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A B S T R A C T

Around a third of stroke survivors suffer from acquired language disorders (aphasia), but current medicine
cannot predict whether or when they might recover. Prognostic research in this area increasingly draws on
datasets associating structural brain imaging data with outcome scores for ever-larger samples of stroke patients.
The aim is to learn brain-behaviour trends from these data, and generalize those trends to predict outcomes for
new patients. The practical significance of this work depends on the expected breadth of that generalization.
Here, we show that these models can generalize across countries and native languages (from British patients
tested in English to Chilean patients tested in Spanish), across neuroimaging technology (from MRI to CT), and
from scans collected months or years after stroke for research purposes, to scans collected days or weeks after
stroke for clinical purposes.

Our results suggest one important confound, in attempting to gen-
eralize from research data to clinical data, is the delay between scan
acquisition and language assessment. This delay is typically small for
research data, where scans and assessments are often acquired con-
temporaneously. But the most natural, clinical application of these
predictions will employ acute prognostic factors to predict much
longer-term outcomes. We mitigated this confound by projecting the
clinical patients’ lesions from the time when their scans were acquired,
to the time when their language abilities were assessed; with this pro-
jection in place, there was strong evidence that prognoses derived from
research data generalized equally well to research and clinical data.
These results encourage attention to the confounding role that lesion
growth may play in other types of lesion-symptom analysis.

1. Introduction

Around a third of stroke survivors suffer from acquired language
disorders (Mozaffarian et al., 2015), or aphasia, yet current medicine
cannot tell these people whether and when they might recover
(Watila and Balarabe, 2015). To try to bridge this gap, researchers have

begun to build large databases encoding structural brain imaging and
demographic data on patients whose language outcomes are known,
aiming to generalize trends learned from these data to new patients
(Fridriksson et al., 2013; Halai et al., 2018; Mah et al., 2014;
Nachev, 2015; Price et al., 2010; Pustina et al., 2017; Seghier et al.,
2016; Yourganov et al., 2016). One important question for this work,
asks what factors are expected to limit the generalization of the learned
trends. In what follows, we address three of the most important, po-
tential restrictions on the generalizability of models predicting lan-
guage outcomes after stroke – and show that all three can be overcome.

The first potential restriction follows directly from our focus on
language. For pragmatic reasons, research data in this field usually refer
to native English-speaking stroke patients – because many of these
studies are run in English-speaking countries such as the UK, the USA,
and Canada. But the wider stroke survivor population is not so re-
stricted. Post-stroke prognostic models typically work by learning as-
sociations between the site(s) and extent of lesion damage in the brain,
and the language impairments (and recovery trajectories) consequent
to that damage. These associations presumably depend on the func-
tional architecture of language networks in the undamaged brain (e.g.,
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Fridriksson et al., 2018). If language networks vary substantially across
different native languages, as some studies suggest (e.g., Ge et al., 2015;
Wang et al., 2015; Wu et al., 2015), then prognostic models trained for
one native language will not generalize to other languages. However, if
brain networks are substantially similar across languages (e.g.,
Price, 2012; Rueckl et al., 2015), we can hope to be able to successfully
apply prognostic models learned for language outcomes in one lan-
guage, to other languages. We address this question by training our
models on data from British, native English-speaking patients, and
testing those models on data from Chilean, native Spanish-speaking
patients.

The second potential restriction follows from differences in the
pragmatic constraints, which govern neuroimaging data collection in
research versus clinical environments. Specifically, research-quality
brain scans are usually acquired with structural Magnetic Resonance
Imaging (MRI), while clinical scans are often acquired with Computed
Tomography (CT). MRI is useful for research purposes because it offers
high resolution images with multiple contrasts emphasising different
tissue properties. Moreover, so long as participants have no metal in
their bodies (e.g. implantable medical devices like cardiac pacemakers;
metallic shrapnel; or even certain kinds of tattoo; (Ross and
Matava, 2011), there is no known risk of MRI to the human body. By
contrast, CT is rapid, inexpensive and more readily available in many
urgent care settings (Lev, 2003). CT can also be performed safely in
patients with metal in their bodies, and the small risk associated with
the radiation dose involved can often be balanced, favourably, against
the immediate clinical needs of a patient suffering from acute neuro-
logical trauma. If our prognostic models cannot generalize from MRI to
CT, we will struggle to exploit them in clinical practice. We address this
risk by training our models with structural MRI data, and testing them
with brain data acquired from CT.

Pragmatic differences between research- and clinically-oriented
settings also drive the third potential restriction, which may be the most
important of all. Research scans are typically acquired in the chronic
phase (>6 months) post-stroke, on or around the same day as patients’
language skills are assessed. These are ‘chronic-chronic’ data: i.e. both
brain scans and language assessments are performed con-
temporaneously, in the chronic phase. Yet the most natural, target
application for models learned from these data, is ‘acute-chronic’: i.e.
we want to predict long-term language outcomes given scans acquired
acutely, within a week or so after stroke onset. There is no guarantee
that prognostic models learned from chronic-chronic data will gen-
eralize to acute-chronic data (Halai et al., 2018). This is because: (a) the
evidence suggests that lesion data, derived from structural MRI, are
crucial to credible predictions of language outcomes after stroke
(Plowman et al., 2012); and (b) the same patient's lesions may appear
very different in acute versus chronic scans.

