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ABSTRACT 

At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, 

but the rate at which insulin secretion declines is heterogeneous.  To explain this heterogeneity, we 

sought to identify a composite signature predictive of insulin secretion, using a collaborative assay 

evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting beta 

cell health and immune system activity. The ability to predict decline in insulin secretion would be useful 

for patient stratification for clinical trial enrollment or therapeutic selection.  Analytes from 12 qualified 

assays were measured in shared samples from subjects newly diagnosed with T1D.  We developed a 

computational tool (DIFAcTO) to identify a composite panel associated with decline in insulin secretion 

over 2 years after diagnosis. DIFAcTO employs multiple filtering steps to reduce data dimensionality, 

incorporates error-estimation techniques including cross-validation and sensitivity analysis, and is 

flexible to assay type, clinical outcome and disease setting. Using this novel analytical tool, we identified 

a panel of immune markers that, in combination, are highly associated with loss of insulin secretion.  

The methods used here represent a novel process for identifying combined immune signatures that 

predict outcomes relevant for complex and heterogeneous diseases like T1D. 
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INTRODUCTION 

Type 1 diabetes (T1D) is caused by immune destruction of pancreatic beta cells, leading to an inability to 

produce sufficient insulin. At diagnosis, most people with T1D still produce some endogenous insulin, 

but both the level and rate of continued decline varies markedly between individuals. Age represents 

one component of this heterogeneity, as subjects diagnosed at a younger age tend to have lower levels 

of insulin secretion at diagnosis and to lose insulin secretion more rapidly after onset (1-3).  The other 

sources of heterogeneity in insulin secretion after diagnosis are not well understood.  Addressing this 

gap could help enable patient selection for clinical trial enrollment, where enriching for subjects with a 

faster rate of decline could reduce the size and/or duration of efficacy trials (4, 5).  Clinically, 

maintenance of insulin secretion after diagnosis can contribute to a reduction in the rate of disease 

complications (6).  The rate of loss of insulin secretion is therefore considered a metric of post-diagnosis 

disease progression. 

Immune system parameters are also hypothesized to contribute to varied rates of disease progression.  

Individuals with T1D are heterogeneous in regard to their immunobiology at and after diagnosis as 

supported by the breadth and inter-subject range of individual immunological features within this 

population (7-11).  In recent studies of individual assays, this heterogeneity has been suggested to 

predict the rate of progression after diagnosis for some subjects (12-15).  Better fundamental 

knowledge of the array of immune drivers of disease could help explain the differing rates of loss of beta 

cells observed across subjects, and potentially indicate immunotherapeutic targets.  

Determining whether a combination of immune and beta cell features can together define rate of 

disease progression across a range of subjects requires 1) sufficient sample(s) from shared, well-

annotated subjects, and 2) appropriately qualified assays that broadly describe response in a given 

subject. Sample availability can be overcome by working collaboratively to obtain retrospective samples 
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from clinical trials or similarly annotated longitudinal collections.  As samples from such collections are 

necessarily limited, ensuring their best use requires fit-for-purpose qualification of any biomarker assays 

employed. Here, we planned to run each assay in a single batch.  Thus, the key performance parameters 

for assay qualification were detectability (frequency present) and intra-assay precision of each analyte, 

when tested in the target patient population, with the sample type, and with available sample volume.  

Notably, sample volumes may disproportionately impact low-frequency analytes, such as low 

abundance cell populations, as stochastic sampling error can result in false positive associations, 

especially when many measurements are made. 

In this study, we aimed to determine whether multiple unique measures in aggregate correlate with rate 

of loss of insulin secretion.  To this end, we established a stringent, well-defined, and collaborative assay 

evaluation and data analysis method.  The assays selected for study included measures that were 

hypothesized to directly relate to T1D pathogenesis; these included antigen-specific CD8 T cell 

frequencies (16), a Treg transcriptional signature previously associated with T1D (17), the ratio of 

proinsulin to C-peptide (18), and a measure of demethylated insulin DNA in serum (19).  Other selected 

assays showed prior utility in understanding T1D pathogenesis.  These included genome-scale 

technologies, included here for broad screening and hypothesis generation:  whole blood and cell subset 

RNA sequencing (15, 20) and an assay measuring the transcriptional response to T1D serum (13, 21, 22) 

were employed.  Assays also included screening assessments that were smaller scale, including 

immunophenotyping by flow cytometry (23) and measurements of serum miRNA (24).  Using these 

assays, we conducted a proof-of-concept study in a cohort of recent onset T1D subjects with variable 

rates of C-peptide decline, who were followed meticulously for both metabolic outcomes and ancillary 

sample collection over a 2 year period within the context of clinical trial monitoring.  After filtering 

based on individual assay validity and consistency, data from all assays was integrated, its dimensionality 

was reduced to facilitate combined modeling, and features associated with C-peptide decline were 
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identified.  Model estimation error was assessed by cross-validation. Selected analytes were then 

subjected to sensitivity analysis.  We found 12 analytes that, in combination, were prognostic for decline 

in C-peptide; these originated from 3 immune assays (signature of serum exposure, cell-type specific 

