the visual domain, it affects the length or the separation of the eyes; in the 

auditory domain it affects the inter-aural difference altering the binaural cues or the shape of 

the pinnae altering the monaural cues. A sensory handicap also results in a systematic, long-

lasting bias. 

Now, we are discussing the characteristics of the ventriloquist aftereffect. The 

magnitude of the aftereffect is considered to depend mainly on two factors: i) duration of the 

exposure period, and ii) AV discrepancy during exposure. It is generally 10-50% of the AV 

conflict size, but it shows large inter-subject variability (Chen & Vroomen, 2013). The largest 
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effect can be observed in the spatial locations used during exposure, but to a smaller extent, 

adaptation also generalizes to untrained locations (Bertelson et al., 2006). There is no clear 

consensus about the generalization of aftereffects across frequencies. Whilst early studies did 

not find a transfer across frequencies (Lewald, 2002; Recanzone, 1998), Frissen and 

colleagues demonstrated transfer in a large population across a wide range of frequencies ( 

from 400 Hz to 6400 Hz; Frissen et al., 2003, 2005). Traditionally, the ventriloquist 

aftereffect is obtained after an exposure period of several minutes (Canon, 1970; Radeau & 

Bertelson, 1974, 1977, 1978; Recanzone, 1998). Although, more recent evidence suggests 

that recalibration can occur much faster (Frissen, de Gelder, & Vroomen, 2012), or even after 

a single AV exposure (Mendonça et al., 2015; Wozny & Shams, 2011b). Interestingly, the 

recalibration does not dissipate quickly and stays on for minutes (Frissen et al., 2012), 

especially using short interleaved exposure periods during post-test (Wozny & Shams, 

2011a). 

 Reliability weighting has been well established as an optimal strategy for integrating 

multisensory signals with the goal of maximising the precision of the unified percept. 

Similarly, reliability weighting has been proposed for AV recalibration (Ghahramani, 

Wolpert, & Jordan, 1997; Witten & Knudsen, 2005). Although, the reliable cue is not always 

accurate and inaccurate unisensory signals can easily lead to an inaccurate unified percept 

(Ernst & Di Luca, 2011). Crucially, The Gordian knot of accuracy cannot be determined 

directly from the sensory estimates, thus without external feedback or prior knowledge the 

nervous system is unable to recognise and ascertain the level of accuracy (Ernst & Di Luca, 

2011; Zaidel, Ma, & Angelaki, 2013). Meanwhile, other studies suggested visual-dominant 

adaptation as a theoretical model in the AV (Knudsen, 2002; Spence, 2009) or other 

multisensory domains (Rock & Victor, 1964). In the visuo-haptic domain, developmental 
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studies demonstrated that vision dominates touch for orientation, whilst touch dominates 

vision for sizes (Gori, Del Viva, Sandini, & Burr, 2008; Gori, Sandini, Martinoli, & Burr, 

2010). The results were interpreted as the more accurate modality recalibrates the other one 

highlighting that accuracy is not a general feature of the senses, but it appears in task contexts. 

They propose that recalibration might be more important than integration before the age of 8, 

given the nature of growth and the maturation of senses (Burr, Binda, & Gori, 2011). 

The currently prevailing theoretical framework of adaptation based on accuracies was 

further corroborated by a recent visuo-vestibular recalibration study (Zaidel, Turner, & 

Angelaki, 2011). Moreover, the authors claimed that visual-dominant adaptation is only a 

subcase of fixed-ratio adaptation and they provided experimental evidence for the account of 

the more general fixed-ratio adaptation (Zaidel et al., 2011). They noted that although the 

senses achieve internal consistency through this unsupervised adaption, without external 

feedback the brain cannot establish a veridical representation. They tested external, supervised 

recalibration in a follow-up study, where the both the effects of reliability and accuracy were 

manipulated (Zaidel et al., 2013). They showed that the less reliable and more inaccurate cue 

gets recalibrated. Strikingly, they found that when the more reliable sensory signal was 

inaccurate, the senses were yoked and calibrated together in the same direction. They 

concluded that unsupervised and supervised calibration work in parallel, where unsupervised 

adaptation can calibrate the senses independently, but the supervised adaptation calibrates 

only based on the multisensory percept (Zaidel et al., 2013). 

Neural basis of audio-visual perception 

For many decades, research in neuroscience and psychology has been focusing on single 

senses e.g. vision and audition. Functional specialization was a common theme referring to 

the specialized functions of different brain regions e.g. visual processing in the occipital lobe 
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(Gazzaniga, 2000). Multisensory integration was considered to take place in higher-order 

association areas after extensive unisensory processing of the sensory signals (Felleman & 

Van Essen, 1991). Intriguingly, recent evidence based on anatomical, neurophysiological and 

imaging studies suggests that multisensory integration occurs already in the primary sensory 

cortices (Driver & Noesselt, 2008; Ghazanfar & Schroeder, 2006). In this section, I will focus 

on the neural mechanisms of audio-visual interaction, in particular, how auditory spatial 

processing is influenced by visual signals. At first, I will introduce how audio-visual 

information converges in subcortical and cortical multisensory regions by feedforward 

mechanisms. Secondly, I will demonstrate that unisensory processing can be modulated by 

feedforward and feedback mechanisms from other cortical regions. I will also present the 

neural substrates of the ventriloquist effect and its causal inference based on neuroimaging 

evidence. Finally, I will shed light on the coordinate transformations performed by the 

posterior parietal cortex to enable a common framework for audio-visual spatial 

representation. 

The superior colliculus (SC) is the model structure of multisensory convergence 

(Meredith & Stein, 1983, 1986; Stein & Arigbede, 1972). The three general principles of 

multisensory integration, such as the spatial rule, the temporal rule and the principle of 

inverse effectiveness were described based on long-term studies on this subcortical structure 

(Stein & Meredith, 1993). In addition to the SC, other subcortical structures involved in 

audio-visual perception are the basal ganglia and the putamen (Stein & Meredith, 1993; von 

Saldern & Noppeney, 2013). 

Now, we are turning to the classical cortical sites of feedforward audio-visual 

convergence. Direct neurophysiological (Barraclough, Xiao, Baker, Oram, & Perrett, 2005; 

Bruce, Desimone, & Gross, 1981) and numerous imaging studies (Beauchamp, Lee, Argall, & 
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Martin, 2004; Calvert et al., 1999, 2000; Stevenson, Geoghegan, & James, 2007) showed 

audio-visual convergence in the superior temporal sulcus (STS). Bidirectional anatomical 

connections with auditory and visual cortices have been also described (Padberg, Seltzer, & 

Cusick, 2003). Another well-known convergence region is the intraparietal sulcus (IPS) (R. 

A. Andersen, Snyder, Bradley, & Xing, 1997; Bremmer et al., 2001; Cohen & Andersen, 

2004; Rohe & Noppeney, 2015a, 2016; Sereno & Huang, 2014) including various sub-regions 

e.g. the lateral intraparietal area (LIP) extensively studied in macaques (Cohen, 2009; Cohen 

& Andersen, 2004). The temporo-parietal area (TPT) located at the temporo-parietal junction 

is another cortical region involved in the representation of multimodal space (Leinonen, 

Hyvärinen, & Sovijärvi, 1980). The ventrolateral prefrontal cortex (VLPFC) has been 

investigated mostly in the last decade as another cortical region for audio-visual convergence 

(Barbas et al., 2005; Fuster, Bodner, & Kroger, 2000; Lizabeth M Romanski, 2007; Sugihara, 

Diltz, Averbeck, & Romanski, 2006). The premotor cortex is another frontal region receiving 

inputs from auditory and visual regions (Bremmer et al., 2001; Graziano, Reiss, & Gross, 

1999; Graziano, Yap, & Gross, 1994; Russo & Bruce, 1994). It is important to note that 

different methodologies have been used to assess audio-visual integration in the 

aforementioned studies from anatomical tracing to electrophysiology and neuroimaging. 

These approaches evaluate integration at the level of neurons (electrophysiology) or at a 

mixture of neuronal populations (neuroimaging), so careful considerations are needed for 

interpretation and generalization of integration.  

Several anatomical studies provided evidence that a reverse information flow is also 

present in audio-visual processing: feedback connections from association areas project to the 

primary and secondary auditory (Barnes & Pandya, 1992; Hackett, Stepniewska, & Kaas, 

1998; L M Romanski et al., 1999; Smiley et al., 2007) and visual (Falchier, Clavagnier, 
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Barone, & Kennedy, 2002) cortices. In parallel, early functional imaging studies reported 

activation in the auditory cortex during silent lip-reading (Calvert et al., 1997), and 

modulations in the auditory and visual cortex by bimodal speech stimuli (Calvert et al., 1999). 

Interestingly, initial reports on auditory activations in the visual cortex appeared already 30-

40 years earlier (Bental, Dafny, & Feldman, 1968; Fishman & Michael, 1973; Lomo & 

Mollica, 1959; Morrell, 1972; Murata, Cramer, & Bach-y-Rita, 1965; Spinelli, 1968), but the 

results received lots of scepticism and they were attributed e.g. to non-specific effects or 

confounding factors. This time though, the findings attracted much attention and the topic of 

early sensory integration received a surge of interest in the following years. A vast body of 

research confirmed that audio-visual interactions occur at the early sensory cortices using 

neuroimaging (Kayser, Petkov, Augath, & Logothetis, 2007; Lehmann et al., 2006; Martuzzi 

et al., 2007; Miller, 2005; Pekkola et al., 2005; van Atteveldt et al., 2004; Watkins, Shams, 

Tanaka, Haynes, & Rees, 2006) and neurophysiological (Bernstein, Auer, & Takayanagi, 

2004; Besle, Fort, Delpuech, & Giard, 2004; Bizley, Nodal, Bajo, Nelken, & King, 2007; 

Brosch, Selezneva, & Scheich, 2005; Fu et al., 2004; Ghazanfar, Maier, Hoffman, & 

Logothetis, 2005; Giard & Peronnet, 1999; Molholm et al., 2002; Schroeder & Foxe, 2002; 

Schwartz, Berthommier, & Savariaux, 2004; van Wassenhove, Grant, & Poeppel, 2005) 

methods. Schroeder and Fox investigated more directly the nature of the modulatory 

mechanisms, and described both feedforward and feedback mechanisms that are distinctive in 

their laminar profiles (Schroeder & Foxe, 2002). Meanwhile, anatomical studies revealed 

lateral cross-connections from the primary auditory cortex to the primary and secondary 

visual cortices in the macaque monkey (Falchier et al., 2002; Rockland & Ojima, 2003) and 

similar lateral connections were found from the visual cortex to the auditory cortex in the 

ferret (Bizley et al., 2007) and the Mongolian Gerbil (Budinger, Heil, Hess, & Scheich, 2006). 
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These results opened a whole new era in our understanding of multisensory processing, and in 

their seminal paper, Ghazanfar and Schroeder even proposed intriguingly that the neocortex is 

essentially multisensory (Ghazanfar & Schroeder, 2006). For recent developments in the topic 

I refer to some more recent reviews e.g. (Driver & Noesselt, 2008; Kayser, Petkov, Remedios, 

& Logothetis, 2012; Musacchia & Schroeder, 2009). Now, we are changing focus to the 

neural substrates of the ventriloquist effect.  

The ventriloquist effect has been the most studied behavioural paradigm in the 

multisensory field; nevertheless, the possible neural mechanisms remained unknown for a 

long time. The first imaging studies described indirect findings related to the immediate 

ventriloquist effect  (Bischoff et al., 2007; Colin, Radeau, Soquet, Dachy, & Deltenre, 2002; 

Gondan, Niederhaus, Rösler, & Röder, 2005; Stekelenburg, Vroomen, & de Gelder, 2004; 

Teder-Sälejärvi, Russo, McDonald, Hillyard, & Di Russo, 2005), but they did not find direct 

evidence for a visual influence on the auditory percept in the auditory cortex. The first direct 

evidence came from an EEG-fMRI study of Bonath and colleagues (Bonath et al., 2007) 

describing a bias in the left-right balance in auditory cortex activity during the illusion. The 

finding was extended in a follow-up study investigating the modulatory effects of asynchrony 

on the ventriloquist effect. The authors demonstrated that a change in left-right balance of the 

neural activity could be localized to the planum temporale (PT) (Bonath et al., 2014). Another 

study corroborated the results, and demonstrated that the spatial representation of unisensory 

auditory stimuli as well as the illusory percept can be measured by BOLD response changes, 

which supports the population code hypothesis (Callan, Callan, & Ando, 2015). These results 

are also in great agreement with the hemifield code hypothesis of auditory spatial 

representation (McAlpine, 2005; Ortiz-Rios et al., 2017; Salminen, May, Alku, & Tiitinen, 
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2009; Stecker, Harrington, & Middlebrooks, 2005) that has been corroborated in a very recent 

high-resolution fMRI study (Ortiz-Rios et al., 2017). 
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CHAPTER 2: METHODOLOGICAL FOUNDATIONS 

In the current chapter we introduce the methods that form the basis for stimuli, tasks, designs 

and  analysis approaches used frequently throughout the thesis. At first, we introduce the cues 

humans utilize for spatial hearing, in particular the role of head-related transfer function and 

how it can be used for auditory stimulus presentation. Subsequently, we discuss  

psychophysical procedures that are useful for evaluating sound localization abilities of 

observers and determining threshold performance. Finally, we delve into the details of multi-

variate pattern analysis, a very powerful technique to characterize representations of neural 

activation patterns. 

Head-related transfer function 

The brain combines multiple cues to identify the sources of sound signals. The cues can be 

classified as binaural cues if their processing depends on both ears or monaural cues if they 

can be processed by one ear (Moore, 2013). Binaural cues are most useful in sound 

localization along the horizontal plane (left to right), whilst monaural cues are needed to help 

localization along the median plane (upside down and front to back) (R A Butler, 1969; 

Middlebrooks & Green, 1991; Wightman & Kistler, 1997). 

The two most prominent binaural cues are the intensity and time differences sensed at 

the ear, called inter-aural level difference (ILD) and inter-aural time delay (ITD), respectively 

(Middlebrooks & Green, 1991). Low-frequency sounds have a wavelength similar to the size 

of the head, therefore they can “bend around” the head resulting in negligible ILD changes 

below 500 Hz; on the contrary, shadowing effects can be as large as 20 dB at higher 

frequencies (Feddersen, Sandel, Teas, & Jeffress, 1957). ITD can be calculated from the path 

difference between the two ears as illustrated by Figure 2.1. The maximum ITD is reached by 
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a sound source opposite to one ear, where the expression results in about 690 µs. This number 

corresponds well to experimental data (Feddersen et al., 1957). For a pure tone, ITD appears 

as a phase difference between the two ears, and as the maximum delay approaches 180°, the 

phase difference becomes ambiguous limiting ITD cues mainly below 1500 Hz. The theory 

that ITDs can be detected and utilized at low frequencies, whilst ILD cues are most useful at 

higher frequencies was first proposed by Lord Rayleigh (Rayleigh, 1907). Although, the 

theory was originally based on pure tones, but it holds reasonably well for complex sound 

signals (Moore, 2013). 

 

Figure 2.1 Method for calculating ITD from path difference. A distant sound source 

arriving to the two ears at an angle 𝜃 and assuming spherical head with radius 𝑎 (9 cm) results 

in a path difference given by 𝑑 = 𝑎𝜃 + 𝑎𝑠𝑖𝑛𝜃. Subsequently, the time delay is calculated 

by 𝐼𝑇𝐷 = 𝑑𝑣, where 𝑣 denotes the speed of the sound (30 µs/cm). 

 

Monaural cues are mainly based on the change in the spectral properties of the sound 

due to the pinna, the head and the torso. They act as a spectral filter reinforcing or attenuating 

the sound on particular frequencies depending on their shape and the direction of the 

incoming sound relative to the head.  Spectral changes based on the pinna are limited to 

frequencies above 6000 Hz, since sound waves at these frequencies have sufficiently short 
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wavelengths to be able to interact with the pinna. However, spectral changes can occur also at 

much lower frequencies due to effects of the shape of the head and the torso (Blauert, 1969; 

Robert A Butler, 1971). 

Spatial cues of sound sources can be technically characterized by measuring the 

spectrum of the sound at the ear drum relative to the original source. The ratio of the two is 

called the head-related transfer function (HRTF). Importantly, HRTFs incorporate all the 

spatial cues that are accessible to the observer, therefore they are the ideal and most compact 

way of characterizing spatial cues of sound sources.  Measuring HRTFs of an individual is a 

laborious task, and it involves measurements of transfer function at many spatial directions 

around the head as well as removing artefacts due to the transfer functions of the setup 

(loudspeaker, microphone). There are two practical ways around this tedious work. One 

approach is to use pseudo-individualized or standard HRTFs instead of individualized ones. 

The other approach is to use binaural recordings similarly as done with HRTFs, but only at 

specific sound locations and without engineering the sounds to remove artefactual transfer 

functions due to the setup. 

The individual differences of HRTFs and their importance in sound localization has been the 

subject of multiple studies (Kawaura, Suzuki, Asano, & Sone, 1991; Middlebrooks, 1999; 

Moller, Sorensen, Jensen, & Hammershoi, 1996; Wenzel, Arruda, Kistler, & Wightman, 

1993). It has been demonstrated that humans made less errors via their own HRTFs than when 

they listened the sound sources via other’s HRTFs (Middlebrooks, 1999; Moller et al., 1996). 

Yet, Wenzel and colleagues (Wenzel et al., 1993) and Kawaura and colleagues (Kawaura et 

al., 1991) showed earlier that horizontal localization is rather robust and non-individualized 

HRTFs provide sufficient cues for localization in the horizontal plane. There were efforts to 

make a standard HRTF that represents a typical subject in the population. Gardner and Martin 
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made such measurements on a mannequin, called KEMAR (Knowles Electronics Mannequin 

for Acoustic Research) (Gardner & Martin, 1995). The measurements were made both on a 

small pinna that is representative of the pinna dimensions in the population and a large pinna 

that can be used for extreme dimensions. 

We used binaural recordings as well as standard HRTFs in our experiments. The 

binaural recordings were made in an anechoic chamber for each individual. The details of the 

recording process are described in the methods sections of the chapters, where recordings 

were used (Chapter 3, Chapter 4). The standard HRTFs with small pinna (Gardner & Martin, 

1995) were used in the experiment of Chapter 5. Here, we provide pilot sound localization 

results with both approaches to provide evidence that they are appropriate for our behavioural 

and fMRI experiments. 

For the evaluation of binaural recordings, six participants took part of short sessions in 

laboratory and scanner. Participants were presented with recorded auditory stimuli from ±10°, 

±7°, ±5°, ±4°, ±3°, ±2°, ±1°, 0° visual angle in a forced choice left-right discrimination task. 

A cumulative Gaussian was fitted to the percentage ‘perceived right responses’ as a function 

of stimulus location (www.palamedestoolbox.org). For details about the task and 

psychometric functions, see the next section of Psychophysical procedures. Figure 2.2 A-B 

show the group level psychometric functions. Paired t-test on the slope and threshold 

estimates did not reveal any significant difference supporting evidence for the usage of 

binaural recordings in scanner environment similarly as in laboratory. 

 

 

http://www.palamedestoolbox.org/
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Figure 2.2 Pilot psychometric functions in laboratory and scanner using binaural 

recordings and standard HRTFs. (A-B) Psychometric functions in laboratory (A) and 

scanner (B) based on the mean fits of six individuals using binaural recordings. (C) 

Psychometric functions in laboratory based on mean fits of ten individuals using standard 

HRTFs. Shaded areas represent ±SEM in all panels. 