Stroke lesions have been observed to grow over months or years
after stroke onset (Naeser et al., 1998; Seghier et al., 2014). This growth
has attracted relatively little attention, perhaps because it has not been
consistently related to recovery: e.g. lesion growth does not appear to
preclude effective recovery from aphasia (Naeser et al., 1998;
Seghier et al., 2014). One explanation for this, is that this growth re-
flects structure catching up with function: i.e. the progressive atrophy
of brain regions whose functional contribution to cognition has already
been disrupted by stroke. But whatever the mechanism, this growth
means that the same lesion may look different (bigger) when imaged 5
years post-stroke, than it did when imaged 6 months post-stroke. This is
a potentially crucial confound when generalising models learned from
chronic lesion data, to acute lesion data. Our design addresses this risk
directly, by attempting to generalise prognostic models trained from
chronic-chronic data collected for research purposes, to the more
clinically significant acute-chronic prediction problem.

2. Materials and methods

2.1. British patients – training set

British patient data were drawn from the PLORAS database
((Seghier et al., 2016), which associates more than a thousand stroke
patients with: (a) demographic data; (b) structural MRI; and (c) lan-
guage task scores from the Comprehensive Aphasia Test (CAT;
(Swinburn et al., 2004). Inclusion criteria to the PLORAS database
comprise of: (i) a demonstrable previous medical history of stroke, (ii)
no record of concomitant neurological or psychiatric illness (e.g. de-
mentia or depression), and (iii) being able to provide written informed
consent. Patients were excluded if they were non-native speakers of
English, had lesions less than 800 mm3 in volume (as assessed using our
Automatic Lesion Identification (ALI) toolbox; (Seghier et al., 2008), or
had not completed the ‘spoken picture description’ task of the CAT. The
rationale for excluding patients whose lesions included no single, con-
tiguous volume of at least 800 m3 was two-fold: (1) this is the default
threshold provided by the ALI toolbox; and (2) lower thresholds are
more likely to identify lesions in tissue that a trained neurologist would
classify as ‘preserved’.

2.2. Chilean patients – test set

The clinical patient group used to validate our model was a sample
of Chilean stroke patients who were recruited from the Physical
Medicine and Rehabilitation Unit or the Neurology Unit of the Clinical
Regional Hospital Dr. Guillermo Grant Benavente of Concepcion, Chile,
after obtaining ethical approval. Each patient underwent a head CT,
then on a later date their language skills were assessed with a Spanish
translation of the CAT. The CAT was translated into Spanish and ad-
ministered by two trained speech language therapists fluent in both
Spanish and English (D.L.L.-P. and A.G.-V.). The inclusion and exclu-
sion criteria were the same as in the training (British) set.

Four of the Chilean patients were scanned more than once. In 3/4
cases, both scans were acquired within the first months after stroke
onset. In the fourth case, the first scan was at 11 months post-stroke,
and the last scan was at 30 months post-stroke. In all cases, we chose
the later scans, aiming to minimise the scan-assessment delays for the
Chilean patients.

2.3. Language task

For the current study, patients were assessed only on the spoken
picture description task of the CAT because it provides the means of
obtaining a sample of connected speech with a reliable scoring system.
In this task, the participant is shown a picture depicting a complex
scene and prompted to verbally describe what is happening for 1 min.
The speech sample is then rated based on the total number of appro-
priate information carrying words (i.e. words that convey exact
meaning in the appropriate context and are correctly produced) minus
the total number of inappropriate information carrying words (i.e. in-
formation carrying words that are incorrectly selected and/or pro-
duced), plus syntactic variety (on a 0–6 scale), grammatical well-
formedness (on a 0–6 scale) and speed of speech production (on a 0–3
scale). There is no maximum or minimum score for this task, which we
chose for the following three main reasons: (i) it is comparatively dif-
ficult, so patients with a range of impairments are often also impaired
on this task; (ii) it is a reasonable proxy for natural language, because it
requires patients to interpret a complex scene and report their inter-
pretation in a coherent, free-form manner; and (iii) the scene depicted
in this task reflects an everyday scenario encountered in both Chile and
the UK, so should not be particularly sensitive to cultural differences
between the two patient groups.

To ensure consistency in the scoring procedures for the British and
Chilean patient samples, co-authors D.L.L.-P. and A.G.-V. thoroughly
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followed the guidelines provided in the manual of the English version of
the CAT, in addition to the more specific ones developed by the
PLORAS recruitment team, when rating the speech samples from the
Chilean stroke patients. Any scoring issues not directly addressed by
these guidelines were extensively discussed between D.L.L.-P. and A.G.-
V. until consensus was reached. Subsequently, the difficult-to-rate re-
sponses were analysed in conjunction with one of the speech and lan-
guage therapists who scored the British data before a final score was
assigned.