RNA-seq and flow cytometry) implicating at least three immune cell types. Attributes of immune 

activation, suggestive of an attempt to control the immune response, were positively associated with 

maintenance of insulin secretion.  Immune trafficking and B-cell activation, the latter of which was 

recently associated with poor response to therapy (20), were both associated with increased rate of 

disease progression.   
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RESULTS 

STUDY APPROACH AND HETEROGENEITY IN C-PEPTIDE DECLINE  

We collaboratively defined an approach to identify a robust composite signature of decline in insulin 

secretion.  This method involved two key steps.  First, we conducted blinded replicate testing to 

measure the detectability and intra-assay precision of a panel of selected assays, listed in Table 1.  Next, 

we deployed each qualified assay on samples collected at T1D diagnosis to identify analytes that were 

prognostic for decline in insulin secretion over the following 2 years.  PBMC, serum, and whole blood 

RNA samples for this step were collected from control-arm subjects (n=50) enrolled in one of three new 

onset T1D trials conducted by the Immune Tolerance Network (25-27). Subjects were meticulously 

followed after diagnosis, with insulin secretion assessed by mixed meal tolerance testing at least 5 times 

between diagnosis and 2 years.  Clinical and demographic data for included subjects are listed in Table 2.  

As previously described (28, 29), decline in insulin secretion (as measured by circulating C-peptide) in 

the years after diagnosis is highly heterogeneous.  Figure 1 shows this data for all subjects whose 

samples were used in this study.  Here, we used a log rate of decline calculated using a mixed model 

approximating all timepoints available for each subject (15, 30).  Change in insulin secretion in this 

cohort most strongly approximated exponential decay (15, 30).  In our dataset, as in previous work (1-3), 

age is partially predictive of rate of decline.  However, it is an imperfect predictor, particularly in subjects 

of younger ages where variability in decline rates is highest (15). This variation is also present in subjects 

diagnosed at older ages.  For example, the subjects highlighted in magenta and green (Figure 1) are aged 

19 and 17 respectively, and show substantively different rates of decline.  

REPLICATE TESTING IDENTIFIES SUFFICIENTLY PRECISE ASSAYS 

We selected a broad range of assays to test (Table 1).  This included low-dimension assays selected to 

assess expected features of disease progression, including: proinsulin:C-peptide ratio (18, 31), a marker 
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of pancreatic islet beta cell dysfunction; a demethylated insulin DNA assay measuring beta cell death 

(19); antigen-specific CD8 T cell frequency and phenotype as measured by qDot multimer assay (16); and 

a transcriptional signature of regulatory T cells that had previously been identified to discriminate 

between subjects with and without T1D (17). Higher-dimension (genome-scale) assays were also 

included to identify data-driven features of disease progression.  These included:  RNA sequencing of 

whole blood (30) and sorted B cell, CD4 and CD8 T cell, and monocyte subsets (32); immunophenotyping 

by flow cytometry (33); transcriptional response to T1D serum (22) assessed using Affymetrix 

microarrays; and serum miRNAs measured by qPCR (24). 

Assays with poor precision were excluded in order to limit the effect of technical variation on eroding 

statistical power in the planned composite model.   To assess assay precision in a blinded fashion, 

triplicate aliquot samples from 3-5 subjects with T1D were tested by each assay (per design in 

Supplementary Figure 1.)  Over 160,000 individual analytes were measured across all assays (Table 1).  

Of these, 49% (80,852) met initial quality control or detection limits specific to each assay.  Down-

selection at this step was primarily driven by the higher-dimension assays; for example, much of the 

genome is not expected to be transcribed in CD4 T cells, and thus these unexpressed genes are filtered 

out from the RNAseq assays.  Next, the coefficient of variation (CV, here expressed as a percentage) for 

each analyte was calculated per subject; any analyte with a mean CV <30% was eligible to be included in 

downstream analyses.  The majority of analytes that met detection limits (91%) met the CV cut-off.  

Replicate testing data are available in Supplementary Figures 2-7.  All analytes that did not meet this CV 

threshold were removed from further analysis.   

The demethylated insulin assay was removed entirely from our pipeline at this phase, as the CV in 

samples from subjects with T1D (regardless of duration) was consistently above our cutoff 

(Supplementary Figure 4).  This may have been driven by sample quality, as the serum samples for both 

replicate testing and the recent onset cohort had been stored for many years, and were not collected 
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according to protocols optimized for this assay.  The CD8 antigen-specific T cell assay (qDot multimer, 

Supplementary Figure 5) was also removed at this phase.  This assay had an acceptable CV, but could 

only be applied to assay HLA-A2 positive subjects and the number of subjects in the recent-onset cohort 

bearing the HLA of interest was too low for the assay to have utility.  The miRNA assay (Supplementary 

Figure 6) was attempted in the recent onset cohort samples; however, it was removed prior to data 

analysis.  Laboratory processing failures that occurred during miRNA extraction resulted in too few 

samples with sufficient available data for analysis.  This stringent culling of assays and analytes reduced 

our total analyte count substantially, likely improving our statistical power based on reduced 

measurement error in the retained analytes.  The process resulted in the removal of 3 assays 

(demethylated insulin, CD8 antigen-specific T cells, and serum miRNA). While there were a considerable 

number of analytes removed, we found that the vast majority of analytes tested in the 9 assays that 

were included in the rest of the study (95%), met our predefined precision cut-offs.  