 

 For the evaluation of standard HRTFs, ten participants took part in a sound 

localization task as part of a pilot session for the behavioural experiment in Chapter 5. 

Participants were presented with recorded auditory stimuli from ±12°, ±5°, ±2°, 0° visual 

angle in a forced choice left-right discrimination task, and psychometric functions were fitted 

as before. Figure 2.2 C shows the group level PF. Two sample t-test on the slope and 
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threshold estimates between the binaural recordings (both in laboratory and scanner) and 

standard HRTFs did not reveal any significant difference suggesting that they are similar 

approaches in our experimental settings. 

Psychophysical procedures 

The beginning of psychophysics dates back to the 19th century, when Gustav Theodor Fechner 

set out the principles in his book, Elements of Psychophysics (Fechner, 1860).  Psychophysics 

aims to quantify the relationship between physical stimuli and their perceptual counterparts 

(for a practical introduction, see Kingdom & Prins, 2010). There are various tasks and 

methods to characterize this relationship. Performance-based tasks measure ‘how well’ an 

observer performs in a particular task. On the other side, appearance-based tasks measure the 

stimulus-perception relationship without an explicit judgement of the performance and 

focuses on the stimulus appearance. This section deals with performance based tasks using 

threshold based approaches. In particular, we discuss forced-choice procedures, where 

observers’ make a choice between two pre-specified options in a discrimination task.  

Psychometric function 

Psychometric function (PF) is a model with a sigmoidal shape describing the relationship 

between a stimulus level (e.g. spatial auditory location) and the performance in a forced-

choice task (e.g. rightward responses in a left-right discrimination task) (Wichmann & Hill, 

2001a, 2001b). Critically, one determines parameters of the PF to summarize behaviour, 

hence, the generic formulation of the psychometric function: 

𝜓(𝑥; 𝛼, 𝛽, 𝛾, 𝜆) = 𝛾 + (1 − 𝛾 − 𝜆)𝐹(𝑥; 𝛼, 𝛽) 

where γ denotes the guess rate (probability of correct response/discrimination when the 

stimulus is not detected), λ denotes the lapse rate (probability of incorrect 
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response/discrimination independent of stimulus level), α denotes the threshold (point of 

subjective equality in a discrimination task), β denotes the slope (rate of change of the 

function). Guess and lapse rates are generally not of interest, therefore they are kept as fix 

parameters during estimation (a small, non-zero value to allow some flexibility for PF fitting 

resulting in more reliable estimates of α and β) (Kingdom & Prins, 2010). Interestingly, we 

note that there is a third possibility in parameter estimation, namely constraining a parameter 

in multi-condition fitting. In this case the parameter (e.g. slope) will be estimated in all 

conditions at the same time, whilst its value is kept constant across conditions. 

 Five functions are commonly used to model psychometric data: Cumulative Normal, 

Logistic, Weibull, Gumbel and Hyperbolic Secant function. Probably, the Cumulative Normal 

Distribution is the theoretically most justified model that can be derived from the central limit 

theorem (Hays, 1994) assuming that a linear combination of independent noise sources 

underlie the decision process. The Cumulative Normal distribution function is formulated as: 

𝐹(𝑥; 𝛼, 𝛽) =
𝛽

√2𝜋
∫ 𝑒𝑥𝑝 (−

𝛽2(𝑥 − 𝛼)2

2
)

𝑥

−∞

 

Interestingly, in this case the inverse of the slope parameter (1/β) is equivalent to the standard 

deviation of the PF that is also equivalent to the just noticeable difference (JND) defined at 

84% level. Figure 2.2 illustrates a group level PF fitted by a Cumulative Gaussian function. 

In our experiments, PFs are fitted to stimuli presented using the method of constants. 

In this popular method, the stimulus levels are randomized before the experiment and 

presented in the predefined order during the experiment. The obvious advantage of the 

approach is its simplicity and capability to estimate both threshold and slope parameters. On 

the other hand, pilot work is needed to determine the right stimulus levels, otherwise 

presentation of irrelevant stimulus levels might be time consuming and it can lead to poor 
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parameter estimates. An ideal range for the stimulus levels should be chosen such that the PF 

goes from just above chance (guess rate) to almost 100% correct/discrimination and only 1-1 

stimulus level should produce these values.  Typical psychophysics experiments contain 4 to 

10 stimulus levels with 20 to 100 trials at each level (Wichmann & Hill, 2001b). The more the 

trials, the better the estimation process, however, sometimes one is interested only in the 

threshold parameter, when less stimulus repetitions might also yield to a sufficient estimate. 

We also note that PFs can be fitted to stimuli presented during an adaptive procedure, either 

only for threshold (e.g. Quest by Watson & Pelli, 1983) or threshold and slope estimation at 

the same time (e.g. Psi method  by Kontsevich & Tyler, 1999). In both cases, PFs are fitted 

iteratively after every trial and the produced estimates are used for presenting the next 

stimulus.    

Generally, there are two procedures for fitting psychometric functions. The simpler choice is 

maximum likelihood (ML) estimation. During ML estimation parameters are searched in a 

way to maximize the likelihood of generating the data. Another procedure for fitting is 

Bayesian estimation that combines ML estimation with prior distributions of the parameters 

yielding posterior estimates using Bayes rule.  

Adaptive staircase method 

The purpose of adaptive staircase methods is to increase efficiency of the testing procedure. It 

is achieved by updating the presented stimulus levels based on observer’s previous responses 

and converging to a threshold in a staircase procedure. Staircase procedures were developed 

originally by Dixon and Mood (Dixon & Mood, 1948)and use an up/down rule. Namely, a 

staircase procedure decreases subsequent stimulus levels after incorrect and increases 

subsequent stimulus levels after correct responses of the observer. The original up/down 

method is based on the last trial and uses the same step sizes for level the stimulus up or 
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down, therefore targeting thresholds at 50% correct responses. More sophisticated up/down 

methods were proposed later taking into account more preceding trials (transformed up/down 

method, (Wetherill & Levitt, 1965)) or using different sizes for step up and down (weighted 

up/down method, (Kaernbach, 1991)). Of course, the combination of the latter two methods 

can be also used and was proposed by García-Pérez (García-Pérez, 1998) in the transformed 

and weighted up/down method. The targeted proportion correct response can be calculated as: 

𝜓𝑡𝑎𝑟𝑔𝑒𝑡 = (
∆+

∆+ + ∆−
)

1
𝐷

 

where 𝜓𝑡𝑎𝑟𝑔𝑒𝑡 is the targeted proportion correct, ∆+and ∆− are the step up and down sizes, 

respectively, and D is the number of consecutive responses after which a step down is made.  

Several methods exist to evaluate the convergence of staircase procedures. The most 

common approach is to terminate the staircase after a specific number of revearsals of 

direction have occurred (García-Pérez, 1998). In this case, the threshold is calculated as the 

average stimulus across the last trials a reversal occurred.  Another option is to terminate after 

a specific amount of trials have occurred and the threshold is calculated on a specified amount 

of last trials. The second approach might not yield in a robust convergence, however, it has 

the benefit of a fixed amount of trials, therefore might be a faster approach. Typically, one 

uses multiple staircases runs and the final threshold estimate is an average of the run-specific 

estimates. Finally, we should mention that a hybrid approach also exists, where staircase runs 

are used to select stimulus intensities, and a PF is fitted to the data yielding the threshold 

estimate (Hall, 1981). Obviously, as we demonstrated in the previous section (Method of 

constants using psychometric function fitting), this strategy has the obvious disadvantage of 

assumptions to be made about the specific function and possibly, some of its parameters. 
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Signal detection theory 

A qualitatively different approach to measure observers’ performance in a psychophysics 

experiment is based on Signal Detection Theory (SDT). This method enables one to evaluate 

performance taking into account response biases. The main assumption behind the theory is 

that observers take decisions on the basis of information coming from two distributions: a 

signal distribution and a noise distribution. The observer has to make a forced choice between 

these distributions. A ‘yes-response’ to a signal coming from the signal distribution is a hit, 

whilst a ‘no-response’ from the same signal distribution is a miss. On the other hand, a ‘yes-

response’ to a signal coming from the noise distribution is a false alarm, whereas ‘no-

response’ to the same signal is a correct rejection. See Figure 2.3 for an illustration.  

 

 

Figure 2.3 Signal and noise distributions with measures of d’, criterion, hit rate and false 

alarm rate. 

 

The measure which combines the likelihood of hits with the likelihood of false alarms 

is the observer’s sensitivity, or d'. The d' measures how well the observer can tell apart signals 

coming from the signal and the noise distributions. The formal calculation of the d' is given 

by: 

𝑑′ = 𝑧(𝐻𝑖𝑡 𝑟𝑎𝑡𝑒) − 𝑧(𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒) 
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where the function z(x) is the inverse of the Cumulative Gaussian function. Larger values of 

d' indicate that the observer is better in discriminating signals coming from the signal and the 

noise distributions. A second SDT measure is the criterion. This measure represents the 

observer’s response bias. The formal calculation of the criterion is given by: 

𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛 = −
(𝑧(𝐻𝑖𝑡 𝑟𝑎𝑡𝑒) + 𝑧(𝐹𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒))

2
 

A criterion = 0 means that the observer is unbiased, whereas a criterion different from 0 

indicates that the observer is biased towards one of the two distributions (for an illustration, 

see below). 

 Multivariate pattern analysis of fMRI data 

Conventional fMRI analysis focuses on brain regions that are involved in specific cognitive 

tasks (Friston, Holmes, Poline, et al., 1995; Friston, Holmes, Worsley, Frith, & Frackowiak, 

1995; Friston, Jezzard, & Turner, 1994; Worsley & Friston, 1995). In order to characterize 

activation in the involved brain regions, data is normally spatially smoothed and the activation 

is averaged within a region of interest or cluster. In recent years, a growing number of studies 

go beyond this macroscopic characterization and target the information content represented in 

activation patterns of brain regions or the whole brain (Allefeld & Haynes, 2014; Cox & 

Savoy, 2003; Haxby, 2001; Haynes & Rees, 2006; Kriegeskorte, Goebel, & Bandettini, 2006; 

Norman, Polyn, Detre, & Haxby, 2006; Pereira, Mitchell, & Botvinick, 2009; Tong & Pratte, 

2012; Walther et al., 2016) 

There are three qualitatively different question that one might ask about activation 

patterns: (i) ‘is there any information of interest’ (pattern discrimination); (ii) ‘where is the 

information’ (pattern localization); (iii) ‘how is the information encoded’ (pattern 
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characterization) (Pereira et al., 2009). Most of the multi-variate pattern analysis (MVPA) 

studies target the first two questions: they aim to discriminate between stimuli or other 

experimental conditions and possibly, also to localize these effects. At first, we present the 

classification problem, and we outline a typical MVPA decoding analysis. Secondly, we 

describe the various steps in details, we show how these two questions can be tackled during 

the decoding process, and discuss the various options at each processing stage. With regards 

to the third question, we refer to excellent reviews on encoding and representational models 

from recent years (Diedrichsen & Kriegeskorte, 2017; Mur, Bandettini, & Kriegeskorte, 2009; 

Naselaris, Kay, Nishimoto, & Gallant, 2011). 

The essence of MVPA decoding is the classifier: a function that finds a mapping 

between patterns of features to given labels to separate examples belonging to different 

conditions. Labels can be discrete classes (e.g. stimulus left and right) or continuous variables 

(e.g. stimuli at various visual angles). In the previous case the MVPA formulation is called a 

classification problem, in the latter case it is called a regression problem. The data 

representation is illustrated in Figure 2.4. 

 

 

Figure 2.4 Data representation for MVPA analysis. Each row represents an example with 

features as voxels and a discrete or continuous label. Different rows represent examples 

belonging to different conditions, or multiple instances (e.g. different runs) of the same 

condition. 
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A key step in the decoding analysis is partitioning the dataset into independent training and 

test sets. Once the classifier is trained to find a mapping in the training set, it is applied to the 

test set to predict labels for the test examples. Then the true labels are compared to the 

predicted labels and the accuracy (for classification) or mean squared error/correlation (for 

regression) is calculated as a measure for decoding. For testing against chance-level decoding, 

permutations tests have been proven to be the valid statistical approach in the last years 

(Allefeld, Görgen, & Haynes, 2016; Pereira & Botvinick, 2011; Stelzer, Chen, & Turner, 

2013). Now, we discuss the steps of the decoding process in details: 

1. Creating examples: the first important choice is how to identify examples. Examples can 

be created commonly from raw fMRI volumes, single trials, blocks or runs. Some level of 

temporal aggregation is almost always needed to increase the signal-to-noise level and 

the particular choice depends on the specific design. Blocked designs or sparse event-

related designs are suitable for examples to be created from raw data, whilst a classical 

GLM estimation is needed for rapid event-related designs due to the overlapping BOLD 

responses of subsequent trials. In the latter case, a common choice is to define a regressor 

for each condition in a run, although, we note that in case of conditions with many trials, 

it might be beneficiary to define multiple regressors per condition. In both cases, the 

regressors will be turned into examples after GLM estimation. One important detail 

between working from raw fMRI data and GLM estimates is that in the latter case one 

might specify additional nuisance regressors (e.g. for movement) that explain some of the 

variability in the data resulting in better estimates of interest.   

2. Feature selection: the obvious choice for fMRI data that features are defined as voxels in 

a vectorised format, however, it is less obvious at what scale they should be defined. 

Whole brain analyses suffer from large number of noisy voxels, therefore dimensionality 
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reduction techniques are generally used in this case. Common approaches to reduce the 

number of features are to perform PCA (Hansen et al., 1999), ICA (Calhoun & Adali, 

2006) or recursive feature elimination (Hanson & Halchenko, 2008). Most research 

questions are interested in localization of patterns, therefore a more suitable approach is 

to reduce the voxels to region of interests (ROIs) or to perform searchlight analysis. 

Importantly, these localized approaches reduce the concern that the classifier finds 

patterns by combining information from functionally distinct brain regions, since 

reflecting operations that are not actually performed by the brain. ROI based decoding is 

a very powerful approach, the only concern is the need of ROIs based on prior 

knowledge. When prior information is not available, searchlight analysis is a good 

choice, where decoding is iteratively performed on local clusters (typically spheres with 

radius of e.g. 15 mm) and sampled throughout the whole brain (Kriegeskorte et al., 2006). 

A disadvantage of the searchlight approach is the need to correct for multiple 

comparison, therefore they are commonly used together with group-level statistical 

inferences. 

3. Example/feature normalization: feature normalization is a standard practice in the 

machine learning community. In addition, some authors in the neuroimaging community 

proposed that example normalization might be also beneficial for fMRI data (Pereira et 

al., 2009). Indeed, Euclidean normalization of examples is a default approach in the 

Pronto toolbox (Schrouff et al., 2013), and our results proved the beneficence of the 

approach. Very recently, it has been proposed to apply multivariate feature normalization 

based on the residuals from GLM estimation instead of the standard univariate feature 

normalization (Walther et al., 2016). The theoretical justification for the approach is that 

it leads to the pre-whitening of examples by removing spatial correlations left in the 
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residuals. The new technique appears to be welcomed in the neuroimaging community 

and it is already offered as a pre-processing step in the latest version of the popular The 

Decoding Toolbox (TDT) (Hebart, Görgen, Haynes, & Dubois, 2015).  

4. Choice of classifier: various classifiers are at disposal for the decoding analysis. The 

simplest algorithm is called nearest neighbour that does not even learn a mapping 

function, but classifies based on finding the most similar training example (neighbour). It 

tends to work well only with a small number of features and generally applied with 

feature elimination methods (Haxby, 2001; Mitchell et al., 2004). Popular choices for 

more complex algorithms that do learn a mapping function are linear Support Vector 

Machines (SVM), Fisher’s Linear Discriminant Analysis (LDA). and Gaussian Naïve 

Bayes (GNB) (Pereira et al., 2009). GNB is a good candidate for searchlight analysis 

(Pereira & Botvinick, 2011), although it is inferior to SVM in case of large number of 

features due to the regularization term of SVM helping to weigh down the effects of 

noisy features. Classifiers with a mapping function can be divided to generative and 

discriminative models (Hastie, Friedman, & Tibshirani, 2001). LDA is a generative 

approach assuming multivariate Gaussian distribution of the classes with separate means, 

but same within-class covariance matrix. Consequently, LDA performs well when the 

assumptions are hold and the covariance matrix can be estimated reliably (typically, in 

case of small number of features). On the contrary, linear SVM is a discriminative 

approach using regularization and with no distributional assumptions. It is a large margin 

classifier finding a subset of examples, called support vectors defining the class-

separating hyperplane. Linear SVM is a very popular choice of algorithm in numerous 

MVPA toolboxes in recent years, see e.g. Pronto (Schrouff et al., 2013), TDT (Hebart et 

al., 2015) and PyMVPA (Hanke et al., 2009). 
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5. Training and testing using cross-validation (CV): CV is a standard approach in decoding 

to partition data into training and test sets. The most common variant is leave-one-run-out 

(LORO) CV. It splits the dataset for training and test sets as many times as runs are 

available leaving always a different run out for testing and all the others for training the 

algorithm. The final decoding measure (e.g. accuracy) is calculated as an average across 

CV steps. The advantage of LORO-CV for partitioning the data is two-fold: (i) the 

classifier can be trained with most of the data; (ii) the trained models can be tested on all 

data (of course, separately in different folds). The only disadvantage of LORO-CV is that 

it is computationally expensive. A compromise is to use k-fold CV, splitting the data to k 

folds (e.g. k=5 or10) and repeating the procedure similarly as for LORO-CV. It is 

essential in k-fold CV, that examples that are correlated (e.g. due to auto-correlation in 

the same run) are always kept in the same fold. Otherwise the classifier might predict 

examples only based on the existing correlation resulting in an false overestimation of the 

real decoding measure (e.g. accuracy) (Pereira et al., 2009). Figure 2.5 illustrates a 5-fold 

CV. 
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Figure 2.5 CV scheme for MVPA analysis. In this 5-fold CV, data are split into 5 folds. In 

each step, the classifier is tested on one left-out run, and trained on all the other runs. The 

final decoding measure (e.g. accuracy) is an average value across folds. 

 

6. Statistical inference: similarly to classical inference of fMRI data, inference of decoding 

results can be done at two levels. At the subject level, true decoding measures can be 

compared to chance-level values. In recent years, permutation-tests have proven to be the 

valid statistical approach over t-tests or binomial-tests regarding information-like 

measures (Allefeld et al., 2016; Haynes, 2015; Nichols & Holmes, 2002; Pereira & 

Botvinick, 2011; Stelzer et al., 2013). Subject-level permutations are achieved with 

permuting labels within a given chunk of data (keeping correlated examples together is 

essential also here) and obtaining a distribution of permuted decoding measures. The true 

decoding values then can be compared to the permutation distribution. Permutation 

testing has only weak distributional assumptions and it is useful to reveal biases in the 
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decoding process (e.g. due to violation of independence between training and test set) that 

can lead to above-chance level baseline decoding. Permutation tests can be also applied 

to make inference at the group level (Allefeld et al., 2016; Stelzer et al., 2013). In this 

case, subject level permutations are bootstrapped or permuted at the second level 

calculating second level permutation distributions. 
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CHAPTER 3: NEURAL BASIS OF EXPLICIT CAUSAL 

INFERENCE IN AUDIO-VISUAL PERCEPTION 

Introduction 

Events in the environment most often generate signals in multiple senses at the same time. In 

order to make a veridical representation of the world, the brain needs to integrate sensory 

signals generated by the same event and segregate those generated by different events 

(Trommershäuser et al., 2011). Extensive research in the last decades has shown that there are 

three main bottom-up inter-sensory cues for such a decision: spatial disparity, temporal 

synchrony and semantic relations (Chen & Vroomen, 2013; Laurienti et al., 2004; HweeLing 

Lee & Noppeney, 2011; Recanzone, 2009; Slutsky & Recanzone, 2001; Welch, 1999). 