2.4. British imaging data

T1-weighted structural images were collected using four different
MRI scanners (Siemens Healthcare, Erlangen, Germany): 388 patients
were imaged on a 3 T Trio scanner, 244 on a 1.5 T Sonata scanner, 184
on a 1.5 T Avanto scanner, and 12 on a 3 T Allegra scanner. For the
1.5 T Avanto scanner, a 3D magnetization-prepared rapid acquisition
gradient-echo (Mugler and Brookeman, 1990) sequence was used to
acquire 176 sagittal slices with a matrix size of 256 × 224 yielding a
final spatial resolution of 1 mm isotropic: repetition time/echo time/
inversion time = 2730/3.57/1000 ms. For the other three scanners, an
optimised 3D modified driven equilibrium Fourier transform sequence
(Deichmann et al., 2004) was used to acquire 176 contiguous sagittal
slices with an image matrix of 256 × 224 yielding a final resolution of
1 mm3: repetition time/echo time/inversion time = 12.24/3.56/
530 ms and 7.92/2.48/910 ms at 1.5 T and 3 T, respectively. Pre-pro-
cessing was achieved using Statistical Parametric Mapping software
(SPM12), each image was spatially normalized into Montreal Neuro-
logical Institute (MNI) and segmented into lesioned and healthy tissue
using a unified normalization-segmentation algorithm (Ashburner and
Friston, 2000) adapted for stroke patients (Seghier et al., 2008). This
resulted in a binary lesion image for each patient registered in MNI
space.

2.5. Chilean imaging data

CT scans were collected at the Clinical Regional Hospital Dr.
Guillermo Grant Benavente of Concepcion, Chile, using a multidetector
CT scanner (Aquilion 64; Toshiba America Medical Systems, Illinois,
USA). The standard imaging protocol of the Imaging Unit involves the
acquisition of a CT scan performed in the horizontal plane with the
patient in supine position and holding his/her head stable to avoid
motion artefacts during scanning. Overall, 200 axial slices were ac-
quired per session and the scanning parameters were as follows: ac-
quisition mode 32 × 0.5, acquisition volume 1 mm × 0.8 mm, 10-s
scan time, 0.75-s rotation time, 120 kVp, 280 mA, HP 27 pitch. The
whole brain volume was subsequently reprocessed in the operator
console resulting in a total of 30 axial slices with a final resolution of
0.4 × 0.4 × 5 mm. For patients who were scanned more than once, we
used each patient's latest scan as this was considered to be most re-
presentative of the lesion in the chronic phase.

Each image was normalized to MNI space using the SPM12 clinical
toolbox (https://www.nitrc.org /projects/clinicaltbx) and then seg-
mented into binary images of lesioned tissue using in-house software
written in MATLAB based on the procedure outlined in Gillebert et al.
(2014). 72 CT scans of neurologically intact controls that were collected
as part of the Birmingham University Cognitive Screen (http://www.
bucs.bham.ac.uk) were used to derive normative values for healthy
brain tissue (Gillebert et al., 2014). Two semi-automated procedures
were performed to improve the accuracy of this method: (a) the re-
moval of false positive artefacts and (b) the expansion of binary image
for underestimated lesions. For 10/59 scans, the conversion of binary
lesion images from probability maps underestimated the extent of le-
sions. These were detected when visually inspecting the automatically
identified lesions and finding that voxels surrounding the identified
lesion still had abnormally low intensity values when compared with

analogous healthy voxels in the contralateral hemisphere.
A local threshold was selected such that the boarder of the identified

lesion extended to voxels that appeared to have similar intensity values
to those of the healthy contralateral hemisphere. This had the effect of
expanding the size of lesions that were previously being under-
estimated. Both of these semi-automated procedures were performed by
the first author (R.L.) blind to the language scores of interest.

2.6. Lesion encoding and prognostic model predictors

In order to reduce the dimensionality of the imaging data, Principal
Component Analysis (PCA) was performed on the lesion images. We
simultaneously performed PCA reduction of the binary images (en-
coding the presence = 1 or absence = 0 of a lesion) for both British and
Chilean patients, as such we had to ensure the binary images were of
the same resolution. We used SPM's re-slice function on the Chile binary
images to match to the voxel size of the British binary images
(2 mm x 2 mm x 2 mm). We then concatenated all of the images into a
single matrix (patients × voxels). As an effective mask we excluded all
voxels with fewer than 10 patients having an identified lesion – both
lesion identification algorithms only considered lesioned voxels within
a whole brain mask. This resulted in 139,794 voxels. We then per-
formed PCA on this matrix using singular value decomposition in
Matlab2017a, without performing rotation of the resulting components.
From the results, we selected components that individually explained at
least 1% of the variance in the spatial distribution of lesions: this re-
sulted in a total of 12 principal components, explaining a total of 62%
of the variance. Along with lesion volume, these 12 components formed
13 lesion predictors. We also used 2 non-lesion predictors: age at stroke
and time between stroke and assessment, for a total of 15 predictors for
each model.

2.7. Analyses

2.7.1. Study 1: simple prediction
In this study, we used the British patient data to train a prognostic

model, then used the model to predict the language scores of our se-
parate sample of Chilean patients. Prognostic models were trained with
a Gaussian Process regression model with default hyper-parameters, as
specified for Matlab 2017a. These include (i) a squared exponential
kernel function; (ii) an initial length scale = the mean of the standard
deviations of the predictors (= 1, because all predictors were stan-
dardised prior to learning); and (iii) setting the signal standard devia-
tion to the standard deviation of the responses divided by the square
root of 2. We chose this inducer because it has recently been shown to
perform well in this domain (Hope et al., 2018), and at least in our
experience, procedures that employ more focused hyperparameter op-
timisation confer at best minor predictive advantages (in this domain)
when performed in a properly nested manner.

To generate predictions within the British patient training set we
performed 10-fold cross validation 100 times, taking the average over
the 100 repetitions to be each patient's prediction. When generating
predictions for the test set (Chilean patients) we used the whole training
set to train the models: i.e. modelling the way we hope and expect such
models might be employed in practice. We then compared the two
groups by contrasting their prediction errors: significant group differ-
ences imply that our predictions are inconsistent across the two groups.