DEVELOPMENT AND TUNING OF AN ANALYSIS PIPELINE INCORPORATING MULTIPLE DATA TYPES 

There are many tools optimized for single types of assay data, but few that integrate multiple data 

types.  Thus, we developed an analytical tool that was capable of incorporating the multiple data types 

tested here (Figure 2).  The tool brings together established analytical methods (such as LASSO (34)) 

with newly developed code to integrate varied data types.  It was developed in the R programming 

language and is freely available.  The tool is flexible to data types and to outcomes and thus is named 

DIFAcTO: Data Integration Flexible to Account for different Types of data and Outcomes; here, DIFAcTO 

was tested with 5 different data types and a continuous clinical outcome.  An optional dimension 

reduction step can be applied to whole genome assays. In our study, each whole genome assay was 

subjected to modular analysis by WGCNA (35), and modules identified were treated as independent 

analytes which were scaled and clustered as described below.     
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We used a machine learning approach that combines the following multi-step analyte filtering.  Step 1 is 

preprocessing by scaling and preliminary feature selection.  Step 2 then identifies a multivariate model 

(using LASSO), that also implements internal feature selection.  The goal of the first preprocessing step is 

to remove analytes (features) that are poorly associated with the dependent variable (rate of C-peptide 

loss), so that an acceptable number of features are included in the later LASSO step.  The first step of 

preprocessing is itself done in two parts.  The first is univariate filtering: within each assay, all individual 

associations between each analyte and the dependent variable are estimated.  Only the top analytes are 

kept for further analysis, based on rank or significance thresholds (with correction for multiple 

comparisons).  The second is clustering of associated analytes across multiple assays.  Many of the 

selected analytes may strongly correlate with each other, even across different assays.  For the final 

multivariate model, this may cause multicollinearity, which would complicate interpretation of 

associations.  To avoid this, analytes are clustered by Pearson correlation using hierarchical clustering.  

The number of clusters is determined by a tuning parameter (described in detail below).  A single 

representative analyte is then selected to represent the cluster; this analyte is the most strongly 

associated with the dependent variable in each cluster.  Lastly, a multivariate model (LASSO (34, 36)) 

with predefined covariates (clinical, demographic) and the remaining analytes is performed. The LASSO 

also implements a regularized step that removes additional non-significant analytes.  For this study, we 

incorporated baseline C-peptide, age, HLA, and BMI as known potential predictive covariates; these 

analytes were included in the LASSO analysis to ensure they were considered as potential components 

of the model. 

To allow a wide range of analytes and outcomes, DIFAcTO includes multiple user-adaptable parameters.  

The user can specify the number of analytes from each assay that enter the clustering step.  The 

minimum within-cluster correlation used at the clustering step can also be tuned.  Increasing this value 

results in a larger number of highly correlated clusters and thus a larger number of analytes entering the 
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feature selection step; decreasing this value results in poorly correlated analytes within a cluster but 

fewer analytes entering the feature selection step.  Both of these parameters (number of analytes per 

assay and minimum correlation per cluster) should be tested with each dataset to identify optimal 

parameter settings.  For this study, we evaluated a range of minimum correlation values and analyte 

counts per assay, and assessed the cross-validation error rates after feature selection (Figure 3).  Error 

rates reached a near minimum for this dataset with 30 analytes per assay included in the feature 

selection and within-cluster correlation r=0.7.   In total, 201 clusters were identified, and a single analyte 

from each was used for LASSO feature selection.   

IDENTIFICATION AND SENSITIVITY ANALYSIS OF A COMPOSITE ANALYTE PANEL ASSOCIATED WITH 

INSULIN SECRETION 

We next applied DiFAcTO to our primary question:  which immune markers measured at baseline 

(diagnosis) would, in a multivariate model, be prognostic for rate of C-peptide decline over the ensuing 2 

years of disease?  Using these optimized parameter settings, we identified a model composed of 17 

immune analytes that, measured at diagnosis, were prognostic for rate of decline in insulin secretion.   

This rate was determined by using a standard clinical measure of C-peptide during mixed meal tolerance 

testing (AUC C-peptide) at a total of 5 timepoints over 2 years as described previously (15, 30).  Table 2 

lists each individual analyte and the assay from which it was measured.  C-peptide level at diagnosis is a 

known correlate of future C-peptide decline, and was selected by the tool.  We note that age, HLA, and 

BMI were not selected as independent predictors in analysis of this cohort.  