Accumulating evidence suggests that human observers arbitrate between sensory integration 

and segregation in line with Bayesian causal inference as illustrated also by spatial 

ventriloquism (Körding et al., 2007; Shams & Beierholm, 2010). In spatial ventriloquist 

paradigms, observers are presented with synchronous, yet spatially disparate audio-visual 

(AV) signals and report the perceived location of the stimuli and/or their judgement about a 

common or a separate underlying sensory source. The perceived location of the AV (or A in 

sound localization task) signal is based on the weighted reliability of the unisensory signals 

(Alais & Burr, 2004; Ernst & Banks, 2002), resulting in the mislocalization of the A signal in 

most of the natural conditions due to the superior reliability of the V signal (Howard & 

Templeton, 1966). 

Recent neuroimaging research suggests that Bayesian causal inference emerges at 

different levels of the human cortical hierarchy (Rohe & Noppeney, 2015a). This work 

showed that, firstly, low-level sensory regions encoded primarily the location of the 
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corresponding A and V signals. Secondly, spatial estimates of AV signals were weighted 

based on their relative reliability in the posterior part of the intraparietal sulcus (IPS0-2). 

Critically, at the top of the hierarchy in the more anterior parts of IPS (IPS3-4), spatial 

estimates were formed by taking into account the uncertainty of the causal structure of the 

signals. Moreover, the authors demonstrated that IPS3-4 integrated AV signals weighted by 

their bottom-up reliabilities and top-down task-relevance (Rohe & Noppeney, 2016).These 

studies demonstrate that IPS3-4 forms spatial representations of AV sensory signals relying 

implicitly on causal inference (Rohe & Noppeney, 2015a, 2016). One question remains: 

which brain regions perform explicit causal inference Is it IPS3-4 performing implicit and 

explicit causal inference or are there other cortical regions that are able to estimate the 

probability of signals representing the same event and then pass the information to IPS3-4? 

To address this question, human observers were presented with synchronous auditory 

and visual signals that were either spatially collocated (congruent) or discrepant 

(incongruent). On each trial, participants determined whether the AV signals were generated 

by same or separate events. We adjusted the AV disparity individually for each participant, 

such that they were approximately 70% correct in their causal judgment both for congruent 

and incongruent trials. Critically, this individual adjustment allowed us to dissociate between 

physical and perceived AV congruency. Based on previous studies demonstrating that 

arbitration between audio-visual integration and segregation can be related to the prefrontal 

cortex (Gau & Noppeney, 2016; Noppeney, Ostwald, & Werner, 2010), and given the 

hierarchical organization of the human brain, we expected that the dorsolateral prefrontal 

cortex (DLPFC) might play a key role in explicit causal inference, determining whether A and 

V sensory signals come from common or separate events. This decision would then modulate 
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in a top-down fashion the spatial representations of AV signals in other cortical regions (e.g. 

IPS or even lower level auditory and visual regions). 

Methods 

Participants 

Twelve right-handed participants (11 females, mean age: 21.0; SD=2.9) gave informed 

consent to take part in the fMRI experiment. Two participants were excluded because their 

visual regions could not be reliably defined based on the retinotopic localizer scans acquired 

after the main experiment. One additional participant took part only in the retinotopic 

localizer session and did not progress to participating in the main experiment.  

All participants were selected prior to the main experiment based on the following 

criteria: (i) no history of neurological or psychiatric illness; (ii) normal or corrected-to-normal 

vision; (iii) reported normal hearing; (iv) unbiased sound localization performance outside 

and inside the scanner; and (v) ~70% accuracy during an initial screening procedure for the 

main task at an individually adjusted audio-visual disparity in a prior screening session 

outside the scanner. The study was approved by the human research ethics committee at the 

University of Birmingham. 

Experimental procedure 

Typically, participants completed 7 sessions. The most important details of each session are 

illustrated in Figure 3.1. The first session was completed in an anechoic chamber and lasted 

for ~1 hour. It consisted of the recording of sound stimuli used later in the experiment, and the 

initial assessment of participants’ sound localization performance. Participants were trained in 

two other sessions to determine subject-specific AV spatial disparities in a mock scanner. The 

two sessions lasted for an overall ~2 hours. In the fourth session participants were moved to 

the scanner, where the adjusted AV disparities and the sound localization performance were 
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finalized. 1-2 more training sessions were provided for 3 participants, who were not able to 

start the main fMRI experiment in less than 3 weeks after the first training session. After the 

training, participants performed 2 sessions of the main experiment in the scanner, each lasting 

for ~1.5 hours. To enable the retinotopic mapping of visual and parietal cortical areas, 

participants performed a separate fMRI session with a standard retinotopic localizer task 

lasting for ~1 hour. 6 participants performed the retinotopic session before the main fMRI 

experiment, 4 participants performed the retinotopic session after the main fMRI experiment. 

4 participants performed an additional behavioural session in the mock scanner after the main 

fMRI experiment to provide eyetracking data. Eyetracking recording was part of the two 

training sessions with the other 6 participants. 

 

 

Figure 3.1 Typical experimental structure with 7 sessions. Experimental structure 

containing information about the most important details of the sessions: various tasks 

performed by the participants (major tasks of each session in bold) and the goal of the tasks in 

the experimental pipeline.  
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Stimuli 

The visual stimuli were clouds of 20 white dots (diameter: 0.4° visual angle) sampled from a 

bivariate Gaussian presented on a dark grey background (70% contrast). The horizontal 

standard deviation of the Gaussian was set to a 5° visual angle, and the vertical standard 

deviation was set to a 2° visual angle. The sound stimuli were bursts of white noise with 5 ms 

on/off ramp. They were recorded individually for each subject with Sound Professionals™, 

Inc. (USA) in-ear binaural microphones in an anechoic chamber in the School of Psychology, 

University of Birmingham. The process consisted of displaying the sounds with an Apple Pro 

Speaker (at a distance of 68 cm from the participants) from -8° to 8° visual angle with 0.5° 

visual angle spacing, and at ±9° and ±12° visual angle along the azimuth. The participant’s 

head was placed on a chin rest with forehead support and controlled by the experimenter to 

ensure stable positioning during the recording process. Five stimuli were recorded at each 

location (recording set) to ensure that sound locations could not be determined based on 

irrelevant acoustic cues. Importantly, visual stimuli were randomly generated on each trial, 

and auditory stimuli were randomly chosen from the recording set of five stimuli. This 

randomization step enabled that the decoding algorithm used for MVPA analysis will not get 

biased by specific stimulus characteristics, but will directly utilize the spatial stimulus features 

allowing generalization of the decoding results. 

Assessment of sound localization performance – outside the scanner 

In the first session , sound stimuli were recorded from a series of locations in an anechoic 

chamber as discussed in the stimuli section. Participants were presented with the recorded 

auditory stimuli from ±12°, ±9°, ±7°, ±5°, ±3°, ±2°, ±1°, 0° visual angle in a forced choice 

left-right discrimination task. A cumulative Gaussian was fitted to the percentage ‘perceived 

right responses’ as a function of stimulus location using maximum-likelihood estimation 
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(www.palamedestoolbox.org). The guess rate and lapse rate parameters (0 and 0.01, 

respectively) were kept fixed and the fitting procedure resulted in estimates of the threshold 

(point of subjective equality, PSE) and the slope (inverse of the standard deviation, STD) of 

the psychometric function. First, participants were familiarized with the recording process and 

the left-right discrimination task. Then the recording process and the left-right discrimination 

task were repeated multiple times until unbiased sound localization was performed on at least 

one recording set. Left-right discrimination tasks on 2 stimulus locations (sound stimuli at 

approx. at ±JND values) were also performed to help quick, initial evaluation of the recording 

sets. In the first session, unbiased sound localization was specified by PSE/STD ratios < 0.3. 

In the following training sessions, sound localization was further assessed based on 

left-right discrimination task on 2 stimulus locations. Typically, 20-60 repetitions per stimulus 

location were performed in the mock scanner. 

Adjustment of spatial disparity for each participant – outside the scanner 

In order to dissociate spatial disparity (i.e. physical congruency) and perceived common 

source (or perceptual congruency), we employed a threshold approach: In two sessions we 

adjusted AV spatial disparity inside the mock scanner individually for each subject to obtain 

an accuracy of 70% on the main causal judgment task (i.e. common vs. separate sources). 

This individual adjustment of AV spatial disparity allowed us to compare physically identical 

AV signals that were perceived as coming from common or separate sources. In the initial 

session inside the mock scanner, subject-specific AV spatial disparities were adjusted in 

maximally 5 adaptive staircases, each targeting 70% accuracy on the common source 

judgment task (www.palamedestoolbox.org). The adaptive staircases were terminated after a 

minimum of 30 trials, when 8 reversals occurred within a window of 20 trials. The spatial 

disparity threshold averaged across the adaptive staircases formed the starting estimate for 

http://www.palamedestoolbox.org/
http://www.palamedestoolbox.org/
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additional manual fine tuning in subsequent runs of 60 trials where the AV disparity was held 

constant within a run and adjusted across runs in step size of 1-2° visual angles across runs to 

obtain a stable performance accuracy of 70%. Performance accuracy of 60-80% for one 

specific AV disparity (in a range from 4° and 16° visual angle) were used as a participant 

selection criterion to allow for comparison of physically identical trials AV that were 

perceived as perceptually congruent or incongruent. 

A short second session was also held in the mock scanner on a separate day aimed to 

measure inter-session variability in the performance of the participants. During the second 

session, further fine tuning of AV disparities in subsequent runs of 60 trials was applied as 

before.  

Final assessment of spatial disparity and sound localization – inside the scanner 

To account for differences between the mock scanner and the real fMRI scanner and ensure 

spatially unbiased positioning of the participant inside the scanner, the AV spatial disparity 

was finally adjusted in additional 1-3 runs with constant disparity inside the scanner prior to 

the main common source judgment experiment.  

Similarly, we assessed participants’ sound localization in a left-right discrimination 

task on close to the 2 finally selected stimulus locations inside the scanner. Typically, 40-80 

repetitions per stimulus location were performed in the scanner for each subject.  Unbiased 

sound localization was defined as less than 30% difference in the accuracy for left and right 

side stimuli. Each participant of the main fMRI study completed at least 20 repetitions per 

stimulus location on the final auditory stimulus locations resulting in a group mean 

localization accuracy of 87% (SEM=0.02).  
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Main experimental design 

In the main experiment, participants were presented with synchronous audio-visual (AV) 

stimuli of 50 ms duration at a stimulus onset asynchrony (SOA) of 2.3 sec. The auditory (A) 

and visual (V) stimuli were independently sampled from two symmetric spatial locations 

along the azimuth. On each trial, participants reported whether A and V signals were 

generated by common or separate sources. In addition, participants’ hand responses were 

counter-balanced within subjects. Hence, the experimental design factorially manipulated: (i) 

visual stimulus location (left vs. right) (ii) auditory stimulus location (left vs. right), and (iii) 

motor response (left vs. right hand). For further analysis and characterization of the functional 

properties of the regions we categorized trials into: (i) physical congruency (i.e. AV congruent 

vs. incongruent); and (ii) perceived congruency (i.e. participant perceived and reported AV 

signals on a particular trial as common or separate sources). 

 

Figure 3.2 Experimental stimuli and design. (A) Time course of 2 example stimuli (the first 

physically incongruent, the second physically congruent). (B) Factorial design of the stimuli. 

Note that 3 factors (visual, auditory, motor) are independent variables manipulated by the 

experimenter, whilst perceptual congruency is a dependent variable on participants’ 
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responses. Physical congruency is derived from the auditory and visual correspondences. 

Abbreviations: AV, audio-visual. 

 

Eye movement recording and analysis 

To address potential concerns that our results may be confounded by eye movements, we 

evaluated participants’ eye movements based on eye tracking data recorded concurrently 

during the common source judgment task inside the mock scanner.  Eye recordings were 

calibrated (~35° horizontally and ~14° vertically) to determine the deviation from the fixation 

cross. Fixation position was post-hoc offset corrected. For each position, the number of 

saccades (radial velocity threshold = 30°/s, acceleration threshold = 8000°/s2, motion 

threshold = 0.15°, radial amplitude > 1°) and eye blinks were quantified (0-875 ms after 

stimulus onset). Post-stimulus saccades were detected in 33.5% ± 10.6% (mean ± SEM) of the 

trials. Critically, the 2 (visual left, right) x 2 (auditory left, right) repeated measures ANOVAs 

on the stimulus conditions performed separately for (i) % saccades or (ii) % eye blinks 

revealed no significant main effects or interactions indicating that differences between 

conditions are unlikely to be due to eye movement confounds. 

Experimental setup 

Visual and auditory stimuli were presented using Psychtoolbox version 3.0.11 (Brainard, 

1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) running under MATLAB R2011b 

(MathWorks Inc.) on a MacBook Pro (Mac OSX 10.6.8). For the main task, visual stimuli 

were back projected to a Plexiglas screen using a D-ILA projector (JVC DLA-SX21) visible 

to the subject through a mirror mounted on the magnetic resonance (MR) head coil. Auditory 

stimuli were delivered via Sennheiser HD 280 Pro (in the anechoic chamber), Sennheiser HD 

219 (in the mock scanner) and MR Confon HP-VS03 headphones (in the scanner). 
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Participants’ eye movements were recorded in the mock scanner using an Eyelink II system 

(SR Research Ltd.) at a sampling rate of 1000 Hz. 

MRI data acquisition 

A 3T Philips Achieva scanner was used to acquire both T1-weighted anatomical images 

(TR/TE/TI, 8.4/3.8/min. 540 ms; 175 slices; image matrix, 288 x 232; spatial resolution, 1 x 1 

x 1 mm3 voxels) and T2*-weighted echo-planar images (EPI) with blood oxygenation level-

dependent (BOLD) contrast (fast field echo; TR/TE, 2600/40 ms; 38 axial slices acquired in 

ascending direction; image matrix, 80 x 80; spatial resolution, 3 x 3 x 3 mm3 voxels without 

gap). There were 10-12 runs with 240 volumes per run typically over 2 sessions. The first 4 

volumes were not acquired to allow T1 equilibration effects. In one participant, we repeated 

one session, because in the excluded session the participant’s behavioural performance was 

15% lower compared to the mean accuracy of the remaining sessions. In another participant, 2 

runs were excluded because of technical problems detected after data acquisition. In four 

participants, one or two runs were excluded to counterbalance the left vs. right response hand 

across runs.  

fMRI analysis: Data pre-processing 

The data were analysed with statistical parametric mapping (SPM8; Wellcome Trust Centre 

for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/; Friston, Holmes, Worsley, 

et al., 1995) running on MATLAB R2014a. Scans from each participant were realigned using 

the first as a reference, unwarped and corrected for slice timing.  The time series in each voxel 

were high-pass filtered to 1/128 Hz. For the conventional univariate analysis, the EPI images 

were spatially normalized into MNI standard space (Ashburner & Friston, 2005), resampled 

to 2 x 2 x 2 mm3 voxels, and spatially smoothed with a Gaussian kernel of 6 mm FWHM. For 

the multivariate decoding analysis, the EPI images were analysed in native participant space 

http://www.fil.ion.ucl.ac.uk/spm/
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and spatially smoothed with a Gaussian kernel of 3 mm FWHM. For the retinotopic analysis, 

the data were analysed in native space and without additional smoothing.  

fMRI data analysis: Main experiment 

Data were modelled in an event-related fashion with regressors entered into the design matrix 

after convolving each event-related unit impulse (representing a single trial) with a canonical 

hemodynamic response function and its first temporal derivative. Realignment parameters 

were included as nuisance covariates to account for residual motion artefacts.  

Univariate fMRI analysis: For the conventional univariate analysis, the general linear 

model linear model modelled the 16 conditions in our 2 visual (left, right) x 2 auditory (left, 

right) x 2 perceptual congruency (congruent, incongruent) x 2 hand (left, right) factorial 

design. Condition-specific effects for each subject were estimated according to the general 

linear model (GLM) and passed to a second-level repeated measures ANOVA as contrasts. 

Inferences were made at the second level to allow for random effects analysis and inferences 

at the population level (Friston, Holmes, Price, Büchel, & Worsley, 1999). At the second 

between-subjects level we tested for the effects of visual signal location, auditory signal 

location, hand response (left vs. right), physical congruency (i.e. A and V signals coming 

from same or separate sources), and perceptual congruency (i.e. perceived as coming from 

same or separate sources). 

We report activations at p < 0.05, corrected at the cluster level for multiple 

comparisons within the entire brain using an auxiliary uncorrected voxel threshold of p < 

0.001 (Friston, Worsley, Frackowiak, Mazziotta, & Evans, 1994). For visualization, results of 

the random effects analysis were superimposed onto a single subject template image. 

Multivariate decoding analysis: To allow for unbiased multivariate decoding results it 

is critical that parameter estimates are based on the same number of trials. Yet, when 



47 

 

conditions are defined based on participants’ choice, the number of trials will differ across 

conditions. In order to ensure that our MVPA is nevertheless unbiased, we therefore generated 

design matrices for each condition modelled by up to 7 regressors, each based on exactly 8 

trials. As a result of this subsampling procedure, each parameter estimate entering cross-

validation was estimated with comparable reliability. After this subsampling procedure, the 

remaining trials (modulus) of all conditions were entered into a separate regressor. To ensure 

the decoding results do not depend on particular subsamples we repeated this subsampling 

procedure (with deriving GLM estimation and MVPA) 10 times. 

Importantly, to dissociate perceptual from physical congruency, visual or auditory 

location or motor response, we ensured that the parameter estimates pertaining to perceptually 

congruent and incongruent conditions were matched with respect to all the other factors as 

auditory, visual, physical congruency and motor responses. This allowed us to identify 

regions encoding participants’ causal judgment unconfounded by bottom-up physical 

congruency, auditory or visual location or motor output. Likewise, we decoded participant’s 

motor response unconfounded by auditory or visual location, perceptual or physical 

congruency. 

For decoding, we trained a linear support vector classification model as implemented 

in LIBSVM 3.20 (Chang & Lin, 2011). More specifically, the voxel response patterns were 

extracted in a particular region of interest (e.g. A1, see below for definition of region of 

interest) from the parameter estimate images corresponding to the magnitude of the BOLD 

response for each condition and run from one of the three GLMs as described above. To 

implement a leave-one-run-out cross-validation procedure, parameter estimate images from 

all but one run were assigned to the training data set and images from the ‘left-out run’ were 

assigned to the test set. Parameter estimate images for training and test data set were 
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normalized independently using Euclidean normalization of the images and mean centering of 

the features. Support vector classification models were trained to learn the mapping from the 

condition-specific fMRI responses patterns to the class labels from all but one run according 

to the following  dimensions: (i) visual decoding (visual left vs. right); (ii) auditory decoding 

(auditory left vs. right); (iii) physical congruency decoding (physical congruent vs. 

incongruent); (iv) perceptual congruency decoding (perceptual congruent vs. incongruent); 

and (v) motor response decoding (hand left vs. right). The model then used this learnt 

mapping to decode the class labels from the voxel response patterns of the remaining run.  

Non-parametric statistical inference was performed at the second, random-effects (i.e. 