Our experience is that prediction errors are often correlated with
empirical task scores in these analyses (e.g. (Hope et al., 2013): pre-
dictive models tend to over-estimate the lowest empirical scores, and
under-estimate the highest empirical scores. This is consistent with the
results actually observed for the British patients’ predictions (see the
Results sub-section ‘Study 1′). Since there was also a significant dif-
ference between the patient groups’ empirical task scores, this raises the
possibility that apparent group differences in prediction errors may be
explained by that difference in empirical task scores. To account for
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this, we employed ‘empirical task score’ as a covariate of no interest in
the comparisons. Our Frequentist test for group differences was a t-test
on the coefficient of group as a categorical predictor of prediction error
in a general linear model, which also included empirical task score as a
scalar predictor. And we also employed a Bayesian ANOVA
(Wetzels et al., 2012) to test for group differences, with patient group as
a single factor with two levels (British versus Chilean), and the de-
pendent variable defined as the residuals of prediction errors after re-
gressing out empirical task scores. The Matlab script used to run this
comparison (which merely implements the procedure described by its
authors), is available at: [https://github.com/robloughnan/
PostStrokeLanguagePrediction_NeuroimageClinical].

2.7.2. Lesion growth analysis
On the basis of our prior work (Seghier et al., 2014), we hypothe-

sized that the most significant confound between these two groups
might follow from the delay between scan acquisition and language
assessment. For most of the British patients, this delay was small
(92% < 1 week), whereas it was typically large (all >1 month; 33/
59 > 6 months) for the Chilean patients. Since it has been shown that
lesions appear to grow gradually over years post-stroke (Seghier et al.,
2014), we decided to control for the confound by modelling that growth
directly: using the longitudinal imaging data from the British patients to
learn a series of lesion growth functions (1 for each lesion principal
component and another for total lesion volume), and using the learned
functions to project each Chilean patient's lesion to the date of their
language assessment.

Our training data consisted of 142 English-speaking patients for whom
we had repeated longitudinal MRI scans. The growth functions were
learned with a linear inducer, with time post-stroke log-transformed to
ensure a power relationship between lesion growth and time post-stroke,
as previously reported (Seghier et al., 2014). Each observation in the
training data included all of the ‘lesion-predictors’ (i.e. 12 principal com-
ponents plus lesion volume), together with: (a) the time post-stroke at
which they were first assessed; and (b) the time post-stroke at which the
last scan was acquired for that same patient. The response variable for
each model was the lesion variable, acquired at that second time-point,
that we wanted the model to predict (i.e. one of the 12 principal com-
ponents, or lesion volume). We trained a total of 13 separate models, to
predict each of the 13 lesion-variables from these training data. Lesion
projection involved applying all 13 models to project the lesion-predictors
forward/backward to the desired times post-stroke. The Matlab scripts
used to implement this procedure are available at [https://github.com/
robloughnan/PostStrokeLanguagePrediction_NeuroimageClinical]. Armed
with those projected lesions, we could then employ the same group
comparison analysis as described previously, hoping to see more con-
sistent prediction errors across the two patient groups.

2.7.3. Validating the lesion growth functions
Our hypothesis, on observing the apparently consistent (positive)

bias in our predictions from Study 1, was that the bias followed from
group differences in the delays between scan acquisition and language
assessment. Specifically, our British patients’ scans and assessments
were usually conducted contemporaneously (92% within a week),
whereas the Chilean patients’ language assessments were usually con-
ducted much later than their scans. Models learned from con-
temporaneous data may be expected to learn contemporaneous lesion-
symptom associations: i.e. associations between a given lesion and a
specified language score ‘now’. By projecting the Chilean patients’ le-
sions to the dates of their language assessments, in Study 2, we hoped to
mitigate the group difference, improving the predictions. The success of
study 2 begged a further question, of whether we could improve other
predictions using the same approach.

To answer this question, we ran a further study (Study 3), selecting:
(a) a training sample of British patients that might maximise any im-
plicit bias in favour of contemporaneous lesion-symptom associations
(i.e. with small scan-assessment delays); and (b) a testing sample that
might maximally illustrate the effect of that bias (i.e. with large scan-
assessment delays). We predicted that confounds introduced by scan-
assessment delays should plateau with longer delays because the rate of
growth decreases with increasing time post-stroke (Seghier et al.,
2014). In turn, this implies that the impact of lesion-projection, used to
minimise those confounds, should be more subtle in more chronic
samples (i.e. the British patients) than in more acute samples (i.e. the
Chilean patients). Our subsample selection, in Study 3, aimed to ac-
count for this more subtle signal. Our subsample selection, in Study 3,
aimed to maximise this more subtle signal. In both Studies 2 and 3, we
employed a one-tailed Wilcoxon Signed Rank test on absolute predic-
tion errors for pre- versus post-lesion growth predictions (smaller ab-
solute errors imply better predictions).