While we did considerable filtering of this dataset and performed cross-validation in feature selection, 

we recognized the continuing risk of identifying false positive associations given the number of analytes 

assessed.  We therefore performed a preliminary sensitivity analysis on the remaining 17 analytes.  We 

reasoned that an analyte should, at minimum, be robust to minor changes in settings of our own 
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analytical tool; slight modifications to numbers of analytes per cluster or to clustering correlations 

should still result in a similar set of analytes.  As expected, C-peptide at diagnosis (baseline) was 

consistently selected by DIFAcTO using all parameters tested (Figure 4).  We identified 12 analytes that 

were robust to analytical tool settings (Table 3).  Five analytes, however, were specific to only a few 

settings in DIFAcTO (annotated as “dropped” in Table 3); we predict that these analytes would likely not 

be associated with C-peptide decline in a separate validation dataset as they are not robustly selected in 

this one.  Individual correlations between C-peptide decline rate and each remaining analyte, as well as 

baseline C-peptide, are shown in Figure 5, ranked by correlation to C-peptide decline.  Of the 12 analytes 

selected by the tool, 11 were more highly correlated with C-peptide decline than was baseline C-

peptide.  Because age was not selected by the tool, we also inspected the relationship between age and 

each individual analyte (Supplementary Figure 8).  The analyte most highly correlated with age was the 

MFI of TIGIT on naïve CD8 T cells; this was also the analyte with the lowest individual correlation with C-

peptide decline.  The remaining analytes and baseline C-peptide had limited correlations with age in this 

dataset.  

Finally, we assessed the performance of our tool in predicting C-peptide decline in this dataset, and 

tested its ability to identify previously published analytes from an independent dataset in a different 

disease context.  C-peptide decline prediction was tested by fitting a linear model to the data using 

three different sets of predictors: a baseline model using C-peptide at diagnosis as a known predictor; a 

‘full’ model using all 17 identified analytes; and a ‘maintained’ model using only the 12 analytes that 

were found to be robust to tool settings. From these fits we calculated an adjusted R2 value that reflects 

how well the model fits the data. Additionally, we calculated a robust, cross-validated root mean square 

error (RMSE) by separating the data into five folds and, for each fold, training on the other four-fifths of 

the data and predicting the held-out fold. We did this 1000 times to get a robust estimate of the RMSE 

along with a 90% interval. The results are shown in Supplementary Table 1. Using our selected analytes 
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improved prediction over baseline C-peptide in this dataset, as reflected both in adjusted R2 and RMSE. 

Additionally, the improvement in performance of the ‘maintained’ model over the ‘full’ model confirms 

our decision to remove those analytes that were not found to be robust to initial parameter settings. In 

an initial step toward comparison of this tool to elastic net, we tested an independent dataset from a 

clinical trial of an HIV vaccine, RV144 (37).   DIFAcTO successfully identified previously known 

immunological predictors in this high dimensional dataset (Supplemental Methods).   
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DISCUSSION 

Here, we describe a collaborative, generalizable method to identify robust, inclusive correlates of clinical 

outcomes, and a proof-of-concept utilization of that method to identify a panel of markers associated 

with decline in insulin secretion after diagnosis.  In developing this method, we had three key goals:  

first, inclusion of data from as many assay types as possible and incorporating the expertise and 

perspective of as many investigators as was feasible; second, blind assessment of reproducibility for all 

analytes included in any analyses to increase likelihood of future success; and third, transferability to 

other studies and datasets. 

One important component of our method was the collaborative identification of assays that might yield 

results of interest (38).  We focused on choosing assays that were thought to be independent and 

mechanistically related to T1D pathogenesis, such as the proinsulin: C-peptide ratio, as well as assays 

that could generate more broad-based, hypothesis-generating results such as RNAseq of multiple 

immune cell subsets.  9 investigators chose to participate in, and provide data for, this collaborative 

project; this resulted in a rich dataset, generated from the same sets of subjects, which is now being 

mined for other clinical outcomes and associations between immune markers.  We partnered in this 

effort with a major autoimmunity clinical trial network (the ITN), which furthered the visibility of this 

work in the T1D research community and may improve the possibilities for future clinical translation of 

our findings. 

Our second focus was on assay quality.  The technical precision of each individual analyte is essential to 

the reproducibility of the composite panel, and thus to our ability to identify meaningful correlates of 

clinical outcomes.  An early step in our process, therefore, was a preliminary assessment of immune 

marker reproducibility.  Should these markers be of interest for future translation, many other 

assessments, including broader reproducibility measurements and multi-center validation, as recently 



14 
 

described (39), would clearly be needed.  Here, we applied a moderate level of rigor – requiring a mean 

CV <30% across a limited number of T1D subjects for each assay.  Still, this was sufficient to remove over 