‘between-subjects’) level to allow for generalization to the population (Nichols & Holmes, 

2002). First, we permuted the condition-specific labels of the parameter estimates for each run 

(to respect run-specific auto-correlations) and subject to determine chance decoding accuracy 

individually for each subject as the average decoding accuracy across all permutations (500 

per GLM subsampling x 10 = 5000 permutations). At the 2nd ‘between-subjects’ level we 

generated a null distribution of decoding accuracy by randomly assigning +/- sign to the 

subject-specific differences of observed minus chance decoding accuracy and repeating this 

procedure for all possible sign assignments (210 = 1024 cases for 10 participants). Unless 

otherwise stated, results are reported at p< 0.05 (based on one sided tests). P values are 

Bonferroni corrected for multiple comparisons across all regions of interest unless we test the 

following a priori hypotheses: visual left/right location in V1, V2, V3, V3AB; auditory 

left/right location in A1, PT; motor left/right hand response in M1 and perceptual 

congruent/incongruent in DLPFC. 
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Visual retinotopic localizer 

Standard phase-encoded polar angle retinotopic mapping (Sereno et al., 1995) was used to 

define visual and parietal regions of interest (Rohe & Noppeney, 2015a). Participants viewed 

a checkerboard background flickering at 7.5 Hz through a rotating wedge aperture of 70° 

width. The periodicity of the apertures was 44.2 s. After the fMRI pre-processing steps (see 

fMRI analysis: data pre-processing), visual responses were modelled by entering a sine and 

cosine convolved with the hemodynamic response function as regressors in a general linear 

model. The preferred polar angle was determined as the phase lag for each voxel, which is the 

angle between the parameter estimates for the sine and the cosine. The preferred phase lags 

for each voxel were projected on the participants’ reconstructed and inflated cortical surface 

using Freesurfer 5.3.0 (Dale, Fischl, & Sereno, 1999). Visual regions V1–V3, V3AB, and 

parietal regions IPS0-IPS4 were defined as phase reversal in angular retinotopic maps. IPS0–

4 were defined as contiguous, approximately rectangular regions based on phase reversals 

along the anatomical IPS (Swisher, Halko, Merabet, McMains, & Somers, 2007) and guided 

by group-level retinotopic probabilistic maps (Wang, Mruczek, Arcaro, & Kastner, 2015). See 

Figure 3.3 for example retinotopic delineation in a participant. 

Region of interests used for decoding analysis 

For the decoding analyses, all regions of interest (ROI) were combined from the left and right 

hemispheres.  

Occipital, parietal and FEF regions: Regions in the occipital and parietal cortices were defined 

based on retinotopic mapping (see above). The frontal eye-field (FEF) was defined by an 

inverse normalized group-level retinotopic probabilistic map (Wang et al., 2015). The 

resulting subject-level probabilistic map was thresholded at 80 percentile and any overlaps 

with the motor cortex (for definition, see below) were removed. 
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Auditory, motor and prefrontal regions: The remaining regions were based on labels of the 

Destrieux atlas of Freesurfer 5.3.0 (Dale et al., 1999; Destrieux, Fischl, Dale, & Halgren, 

2010). The primary auditory cortex region was defined as the anterior transverse temporal 

gyrus (Heschl’s gyrus). The higher auditory cortex region was formed by merging the 

transverse temporal sulcus and the planum temporale (PT). The motor cortex region was 

based on the precentral gyrus. The dorsolateral prefrontal cortex (DLPFC) was defined by 

combining the superior and middle frontal gyri and sulci as previously described (Yendiki et 

al., 2010). In line with (Rajkowska & Goldman-Rakic, 1995) we limited the superior frontal 

gyrus and sulcus to Talairach coordinates y=26 and 53 and the middle frontal gyrus and 

sulcus to Talairach coordinates y=20 and 50. 
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Figure 3.3 Posterior view of example retinotopic delineation in a participant. Top: 

Delineations of visual and parietal regions based on phase reversals in the left and right 

hemispheres with insets of colour wheel. Functional activations are overlaid on inflated 

cortical surfaces with intraparietal sulcus (IPS0-4) labelled specifically. Field of view 

orientations are indicated in both colour wheels. Bottom: Group-level retinotopic 

probabilistic maps of the intraparietal sulcus (IPS0-4) from Wang et al (Wang et al., 2015) 

inverse-normalised to the participant’s anatomical space and overlaid on the same cortical 

surfaces. The colour bar insets represent probabilities across subjects.  

Results 

Behavioural results 

Firstly, we analysed the accuracy performance of participants. We adjusted the audio-visual 

disparities to each individual in order to get a threshold performance in their common source 

judgements. Indeed, behavioural results in the scanner confirmed that participants were at 

threshold when deciding whether auditory and visual signals were caused by common or 

independent events (Figure 3.4) with a small bias towards common source judgments 

(accuracy: 71% ± 0.20%; d-prime: 1.07 ± 0.12; bias: 0.16 ± 0.03; mean ± SEM in all cases). 

 

Figure 3.4 Signal detection analysis of the behavioural common source judgement 

results inside the scanner. Participants were at threshold when discriminating between 
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physically congruent (CON) and incongruent (INC) audio-visual signals illustrated by the 

highly overlapping distributions. D-prime is defined as the distance between distributions. 

Bias is the deviation from an ideal criterion set at the intersection of the two distributions. 

 

Next, we pooled over the visual and auditory locations and performed a 2 (physical 

congruent, incongruent) x 2 (perceptual congruent, incongruent) repeated measures ANOVA 

on participants’ response times (for descriptive statistics, see Table 3.1). Our choice to test 

this 2 x 2 design is justified by the taken MVPA analysis approach and the need to control 

whether RTs can confound our decoding results. A significant main effect of perceptual 

congruency (F(1,9)=8.266, p=0.018) and a significant physical congruency x perceptual 

congruency interaction was revealed (F(1,9)=15.621, p=0.003). Participants were slower on 

trials where they perceived audio-visual signals as caused by different events. Post hoc paired 

t-tests of the simple main effects revealed that participants were significantly faster judging 

congruent stimuli as congruent and incongruent stimuli as incongruent. In other words, they 

were faster on their correct than wrong responses suggesting that trials with wrong responses 

were associated with a greater degree of perceptual uncertainty. Crucially, this significant 

interaction cannot bias our decoding results, since correct and incorrect responses are evenly 

distributed in all of our stimulus classes due to our matching procedure described in the 

Multivariate decoding analysis subsection of the methods section.  

 

                            Perceptual 

Physical 

Congruent Incongruent 

Congruent 0.89 s (±0.05) 1.02 s (±0.06) 

Incongruent 0.96 s (±0.06) 0.93 s (±0.06) 
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Table 3.1 Group-level reaction times for 2 (physical congruent, incongruent) x 2 (perceptual 

congruent, incongruent) design (SEM in parentheses). 

 

fMRI analysis: univariate results 

The current study focuses primarily on multivariate pattern analyses to characterize explicit 

causal inference in audio-visual perception. However, for the sake of completeness, we also 

give a short summary of conventional univariate analyses (see Table 3.2, Figure 3.5 and 

Figure 3.6). 

Main effects of auditory and visual stimulus location 

As expected, we found lateralization effects for visual and auditory stimuli. Right relative to 

left visual stimuli increased activations in the left middle and superior occipital gyri, whilst 

left relative to right visual stimuli increased activations in the right lingual gyri. Similarly, 

right relative to left auditory stimuli increased activations in the left planum temporale. 

Main effect for left vs. right motor response 

Left relative to right hand motor responses increased activations in the right pre- and 

postcentral gyri associated with sensory-motor processing. 
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Figure 3.5 Classical univariate results of the sensory main effects. (A) Main effect of 

visual L > visual R. (B) Main effect of visual R > visual L. (C) Main effect of auditory R > 

auditory L. (D) Main effect of motor R > motor L. (E) Main effect of motor L > motor R. 

Activations are reported at p < 0.05, corrected at the cluster level for multiple comparisons 

within the entire brain using an auxiliary uncorrected voxel threshold of p < 0.001. 

 

Main effect of physical and perceptual congruence 

We did not observe any significant effects of physical congruency (i.e. interaction between 

visual and auditory location), however, a widespread right lateralized system including the 

frontal, insular, parietal and occipital cortices showed increased activations for perceptually 

incongruent relative to congruent stimuli.  

Interaction between physical and perceptual congruency 

To understand the interaction between physical and perceptual congruency, we note that the 

interaction is equivalent to correct vs. incorrect responses. We found bilateral putamen 
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activations for correct responses that is in concordance with previous results showing a role of 

putamen in overlearned tasks (von Saldern & Noppeney, 2013). For incorrect responses, we 

observed increased activations in bilateral prefrontal cortices and insulae that have been 

associated previously with greater executive demands (Noppeney, Josephs, Hocking, Price, & 

Friston, 2008; Werner & Noppeney, 2010). 

 

Figure 3.6 Classical univariate results of the main effects of perceptual congruency and 

the interaction between perceptual and physical congruency. (A) Main effect of 

perceptual incongruent > perceptual congruent. (B) Interaction of perceptual congruent x 

physical congruent (correct > incorrect) (C) Interaction of perceptual congruent x physical 

congruent (incorrect > correct). Activations are reported at p < 0.05, corrected at the cluster 

level for multiple comparisons within the entire brain using an auxiliary uncorrected voxel 

threshold of p < 0.001. 
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Region MNI coordinates (x y z) 
z-score 

(peak) 

p-value 

(cluster) 

Number 

of voxels 

visual L > visual R       

R. lingual gyrus 12 -72 -2 7.58 <0.001 935 

R. cuneus 10 -86 20 7.04   

R. lingual gyrus 10 -82 0 6.92   

visual R > visual L       

L. middle occipital gyrus -48 -78 10 7.80 <0.001 1869 

L. middle occipital gyrus -20 -86 20 6.96   

L. superior occipital gyrus -10 -86 2 5.87   

auditory R > auditory L       

L. Planum Temporale -56 -44 14 4.66 <0.001 274 

L. Planum Temporale -52 -34 12 4.47   

L. Planum Temporale -44 -42 16 3.92   

perc incongruent > perc congruent       

R. middle occipital gyrus 38 -62 22 4.10 <0.001 229 

R. middle occipital gyrus 40 -74 34 3.87   

R. middle occipital gyrus 30 -62 38 3.75   

R. inferior parietal lobule 46 -42 52 3.72 0.001 183 

R. inferior parietal lobule 38 -46 38 3.50   

R. inferior parietal lobule 40 -46 48 3.49   

R. middle frontal gyrus 42 30 18 4.09 0.002 179 

R. inferior frontal gyrus (p triangularis) 50 20 8 4.08   

R. middle frontal gyrus 34 34 16 3.54   

R. middle frontal gyrus 26 6 52 3.89 0.004 150 

R. superior frontal gyrus 24 18 50 3.18   

R. insula (anterior) 30 26 -6 4.86 0.006 139 

R. precuneus 4 -68 46 3.73 0.018 112 

 

 Table 3.2 fMRI univariate results (L, left; R, right; perc, perceptual; phys, physical). 
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Region MNI coordinates (x y z) 
z-score 

(peak) 

p-value 

(cluster) 

Number 

of voxels 

motor L > motor R       

R. postcentral gyrus 54 -16 50 65535 <0.001 1964 

R. precentral gyrus 40 -16 54 65535   

R. postcentral gyrus 36 -36 52 4.16   

motor R > motor L       

L. precentral gyrus -36 -24 52 65535 <0.001 2153 

L. postcentral gyrus -44 -24 50 65535   

L. postcentral gyrus -52 -18 50 65535   

L. Rolandic operculum -46 -22 18 6.04 <0.001 346 

L. Rolandic operculum -38 -16 20 3.48   

interaction of perc congruent x phys 

congruent (correct > incorrect) 

      

R. putamen 28 6 0 5.60 <0.001 757 

R. putamen 30 -6 2 5.52   

R. putamen 26 6 -10 4.92   

L. putamen -26 2 -8 4.73 <0.001 388 

L. putamen -24 10 -4 4.44   

L. putamen -26 -2 8 4.38   

interaction of perc congruent x phys 

congruent (incorrect > correct) 

      

L. medial frontal gyrus (posterior) -6 14 50 5.63 <0.001 1589 

R. medial frontal gyrus (posterior) 6 12 54 5.12   

L. midcingulate cortex -2 20 38 4.89   

L. inferior frontal gyrus (p triangularis) -50 22 26 5.32 <0.001 716 

L. insula -36 18 6 5.47 <0.001 585 

R. insula 38 16 6 4.27 <0.001 217 

R. inferior frontal gyrus (p opercularis) 50 18 0 3.71   

Table 3.2 fMRI univariate results (continued)   
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fMRI analysis: multivariate results 

We used multivariate pattern analyses to investigate the brain regions that encode: (i) visual 

location (left vs. right); (ii) auditory location (left vs. right); (iii) physical congruency 

(congruent vs. incongruent); (iv) perceptual congruency (congruent vs. incongruent); and (v) 

motor response (left vs. right hand). See Figure 3.7 for further details. 

Decoding of auditory and visual location 

Visual location was primarily encoded in visual areas including V1, V2, V3 and V3AB. In 

addition, visual information was maintained in the parietal cortex (IPS0-4) as well as in the 

frontal eye fields consistently with the well-established retinotopic organization of those 

cortical regions. 

Similarly, auditory location could be decoded from the higher auditory cortical area, 

planum temporale. Propagated auditory information could be decoded then from the posterior 

parietal cortex (IPS0-2), the frontal eye fields, and finally the dorsolateral prefrontal cortex 

(DLPFC). 

Decoding of physical and perceptual congruency 

Physical congruency could be decoded from the parietal cortex (IPS0-4), also known as a 

classical multisensory convergence zone. Although to a lesser extent than auditory location, 

physical congruency was present in planum temporale. Finally, the FEF and DLPFC were 

also involved in encoding physical congruency. 

Altogether, these results so far are consistent with the classical view of multisensory 

processing. Namely, that lower level sensory cortices encode primarily one sensory modality 

e.g. A1 auditory signals and V1 visual signals, then these sensory streams converge in higher 

order and association cortices. The significant decoding of physical congruency besides the 

maintained visual and auditory information in the higher order cortices confirms that indeed, 



60 

 

there is interaction between these sensory signals in planum temporale, parietal and frontal 

areas. 

Critically, our experimental design allowed us to identify regions encoding perceptual 

congruency, i.e. participants’ common source judgements irrespective of the physical 

congruency of the audio-visual signals. In line with our predictions, participants’ perceived 

congruency could be decoded from DLPFC. Moreover, perceptual congruency could be better 

decoded from DLPFC than any other stimulus feature that suggests a key role of DLPFC in 

causal inference. Interestingly though, perceptual congruency could be decoded to a lesser 

extent in the widespread system of FEF, IPS0-4 and even at the early visual processing stage 

of V2. 

Decoding of motor response 

We ensured that participants’ reports on perceived congruency was orthogonal to their motor 

response by alternating the mapping from participants’ common source judgment to selected 

hand response across runs. Not surprisingly, the motor response was extremely well decoded 

from the precentral (and postcentral) gyrus. However, the motor response was not selectively 

encoded in the sensory-motor cortex, but in many other tested ROIs including the FEF, IPS0-

4 and V3AB. Much more surprisingly, we were also able to decode participants’ motor 

response from planum temporale and Heschl’s gyrus. We suspect that decoding sensory-

motor information from Heschl’s gyrus might be artefactual due to e.g. smoothing activations 

from the neighbouring secondary somatosensory areas.  
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Figure 3.7 Multivariate pattern results along the visual and auditory spatial cortical 

hierarchy. Decoding accuracy and significance (* = p<0.05, ** = p<0.005, *** = p<0.001 

Bonferroni corrected for multiple comparisons unless a priori hypotheses were tested) were 

tested via classification of: (i) vis = visual left vs. right location (ii) aud = auditory left vs. 

right location, (iii) phys-C = physical congruency vs. incongruency, (iv) perc-C = perceptual 

congruency vs. incongruency, and (v) mot = motor left vs. right hand response in the regions 

of interest (ROI) as indicated in the figure. Group mean and SEM values are marked by 

circles and error bars. The regions of interest are delineated on the surface of a single subject 

brain. Abbreviations for ROI: primary, secondary and higher order visual regions, V1, V2 and 

V3, V3AB, respectively; Heschl’s gyrus, HG; planum temporale, PT; intraparietal sulcus, 

IPS0-2 and IPS3-4; precentral gyrus, PCG; frontal eyefields, FEF; dorsolateral prefrontal 

cortex, DLPFC. 
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Discussion 

To make a coherent perception of the world the brain needs to integrate sensory signals 

generated by the same event and segregate those generated by different events 

(Trommershäuser et al., 2011). The human brain infers whether or not signals are originating 

from a same source or event based on multiple correspondence cues such as spatial disparity, 

temporal synchrony and semantic or higher order congruency (Chen & Vroomen, 2013; 

Laurienti et al., 2004; HweeLing Lee & Noppeney, 2011; Recanzone, 2009; Slutsky & 

Recanzone, 2001; Welch, 1999). For instance, human observers are more likely to infer that 

auditory and visual signals originate from different sources, when audio-visual spatial 

discrepancy increases. Therefore, observers’ causal inference judgments are inherently 

correlated with the spatial correspondences of the audio-visual signals making it challenging 

to dissociate causal inference judgment (i.e. perceived congruency) from physical congruency 

in standard experiments.  

To dissociate participants’ causal judgment from the physical bottom-up congruency 

cues of the signals we followed two critical steps. Firstly, we adjusted the audio-visual spatial 

disparity individually for each participant. Spatially congruent audio-visual signals were 

perceived as coming from the same source in ~70% of cases. Similarly, spatially disparate 

audio-visual signals were perceived as coming from independent sources in ~70% of cases. 

Secondly, this causal uncertainty of the signals allowed us to select and compare physically 

identical audio-visual signals being perceived as either coming from common or independent 

sources. In addition, to dissociate participants’ causal judgment from their motor responses 

we counterbalanced the mapping from participants’ causal judgment to their response 

selection over runs. In summary, our experimental design enabled us to characterize a system 

of brain regions in audio-visual spatial processing with respect to five different 
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representations: (i) visual space (left vs. right); (ii) auditory space (left vs. right); (iii) physical 

spatial congruency; (iv) perceptual congruency (congruent vs. incongruent); and (v) motor 

response (left vs. right hand). 

Unsurprisingly, our multivariate decoding results demonstrate that low level visual 

areas (V1-3) encode predominantly visual space, the planum temporale (PT) auditory space 

and precentral gyrus participant’s motor responses. Further, physical congruency could be 

decoded from higher order visual or auditory regions (IPS0-4, planum temporale) and 

prefrontal cortices (DLPFC, FEF). These results are consistent with the classical views of a 

hierarchical organization of multisensory perception, where low level sensory cortices process 

sensory information from their preferred modalities, whilst multisensory information 

converges in higher order cortical regions (Felleman & Van Essen, 1991). In recent years this 

view has been challenged by the demonstration of multisensory interactions already at the 

primary cortical level (Driver & Noesselt, 2008; Ghazanfar & Schroeder, 2006). However, the 

majority of these interactions in primary sensory areas demonstrated cross- modal influence 

on the preferred sensory modality by the non-preferred sensory signal rather than a formal 

interaction of the two incoming signals (Kayser et al., 2007; Lakatos, Chen, O’Connell, Mills, 

& Schroeder, 2007; Werner & Noppeney, 2011). By contrast, the decoded physical 

congruency in planum temporale reflects the representational integration of the auditory and 

visual signals. Our results also corroborate previous results (Rohe & Noppeney, 2016) 

revealing integration of spatial information across the senses predominantly in higher order 

parietal, prefrontal areas and the planum temporale. 