3. Results

3.1. Patient samples

Our training set included 828 British stroke patients (251 women;
age at stroke onset median (interquartile range or IQR) = 57.2 (18.2)
years; months between stroke and behavioural assessment median
(IQR) = 34.1 (57.2); days between scan and behavioural assessment
median (5–95 percentile range) = 0 (5), and our test set included 59
Chilean stroke patients (26 women; age at stroke onset median
(IQR) = 58.2 (15.2) years; months between stroke and behavioural
assessment median (IQR) = 8 (14.8); days between scan and beha-
vioural assessment median (5–95 percentile range) = 217 (968.4)). 346
British patients were assessed as suffering from significant, aphasic
impairment in the language task: i.e. their scores would put them in the
bottom 5% relative to a distribution of scores in the same task, from
controls (Swinburn et al., 2004). Using the same impairment threshold,
46 Chilean patients would be assessed as impaired; however, this
judgment can only properly be made by reference to a Chilean control

Fig. 1. Lesion overlap maps and histograms of
spoken picture description scores. Lesion
overlap maps for (A) British and (B) Chilean
datasets are shown in axial slices (numbers
above indicate z co-ordinates in MNI space; the
left side of each slice is the left side of the
brain). The colour scale represent the number
of patients with overlapping lesions at each
given voxel. (C) Histogram of Spoken Picture
Description task scores for British and Chilean
datasets. The Chilean patients’ scores were
significantly lower than the British patients’
scores (independent sample t-test: t
(885) = 6.64, p < .001) because the British
sample included patients who did not have
language impairments at test.
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distribution of scores. Work to acquire these scores is ongoing.
Lesion frequency images for each patient group are displayed in

Fig. 1A and B respectively. The median (IQR) lesion volume for the
Chilean patients was 4541 (8242) voxels, and for the British patients
was 5267 (12,567) voxels. Notably, we had longitudinal scan and as-
sessment data for 142/828 British patients (months from stroke to first
visit was median (IQR) = 34.9 (54.0); months between visits was
median (IQR) = 19.7 (35.5)). Only these patients’ first scans contribute
to the lesion frequency images in Fig. 1B. Fig. 1C displays the empirical
task (spoken picture description) scores for both patient groups.

Since our main interest here was in model generalization rather
than group comparisons, we did not attempt to match these patient
groups in a case-controlled manner. Nevertheless, two potentially im-
portant differences, between the patient groups, were observed. First,
the Chilean patients had lower scores, as a group, than the British pa-
tients (see Fig. 1). Second, as expected, most of the British patients’
scans were acquired contemporaneously with their language assess-
ments (92% <1 week), whereas the delay between scan and assessment
was longer (all >1 month; 33/59 >6 months) for the Chilean patients.

3.2. Study 1: simple prediction

Predicted task scores were calculated for the British patients via 100
times 10-fold cross-validation. For the Chilean patients, these predic-
tions were made by a single model, trained on the whole of the British
patient dataset. Predictions for both groups are displayed in Fig. 2.
Correlations between predicted and empirical task scores were strong in
both groups (British: r= 0.71, p < .001 Chilean: r= 0.68, p < .001),
and not significantly different across the groups (Fisher r-to-z trans-
form; z= 0.42, p = .67). As expected (see the Methods), prediction
errors for the British patients were correlated with empirical task scores
(r= 0.71, p < .001), with lower empirical scores tending to be over-
estimated, and higher empirical scores tending to be under-estimated.
Consistent with this, the predictions for the Chilean patients, whose
empirical scores tended to be lower, are also generally positively biased
(i.e. higher than the empirical task scores). Nevertheless, the group
difference in prediction errors was significant even when differences in
empirical task scores were taken into account: (general linear model
with prediction error as the dependent variable: empirical score: t
(844) = 30.1, p < .001; patient group: t(884) = −4.21, p < .001).

In other words, while our prognostic model distinguishes better
outcomes from worse outcomes equally well across the two patient
groups, there is nevertheless evidence of inconsistency in the predictions
made across those groups. We can quantify this in Bayesian terms with
a Bayesian ANOVA (Wetzels et al., 2012), with patient group as a single
factor with two levels (British or Chilean), and the residuals of the

prediction errors after regressing out empirical task score, as the de-
pendent variable. The result indicates that there is modest evidence in
favour of inconsistency across the patient groups: Bayes Factor = 4.9,
so nearly five times as much evidence for inconsistency as for con-
sistency.

3.3. Study 2: prediction accounting for scan-assessment delays

As mentioned previously, our two patient groups are significantly
different in terms of the delays patients experienced between scan ac-
quisition and language assessment: the test set is acute-chronic,
whereas the training set is chronic-chronic. One potentially con-
founding difference between these two scenarios, follows from evidence
that lesions tend to grow gradually over time post-stroke (Seghier et al.,
2014). Larger lesions are typically associated with worse language
outcomes (Plowman et al., 2012), and we would expect the same lesion
to appear larger, in the chronic phase post-stroke, than it did in the
acute phase. When generalizing lesion-deficit associations learned from
chronic scans to acute scans, we therefore run the risk of making over-
optimistic predictions.

To mitigate this confound, we learned ‘lesion growth’ functions
from the longitudinal neuroimaging data available for 142/828 of the
British patients. Separate functions were learned for each of the (12)
principal components that were employed to encode patients’ lesions in
Study 1, and also for lesion volume, for a total of 13 models (see the
Methods for more details). In internal cross-validation, all but one of
these functions yielded correlations between predicted and empirical
responses (principal components and lesion volume variables) >0.9;
the exception was the model for component 5, where the correlation
coefficient was 0.71. In each case, the standard deviations of the pre-
diction error distributions was <10% of the range of the response
variable. In other words, there were consistent signals to find in the
British patients’ longitudinal neuroimaging data. In line with prior re-
ports (from an overlapping sample; (Seghier et al., 2014), the median
rate of growth in lesion volume was ∼4.5 cm3 (∼7.5%) per year,
though growth also slowed with increasing time post-stroke: the cor-
relation between log(time post-stroke at first scan) and subsequent
growth rate = −0.38, p < .001.