4000 analytes even after initial QC was applied.  For the genome scale assays, CV cut-offs were applied 

after detection thresholding processes; while a much larger number of analytes were removed due to 

lack of detection, technical imprecision resulted in the removal of hundreds to thousands of additional 

analytes for each RNAseq assay.  This method of dimension reduction could be applied with relative 

ease and should reduce type 1 error resulting from detection of random associations between variables 

that can occur with imprecise measurements.  One caveat to this substantial data reduction is that 

analytes associated with C-peptide decay may have been excluded because they did not fit our criteria; 

for example, there may be measurements that are more highly expressed and thus more reproducible in 

specific subjects or at specific disease stages.  Future studies may reassess reproducibility in larger 

populations of T1D and other subjects.  However, we accepted the trade-off between known 

reproducibility characteristics and the theoretical loss of important analytes.  Separately, gene 

expression data tends to cluster into strongly correlated groups of genes (35), and groups of immune 

cell populations also show strongly correlated clusters (40).  In some cases, the relationship to C-peptide 

that may be present for an analyte with low reproducibility will be represented by a more reproducible 

analyte in that or another assay. 

Our third focus was on building a broadly useful analytical process.  This method, from reproducibility 

testing through the use of our new analytical tool, is generalizable. DIFAcTO has been used to find 

analytes associated with both categorical and continuous outcomes.  It has user-modifiable parameters 

that allow it to accommodate datasets of different sizes and data with different variability profiles.  

Indeed, in this study we used parameters that enabled us to prioritize selection of variables from 

multiple assays that may help understand T1D biology, rather than focusing solely on predictive 

performance.   The tool can incorporate multiple data types, including genome-scale datasets.  It has 
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been developed in R / MLR (41), which is an advanced, generic, robust analytical framework for 

multivariate analysis modeling and feature-selection methods.    As mentioned, we are now mining this 

dataset to identify robust predictors of other clinical outcomes in these subjects.  However, DIFAcTO 

could easily be applied by those investigators and consortia with very large clinical and mechanistic 

datasets.  

We have used this method to identify a diverse multivariate model that predicts C peptide decline.  Of 

course, to move toward clinical utility this panel would need to be confirmed in an independent 

replication cohort.  In addition, the panel would likely need to be transitioned to more focused assays, 

as opposed to the genome-scale data analyzed here, and therefore would need full, independent 

qualification using the focused assay methods as has been considered in other studies (reviewed in (5, 

42)).  One might speculate that this panel could be informative at earlier stages of T1D, including the 

antibody-positive at-risk setting, or that it may be predictive of future disease-associated complications.  

This remains to be tested in other datasets. 

Interestingly, this composite panel incorporates markers of multiple cell types and pathways.  The 

expression level of each component immune feature in our signature differs across subjects.  However, 

we can see common immunological themes.  We found that markers associated with immune activation 

(TOP3B, LRTOMT), ER processing (ZNF596, EIF4G2) and regulation of activation (SORBS2, TIGIT on naïve 

CD8 T cells) were positively correlated with slower loss of insulin secretion.  Additional markers were 

associated with viral or interferon responses (PLA2G4B, KIAA0319L). These positive correlations may 

initially be counter-intuitive since islet beta cell destruction is thought to be immune-mediated.  

However, a similar association of immune activation and increased regulation has been observed in 

regulatory T cell studies in autoimmunity where there is an ultimately failed attempt to control the 

immune response (43).  Thus, in part, our data suggests that immune activation positively associated 

with slower disease progression, representing immune processes directed towards controlling 
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autoimmunity.  In contrast, in the same T1D population we also found negative correlations with 

maintenance of cell trafficking and insulin secretion, respectively (SVEP1, GRP75) as well as functional 

markers of B cells (JAGN1). This is consistent with two previous findings: increased B-cells in pancreatic 

sections (7), and a B cell transciptional signature found to correlate with poor response to therapy and 

more rapid C-peptide decline (15, 20).  Together, these data suggest that there may be common 

immune processes that associate with slower disease progression, but they likely differ in composition 

and predominance across subjects highlighting the universal value of a composite signature.   

Immune, beta cell and demographic data were all included as potential predictors in the LASSO analysis; 

we note that 12 immune features and baseline C-peptide were selected.  Importantly, nearly all of the 

selected markers (11 of 12) when analyzed independently were more highly associated with decline in 

insulin secretion than was baseline C-peptide, highlighting the potential relevance of these novel 

immune markers. As would be expected from previous studies (1, 44, 45), the tool identified baseline C-

peptide as an important predictor of insulin secretion.  HLA, BMI, and age, however, were not selected 

to contribute to the composite model.  Age and HLA have each been established to play a role in 

predicting risk of T1D development (46-48); a role for BMI has been investigated but the relationship 

with disease risk varies by study (49-53).  In agreement with our findings, HLA and BMI have not been 

consistently identified as predictors of insulin secretion after diagnosis (15, 44, 54).  Our expectation was 

that age, however, would be selected by the analytical tool.   One immune marker showed a moderate 

correlation with age (MFI of TIGIT on naïve CD8 T cells); we speculate that some of the role age plays in 

disease progression may be reflected in part by this marker.  Intriguingly, baseline C-peptide was itself 

not strongly correlated with age at onset in this dataset.  Another potential reason that age was not 

selected is an enrichment in this dataset of relatively older-onset T1D subjects (median age 19.25 years 

for subjects included in LASSO analysis), which is not unexpected based on the demographics of T1D 
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development in many nations (55-57). While this cohort may under-represent early onset cases, it is 

representative of subjects who qualify for immune intervention at disease onset.   