Importantly, our study also enabled us to identify regions encoding participants’ 

causal judgment irrespective of bottom-up physical congruency cues. In line with our a priori 

predictions the DLPFC was the only region where the decoding accuracy profile peaked for 
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causal judgements (i.e. perceived congruency). This result indicates that the DLPFC encodes 

participants’ explicit causal inference irrespective of the true physical audio-visual 

congruency or their motor response. Furthermore, DLPFC was not able to discriminate the 

motor response better than chance. Therefore, we think that the DLPFC accumulates the 

spatial sensory information into an explicit causal judgement leading to a final common or 

independent source decision.  

Given the extensive evidence for early integration in early sensory cortices discussed 

above it is rather unlikely that the brain keeps from multisensory binding until an accumulated 

causal judgment made by DLPFC. On the contrary, it is more plausible that the brain 

integrates or segregates spatial sensory signals starting already at the primary cortex level and 

progressively refines the representations both over time and along the cortical hierarchy. 

Indeed, a recent study confirmed the hierarchical nature of spatial representations in the 

human brain (Rohe & Noppeney, 2015a).Therefore, the evidence about the world’s causal 

structure that is accumulated in DLPFC needs to be projected backwards to lower level 

sensory areas to inform and update their spatial representation and the binding process. In line 

with such a feedback loop architecture we were able to decode perceptual congruency also 

from low level sensory cortices such as V2-3 and planum temporale suggesting that the causal 

inference in DLPFC top-down modulates along the sensory processing hierarchy. 

Very interestingly, we were able to decode all the binary representations of our design 

from the frontal eye field (FEF) and the intraparietal sulcus (IPS0-4) including visual and 

auditory space, physical and perceptual congruency and motor responses. This decoding 

profile suggests that FEF and IPS form a circuitry, where they integrate audio-visual signal 

into spatial representations informed by the explicit causal inference encoded in DLPFC. 

Therefore our results extend previous findings showing that IPS3-4 arbitrates between audio-
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visual integration and segregation and performs implicit causal inference depending on the 

bottom-up physical characteristics of the sensory signals (Rohe & Noppeney, 2015a). Despite 

their slightly different paradigms, these two studies collectively demonstrate that causal 

inference is a key factor in multisensory integration in posterior IPS (and FEF) to guide 

behavioural responses. Critically, our current paradigm also enabled us to orthogonalize 

participants’ motor responses with respect to their causal judgments. Even when trials were 

matched for perceptual judgments we were able to decode participants’ hand response from 

IPS0-4 significantly better than chance. Therefore, these results suggest that IPS0-4 integrate 

audiovisual signals not only into spatial representations, but it also transform them into motor 

mappings. Alternatively, motor response selection in premotor cortices may top-down 

modulate neural representations in IPS. In concordance with these findings, numerous 

electrophysiological studies have demonstrated that IPS can transform sensory input into 

motor output according to learnt mappings (Cohen & Andersen, 2004; Gottlieb & Snyder, 

2010; Sereno & Huang, 2014). 

In conclusion, our study was able to dissociate participants’ causal inference from 

physical bottom-up congruency cues and motor responses. Our results suggest that DLPFC 

plays a key role in inferring the causal structure of audio-visual signals, which in turn 

influences audio-visual processing in FEF-IPS0-4 and lower sensory cortices as planum 

temporale and V2-3. Moreover, informed by the bottom-up congruency cues (i.e. physical 

congruency) and the inferred causal structure (i.e. perceptual congruency) FEF and IPS forms 

a circuitry to integrate auditory and visual spatial signals into representations that are 

transformed into motor response mappings. 
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CHAPTER 4: CHANGING THE TENDENCY TO INTEGRATE 

AUDIO-VISUAL SIGNALS 

Introduction 

The human brain receives signals typically in multiple sensory channels at the same time. To 

form a substantive representation of the world, the brain needs to decipher which signals 

belong to the same object and should be integrated, and which ones belong to different objects 

and hence should be kept separate (Adams, Graf, & Ernst, 2004; Körding et al., 2007; 

Magnotti, Ma, & Beauchamp, 2013; Roach et al., 2006; van Wassenhove, 2013). According 

to Bayesian models of perceptual inference the observer should infer the underlying causal 

structure of the world by combining bottom-up sensory correspondences with top-down prior 

beliefs and expectations (Körding et al., 2007; Rohe & Noppeney, 2015a, 2015b, 2016; 

Shams & Beierholm, 2010). 

A vast body of research has demonstrated that the brain uses various bottom-up inter-

sensory cues such as spatial collocation, temporal synchrony and semantic congruency to 

determine whether or not signals come from a common source and should be integrated into a 

unified percept (Adam & Noppeney, 2014; Chen & Vroomen, 2013; Körding et al., 2007; 

Hweeling Lee & Noppeney, 2014; Magnotti et al., 2013; Munhall, ten Hove, Brammer, & 

Paré, 2009; van Wassenhove, 2013; Wallace et al., 2004). Most prominently, spatial 

ventriloquism is known to decrease at large audio-visual spatial disparities or temporal 

asynchronies when it is unlikely for two signals to originate from a common source (Slutsky 

& Recanzone, 2001; Wallace et al., 2004). Yet, multisensory integration is not purely driven 

by bottom-up sensory correspondences; it also depends on top-down prior expectations that 

signals are generated by a common source. Multisensory integration is enhanced if task 
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instructions induce observers to believe that two signals come from a common source 

(Bedford, 2001; Helbig & Ernst, 2007; Warren et al., 1981; Welch & Warren, 1980). In real 

life, prior information about whether signals are likely to come from a common source are 

rarely conveyed via task-instructions or direct communication. Instead the brain needs to 

constantly update and adapt its so-called prior common source expectations based on the 

incoming sensory signals. For instance, when bombarded concurrently with many signals at 

busy crossroads, the brain should lower its common source expectations and tendency to bind 

signals into a coherent percept. By contrast, in a quiet two person conversation the brain 

should increase its prior common source expectations leading to greater multisensory 

integration. Indeed, for the McGurk illusion (McGurk & Macdonald, 1976) a series of recent 

studies have demonstrated that observers are more likely to integrate a visual ‘ga’ and an 

auditory ‘ba’ into an illusory ‘da’ percept (Gau & Noppeney, 2016; Nahorna, Berthommier, & 

Schwartz, 2012, 2015) when the McGurk trial is preceded by a series of audio-visually 

congruent phonemes. Critically, we have to note that similar phenomenon has already been 

described about 30-40 years ago in the unisensory domain, namely categorical perception of 

speech stimuli (Repp, 1984). All these findings suggest that observers dynamically adapt their 

prior common source expectations to changes in the environmental statistics thereby 

modulating their tendency to integrate signals into a coherent percept.  

Yet, all of those experiments focused selectively on the McGurk illusion, which 

illustrates integration of higher order phonological information. By contrast, using the spatial 

ventriloquist illusion a recent study suggested that observers’ tendency to integrate audio-

visual signals into spatial representations is stable across days, but variable across observers 

(Odegaard & Shams, 2016). This raises the question, whether low level audiovisual 

integration processes as reflected in spatial ventriloquism are more automatic and immune to 
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changes in stimulus statistics than integration of high level audiovisual phonological 

information. 

Using a spatial ventriloquist paradigm the current study presented observers with AV 

signals that were: (i) spatially collocated and synchronous; and (ii) spatially disparate and 

asynchronous. On each trial, participants reported the perceived sound location irrespective of 

the location of the visual signal. To manipulate observers’ prior common source expectations 

we altered the relative frequencies of spatiotemporally congruent and incongruent trials over 

blocks. Based on Bayesian causal inference models we expected observers to be more likely 

to integrate AV signals as indexed by the ventriloquist illusion in blocks with a high 

probability of congruent AV trials. 

Methods 

Participants 

Fifteen participants (14 females; 14 right-handed; age: mean=20.5, SD=3.4; age and 

handedness of 1 participant is unknown) with no history of neurological or psychiatric illness 

gave informed consent to take part in the main experiment. One participant was excluded after 

1 completed run in the experiment, in which case the previous adaptive staircases did not 

converge within 28° audio-visual disparity 3 out of 4 cases. The same participant also turned 

to be an outlier with respect to the mean contextual effect based on the completed run (deviant 

with > 2SD). All participants reported normal hearing and normal or corrected-to-normal 

vision. The study was approved by the human research ethics committee of the University of 

Birmingham. 

Experimental procedure 

Participants completed the study in 2 sessions. The first session lasted for ~1 hour. It 

consisted of the recording of sound stimuli via assessing participants’ sound localization 
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performance. Unbiased recordings were chosen and selected for the second session that lasted 

for ~1.5 hours. The second session was further divided up to 2 parts. In the first part, adaptive 

staircase runs were performed to determine subject-specific spatial disparities. These 

threshold disparities were then used in the main experiment. After the main experiment, 

questionnaire was filled out by the participants to assess their awareness of the experimental 

design and stimuli. 

Stimuli 

The visual stimulus was a cloud of 20 white dots (diameter: 0.4° visual angle) sampled from a 

bivariate Gaussian with horizontal and vertical standard deviations of 2° visual angle 

presented for 50ms on a grey background with 70% contrast. The sound stimuli were 50ms 

bursts of white-noise with 5ms ramp on and off. They were recorded for each subject in an 

anechoic chamber of the School of Psychology, University of Birmingham in a separate 

session prior to the experiment. The process consisted of displaying the sounds with an Apple 

Pro Speaker (at a distance of 68 cm from the participants) from -15° to 15° visual angle with 

0.5° visual angle spacing along the azimuth, and recording with Sound Professionals™, Inc. 

(USA)  in-ear binaural microphones. The participant’s head was placed on a chin rest with 

forehead support and controlled by the experimenter to ensure stable positioning during the 

recording process. Five stimuli were recorded at each location to ensure that sound locations 

could not be determined based on irrelevant cues. 

Assessment of sound localization performance 

In a run, participants were presented with 15 stimulus locations from the recorded auditory 

signals (with smaller spacing around 0°) in a forced choice left-right discrimination task (10 

repetitions per stimulus location). A cumulative Gaussian was fitted to the percentage 

‘perceived right responses’ as a function of stimulus location using maximum-likelihood 
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estimation (www.palamedestoolbox.org) to obtain estimates of the threshold (point of 

subjective equality, PSE) and the slope (inverse of the standard deviation, STD) of the 

psychometric function. An initial recording and left-right discrimination task was performed 

to familiarize participants with the process. After that, multiple recordings and runs of left-

right discrimination tasks followed each other until the PSE was smaller than ±1.5° using 20 

repetitions per stimulus condition on the same recording. Runs with PSE larger than ±3° were 

excluded from the analysis due to possible head movement during recording or fatigue during 

the discrimination task. 

Adaptive staircases to determine subject-specific spatial disparities in ventriloquist 

paradigm 

To maximize the impact of contextual modulation, we adjusted the audiovisual spatial 

disparity individually for each participant such that the ventriloquist effect was of 

intermediate strength (see below). On each trial, auditory and visual stimuli, each of 50 ms 

duration were presented at a visual stimulus onset asynchrony of 2.4 sec. The audio-visual 

signals were temporally asynchronous with a fixed A leading asynchrony of 100 ms and 

spatially disparate with the disparity adjusted across trials in adaptive staircase. Auditory and 

visual stimuli were always presented in opposite hemifields equidistant from the central 

fixation cross. On each trial participants located the sound using a forced choice left/right key 

press. Using 1-up/2-down adaptive staircases (www.palamedestoolbox.org) we adjusted the 

audiovisual spatial disparity individually for each subject to allow for 70% auditory 

localization accuracy. After an initial practice run, participants completed four runs each 

including 40-80 trials. The adaptive staircase was terminated after 8 reversals within a 

window of 20 trials. Subject-specific spatial disparity thresholds were set to the mean audio-

visual disparity across those final 20 trials and averaged across the four runs. The 
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convergence of staircases was re-assessed after the runs and staircases with poor convergence 

(causing a ≥45% decrease in SD of all relative to the remaining threshold estimates) were 

excluded from the analysis. 

Main experimental design 

The main experiment conformed to a 2 (AV spatiotemporally congruent vs. incongruent 

stimulus) x 2 (context: high vs. low frequency of spatiotemporally congruent stimuli). On 

each trial participants were presented with an audio-visual signal that was either spatially 

collocated and synchronous or spatially disparate and asynchronous (with A leading by 100 

ms). In an auditory selective attention paradigm observers located the sound in a forced 

choice left vs. right response and constantly fixated a central cross. On half of the trials the 

auditory signal was presented in the left hemifield, on the other half of the trials it was 

presented in the right hemifield. The same applied to the visual signal. In the congruent 

context, audiovisual signals were (i) spatially collocated and temporally synchronous in 75% 

of the trials and (ii) spatially disparate and temporally asynchronous (i.e. A leading by 100 

ms) in 25% of trials. In the incongruent context, the percentages of congruent and incongruent 

trials were reversed (Figure 4.1). The congruency context alternated in blocks of 32 trials. The 

initial context was counterbalanced across runs and subjects. Each participant completed 4 

runs amounting to an overall 768 trials (1 participant completed only2 runs). Each run 

included 3-3 blocks of the two contexts. Participants were instructed that the visual and 

auditory signals could be generated by one common event or two independent events. 
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Figure 4.1 Experimental design and stimuli. (A) Factorial design of stimuli and context. 

(B) Time course of 4 example stimuli in both contexts. Top: Congruent context with 75% 

congruent (spatially collocated and synchronous) AV stimuli. Bottom: Incongruent context 

with 75% incongruent (spatially discrepant and asynchronous) AV stimuli. Abbreviations: 

SOA, stimulus onset asynchrony; AV, audio-visual; CONG, congruent; INCONG, 

incongruent. 
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Post-experimental questionnaire 

To assess observers’ awareness of experimental stimulus and contextual manipulations 

observers rated after the entire experiment: (i) the frequency of spatiotemporally congruent 

and incongruent audiovisual stimuli; and (ii) whether stimuli were blocked based on similar 

spatial or temporal properties (amongst other aspects in a questionnaire). 

Experimental setup 

Visual and auditory stimuli were presented using the Psychtoolbox version 3.0.11 (Brainard, 

1997; Kleiner et al., 2007; Pelli, 1997) running under MATLAB R2011b (MathWorks) on a 

MacBook Pro (Mac OSX 10.6.8). Subjects were seated at a distance of 50 cm from a 24’’ 

gamma-corrected LCD screen resting their head on a chinrest with forehead support. Sounds 

were delivered via circumaural headphones (Sennheiser HD 280 Pro). 

Data analysis: Assessment of sound localization abilities 

Cumulative Gaussian psychometric functions (PF) were fitted to participants’ percentage of 

perceived right responses as a function of sound location to obtain estimates for the point of 

subjective equality as a measure of spatial bias, the slope and the just noticeable difference 

(JND) defined the difference between the abscissa values for 50% and 84% perceived right 

responses. A linear robust regression was estimated with participants’ precision in unisensory 

sound localization (as quantified by JND of the auditory PF) as predictor and their spatial 

disparity threshold obtained from the ventriloquist adaptive staircases as dependent variable.  

Data analysis: Main experiment 

In the main experiment, the ventriloquist effect (VE) was calculated for each incongruent trial 

as: 

𝑉𝐸 =
𝐴𝑟𝑒𝑠𝑝−𝐴𝑡𝑟𝑢𝑒

𝑉𝑡𝑟𝑢𝑒−𝐴𝑡𝑟𝑢𝑒
 



74 

 

where Atrue and Vtrue indicated auditory and visual locations, and Aresp indicated the responded 

auditory location. We quantified the contextual modulation of VE in terms of the difference 

between the VE averaged across all incongruent trials in the congruent minus the incongruent 

context. To allow for generalization to the population we entered the contextual modulation 

for each subject into a one sample t-test. 

Results 

Relation between variability in sound localization and disparity threshold in VE 

From the psychometric functions of the unisensory sound localization session, we obtained 

the STD as a measure of localization variability for each subject. Conversely, from the 

adaptive staircase session, we obtained the threshold spatial disparity that is associated with a 

ventriloquist illusion (i.e. AV integration) in 30% of the trials. A linear regression 

demonstrated that auditory STD as independent variable significantly predicts and observer’s 

spatial disparity threshold as dependent variable (t(12) = 3.059, p = 0.01 for the slope 

parameter). In other words, the more precise participants are on sound localization, the 

smaller the spatial disparity required to attenuate the ventriloquist effect. This is consistent 

with a previous study demonstrating the auditory reliability determines the spatial audiovisual 

integration window (Rohe & Noppeney, 2015b). 

Contextual modulation of the ventriloquist effect across blocks 

In line with Bayesian theories of perceptual inference we observed a significant increase in 

the ventriloquist effect for blocks with 70% relative to 30% congruent trials. The effect was 

revealed by a one-sample t-test on the contextual modulation of the VE (t(13) = 2.905 

p=0.01). Figure 4.2 illustrates the contextual modulation with additional descriptive statistics 

of all conditions for subjective as well as group-level indices. The group-level descriptive 

statistics can be found in Table 4.1. These results suggest that multisensory integration of 
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spatial signals does not only depend on low level inter-sensory correspondences but also on 

their top-down prior congruency expectations that rapidly adapt to changing environmental 

statistics. As in this experiment we manipulated audiovisual congruency concurrently in space 

(i.e. spatial disparity) and time (i.e. synchrony) we cannot dissociate whether either or both 

manipulations are effective for contextual modulation. Moreover, in this study we only 

included congruent and incongruent stimuli. Therefore an increase in the frequency of 

incongruent stimuli within a block may have facilitated processing of incongruent audio-

visual stimuli thereby enabling observers to locate the sound of incongruent audio-visual 

signals more accurately. 

 

Figure 4.2 Contextual modulation of the ventriloquist effect (VE). (A) Visual bias as a 

function of context and stimuli. Bars represent group mean values, circles represent single 

subject results. Dotted lines between circles represent data of same participants for 

incongruent stimuli. Visual bias reflects proportion correct for congruent and VE for 

incongruent stimuli. (B) Violin plot of participants’ data for contextual modulation of the VE 

calculated as VE in congruent context – VE in incongruent context. 
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                            CONTEXT 

STIMULI 

Congruent Incongruent 

Congruent 0.86 (±0.02) 0.82 (±0.03) 

Incongruent 0.44 (±0.05) 0.40 (±0.05) 

 

Table 4.1 Group-level mean visual biases (SEM in parentheses). 

 

Participants’ awareness of contextual modulation 

Our results demonstrated that higher frequency of congruent trials increases audiovisual 

binding and thereby the ventriloquist effect. We suggested that observers adapt their prior top-

down congruency expectations that in turn shape multisensory integration. This raises the 

question whether observers explicitly adjust their prior common source expectations or 

whether these adaptation processes emerge automatically in the absence of observers’ 

awareness. We assessed participants’ awareness of changes in stimulus properties in a post-

experimental questionnaire (1 participant did not fill in the questionnaire). Participants 

reported that 71.2% (±0.07% SEM) of the trials were synchronous, which is significantly 

different from the true 50% value (one-sample t-test, t(12)= 2.856, p=0.01) indicating that 

they were not fully aware of the synchrony manipulation. More importantly, only five 

participants (41.7%) reported that they noticed a periodical change in the frequency of trials 

with respect to the audio-visual spatial disparity (1 participant did not respond to this 

question) and only three participants (27.3%) reported a periodical change in the frequency of 

trials with respect to audio-visual asynchrony (2 participants did not respond to this question). 