Having learned these functions, we used them to project the Chilean
patients’ lesions forward to the times post-stroke at which their speech
skills were assessed. Next, we used the same prognostic model as em-
ployed in Study 1 to predict the Chilean patients’ task scores (again).
The correlation coefficient between empirical and predicted scores,
after lesion growth, was 0.63 (p < .001). Fig. 3A shows how the pre-
dictions differed before and after lesion projection. Most patients’ pre-
dictions move closer to the diagonal line representing zero prediction

Fig. 2. Basic prediction results. Empirical vs. Predicted scores
for the British (A) and Chilean (B) datasets; in each case,
perfect predictions would lie on the black diagonal lines. It
can be seen that most of the points for the Chilean dataset lie
above the black line indicating the model is predicting pa-
tients to perform better than they actually do. Mean (standard
deviation) prediction errors: British = 0.02 (13.44);
Chilean = 14 (11.93).
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error, and this represents a significant improvement in prediction ac-
curacy (i.e. reduction in prediction error): one tailed Wilcoxon Signed
Rank test on absolute prediction errors with vs without lesion growing
(Z= 4.62, p < .001). Moreover, the lesion projection also extinguishes
the group difference identified in Study 1: i.e. ‘patient group’ is no
longer significantly related to speech score prediction errors, once
‘empirical task score’ is taken into account (empirical score: t
(884) = 30.6, p < .001; patient group: t(884) = 0.91, p= .36). Using
the same Bayesian ANOVA as employed in Study 1, the resulting Bayes
Factor = 0.0017: i.e. the evidence for consistency is nearly 600 times (1/
0.0017 = 596) stronger than for inconsistency here.

As a further check on those lesion-growth models, we considered
what the effect might have been of growing the Chilean patients’ lesions
either less or more than was actually required to traverse their em-
pirical delays between scan acquisition and language assessment.
Considering lesion growth over a range from 10% to 1000% of those
empirical delays, we repeated all of the analyses just described: i.e.
growing the patients’ lesions by the specified amount; using the prog-
nostic model from Study 1 to make new predictions; regressing em-
pirical task score out of the prediction errors, and using our Bayesian
ANOVA (Wetzels et al., 2012) to measure any residual group effects.
The results are displayed in Fig. 3B: the amount of lesion growth re-
quired to traverse the empirical delays between scan and behavioural
assessment (x-axis = 1) is close to the optimum amount of growth re-
quired to maximise consistency across the patient groups (i.e. to
minimise log Bayes Factor for the comparison). In other words, our
lesion growth models exhibit an encouraging degree of specificity: they
make the patient groups consistent only when used to ‘grow’ the Chi-
lean patients’ lesions to roughly the right extent.

3.4. Study 3: external validation of the lesion growth models

Study 2 demonstrates that we can improve the Chilean patients’
predictions, significantly, by projecting their lesions to the dates of their
language assessments. As further confirmation that the lesion projection
models apply generally, rather than specifically to this particular pa-
tient sample, we asked whether we could use the same lesion-growth
functions to improve our predictions for those British patients whose
delays between scan acquisition and language assessment were also
unusually long.

We ran this analysis by partitioning the British patients based on
their own delays between scan acquisition and language assessment:
distinguishing a training sample, whose delays were all less than a week
(759 patients), from a test sample, whose delays were more than a year
(17 patients). We then ran the same analyses as in Studies 1 and 2: i.e.
training a model with the 759 patients; predicting spoken picture de-
scription scores for the test sample of 17 patients; projecting the 17
patients’ lesions to the dates of their language assessments; and making
new predictions for the same 17 patients. Critically, in this case we are

projecting lesions identified automatically from MRI, rather than le-
sions identified semi-automatically from CT (as described in the
Methods), as in Study 2. We are also projecting most of the British
patients’ lesions backwards in time post-stroke, rather than forwards, as
in Study 2.

Nevertheless, the lesion projection process still significantly im-
proves our predictions: Wilcoxon Signed Rank Test on the absolute
prediction errors; z= 1.75, p= .03; see Fig. 4. This is evidence that our
lesion growth models may apply generally, rather than specifically to
the Chilean patient sample who first motivated their use.

4. Discussion

We began by asking whether prognostic models trained with stroke
patient data could generalize to patients from another country (UK vs.
Chile), with a different native language (English vs. Spanish), who were
scanned at different times post-stroke (mainly chronic for British pa-
tients, and mainly acute for the Chilean patients), with different neu-
roimaging technology (MRI vs. CT), collected for different purposes
(research vs. clinical). Perhaps surprisingly, given all of these differ-
ences between the two groups, our results suggest that models trained
on one group can indeed generalize to the other.

Even before we modelled lesion growth, our prognostic models were
distinguishing better from worse language outcomes approximately
equally well in both datasets; correlations between predicted and

Fig. 3. The effects of lesion projection. (A) Predictions of
task scores for Chilean patients before (black dots) and
after (grey crosses) growing lesions to the same day as the
behavioural assessment. Solid black line indicates line of
perfect predictions. The mean (standard deviation) pre-
diction error after growth was 7.87(12.53). (B) The effect
of less or more lesion growth (than empirically required),
on the consistency of the prediction errors across the
groups. More negative log Bayes Factors indicate stronger
support for consistency; this support is moderately strong
below the dotted line, and very strong below the dashed
line (Jeffreys, 1961).