In summary, we have developed a method to generate high quality data across multiple assays, and an 

analytical pipeline to combine and analyze disparate data types.  This method identified a composite 

model associated with decline in insulin secretion that includes both expected and novel biological 

insights which could move toward replication in other cohorts and potentially assessment in other 

stages of T1D.   



18 
 

METHODS 

SUBJECTS AND CLINICAL OUTCOME DATA 

All recent onset samples (serum, PBMC, purified RNA, and Tempus tubes) were provided by the ITN, and 

were obtained from T1D subjects randomized to the control arms of 3 new onset T1D trials (25-27).  

PBMC and serum samples were processed at a central location as described in the original trials; RNA 

samples were processed as described here (15). Clinical and demographic data were obtained from ITN 

Trialshare (58), a freely available source of results from ITN trials.  Samples from the AbATE study were 

not received for the cell subset RNA sequencing assays, and thus could not be included in the LASSO 

selection, leaving n=30 subjects. 

Rate of C-peptide decline was calculated as previously described (15, 30).  In brief, C-peptide 2-hour AUC 

measurements from the baseline, 6, 12, 18, and 24-month visits were log transformed and fit to a linear 

model with participant as a random effect. Repeated C-peptide measurements at the lower limits of 

detection were removed from fitting. The C-peptide decay rate was extracted from the fit as the slope of 

the linear model. The fits were performed using the lme4 package. 

ASSAY METHODS 

Each of these assays has been previously published individually.  Whole blood RNAseq data were 

generated from Tempus tubes (Applied Biosystems, CA) using the process described here (20, 30).  Cell 

subsets were sorted and RNAseq data generated using the process described here (59).  All RNAseq data 

were pre-filtered to remove all non-protein-coding genes. RNAseq sample identity was verified using 

kinship comparisons based on genomic variants called from the RNAseq reads (20), and clustering of 

sample data by source cell type; all samples matched their annotated subject and cell type.  Flow 

immunophenotyping panels were those routinely implemented for ITN clinical trials, as described (26, 

33).  The transcriptional response to T1D serum assay was conducted as described here (13).  The 

miRNA assay was conducted using the Exiqon qPCR platform as described in (24).  The Treg transcript 
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assay was performed using the Nanostring platform as described (14, 17), with samples for the Treg 

assay sorted concomitantly with the cell subset RNAseq sample set. The proinsulin:C-peptide assay was 

conducted using a trefoil time-resolved fluorescence immunoassay (31) , adapted to an AutoDelfia 

automatic system (Perkin-Elmer) (18).   The demethylated insulin assay was conducted using the 

Raindance droplet-digital PCR platform. The antigen specific CD8 T cell assay was conducted using a 

multicolor quantum dot multimer assay described here (16).  For additional information on data 

processing for each genome scale assay, please see the Supplemental Materials. 

ANALYTICAL METHODS AND STATISTICS 

Replicate testing data 

The replicate testing cohort was used to determine the technical precision of each analyte by calculating 

the intra-subject coefficient of variation (CV) for three biological replicate aliquots from the same blood 

draw from five subjects. Briefly, after data processing, the intra-subject CV was calculated from the 

three replicates. For each analyte, the mean CV across subjects was calculated. Analytes were retained 

for the analyte selection pipeline if the mean CV was below 30%.  Replicate testing data for all RNAseq 

assays and the transcriptional response to serum assay are available on GEO at GSE131528. 

Analyte selection tool 

All analyses were conducted using the R programming language and software environment (60).  

Analytes were sequentially processed in the following steps: analyte scaling, univariate filtering, assay 

merging, hierarchical clustering, and multivariate modeling. Analyte scaling was performed for each 

assay separately by subtracting the mean and dividing by the standard deviation, such that the mean of 

all analytes values was equal to zero and the standard deviation of all analyte values was equal to one. 

Univariate filtering was performed by first applying a linear model to each analyte using the analytes as 

the predictor, C-peptide decay rate as the outcome, and sex, study, BMI, age and baseline C-peptide as 

covariates. The p-value of the analyte term was extracted from each generalized model and adjusted for 
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multiple testing using the Benjamini-Hochberg algorithm. A number of the most significant analytes 

from each assay were retained for the subsequent steps. The number of analytes selected per assay is 

an adjustable parameter and is used for error estimation and sensitivity analysis. Next, the top 

significant analytes from each assay were merged into a single array by subject. After merging, all 

missing values were imputed with the k-nearest neighbors method (k=20).  The array containing 

analytes from all assays was then hierarchically clustered on analytes with distance metric = 1 – cor, 

where cor is the Pearson correlation. The distance metric value that defines which analytes are clustered 

together is 1-cor*, where cor* is analogous to the minimum correlation within cluster. The minimum 

correlation within cluster is an adjustable parameter and is used for error estimation and sensitivity 

analysis. After clustering, the analytes with the lowest adjusted p-value from each cluster were selected 

as the representative analytes and retained for the subsequent steps. The remaining analytes were 

included as covariates in a linear regression model with C-peptide decay rate as the outcome. Sex, study, 

age, BMI, and baseline C-peptide were included as additional covariates. The analytes and covariates 

were additionally included in a LASSO regression model for an optional last feature selection method.  