The other participants reported that the stimuli were presented completely randomly with 

respect to the spatial and temporal characteristics of the signals. 
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Discussion 

To establish a veridical representation of the world the brain needs to bind sensory signals 

generated by a single event and segregate those generated by multiple events. Therefore, 

multisensory perception is essentially linked to causal inference, i.e. the brain needs to 

decipher the underlying causal structure of the sources that generate the multisensory signals 

(Körding et al., 2007; Rohe & Noppeney, 2015a, 2015b, 2016; Shams & Beierholm, 2010). 

Bayesian modelling formulates that the solution of this so-called causal inference problem is 

achieved by combining prior knowledge that the signals are generated by a common source 

with the ongoing inter-sensory correspondences of the signals, such as spatiotemporal 

characteristics (Körding et al., 2007; Rohe & Noppeney, 2015b; Wozny et al., 2010). 

Numerous studies using such Bayesian modelling have demonstrated in recent years that 

human observers update their priors dynamically (Berniker, Voss, & Körding, 2010; Sato & 

Körding, 2014). In the current study, we investigated whether observers dynamically adapt 

their so-called ‘common source prior’ i.e. their prior belief about spatial signals coming from 

a common source to changes in the relative frequencies of audio-visual signals generated from 

common or separate sources. We used the spatial ventriloquist illusion as a prime example of 

audio-visual integration. 

We manipulated the relative frequencies of trials where (i) auditory and visual signals 

were collocated and synchronous or (ii) spatially disparate and asynchronous in short blocks 

of 32 trials. We demonstrate that the ventriloquist effect occurs more often in blocks with a 

high frequency of spatiotemporally congruent trials. This finding suggests that observers 

dynamically adapt their common source expectations to the probability of congruent trials, 

that in turn results in an increased binding tendency and more frequently experienced 

ventriloquist illusion. 
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Our results are concordant with a previous study from Van Wanrooij and colleagues 

(Van Wanrooij et al., 2010) showing reduced response times in a ventriloquist paradigm when 

the probability of congruent trials was increased. Yet, this study did not show an effect on the 

audio-visual bias. We think that two reasons underlie the discrepancy. Firstly, in our 

experiment we adjusted the spatiotemporal characteristics of the audio-visual stimuli to 

maximize the possibility of contextual modulation. Namely, the spatial audio-visual 

disparities were adjusted to each participant to achieve an optimal ventriloquist effect, as well 

as temporal asynchrony of the signals being modulated within a hardly detectable time 

window to assist contextual modulations automatically. Secondly, changes in the probability 

of spatially disparate trials can potentially induce several counteracting effects. Firstly, in 

blocks with high probability of spatially collocated trials participants regularly receive a 

teaching signal for sound localization. These congruent teaching trials could enhance auditory 

localization accuracy, which would in turn reduce the ventriloquist effect on trials when the 

two stimuli are spatially disparate. Secondly, on the other hand, the more conflicting the 

audio-visual signals are, the higher likelihood that the task demand that might lead to more 

localization errors and increased ventriloquist effect in blocks of high probability of spatially 

disparate trials. This task difficulty confound might be more apparent when participants’ 

selective attention is reduced (e.g. due to fatigue) or when they have some response bias to the 

visual signals. Thirdly, a recent study showed that spatial recalibration of auditory signals can 

occur after a single exposure to discrepant audio-visual signals. A higher probability of 

spatially disparate audio-visual signals might lead to higher spatial recalibration, and again 

leading to an increase in ventriloquist effect in the incongruent context. Importantly, the 

impact of these counteracting effects may depend on the exact relative frequencies and the 
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length of the contextual blocks. For instance, while we alternated the context every 32 trials, 

Van Wanrooij and colleagues compared contextual effects across sessions of 300-800 trials. 

Our results demonstrate that human observers adapt their binding tendencies 

dynamically to changes in environmental statistics. Increased frequency of trials with spatially 

collocated and synchronous stimuli increased the occurrence of the spatial ventriloquist 

illusion. Interestingly, these modulatory effects were observed irrespective of whether 

observers were aware of the changes in stimulus statistics based on a post-experimental 

questionnaire. Therefore, our results corroborate previous research showing an increase in the 

emergence of the McGurk illusion when preceded by a series of synchronous audiovisual 

movies (Gau & Noppeney, 2016; Nahorna et al., 2012, 2015). Collectively, these studies 

demonstrate that dynamic updating of common source priors is a generic mechanism critical 

for multisensory integration. In other words, the brain uses the recent past to predict whether 

future signals are likely to come from a common source and should be integrated into a 

unified percept.  

Future studies will need to investigate the cognitive and neural mechanisms 

underlying the dynamic changes in the binding tendencies of multisensory signals. For 

instance, at the cognitive level one may ask whether an increased common source prior might 

result in an increased attention on the visual modality (and vica versa). Although, behavioural 

studies suggested that the ventriloquist effect is immune to spatial attention (Bertelson, 

Vroomen, et al., 2000; Vroomen et al., 2001b), no such studies exist for modality specific 

attention. Behavioural and neuroimaging studies have shown that selective attention can 

suppress the task-irrelevant sensory modality (Johnson & Zatorre, 2005; Laurienti et al., 

2002; Mozolic et al., 2008; Santangelo & Macaluso, 2012). Also, it is well-established that 
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attentional resources can be adjusted flexibly to changes in environmental statistics for 

effective interactions with the environment (Dayan, Kakade, & Montague, 2000). 

Similarly, in a dynamic multisensory environment the brain should allocate more 

attentional resources to the more spatially-reliable visual signal, if it is likely that the auditory 

and visual signals originate from the same source. Indeed, recent neuroimaging studies 

provide accumulating evidence that attention modulates audio-visual integration (Alsius et al., 

2005; T. S. Andersen et al., 2004; Busse et al., 2005; Fairhall & Macaluso, 2009; Johnson & 

Zatorre, 2005; Nardo et al., 2014; Santangelo et al., 2009), including one study which 

examined the role of attention specifically in a ventriloquist situation (Busse et al., 2005). In a 

dynamically changing environment, we would speculate that allocation of greater attentional 

resources to the visual modality may increase the influence of the spatially more reliable 

visual signal on the perceived auditory location when the common source prior is high. 

In conclusion, we demonstrate that human observers adapt their audio-visual binding 

tendencies dynamically to changes in the environmental statistics. In blocks where the 

probability of spatially collocated and synchronous audio-visual signals was high, observers 

bound audio-visual signals more often resulting in a higher ventriloquist illusion. Future 

studies will need to determine whether the changes in binding tendencies can be attributed to 

a dynamic allocation of attentional resources across the sensory modalities. 
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CHAPTER 5: VISUALLY INDUCED AUDITORY SPACE 

ADAPTATION 

The current chapter is based on a project in collaboration with Mate Aller. The experiments 

were designed in a joint work. The pilot experiments were performed by the author. The 

implementation of the psychophysics and fMRI study was done by the author. All the 

analyses demonstrated in the thesis were performed by the author. The data of the 

psychophysics experiment were acquired by Mate Aller. The data of the fMRI experiment 

were acquired together. An additional EEG experiment (not demonstrated in the thesis) 

including the same participants as of those of the fMRI experiment is yet to be performed by 

Mate Aller. 

Introduction 

In order to make a robust percept of the environment, the brain integrates signals across the 

senses (Ernst & Bülthoff, 2004). The inherently noisy nature of sensory processing implies 

that sensory conflicts are always perceived in the nervous system. The temporary conflicts 

can be easily resolved across time scales; on the contrary, prolonged inter-sensory conflicts 

truly challenge the representations of the brain. A natural example of persistent audio-visual 

conflict occurs during development, when the brain needs to compensate for changes in eye 

separation and inter-aural differences (de Gelder & Bertelson, 2003). Developmental studies 

highlighted to the prominent role of recalibration before the age of 8 (Gori et al., 2008, 2010), 

and indeed a vast body of research demonstrated  in the last fifty years that plasticity and 

adaptation is the key mechanism to resolve long-term inter-sensory conflicts (Ernst & Di 

Luca, 2011; Ghahramani et al., 1997; Held, 1965; Knudsen & Knudsen, 1989). 
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The spatial ventriloquist aftereffect is a prominent example of multisensory adaptation 

(Canon, 1970, 1971; Lewald, Foltys, & Töpper, 2002; Radeau & Bertelson, 1974, 1976; 

Recanzone, 1998). In a response to the prolonged exposure of spatial audio-visual conflict, 

the bran recalibrates the auditory space and the perceived locations of unisensory auditory 

signals will be shifted towards the previously displaced visual signal. Visually induced 

auditory recalibration has been suggested to occur rapidly (Bertelson, 1993; Lewald, 2002; 

Recanzone, 1998), yet, recalibration studies typically used adaptation periods of 10-30 min 

until recent years (Canon, 1970, 1971; Frissen et al., 2003; Lewald et al., 2002; Radeau & 

Bertelson, 1974, 1976; Recanzone, 1998; Woods & Recanzone, 2004). Lately, a series of 

studies demonstrated  that auditory space aftereffects can be elicited after a very short 

adaptation period (Frissen et al., 2012; Mendonça et al., 2015; Wozny & Shams, 2011a), 

moreover, they indicated that a single audio-visual conflict is already sufficient to trigger 

recalibration (Wozny & Shams, 2011b). These new results corroborate very early findings 

almost 50 years ago describing that recalibration occurs as part of perceptual learning and as 

such it can be very rapid (Epstein, 1975). Wallach and colleagues were the first to 

demonstrate that binocular disparity and perceived depth can be modified by pairing the 

stimuli and recalibration effects were observed already after treatment of 2 min  (Wallach, 

Moore, & Davidson, 1963). 

Despite the numerous studies characterizing the ventriloquist aftereffect at the 

behavioural level, the neural substrates remain unknown. Studies have shown that auditory 

recalibration generalizes across space (Bertelson et al., 2006; Frissen et al., 2012). Findings 

are much more debated about the nature of generalization across auditory frequencies. Early 

studies (Lewald, 2002; Recanzone, 1998) demonstrated that recalibration does not generalize 

across frequencies, and based on this it was speculated that auditory adaptation occurs already 
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in the primary auditory cortex. The early stage processing was further supported by a recent 

EEG study, showing changes in event related potentials attributed to recalibration100 ms after 

auditory onset (Bruns, Liebnau, & Röder, 2011). On the contrary, multiple behavioural 

studies presented opposite findings revealing to the transfer of the ventriloquist aftereffect 

across wide frequency ranges (Frissen et al., 2003, 2005). In the lack of evidence about the 

brain structures involved in auditory adaptation, many candidate brain regions have been 

proposed over the years including the primary auditory cortex, planum temporale, parietal 

cortex and superior colliculus. 

The present study combined psychophysics, fMRI and advanced multivariate 

decoding models to investigate visually induced auditory adaptation in the human brain 

focusing on the primary auditory cortex, planum temporale and intraparietal sulcus. 

Participants were presented with unisensory auditory signals before and after adaptation 

periods of spatially conflicting audio-visual signals. We demonstrated recalibration effects in 

a relatively large population in a psychophysics experiment, and selected a few participants to 

determine the neural substrates in a follow-up fMRI experiment. We trained support vector 

regression models on BOLD response patterns elicited by unisensory auditory stimuli before 

adaptation. Then we applied the learnt mapping to decode auditory spatial locations after 

adaptation. Fitting psychometric functions to participants’ responded locations and 

neurometric functions to the BOLD-decoded locations we were able to characterize the 

remapping of auditory space both at the behavioural and neural level. 
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Experiment 1: Behavioural experiment 

Methods 

Participants 

Fifteen right-handed participants (10 females, mean age=22.1; SD=4.1) were selected from a 

pool of nineteen volunteers to take part in the behavioural experiment. Participants were 

selected based on the following criteria: (i) no history of neurological or psychiatric illness; 

(ii) normal or corrected-to-normal vision; (iii) reported normal hearing; (iv) accurate sound 

localization abilities; and (v) high accuracy in the adaptation task. All the participants gave 

informed consent to participate in the experiment and received monetary compensation. 

Participants attended a separate session before the main experiment to determine their 

performance in sound localization and adaptation tasks (for a detailed description, see the 

corresponding section). The study was approved by the human research ethics committee at 

the University of Birmingham. 

Experimental procedure 

Participants were screened in a separate session before the main experiment in sound 

localization as well as adaptation tasks of the main experiment. Participants selected for the 

experiment performed 4 sessions: 2 sessions with the V stimulus on the left during adaptation 

(VA adaptation with V stimulus on the left) and 2 sessions with the V stimulus on the right 

during adaptation (AV adaptation). The direction of adaptation was the same within a session 

to avoid any interaction between different directions of adaptation. The session order of 

adaptation was counter-balanced across participants. 

Each session consisted of 5 pre-test periods followed by 10 adaptation periods 

interleaved by 10 post-test periods. A typical session lasted for ~1.5 hours and was divided up 

to 3 parts with breaks between. Each part consisted of 5 test periods (with an adaptation 
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period preceding each post-test period), and was completed in one sitting. The forehead of 

participants was marked at the beginning of the sessions to ensure the same head positioning 

throughout the session and avoid any variability in sound localization within a session due to 

head positioning. Participants were instructed to fixate to a central fixation cross throughout 

the session. 

 

Figure 5.1 Experimental stimuli, tasks and design of the psychophysics experiment. (A) 

Example stimuli of the sound localization task. The first stimulus is a catch trial indicated by 

a 500 ms post-stimulus contrast change in the fixation cross. (B) Example stimuli of the 

adaptation task. The second AV stimulus is a catch trial indicated by a contrast change in the 

V stimulus. (C) Time course of the 3 phases: pre-test, adaptation and post-test. Left: Part 1 of 

each session consisting of 5 pre-test periods. Right: Parts 2 and 3 of each session consisting 

of 5-5 adaptation period interleaved by 5-5 post-test periods. Abbreviations: A, auditory; AV, 

audio-visual; SOA, stimulus onset asynchrony; P, period. 
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Stimuli 

The visual (V) stimuli, used in the adaptation task, were cloud of 15 white dots 

(diameter=0.4° visual angle) sampled from a bivariate Gaussian presented on a dark grey 

background (90% contrast). The horizontal and the vertical standard deviation of the Gaussian 

were set to 1.5° visual angle. The auditory (A) stimuli, used in all the tasks, were bursts of 

white-noise with 5ms on/off ramp. The sound stimuli were filtered through a generic HRTF 

of the MIT database using normal pinnae (Gardner & Martin, 1995, 

http://sound.media.mit.edu/resources/KEMAR.html). Measurements of the MIT database 

were interpolated to generate sound stimuli to the desired spatial locations. Scanner 

background noise was superimposed on the sound stimuli to match the task environment for 

the follow-up fMRI study. 

Screening session to determine performance in sound localization and adaptation tasks 

To familiarize participants with the sound localization task, they performed a 1-min practice 

run. Overall, participants performed 4 tasks during the screening session: (1) sound 

localization task of A stimuli responding on all trials; (2) sound localization task of A stimuli 

responding on catch trials; (3) sound localization task of audio-visual stimuli responding on 

all trials; and (4) adaptation task responding on catch trials. Task (2) and (4) were identical to 

the tasks of the main experiment. Task (1) was similar to task (2) with the exceptions of 

participants responding on all trials and the presentation of stimuli being not optimized (no 

pseudo-randomization, no fixation periods). Participant selection for the main experiment was 

based on the following criteria: 

• JND <4° in task (1), 

• JND <4°and d’>3.5 in task (2), 

• d’>3.5 in task (4). 

http://sound.media.mit.edu/resources/KEMAR.html
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For the calculation of the indices, see the analysis section. 

Task (4) served as a supplementary measure about participants’ sound localization 

ability. Here, participants were presented with synchronous audio-visual stimuli for 50 ms 

with SOA=2.5 s. Audio-visual stimuli were sampled independently from 4 spatial locations (-

9°, -3°, 3°, 9°) using 30 repetitions/condition amounting to 480 trials. Other aspects of the 

stimuli were identical to the audio-visual stimuli used in the main experiment. 

Main experimental design 

The experiment was divided up to 3 phases: pre-adaptation test, adaptation and post-

adaptation test. The pre- and post-adaptation phases are called shortly pre- and post-tests or 

test phase, collectively. In the test phase, participants performed a sound localization task on 

A stimuli indicating a response only on catch trials. In the adaptation phase they performed a 

visual detection task on audio-visual stimuli. 

In the sound localization task, participants were presented with A stimuli for 50 ms 

with SOA=1.8-2.2 s (using 0.4s uniform jitter). The stimuli were presented from ±12°, ±5°, 

±2° and 0° visual angle. To match the task with the task of the follow-up fMRI study, stimuli 

were presented in blocks (~28 sec) separated by fixation periods (6 sec). In addition, stimuli 

were pseudo-randomized using repetitions of 4, 3, 2 and 1 stimuli improving the design 

efficiency (again, aimed for the fMRI study). One period of stimulation consisted of 90 

stimuli (divided up to 5 stimulus blocks and 4 fixation periods) and lasted for ~3.5 min. 

Participants were instructed to localize the A stimuli, but indicating a response in a forced 

choice left-right discrimination task only on catch trials (20 out of 90 stimuli, ~22 %). Catch 

trials consisted of a 500 ms post-stimulus cue, a 55% contrast change in the fixation cross 

lasting for 200 ms. Participants were asked to use different hands in the 3 parts of the session. 
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Participants’ hand responses were counter-balanced across sessions to avoid any motor 

response confound. 

In the adaptation phase, participants were presented with audio-visual stimuli for 50 

ms with SOA=0.5 s (without jitter). The first adaptation period (after break) consisted of 360 

audio-visual stimuli (3 min), the other adaptations periods consisted of 120 audio-visual 

stimuli (1 min). The V stimuli were presented in three spatial locations (-5°, 0°, 5°) with 15° 

spatially discrepancy to the left (for VA adaptation) or right (for AV adaptation) of the A 

stimuli. Adaptation trials were 5 presentations of audio-visual stimuli from the same location, 

after which the stimulus location changed randomly. To ensure that participants attended to 

the stimuli there were occasional catch trials (10%), which consisted of a 20% contrast change 

of the V stimuli. 

Eye movement recording and analysis 

To address potential concerns that our results may be confounded by eye movements, we 

evaluated the eye movements of the participants. Eye recordings were calibrated in the 

recommended field of view (32° horizontally and 24° vertically) for the desktop mount of the 

Eyelink II system. Eye position data were automatically on-line parsed into events (saccade, 

fixation, eye blink) using the cognitive configuration of saccade detection (velocity threshold 

= 30°/sec, acceleration threshold = 8000°/sec2, motion threshold = 0.15°). Fixation position 

was post-hoc offset corrected. Saccades were post-hoc filtered for radial amplitude larger than 

1°. Eye data were analysed in the 0-500 msec post-stimulus period. Fixation was well 

maintained throughout the experiment with post-stimulus saccades detected in only 0.4% ± 

0.1% (mean ± SEM) of all the trials. For the test phases, eye movement indices of % 

saccades, % eye blinks, and post-stimulus mean horizontal eye position were quantified and 

entered into one-way repeated measures ANOVAs. No significant differences were observed 
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across the conditions for % saccades and % blinks. A significant effect was found on the 

horizontal mean eye position (F(2,14)=11.73, p=0.004). Fisher’s LSD post-hoc tests revealed 

differences between the pre-test and both post-test phases (p=0.004 and p=0.027 for post-test 

after VA and AV adaptation, respectively). We assume the finding is due to fatigue (looser 

fixation during post-tests) and should not be a real confound in our behavioural results. 