Fig. 4. British patient absolute prediction error, after growth vs. before growth:
Prediction errors are compared for British imaging data, with and without
projection (i.e. before and after lesion growth) to be contemporaneous with
their language scores. Any point which lies on the solid black line represents a
patient whose predictions did not change with projection, points below the
black line indicate patients whose predictions were more accurate after lesions
were projected, through time, to be contemporaneous.
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empirical task scores: r= 0.71 and r= 0.68 for the British and Chilean
patients, respectively. This suggests that the language networks re-
cruited by (neurologically intact) English and Spanish speakers are
substantially similar.

Nevertheless, there was moderate evidence against consistency
across the two datasets in those predictions (Bayes Factor = 4.9). Our
hypothesis was that this occurred due to differences in the delay be-
tween scan acquisition and language assessments across the two groups,
and our results support that hypothesis. Using longitudinal neuroima-
ging data from the British patients, we learned a set of ‘lesion growth
functions’, and used them to project the Chilean patients’ lesions for-
ward to the dates of their language assessments. Having grown the le-
sions, there is ‘very strong’ (Jeffreys, 1961) evidence for consistency
(Bayes Factor ∼600) in the predictions made across the two patient
groups – even though only the British patient sample was used to train
the prognostic model.

Our lesion growth models are still a work in progress; we are not
claiming to have found the best or right way to model this change.
Nevertheless, our results do suggest both that the change is worth
capturing, and that our models do capture it to some extent. First, the
models appeared to predict lesion growth relatively well within the
longitudinal neuroimaging dataset that we used to train them; this
implies that there is a systematic signal here to be found. Second – our
main result – we could use those lesion growth models to demonstrate
consistency between the predictions for our British and Chilean pa-
tients’ language task scores. Crucially, the lesion growth models were
also at least somewhat specific: the amount of growth required to tra-
verse the Chilean patients’ empirical delays between scan and assess-
ment is close to the amount of growth which maximised consistency
across the groups (see Fig. 3B). And finally, we could use the same
growth models to significantly improve our prognoses for those British
patients whose own delays between scan and language assessment were
unusually long (Fig. 4). This suggests that our lesion growth models
might be capturing a real, generally applicable feature of lesion-
symptom data.

Past reports of gradual lesion growth, over time post-stroke, have
emphasised that stroke survivors’ behavioural skills often improve re-
gardless of that growth (Naeser et al., 1998; Seghier et al., 2014).
Growing lesions do not imply worsening behavioural skills, which
suggests that recovery can recruit neural tissue far from the periphery
of the original lesion cavity, for example in the preserved right hemi-
sphere after left hemisphere stroke (Forkel et al., 2014; Hope et al.,
2017; Xing et al., 2015). To the extent that this is true, it begs the
question of why our lesion growth models result in improved predic-
tions. We suggest that this is because lesion growth is implicitly cap-
tured by the prognostic models that we learned from the British pa-
tients, because most of those patients’ scans and language assessments
were conducted contemporaneously (92% within 1 week), and because
time post-stroke is a consistent feature of our models (Hope et al.,
2015a, 2018, 2013).

Quite what drives these changes, remains an open question, to
which there may be more than one answer. We have learned lesion
growth functions from MRI scans taken years after stroke onset and
applied them, apparently successfully, to CT scans taken hours or days
after stroke. This suggests that we are not just capturing some long-
itudinal artefact of any particular neuroimaging technology. However
while our growth functions are continuous, this need not imply that
there is a single, continuous neurophysiological process which drives
the modelled change. Two of the best studied mechanisms of lesion
change – the necrosis of initially preserved but still hypoperfused neural
tissue, and the replacement of that necrotic tissue by a fluid-filled cavity
(‘cavitation’) – may well be important in the acute phase (Rekik et al.,
2012), but probably cannot explain change over years. In perhaps the
first systematic study of this longer term change, Naeser and colleagues
(Naeser et al., 1998) asserted that the mechanisms that drive it ‘are not
understood’, but speculated that it may be caused by: (a) Wallerian

degeneration (along white matter tracts connected to damaged tissue);
(b) chronic hypoperfusion of the tissue adjacent to the lesion, leading to
gradual neural atrophy; and/or (c) ‘other small vessel involvement’, the
notion that chronic hypoperfusion may occlude other small vessels,
spreading its effect beyond perilesional tissue. As far as we know, no
more definite answers to this question have since been proposed.

Another open question follows from the practice, which is nearly
ubiquitous in lesion-behavior mapping, of reporting analyses of groups
of patients who are very variable in time post-stroke (Butler et al., 2014;
Del Gaizo et al., 2017; Forkel et al., 2014; Fridriksson et al., 2018;
Pani et al., 2016; Pustina et al., 2017; Tak and Jang, 2014; Xing et al.,
2016; Yourganov et al., 2016; Zhang et al., 2014). Our results suggest
that lesion change over time post-stroke may confound lesion-similarity
analyses, which are implicit in most (mass univariate and multivariate)
lesion-behavior mapping methods. Indeed, when considered together
with emerging evidence that real behavioural change in aphasia also
continues over years after stroke onset (Holland et al., 2017;
Hope et al., 2017), the implication is that lesion-behavior mapping
studies of aphasia after stroke may better be interpreted as snapshots of
a dynamic system, rather than as incrementally more accurate ap-
proximations to some fixed ground truth (Del Gaizo et al., 2017;
Fridriksson et al., 2018; Pustina et al., 2018; Yourganov et al., 2016).
Quite how dynamic these systems really are, and as a consequence how
significant are any confounds that this change may introduce, remains
to be seen; these questions can best be answered with longitudinal
studies.