Linear models were run with the glmnet package. The value of the regularization parameter used in the 

LASSO models were calculated by glmnet.cv as lambda.min.  The optimal values for the two adjustable 

pipeline parameters were selected as the parameter set that minimizes the resulting cross-validation 

RMSE, while maintaining a conservative number of analytes which are input into the linear model.  

Cross validation was performed by randomly subsetting the dataset into a training set (75% of subjects) 

and a test set (25% of subjects), using the training set as input into the feature selection pipeline, and 

calculating the prediction error (RMSE) on the test set. This process was performed 1000 times for sets 

of parameters: number of analytes per assay and minimum correlation within cluster. The mean RMSE 

of the 1000 iterations was calculated for each parameter set. 

Sensitivity analysis 
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Analytes that were selected when using the optimal pipeline parameters were then analyzed for 

parameter sensitivity. Results of the pipeline from all parameter sets were inspected for presence of the 

analytes of the optimal parameter set either: selected explicitly, or clustered (i.e. highly correlated) with 

a selected analyte. Analytes from the optimal parameter that were sensitive to parameter choice 

(present in < 50% of the parameter sets tested) were removed from the final list of analytes. 

DATA AND CODE AVAILABILITY 

All data from this study are available from the authors upon reasonable request.  Code for the analytical 

tool is available on GitHub (link available upon publication), along with data necessary to recreate the 

analyses presented here.  Whole genome data (cell subset RNAseq and transcriptional response to 

serum assays, as well as all replicate testing data) are available at NCBI GEO under accession number 

GSE131528.  Whole blood RNAseq data are available at NCBI GEO under accession number GSE124400. 

STUDY APPROVAL 

All human studies were approved by appropriate institutional review boards.  ITN studies were 

approved by independent IRBs at each participating clinical site, as described in the original clinical trial 

reports (25-27).  Use of human samples for assay replicate testing was approved by the Benaroya 

Research Institute IRB.  Written informed consent was received from all participants in all cohorts prior 

to inclusion in the study.   
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FIGURE 1 

 

Figure 1:  C-peptide decay rate for each subject included in the recent onset cohort.  C-peptide decay 

rate for each subject included in the recent onset cohort (n=50). Each line is one subject. Subjects 

highlighted in blue and green demonstrate slow and rapid decline respectively.  The subject highlighted 

in olive showed no detectable insulin secretion at a timepoint prior to the end of the study; decay rate 

calculations used throughout exclude the second timepoint at the limit of C-peptide detection.  Some 

subjects (example in green/magenta) are similar ages but have disparate C-peptide decay rates. 
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FIGURE 2 

 

 

Figure 2: Schematic of analysis pipeline developed to integrate multiple data types.  Analytes are 

merged and scaled. Initial univariate filtering leaves only those analytes with at least modest 

correlations to outcome for each assay.  Subsequent filtering (clustering) identifies best correlated 

analyte in a given cluster (regardless of assay). From these, a composite model is generated using LASSO 

with cross-validation.   
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FIGURE 3 

 

Figure 3: Establishment of optimal parameter settings. Changing settings within the analytical tool 

(DIFAcTO) identifies point of lowest cross-validation error associated with higher within-cluster 

correlation (r=0.7) and a moderate # of analytes per assay (n=30).  Each line shows the cross-validation 

error (root mean squared error, RMSE) for a given analyte per assay setting (x-axis) at a given minimum 

correlation within cluster (indicated by color). 
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FIGURE 4 

 

Figure 4: Characteristics of analytes selected by tool.  Sensitivity analysis shows that, even with cross-

validation implemented in LASSO, 5/17 analytes are not robust to different parameter settings within 

the tool. These 5, indicated in greyscale, are unlikely to be validated in an independent cohort.  X and Y 

axes of each individual plot represent settings used to run the analytical tool; the number of analytes 

per assay setting is on the X axis and minimum correlation per cluster is on the Y axis of each mini-plot.  

Darkest coloring indicates that the analyte was selected by the tool using that combination of X and Y 

settings.  Lighter coloring indicates that another analyte in that same cluster was selected by the tool.  