Experimental setup 

Visual and auditory stimuli were presented using Psychtoolbox version 3.0.11 (Brainard, 

1997; Kleiner et al., 2007; Pelli, 1997) running under MATLAB R2011b (MathWorks Inc.) 

on a MacBook Pro (Mac OSX 10.6.8). Participants were seated at a distance of 60 cm from a 

24’’ LCD screen resting their head on a chin rest. Two accessory rods were mounted on the 

chin rest serving as forehead rest and allowing stable head positioning. Auditory stimuli were 

delivered via circumaural headphones (Sennheiser HD 280 Pro). Auditory stimuli were 

delivered via Sennheiser HD 280 Pro headphones. Participants’ eye movements were 

recorded using an Eyelink II system (SR Research Ltd.) on a desktop mount at a sampling 

rate of 2000 Hz. 

Analysis 

Hit rates and signal sensitivity measure d-prime was calculated on catch trials for both sound 

localization and adaptation tasks as follows: d’ = Z(probabilityhits) – Z(probabilityfalse alarms). 

The calculation assumed equal-variance Gaussian for both the signal and noise distributions. 

100% hit rate and 0% false alarm rate were considered as 99.999% and 0.001%, respectively, 

to enable the calculation of z-values (otherwise infinite). 

In the sound localization task, cumulative Gaussian (psychometric function, PF) was 

fitted to the percentage ‘perceived right responses’ as a function of stimulus location (±12°, 

±5°, ±2° and 0°) using maximum-likelihood estimation (www.palamedestoolbox.org). The 

http://www.palamedestoolbox.org/
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fitting procedure was based on fixed guess and lapse rates (each set to 0.02) and a constrained 

slope parameter resulting in estimates of the point of subjective equality (PSE), and the slope 

of the psychometric function. The slope estimate was converted to the just noticeable 

difference (JND) that is equivalent to the standard deviation of the psychometric function 

when defined at 84% level. For the screening session, PF was fitted on each task separately, 

on data pooled over periods. For the main experiment, PF was fitted separately for the pre- 

and post-test phases as well as each session, again, on data pooled over periods. The sessions 

of pre-tests (or post-tests) were fitted together by multi-condition model fitting using a 

constrained slope parameter. Fitting multiple models at the same time enabled to obtain less 

noisy PSE estimates. Also, fitting pre- and post-test data separately enabled to model possible 

temporal effects, given that pre-tests always preceded post-tests. Temporal effects could result 

either in improvement (e.g. due to training) or deterioration (e.g. due to fatigue) on task 

performance. 

The aftereffect was calculated for each session by subtracting the PSE value of the 

pre-test phase from that of the post-test phase. This method enabled a more sensitive 

estimation of aftereffects not being masked by session to session variability in pre-test PSE 

values. Mean rightward and leftward aftereffects were calculated after AV and VA 

adaptations, respectively, averaging the values of the 2-2 sessions, respectively. 

Additional analysis was also performed on aftereffects as a function of time. For this 

approach, the aftereffect was calculated for each post-test period subtracting the session-

specific pre-test PSE value from those of the post-test periods. To account for the very noisy 

nature of PF fitting on single post-test periods (~3 responses/location), a fixed slope 

parameter was used taking the slope estimates of the overall post-test fits. We note that the 
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overall post-test fits were calculated using a constrained slope (see above), thus the slope 

estimate was one general value for each participant. 

Results 

In the current behavioural study, we employed a standard experimental design consisting of 

pre-test, adaptation and post-test phases to assess visually induced auditory adaptation. 

During pre- and post-tests, participants were presented with A stimuli from 7 horizontal 

spatial locations (±12°, ±5°, ±2° and 0°) and responded on catch trials in a forced-choice left-

right discrimination task. Psychometric function (PF) was fitted to the percentage ‘perceived 

right responses’ as a function of stimulus location. During the adaptation phase, participants 

were presented with spatially discrepant audio-visual stimuli and attended the V stimuli 

performing a detection task. We expected that after adaptation participants perceive the A 

stimuli towards the displaced V stimuli indicating an aftereffect (AE) and resulting in the shift 

of the PF. Adaptation with V stimulus to the left of the sound (VA adaptation) would lead to a 

rightward shift of the function (due to fewer right responses), whilst adaptation with V 

stimulus on the right of the sound (AV adaptation) would lead to leftward shift of the function 

(due to more right responses). 

In general, participants’ performance was high on catch trials (>90%) detecting 

contrast changes of the visual stimuli and the fixation cross during the adaptation and the test 

phases, respectively (Table 5.1). 

 Hit rate d-prime PSE 

Pre-test 93.4% (±1.1%) 4.09 (±0.21) 0.58 (±0.21) 

Adaptation    

    AV adaptation 95.8% (±1.4%) 4.52 (±0.20) not applicable 



92 

 

    VA adaptation 95.6% (±1.6%) 4.62 (±0.22) not applicable 

Post-test    

    After AV adaptation 91.5% (±1.7%) 4.02 (±0.20) -0.99 (±0.29) 

    After VA adaptation 91.3% (±1.3%) 4.01 (±0.19) 2.11 (±0.25) 

 

Table 5.1 Group-level mean values in hit rate, d-prime and PSE in the sound localization and 

adaptation tasks of the psychophysics experiment (SEM in parentheses). 

 

Figue 5.2 displays the shifted psychometric functions of the participants. We can see that 

aftereffects were found both after AV adaptation (Figure 4.1A) and VA adaptation (Figure 

4.1B) for each participant. This result is rather convincing, given that other studies reported 

occasional null or small negative effects with 1-2 subjects at this population size (Frissen et 

al., 2003; Mendonça et al., 2015). Group-level PSE values of the three test phases (pre-test, 

post-test after AV and VA adaptation) are summarized in Table 4.1. A paired t-test on the 

mean rightward and leftward aftereffects confirmed a highly significant result (t(28)=11.512, 

p<0.0001). 

 

Figure 5.2 Psychometric function shifts after adaptation of the psychophysics 

experiment. (A) Psychometric functions are based on the mean aftereffects and the 
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constrained slope of each participant after AV adaptation. (B) Psychometric functions are 

based on the mean aftereffects and the constrained slope of each participant after VA 

adaptation. Abbreviations: A, auditory; AV, audiovisual; S, subject. 

 

In addition, aftereffects were also evaluated in a time course analysis. Aftereffects 

were calculated for each post-test period to see whether: (i) the aftereffects were more 

prominent after 3 min adaptations (always in the beginning of parts in a session); and (ii) the 

interleaved 1 min adaptations are sufficient to maintain the aftereffect or there is any 

dissipation over time. The aftereffects of each period were entered into a 4 (sessions) x 2 

(parts) x 5 (periods) repeated measures ANOVA. The main effect of session was highly 

significant (F(3,14)=36.48, p<0.0001) corresponding to our main finding showed earlier by 

paired t-tests. Apart from a weakly significant part x session interaction (F(3,14)=3.15, 

p=0.037), none of the other main effects or interactions were significant. These results suggest 

that the aftereffect was stable and did not dissipate over time. However, a null effect between 

the effectiveness of 1 and 3 min adaptations does not imply they are equally effective due to 

the exclusive precedence of 3 min adaptations before 1 min adaptations. In accordance, 

adaptation studies in recent years use a longer adaptation period for inducing an aftereffect 

and interleaved or shorter ones to maintain it (Bruns et al., 2011; Wozny & Shams, 2011a; 

Zaidel et al., 2013). Moreover, Frissen and colleagues demonstrated that 3 min adaptations 

induce larger aftereffects than 1 min adaptations (Frissen et al., 2012). 
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Experiment 2: fMRI experiment 

Methods 

Participants 

Six right-handed participants (4 females, mean age=22.2; SD=3.7) with no history of 

neurological or psychiatric illness, and who showed the largest recalibration effects (for 

details, see Experiment 1 of the current chapter), were selected from the preceding 

behavioural experiment. One participant was excluded after 3 sessions due to an overall 

d’<2.5 in the adaptation tasks of the 3 sessions (same criterion was used for screening 

participants in the preceding behavioural experiment). All participants gave informed consent 

to participate in the fMRI experiment and received monetary compensation. The study was 

approved by the human research ethics committee at the University of Birmingham. 

Experimental procedure 

Participants performed 4 sessions similarly to the preceding behavioural experiment. Here, the 

session order of adaptation was counter-balanced also within participants. Each session 

consisted of 10 pre-test periods followed by 8 adaptation periods interleaved by 8 post-test 

periods. In addition, periods were organized into runs and the scanner was restarted between 

each run. One run was composed of 2 pre-test periods or 2 adaptation periods and 2 post-test 

periods. Participants performed a short left-right discrimination task in the beginning of each 

session to check sufficient localization abilities in the scanner environment. Participants were 

instructed to fixate on a central fixation cross throughout the session.  
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Figure 5.3 Design and time course of the fMRI experiment. (A) Pre-test phase of each 

session. (B) Adaptation and post-test phase of each session. Abbreviations: P, period. 

 

Stimuli 

Stimuli used in the fMRI experiment were identical to the preceding behavioural experiment 

except for the background scanner noise, which in this case was not artificially provided by 

the experimenter, but by the scanner itself. 

Experimental design 

The experimental design was identical to the preceding behavioural experiment except for 2 

details of the adaptation task: 
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• All adaptation periods lasted for 3 min (except for the first 2 participants, where some 

1 min adaptations were also used). This change enabled a more robust adaptation 

effect. 

• Adaptation trials were 20 presentations of audio-visual stimuli from the same location, 

after which the audio-visual stimulus location changed randomly. This change was 

made to improve design efficiency for the audio-visual signals. 

10 sec fixation was introduced at the beginning and end of runs as well as between periods to 

improve estimation of the baseline fMRI signal. 

Experimental setup 

The experimental setup was similar to the preceding experiment except for the following: The 

visual stimuli were back projected to a Plexiglas screen using a D-ILA projector (JVC DLA-

SX21) visible to the subject through a mirror mounted on the magnetic resonance (MR) head 

coil. Auditory stimuli were delivered via MR compatible headphones (MR Confon HP-

VS03). We showed in the preceding behavioural study that eye movements did not confound 

the aftereffect, and decided not to record eye data in the scanner. 

Behavioural analysis 

The behavioural results obtained in the scanner were analysed similar as in the preceding 

behavioural study with the exception that no time course analysis was performed here. 

MRI data acquisition 

A 3T Philips Achieva scanner was used to acquire both T1-weighted anatomical images 

(TR/TE/TI, 7.4/3.5/min. 989 ms; 176 slices; image matrix, 256 x 256; spatial resolution, 1 x 1 

x 1 mm3 voxels) and T2*-weighted echo-planar images (EPI) with blood oxygenation level-

dependent (BOLD) contrast (fast field echo; TR/TE, 2800/40 ms; 38 axial slices acquired in 

ascending direction; image matrix, 76 x 75; slice thickness, 2.5 mm; interslice gap, 0.5mm; 
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spatial resolution, 3 x 3 x 3 mm3 voxels). There were 20 pre-test runs, each with 160 volumes 

over 4 sessions. There were 16 post-test runs both for left- and right-adaptations, over 2 

sessions, respectively. The first 4 volumes were not acquired to allow T1 equilibration effects. 

fMRI analysis 

The data were analysed with statistical parametric mapping (SPM12; Wellcome Trust Centre 

for Neuroimaging, London, UK; http://www.fil.ion.ucl.ac.uk/spm/; Friston, Holmes, Worsley, 

et al., 1995). Scans from each participant were realigned using the first as a reference, 

unwarped and corrected for slice timing. The time series in each voxel was high-pass filtered 

to 1/128 Hz. The EPI images were spatially smoothed with a Gaussian kernel of 3 mm 

FWHM and the data were analysed in native participant space. The data were modelled in a 

mixed event-block related fashion with regressors entered into the design matrix after 

convolving the unit impulse (representing a single trial) or the block with a canonical 

hemodynamic response function and its first temporal derivative. Unisensory sound location 

conditions (of the pre- and post-test phases) were modelled as events and visual location 

conditions (of the adaptation phase) as blocks. Moreover, sound locations for trials with and 

without responses were modelled separately, as well as all responses within visual blocks 

were modelled in a separate event-related regressor. Realignment parameters were included as 

nuisance covariates to account for residual motion artefacts. Condition-specific effects for 

each subject were estimated according to the general linear model (GLM). 

The regressors of the sound location conditions (of the pre- and post-test phases) were 

used for multi-variate decoding analysis. We trained a linear support vector regression (SVR) 

model as implemented in LIBSVM 3.17 (Chang & Lin, 2011) to accommodate the continuous 

nature of the auditory locations. More specifically, the voxel response patterns were extracted 

in a particular region of interest (e.g. A1) from the beta image estimates corresponding to the 

http://www.fil.ion.ucl.ac.uk/spm/
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BOLD response for each auditory location condition and run of the GLM as discussed above. 

SVR models were trained to learn the mapping from the condition-specific fMRI responses 

patterns (i.e., examples) to the condition specific spatial locations (i.e., labels) from all but 

one pre-test run (leave-one-run out cross-validation, LORO CV). The model then used this 

learnt mapping to decode the spatial locations from the voxel response patterns of both the 

remaining pre-test run and all the post-test runs. The training-test procedure was repeated for 

all runs in a cross-validation scheme. This method yielded one estimated spatial location for 

each example of the pre-test runs and multiple estimates (as many CV folds) for examples of 

post-test runs. Default SVR hyper-parameters (C=0, ν=0.5) were used to train the models. 

Inference was made based on the decoded spatial locations using neurometric 

functions. More specifically, the decoded spatial locations pooled over all CV folds were 

binarized as ‘decoded right’ and plotted as a function of sound locations. Similarly to the 

behavioural analysis, cumulative Gaussian was fitted to the percentage decoded right 

estimates as a function of stimulus location using maximum-likelihood estimation 

(www.palamedestoolbox.org). This method enabled a similar approach to the behavioural 

analysis, but now at the neural level. The fitting procedure was based on fixed guess and lapse 

rates (each set to 0.1) resulting in estimates of the point of subjective equality (PSE), and the 

slope of the psychometric function. The obtained neurometric functions (and their PSE 

values) of the participants were passed to the second level to allow for random effects analysis 

and inferences at the population level (Friston et al., 1999). Group-level mean and SEM 

neurometric functions were calculated from the pre-test, and two post-test (after left and right 

adaptation) neurometric functions of participants, and the corresponding PSE values were 

entered into a repeated measures ANOVA. 

http://www.palamedestoolbox.org/
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Region of interests used for decoding analysis 

The auditory regions of interests (ROI) were defined based on using the Destrieux atlas of 

Freesurfer 5.3.0 (Dale et al., 1999; Destrieux et al., 2010). The regions were combined from 

the left and right hemispheres. The primary auditory cortex was based on the anterior 

transverse temporal gyrus (Heschl’s gyrus). The higher auditory cortex was defined by 

merging the transverse temporal sulcus and the planum temporale. The intraparietal sulcus 

(IPS) was defined by merging the superior parietal gyrus and the intraparietal and sulcus 

labels. A sub-analysis in the preceding fMRI study (see Chapter 2) showed that decoding 

performance in the above mentioned anatomically defined IPS were reasonably similar to 

those obtained in the functionally defined IPS based on standard retinotopic mapping. 

Results 

In the fMRI study, we employed the same experimental design as in the preceding 

behavioural study consisting of pre-test, adaptation and post-test phases. The behavioural 

results in the scanner were evaluated similarly to before, fitting psychometric functions to the 

percentage ‘perceived right responses’ of participants as a function of stimulus location. We 

built support vector regression (SVR) models on the voxel response patterns in particular 

brain regions involved in auditory spatial processing. These models enabled to fit neurometric 

functions to the percentage ‘decoded right choices’ made by the linear support vector 

machine. We expected that neurometric functions would show similar shifts as the 

behavioural psychometric functions resulting in a rightward shift after adaptation with V 

stimulus to the left of the sound (VA adaptation) and a leftward shift after adaptation with V 

stimulus on the right of the sound (AV adaptation). 
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Behavioural results 

Participants’ performance in the scanner was high on catch trials (>89%) detecting contrast 

changes of the visual stimuli and the fixation cross during the adaptation and the test phases, 

respectively (Table 5.2). 

 Hit rate d-prime PSE 

Pre-test 97.5% (±0.5%) 4.8 (±0.16) -0.73 (±1.09) 

Adaptation    

    Right-adaptation 92.4% (±0.7%) 4.54 (±0.05) not relevant 

    Left-adaptation 89.5% (±1.6%) 4.09 (±0.13) not relevant 

Post-test    

    After right-adaptation 97.8% (±0.4%) 5.01 (±0.13) -2.54 (±0.52) 

    After left-adaptation 98.1% (±0.4%) 5.18 (±0.17) 2.46 (±0.16) 

 

Table 5.2 Group-level mean values in hit rate, d-prime and PSE in the sound localization and 

adaptation tasks of the fMRI experiment (SEM in parentheses). 

 

Figure 5.4 A and B displays the shifted psychometric functions after adaptation. As we 

expected, the functions and their corresponding PSE values moved consistently leftwards 

after AV adaptation due to the higher % right responses (Figure 5.4A). In contrast, the 

functions and the corresponding PSE values moved consistently rightwards after VA 

adaptation due to the lower % right responses (Figure 5.4B). Strong behavioural aftereffects 

were present in all sessions of the participants. Group-level PSE values of the three test 

phases (pre-test, post-test after AV and VA adaptation) are summarized in Table 5.2. A paired 
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t-test on the mean rightward and leftward aftereffects confirmed a highly significant result 

(t(8)=9.187, p< 0.0001). 

 

Figure 5.4 Psychometric and neurometric functions of the fMRI experiment. (A) 

Psychometric functions are based on the mean aftereffects and the constrained slope of each 

participant after AV adaptation. (B) Psychometric functions are based on the mean 

aftereffects and the constrained slope of each participant after VA adaptation. (C) Group-

mean (±SEM) neurometric functions in planum temporale based on constrained post-test 

slope at the participant level. Abbreviations: A, auditory; AV, audiovisual; S, subject. 

 

fMRI analysis: multivariate results 

Decoding of auditory space: SVR models were trained on the pre-test auditory locations to 

find a mapping between BOLD response patterns and the stimulus locations (±12°, ±5°, ±2° 
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and 0°) using regressors based on responded and non-response trials. The SVR models were 

trained separately on our a priori regions of interest: Heschl’s gyrus (HG; also primary 

auditory cortex, A1), planum temporale (PT) and intraparietal sulcus (IPS). The slope 

estimates of the participants’ neurometric functions were passed to a between-subject 2nd level 

analysis. One sample t-tests revealed significant effects for all regions: Heschl’s gyrus (t(4) = 

2.785, p<0.05), planum temporale (t(4) = 10.424, p<0.001) and intraparietal sulcus (t(4) = 

5.160, p=0.007). In line with previous research, the decoding accuracy for auditory locations 

was highest in planum temporale (Callan et al., 2015; Ortiz-Rios et al., 2017). We got similar 

results based on regressors of non-response trials.  

Decoding of aftereffects: Using the SVR models built on the pre-test data, we decoded 

auditory stimulus locations after AV and VA adaptations. Only regressors from the non-

response trials were used here to avoid any motor confound in the aftereffects. Again, we 

tested A1, PT and IPS separately. Aftereffects based on PSE estimates of participants’ 

neurometric functions were passed to a between-subject 2nd level analysis. Paired t-tests 

revealed significant effect for planum temporale (t(8) =4.978, p=0.002; Figure 4.4C). A non-

significant trend for PSE was also found in IPS (shifts in 4 out of 5 participants; p>0.1), and 

no effect was revealed in the primary auditory cortex. 