One caveat to these results is that, despite their apparent specificity,
our lesion growth models might exert only an accidental effect: i.e.
rectifying a predictive bias that actually emerges for a different reason.
For example, the Chilean and British patients’ lesions were segmented
from different imaging modalities (CT vs. MRI), with different methods;
we took deliberate care to ensure that the Chilean patients’ lesions were
not under-estimated (as described in the Methods), but we cannot
completely rule out the potential for residual bias. Similarly, the
Chilean patients’ language skills naturally could not be assessed in ex-
actly the same way as the British patients’ skills, because the two groups
spoke different native languages. Again, we devoted significant effort to
mitigating this confound, as described in the Methods: i.e. focusing on a
task involving stimuli that are common in both the UK and Chile, and
using two clinically trained, native Spanish speaking (and fluent
English speaking) speech and language therapists to implement the
scoring. But despite our best efforts, it is still conceivable that our
language assessments were simply more difficult, for the Chilean pa-
tients, than they were for the British patients. Notably, the Chilean
patients were referred to us by the staff who were delivering ongoing
treatment to them, which in itself will likely bias the sample towards
those with significant, enduring impairments (i.e. which still need
treatment).

Our analyses suggest that differences in prediction errors across the
two groups are not simply a function of group-differences in aphasic
symptom severity at test time. This is because: (a) we control for those
differences, explicitly, in our analyses; and (b) our lesion growth
functions appear to explain those residual differences well (Study 2),
and also to improve the predictions we make in independent data
(Study 3). It remains to be seen whether they will perform as expected
in further validation studies. One test of that broader performance,
would be to repeat the experiments reported here for scores in a wider
variety of language tasks, emphasising different language skills; this
work is ongoing.

Similarly, the results presented here do not guarantee that our
models will generalize across every language. For example, it seems
reasonable to expect that cross-language variability in functional
anatomy might be less significant for Spanish versus English, than for
Chinese versus English. Notably, that latter comparison drives most
reports of language-specific functional architecture in the brain (e.g.,
Ge et al., 2015; Wang et al., 2015; Wu et al., 2015). In the same vein, it
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is possible that our models are not sensitive to these differences because
they encode lesion location information in a relatively coarse way, as
principal components. This kind of coarse encoding has been shown to
be approximately as effective as more detailed encodings in lesion-
deficit models (Ramsey et al., 2017), but there are also reports that
much higher resolution encodings can be beneficial (Rondina et al.,
2016). If the latter is true, then enhanced, single-language prognostic
performance might depend on increased sensitivity to subtle differences
in premorbid language networks, which may in turn reduce cross-lan-
guage generalization.

More broadly, we cannot really know how widely these prognostic
models will generalize, unless and until we test them more widely: i.e.
with more and larger independent datasets, capturing more of the true
variability of the stroke survivor population as a whole. First, our
training and testing results were based on, and thereby limited to, pa-
tients whose lesions were larger than 800 mm3. This has been our de-
fault criterion in many past studies (Hope et al., 2015a, 2017, 2018,
2013, 2015b), and the same applies to Chilean patients. Nevertheless,
setting a minimum lesion volume threshold of 800 mm3 resulted in the
exclusion of approximately 7% of the patients (147) in the PLORAS
database, from which the British patients were drawn for this study. Of
note, 27 of these patients exhibited at least some language impairment
at test time, which indicates the exclusion does leave some examples of
aphasic performance unexplained. In addition, the requirement to
provide written informed consent, in our study as in almost all others,
will tend to impose a selection bias on research samples, because older
and/or more severely impaired patients are less likely to grant it (or be
able to grant it). Quite how to best to circumvent or minimise this
barrier to clinical investigation in this domain, remains an open ques-
tion.

Our questions, in this work, were: (a) whether models learned from
research ‘chronic-chronic’ data could be applied to clinical ‘acute-
chronic’ data; and (b) if not, why not? These questions are important
because most research studies in this area are expressly motivated by
the claim that their results are, or might be, clinically relevant. Having
identified an apparently systematic bias in the predictions made, for
clinical data, by models trained with research data, we sought to ex-
plain that bias as a function of lesion growth over time post-stroke. That
we can, apparently, mitigate the bias by modelling lesion growth, is
evidence that the bias is driven by lesion growth. But while the cor-
rection appears effective, and might well be improved over time, a
correctable bias is still a bias. We are not suggesting that training with
research scans, via lesion projection, will or should supplant training
clinically applicable models with clinical acute scans. Nevertheless, we
hope that our results will encourage further study of whether and how
lesion growth might confound lesion-symptom analyses, and the de-
velopment of better models of how, why, and what lesion growth oc-
curs over years after stroke.

Data analysis code

Scripts used in this analysis are available at: https://github.com/
robloughnan/PostStrokeLanguagePrediction_NeuroimageClinical
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