Light grey indicates that this analyte was not selected using that combination of X and Y settings.  Each 

mini-plot is labelled by analyte and the assay from which it was originally measured.   Affy indicates the 

transcriptional response to T1D serum assay as this is conducted on the Affymetrix platform.  
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FIGURE 5 

 

Figure 5: Individual correlations between each selected analyte and insulin secretion.  Immune 

markers were measured at trial enrollment (within 90 days of diagnosis, n=30 subjects), and Y axis 

indicates C-peptide decay rate per day over the 2 years post diagnosis.  Each mini-plot uses the scaled 

value for the analyte on the X-axis.  Pearson correlation values are listed at the top of each mini-plot; 

mini-plots are ordered by absolute correlation value.  Regression lines in blue.  Note that in this dataset, 

several immune parameters have higher correlation values with rate of C-peptide decay than does C-

peptide level at diagnosis (r=0.39). Assays and analyte names are truncated; full names can be found in 

Table 3.  Affy indicates the transcriptional response to T1D serum assay as this is conducted on the 

Affymetrix platform.  
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Table 1: Blinded replicate testing identified precisely measurable analytes from each assay.   

Assay Total analytes in assay (n)   Passed QC (n, %) CV < 30% (n, %) 

FACS 77 77 (100%) 70 (91%) 

Transcriptional  
Response to T1D serum 54675 20962 (38%) 20962 (100%) 

PI:C 2 2 (100%) 2 (100%) 

Treg signature 31 31 (100%) 22 (71%) 

RNAseq Bcells 21737 11539 (53%) 10767 (93%) 

RNAseq CD4 21737 11984 (55%) 11338 (95%) 

RNAseq CD8 21737 11860 (55%) 11120 (94%) 

RNAseq monocytes 21737 11254 (52%) 10548 (94%) 

RNAseq WholeBlood 21737 12672 (58%) 11631 (92%) 

Serum miRNA 752 241 (32%) 241 (100%) 

Demethylated INS DNA 3 3 (100%) 0 (0%) 

Antigen Specific CD8 6 6 (100%) 5 (83%) 
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Table 2: Clinical and demographic data for recent onset cohort. * median (range). ᶧ n (%). 

 
AbATE (n=22) START (n=18) T1DAL (n=10) Total (n=50) 

Age (yrs)* 12.0 (8.5-25.9) 17.5 (12-34) 21 (13-32) 15.8 (8.5-34) 

HbA1c (%)* 7.7 (6.1-11.1) 6.6 (4.9-10.2) 9.5 (5.5-15.2) 7.35 (4.9-15.2) 

C-peptide AUC 

(pmol/mL/120 min) * 

0.60 (0.27-1.52) 0.84 (0.39-2.58) 0.59 (0.19-0.9) 0.67 (0.19-2.58) 

Gender (Female) ᶧ 7 (32%) 7 (39%) 3 (30%) 17 (34%) 

Race/Ethnicity  (Non-

Hispanic white) ᶧ 

18 (82%) 11 (61%) 9 (90%) 38 (76%) 

HLA-A*02 (positive) ᶧ 10 (45%) 8 (44%) 7 (70%) 25 (50%) 

HLA-DR*0401 (positive) ᶧ 9 (41%) 2 (11%) 8 (80%) 19 (38%) 

HLA-DR*03 (positive) ᶧ 9 (41%) 9 (50%) 3 (30%) 21 (42%) 

HLA-DR*03 and *0401 
(positive) ᶧ 

2 (9%) 1 (6%) 1 (10%) 4 (8%) 

Insulin autoantibody 
(positive) ᶧ 

13 (59%) 9 (50%) 7 (70%) 29 (58%) 

GAD autoantibody 
(positive) ᶧ 

21 (95%) 14 (78%) 10 (100%) 45 (90%) 

IA-2 autoantibody 
(positive) ᶧ 

20 (91%) 6 (33%) 7 (70%) 33 (66%) 

ZnT8 autoantibody 
(positive) ᶧ 

14 (64%) 7 (39%) 9 (90%) 30 (64%) 
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Table 3: Analytes selected by the tool, assay from which they were derived, and status after sensitivity 

analysis.  *Sensitivity analysis result derives from Figure 3A, where analytes were tested against multiple 

tool settings as a preliminary assessment of robustness. 

Analyte Assay *Sensitivity Analysis 
Result 

MFI_TIGIT_KLRG1+ 
TIGIT+ CCR7- Naïve CD8 

FACS Maintained 

EIF4G2 Signature of Serum Exposure Maintained 

GPR75 Signature of Serum Exposure Maintained 

SVEP1 Signature of Serum Exposure Maintained 

SORBS2 Signature of Serum Exposure Maintained 

JAGN1 RNAseq Bcell Maintained 

KIAA0319L RNAseq CD4 Maintained 

TOP3B RNAseq CD4 Maintained 

LRTOMT RNAseq CD8 Maintained 

PLA2G4B RNAseq CD8 Maintained 

ZNF596 RNAseq CD8 Maintained 

MLXIP RNAseq whole blood Maintained 

CCDC144A RNAseq Bcell Dropped 

SRRT RNAseq Bcell Dropped 

CCDC38 RNAseq CD4 Dropped 

Affy WGCNA Gene Module Signature of Serum Exposure Dropped 

RNAseq Whole Blood Gene Module RNAseq whole blood Dropped 

 

 