Discussion 

In order to adapt to the changes in our sensory systems or those in the environment, the brain 

needs to recalibrate the senses to keep them coordinated (Burr & Gori, 2012; de Gelder & 

Bertelson, 2003; Ernst & Di Luca, 2011). A vast body of behavioural research investigated 

spatial auditory adaptation induced by exposure to spatial audio-visual conflict, the so called 

ventriloquist aftereffect (Bertelson et al., 2006; Canon, 1970, 1971; Chen & Vroomen, 2013; 

Frissen et al., 2003, 2005; Lewald, 2002; Radeau & Bertelson, 1974, 1977; Recanzone, 1998; 
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Wozny & Shams, 2011b). Despite the overwhelming evidence accumulated by the 

behavioural studies, the neural structures remain unknown. The current study was designed to 

determine at which level of the auditory spatial processing visual signals induce adaptive 

changes in the neural representations. We used a classical recalibration paradigm with an 

adaptation period and test phases of sound localization before and after adaptation. In order to 

dissociate changes in neural representation of auditory space from changes due to motor 

responses, participants responded only on ~20% of trials in the sound localization task. These 

responses were used to confirm behavioural effects of our recalibration procedure. On the 

other side, trials where participants did not indicate a response inside the scanner were used to 

characterize the neural mechanisms of auditory spatial adaptation unconfounded by motor 

responses. 

In our psychophysics experiment, we found very consistent recalibration effects in a 

population of fifteen healthy adults. In particular, when comparing the point of subjective 

equality of the psychometric functions after and before adaptation for each direction of 

adaptation, every single subject showed a recalibration effect. This consistency across 

participants confirms both the robustness of inter-sensory recalibration and the effectiveness 

of our experimental design. These results enabled to perform a fine tuned fMRI experiment to 

investigate the neural underpinnings of auditory space adaption on a five selected participants. 

In our fMRI experiment, at first we established whether auditory space can be decoded from 

our three candidate region of interests: primary auditory cortex (A1), planum temporale (PT) 

and intraparietal sulcus (IPS). These regions of interests were suggested both by behavioural 

studies investigating recalibration effects (Bruns & Röder, 2015; Frissen et al., 2005; Lewald, 

2002; Recanzone, 1998) as well as they are based on neuroimaging studies characterizing 

auditory spatial processing in humans (Arnott, Binns, Grady, & Alain, 2004; Bushara et al., 
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1999; Kong et al., 2014; Lewald et al., 2002; Michalka, Rosen, Kong, Shinn-Cunningham, & 

Somers, 2016; Weeks et al., 1999). To better understand these cortical regions we give an 

introduction to the dual-stream hypothesis. Originally, the dual-stream hypothesis was 

described for the visual system dividing it into two processing streams: a ventral non-spatial 

processing (‘what’) stream, and a dorsal spatial processing (‘where’) stream (Ungerleider & 

Haxby, 1994; Ungerleider & Mishkin, 1982). It has been proposed for auditory processing in 

non-human primates in the late 1990s (Kaas & Hackett, 2000; Rauschecker, 1998; 

Rauschecker & Tian, 2000; L M Romanski et al., 1999), and was soon extended to humans. 

The existence of the dual-stream hypothesis in humans was corroborated by a meta-analysis 

conducted on a total of 36 PET and fMRI studies in 2004 (Arnott et al., 2004). The ventral 

pathway is described to originate from the antero-lateral belt of the auditory cortex, 

propagates to the anterior part of the superior gyrus and terminates in the ventrolateral 

prefrontal (VLPFC). By contrast, the dorsal pathway originates from the dorso-lateral belt and 

parabelt (PT in humans), propagates to the posterior parietal cortex, and terminates in the 

dorsolateral prefrontal cortex (DLPFC). Over the years, some criticism has been raised 

regarding the specificity of these pathways, still the role of auditory spatial processing in the 

dorsal stream is generally accepted (Recanzone & Cohen, 2010 for a review). In recent years, 

the two-stream model has been extended to incorporate speech and music processing 

(Rauschecker & Scott, 2009), the role of the dorsal pathway in orienting vision has been 

emphasised (Arnott & Alain, 2011), and the parietal cortex has been demonstrated to be 

involved in supramodal spatial representations (Kong et al., 2014; Macaluso, Driver, & Frith, 

2003; Michalka et al., 2016).  

In line with previous research implicating that planum temporale has a prominent role 

in representing auditory space (Baumgart, Gaschler-Markefski, Woldorff, Heinze, & Scheich, 



105 

 

1999; Callan et al., 2015; Derey, Valente, de Gelder, & Formisano, 2016; Krumbholz, 

Schönwiesner, Rübsamen, et al., 2005; Krumbholz, Schönwiesner, Von Cramon, et al., 2005; 

Ortiz-Rios et al., 2017) the decoding accuracy for auditory locations was highest in planum 

temporale. Interestingly, we were able to decode auditory location significantly better than 

chance from the primary auditory cortex (Heschl’s gyrus). This is supported by a clear 

evidence from a very recent neuropsychological study in macaque showing that hemifield 

code of the auditory space extends to the primary auditory cortices (Ortiz-Rios et al., 2017). 

Finally, we showed that auditory space could also be decoded from parietal cortex that is 

recognized as key a region for integrating spatial audio-visual signals into coherent 

representations. In summary, we were able to decode auditory spatial representations from all 

of three tested regions of interest (i.e. A1, PT, IPS) using multivariate models of BOLD-

response patterns. Therefore, all of these regions may be also candidates for encoding visually 

induced changes in auditory spatial representations. 

To characterize auditory space adaptation at the neural level we trained a support 

vector regression model for each subject on the auditory localization trials prior to adaptation 

to establish a mapping from BOLD-response patterns to spatial locations of the auditory 

space. Then using this learnt mapping we decoded BOLD-response patterns of the auditory 

signals after a visually induced spatial adaptation to characterize changes in auditory 

representation at the neural level. The neurometric functions (cumulative Gaussians fitted to 

the decoded locations) revealed a significant shift in point of subjective equality for left vs. 

right recalibration in PT consistently across all five participants. At a lesser extent, but 

recalibration induced a consistent change in PSE values in IPS in four out of five subjects. 

Neurometric functions in the primary auditory cortex were not significantly different after left 

and right visual adaptation. Collectively, our findings suggest that recalibration induces 
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changes in neural representations of auditory space across multiple levels of the hierarchy 

including unisensory auditory regions as PT and multisensory association areas as IPS.  

Future investigations need to determine the neural mechanisms underlying audio-

visual recalibration and address how these adaptive changes in auditory representation emerge 

over time. For instance, IPS as a multisensory convergence zone might play a key role in 

comparing visual and auditory signals and induce neuroplasticity via top-down effects on PT. 

Alternatively, plasticity may be induced directly in PT and then propagate to IPS. We also 

need to examine carefully the role of other cortical (e.g. FEF) and subcortical regions (e.g. 

superior colliculus), whether they contribute to the adaptation processes. 
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CHAPTER 6: GENERAL DISCUSSION AND CONCLUSIONS 

The work presented in this thesis aimed to understand how the brain adapts to changes in the 

multisensory environment. In particular, we investigated the neural mechanisms of audio-

visual integration (Chapter 3) and changes in the neural representation of auditory space due 

to permanent spatial conflict between the audio-visual signals (Chapter 5). In a behavioural 

study, we investigated how the human brain adapts to temporary changes in the statistics of 

audio-visual signals (Chapter 4). In this final chapter, I will summarize the main findings of 

the empirical chapters, discuss how they contribute to the literature and outline directions for 

future research. 

Overview of findings 

Chapter 3: Neural basis of explicit causal inference in audio-visual perception 

The human brain is in a state of constant adaptation: it has to accommodate changes in 

the sensory systems as well as those in the environment. To form a veridical representation of 

the external world, the brain needs to infer the causal structure of the world needs and signals 

should be integrated only if they belong to the same object otherwise kept separate 

(Trommershäuser et al., 2011). Although numerous behavioural studies investigated such a 

causal judgement, the neural substrates of explicit causal inference on audio-visual signals 

remain unknown. I investigated the neural representations of spatial auditory and visual 

signals, and how their interaction results as well as is influenced by explicit causal 

judgements of the signals. Crucially, our design allowed us to dissociate causal judgements 

both from the physical congruency of the audio-visual signals and the selected motor actions. 

We demonstrated that the dorsolateral prefrontal cortex (DLPFC) is the key region in 

perceptual judgement (i.e. causal inference judgement). We found that the spatial 
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representation of auditory and visual signals as well as their interaction (i.e. physical 

congruency) are encoded at multiple levels of the cortical hierarchy from low-level sensory 

cortices to the parietal (IPS) and prefrontal (FEF, DLPFC) regions. Interestingly, AV signals 

interacted already in planum temporale, which is considered to be a low-level sensory cortex 

for auditory processing. This finding is consistent with several anatomical, neuroimaging and 

electrophysiological studies showing cross-modal interplay at early sensory cortices (Driver 

& Noesselt, 2008; Ghazanfar & Schroeder, 2006).  

In line with our finding of AV interactions at multiple levels of the cortex, recent 

neuroimaging evidence showed that spatial representations are hierarchically organized in the 

human brain (Rohe & Noppeney, 2015a, 2016). AV spatial representations start with 

unisensory estimates in the low level cortical areas, in IPS0-2 bisensory representations are 

based on weighting the reliabilities of the signals, finally IPS3-4 forms spatial estimates also 

taking into account the implicit causal relationship of the signals (Rohe & Noppeney, 2015a). 

Importantly, it seems plausible that the evidence about the world’s causal structure 

accumulated in DLPFC is backwards projected to these regions to inform their spatial 

representations. Indeed, we were able to decode perceptual congruency not only from DLPFC 

but V2-3 and planum temporale suggesting these top-down modulations. 

Furthermore, we demonstrated that FEF and IPS form a circuitry where all aspects of 

spatial representation (visual, auditory, motor, physical and perceptual congruency) are 

encoded. This finding suggests two roles for these regions: (i) they serve as convergence 

zones for bottom-up sensory correspondences and top-down influences; and (ii) they also 

transform audio-visual spatial representations into motor responses according to arbitrary 

mappings. These findings are consistent with the role of parietal cortex forming priority maps 

and guiding motor action (Bisley & Goldberg, 2010; Cohen, 2009; Sereno & Huang, 2014). 
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Chapter 4: Changing the tendency to integrate audio-visual signals 

Having characterized the neural mechanisms of explicit causal inference, we asked whether 

the causal judgement, i.e. perception of common source audio-visual signals is stable or 

susceptible to changes. In particular, we were interested if changes in the statistics of audio-

visual stimuli (e.g. frequency of signals coming from the same source) can change the 

expectations of the brain, which in turn would lead to changes in the binding tendencies. 

In a behavioural study, we manipulated the relative frequencies of trials where audio-

visual signals were collocated and synchronous (‘common source signals’) or spatially 

disparate and asynchronous (‘separate source signals’) in short blocks of 32 trials. We 

demonstrated that observers bind audio-visual signals more often in blocks with high 

frequency of spatiotemporally congruent trials as indexed by the ventriloquist effect. 

Critically, given the short blocks these adaptive changes were rapid and also without much of 

awareness of the observers. 

These results converge with a previous finding from Van Wanrooij and colleagues 

(Van Wanrooij et al., 2010) showing reduced response times when the probability of 

congruent trials was increased in a ventriloquist situation. Also, similar results have been 

shown using the McGurk illusion, when a series of synchronous audio-visual movies resulted 

in an increased binding of the signals (Gau & Noppeney, 2016; Nahorna et al., 2012, 2015). 

Collectively, these results suggest that the dynamic update of common source prior is 

a generic mechanism for audio-visual integration. Importantly, changing the tendency to 

integrate audio-visual signals can be considered as an adaptive process to sudden changes in 

the environmental statistics. 
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Chapter 5: Visually induced auditory space adaptation 

What happens when persistent changes occur in the environmental statistics, e.g. sensory 

conflict is maintained over time? The brain adaptively recalibrates the senses to keep them 

coordinated (Burr & Gori, 2012; de Gelder & Bertelson, 2003; Ernst & Di Luca, 2011). We 

studied the ventriloquist aftereffect as the most prominent audio-visual adaptation paradigm 

(Canon, 1970, 1971; Lewald et al., 2002; Radeau & Bertelson, 1974, 1976; Recanzone, 

1998). We aimed to characterize the brain regions underlying of the adaptation processes that 

in spite of the overwhelming behavioural evidence remain unknown.  

First, we demonstrated that the auditory space can be decoded from all of our a priori 

tested cortical regions, such as the primary auditory cortex, planum temporale and 

intraparietal sulcus. The role of planum temporale in encoding auditory space is in line with a 

vast body of research (Baumgart et al., 1999; Callan et al., 2015; Derey et al., 2016; 

Krumbholz, Schönwiesner, Rübsamen, et al., 2005; Krumbholz, Schönwiesner, Von Cramon, 

et al., 2005; Ortiz-Rios et al., 2017), whilst the contribution of IPS is more sparse in the 

literature (Lewald et al., 2002; Lewald, Riederer, Lentz, & Meister, 2008). Similarly, the 

contribution of primary auditory cortex is not well established, however, there has been a very 

recent clear evidence in monkey (Ortiz-Rios et al., 2017). 

We used the above mentioned auditory mappings from stimulus location to BOLD 

activation patterns to examine which of these region(s) are involved in the remapping of 

auditory space after adaptation. We demonstrated clear shifts in the neurometric functions of 

planum temporale in each fMRI participant indicating adaptation effects in this region. 

Similar results were observed in IPS in four out of five participants, although the effect was 

not significant due to the small sample size. Crucially, all these results manifest auditory 

space maps and their adaptation in a manner that is not confounded by motor responses. 
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Contributions, and future directions 

The contributions of this thesis are addressed from multiple points of view. In each view, I 

will discuss the relevant connections between the empirical chapters and put them into the 

context of the literature. I will point out agreements and discrepancies; and possibly I will 

address intriguing directions for future research. 

In Chapter 3, we investigated the neural mechanisms of explicit causal inference 

based on bottom-up correspondences of audio-visual signals, such as spatial disparity. The 

results suggested three key players in causal inference, DLPFC, IPS and FEF. I proposed that 

at the top of the cortical hierarchy, DLPFC infers the causal structure of audio-visual signals 

and top-down modulates both the FEF-IPS circuitry and other lower level sensory regions 

(e.g. planum temporale). The FEF-IPS circuitry forms spatial representations both based on 

bottom-up sensory inputs and these top-down causal inferences. These results extend recent 

neuroimaging findings showing the role of IPS3-4 in forming AV spatial representations 

taking into account the implicit causal structure of the signals (Rohe & Noppeney, 2015a). In 

Chapter 4, we took a different approach and investigated whether causal inference (‘common 

source judgement’) can be driven by top-down mechanisms built up from expectations on 

recent audio-visual experiences. Indeed, we demonstrated that observers dynamically adapted 

their binding tendency (‘common source prior’) based on frequency changes of 

spatiotemporally congruent and incongruent trials. Similarly, numerous studies presented 

evidence that human learn and update priors dynamically (Adams et al., 2004; Berniker et al., 

2010; Knill, 2007; Körding, Ku, & Wolpert, 2004; Körding & Wolpert, 2004; Sato & 

Körding, 2014). Our results are also in line with previous audio-visual research showing 

increased occurrence of McGurk illusion in the context of synchronous audio-visual movies 

(Gau & Noppeney, 2016; Nahorna et al., 2012, 2015). On the contrary, a recent study 
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demonstrated that the observer’s tendency to bind audio-visual signals is stable across days 

(Odegaard & Shams, 2016). The discrepancy can be resolved taking into account the different 

time scales and the environmental statistics of audio-visual signals. On one hand, a stable 

binding tendency over longer periods of time and in the same environment enables a robust 

and reliable integration. On the other hand, the flexibility to adjust binding tendencies to 

sudden changes in statistical regularities of audio-visual signals (e.g. more frequent co-

occurrence) allows optimal integration in different environments. Future studies will need to 

address the cognitive and neural mechanisms of binding tendencies. 

The different time scales discussed just before also brings us to the next topic: the time 

scales of adaptation. As the results of Chapter 4 showed and discussed above, updating 

binding tendencies allows a rapid adaptation to temporary changes in the statistics of audio-

visual signals. Another type of adaptation occurs on longer time scales as revealed in Chapter 

5: the brain recalibrates the senses to each other. Although, recent evidence suggests that 

recalibration can also occur rapidly (Frissen et al., 2012; Mendonça et al., 2015; Wozny & 

Shams, 2011b), the real benefit of recalibration becomes prominent on longer time scales e.g. 

during development (Burr et al., 2011). The long-lasting nature of sensory recalibration is 

supported by the maintained aftereffect in our experiments. Especially, in the psychophysics 

experiment, where initial 3 min adaptation periods followed by 3.5 min sound localization test 

phases and interleaved 1 min adaptations were sufficient to maintain aftereffects for ~20-25 

min. The maintenance of recalibration by such a rapid and effective way explains its rising 

popularity in recent years that allowed the characterization of the underlying computational 

and some neuronal mechanisms (Bruns et al., 2011; Wozny & Shams, 2011a; Zaidel et al., 

2013, 2011). Zaidel and colleagues demonstrated that unsupervised recalibration follows a fix 

ratio adaptation and argued that recalibration should be based on accuracy, not reliability 
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(Zaidel et al., 2011). In a follow-up study they investigated supervised calibration providing 

feedback about accuracy (Zaidel et al., 2013). Although, interesting questions arise e.g. are 

there ways that observers can estimate accuracy without external feedback? Can unreliable 

cues recalibrate other senses in an unsupervised manner? Are their findings indeed general as 

they suggested or specific to visual-vestibular recalibration? 

Finally, let me discuss the neuronal representations of audio-visual space from an 

adaptive point of view. In Chapter 3, I demonstrated that a wide range of system of brain 

regions is sensitive to physical congruency, such as spatial disparity. This system includes 

mostly higher order association cortices as IPS, FEF and DLPFC. Putatively, this system is 

mainly focused on translating physical congruency into perceptual congruency and does not 

have strong spatial representations. On the other side, low level sensory cortices (e.g. V1-3, 

belt regions in auditory cortex, planum temporale) have strong spatial representations. 

Interestingly, planum temporale belongs to both groups. Therefore, one might speculate that it 

is an ideal candidate for adaptation, when its prominent representations get modulated by 

cross-modal (e.g. visual) interactions. Indeed, I demonstrated in Chapter 5, that planum 

temporale decodes auditory space more precisely than primary auditory cortex or intraparietal 

sulcus, and it is the region where recalibration effects were most prominent. Future research 

needs to investigate the exact mechanisms of these interactions, and test whether cognitive 

factors e.g. attention could potentially play a role in these processes 

Conclusions 

In summary, the current thesis aimed to characterize the neural processes underlying audio-

visual integration and adaptation. I demonstrated that dorsolateral prefrontal cortex infers the 

explicit causal structure of audio-visual signals, by which they were generated. Two further 

key players in the human cortical hierarchy are the frontal eye fields and intraparietal sulcus, 
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where bottom-up audio-visual spatial information and possibly top-down modulated explicit 

causal inference converge to inform spatial representations and map them into motor actions. 

I showed that human observers dynamically adapt to changes in the environmental statistics 

of audio-visual signals. I proposed that they achieve it by updating their prior assumption on 

the causal structure (i.e. ‘common source prior’) of audio-visual signals. I observed mappings 

of auditory space at three levels of the auditory cortical hierarchy: in primary auditory cortex, 

planum temporale and intraparietal sulcus. Moreover, I described remapping at the 

behavioural and neural level followed by visually induced auditory space adaptation. 

Collectively, these results extend our understanding of short-term audio-visual adaptation and 

present neural mechanisms underlying audio-visual integration and adaptation. 
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