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Abstract: We investigate the nonlinear dynamics of cold atom systems that can in princi-

ple serve as quantum simulators of false vacuum decay. The analog false vacuum manifests

as a metastable vacuum state for the relative phase in a two-species Bose-Einstein con-

densate (BEC), induced by a driven periodic coupling between the two species. In the

appropriate low energy limit, the evolution of the relative phase is approximately governed

by a relativistic wave equation exhibiting true and false vacuum configurations. In previous

work, a linear stability analysis identified exponentially growing short-wavelength modes

driven by the time-dependent coupling. These modes threaten to destabilize the analog

false vacuum. Here, we employ numerical simulations of the coupled Gross-Pitaevski equa-

tions (GPEs) to determine the non-linear evolution of these linearly unstable modes. We

find that unless a physical mechanism modifies the GPE on short length scales, the analog

false vacuum is indeed destabilized. We briefly discuss various physically expected correc-

tions to the GPEs that may act to remove the exponentially unstable modes. To investigate

the resulting dynamics in cases where such a removal mechanism exists, we implement a

hard UV cutoff that excludes the unstable modes as a simple model for these corrections.

We use this to study the range of phenomena arising from such a system. In particular,

we show that by modulating the strength of the time-dependent coupling, it is possible

to observe the crossover between a second and first order phase transition out of the false

vacuum.

Keywords: Lattice Quantum Field Theory, Nonperturbative Effects, Solitons Monopoles

and Instantons
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1 Introduction

False vacuum decay, the quantum first-order phase transition out of a metastable “false

vacuum” state, plays an important role in current models of the early Universe. This

includes theories of false vacuum eternal inflation (see e.g., ref. [1]), symmetry breaking

phase transitions in GUT theories [2], and perhaps even the Standard Model of particle

physics [3]. The dynamics of these transitions has implications for anthropic solutions to

the cosmological constant problem, the observability of false vacuum eternal inflation in

the multiverse [4–6], the future fate of the Higgs vacuum [3], and primordial gravitational

wave signals [7] within the band of future experiments such as the Laser Interferometer

Space Antenna (LISA) (see e.g., ref. [8]).
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Further, as an intrinsically quantum mechanical phenomenon (i.e., requiring ~ 6= 0),

false vacuum decay touches on fundamental issues in quantum field theory, including the

notions of measurement and the emergence of classicality. Therefore, a complete computa-

tional and conceptual framework to understand false vacuum decay has implications both

for our understanding of the cosmos and for the foundations of quantum field theory.

In the standard view, false vacuum decay is essentially a field theory version of tunnel-

ing through a barrier familiar from quantum mechanics [9–11]. However, an important dis-

tinction between quantum mechanics and quantum field theory is that the former involves

only a single degree of freedom, while the latter involves interactions between infinitely

many degrees of freedom [12]. This has important consequences, both conceptually and

computationally. In the case of quantum mechanics, it is straightforward to evolve the

wavefunction using the Schrödinger equation, thus obtaining a complete numerical solu-

tion to the tunneling problem. However, an analogous approach is infeasible in quantum

field theory due to the exponential complexity of the state space. In the standard formal-

ism [9, 10], false vacuum decay is reformulated as a quantum mechanics problem, resulting

in a drastic dimensional reduction of the underlying phase space. Bubble nucleation is then

interpreted as a quantum tunneling event, with no real-time description available. We re-

cently presented an alternative description of vacuum decay based on a careful study of

dynamics in the full field space, considering the cooperative dynamics of many field degrees

of freedom [13]. Using this approach, we were able to reproduce the expected decay rates

of the standard formalism, while also giving a real-time description of the decay process

that does not rely on quanutm tunneling. Given the differing approximations and subse-

quent interpretations of these two approaches, it would be greatly informative to study a

physical system that undergoes false vacuum decay, where Nature automatically includes

all quantum effects.

One proposal to build such a system uses a two-component dilute gas cold atom Bose-

Einstein condensate (BEC) to simulate a relativistic scalar field with a false vacuum po-

tential [14, 15]. In this proposal, the false vacua are generated from unstable local maxima

by periodically modulating the direct conversion between the two components. From the

field theory perspective, this amounts to modulating the overall amplitude of the potential,

which can lead to a stabilization of the long-wavelength modes as in the Kapitza pendu-

lum. However, as recently shown by Braden et al. [16], this simultaneously destabilizes

shorter wavelength modes, whose exponential growth is expected to lead to a breakdown

of the analogy with the relativistic scalar field system, and a classical destabilization of

the false vacuum. Therefore, the feasibility of such an experiment rests on a physical

mechanism to remove these dynamically unstable short-wavelength modes, leaving only

the long-wavelength degrees of freedom for which the false vacuum description is valid.

Another recent work explored the role of impurities (vortices) in the condensate in seeding

vacuum decay [17].

In this paper, we explore the viability of the analog false vacuum in detail through the

use of nonlinear simulations of cold atom BECs. Our primary focus is on the viability of

generating a metastable state within the BEC, rather than providing a detailed dictionary

between the BEC system and a relativistic scalar field. First, we verify the destabilization
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of the condensate by the parametrically excited short-wavelength instabilities, confirming

the results obtained in the linear analysis of ref. [13]. We also briefly explore the sub-

sequent nonlinear dynamics. In this case, not only is the false vacuum interpretation of

the experiment disrupted, but the entire relativistic scalar field analogy breaks down. In

order to restore the false vacuum interpretation, corrections to the GPE description must

appear at wavenumbers around the Floquet band to either damp out or otherwise remove

these exponentially unstable modes. Simultaneously, these corrections should be negligible

for the longer wavelength modes needed to form the bubbles. In order to be viable, such

corrections must be motivated by real physical effects, rather than numerical tricks such as

a convenient choice of grid spacing. We briefly outline some physically plausible modifica-

tions to the short-wavelength dynamics of the condensate. Since modifications to the GPE

at short-wavelengths will generically leak into the dynamics of modes required to form bub-

bles, the impact of these modifications must be accounted for when making quantitative

predictions. A detailed study of these subtleties is beyond the scope of this work and will

be explored in future publications. Regardless of the scalar field reinterpretation, the BEC

system still represents a metastable state that decays as a result of quantum effects (if the

system is safe from the unstable Floquet modes). Therefore, even in the absence of a direct

link to early Universe models, such systems can be used to investigate various fundamental

issues in quantum field theory.

The remainder of this paper is organized as follows. First, section 2 presents the the-

oretical description of dilute gas cold atom Bose-Einstein condensates, modeled by the

Gross-Pitaevskii equation (GPE). Next, section 3 briefly reviews the connection between

the GPE and the dynamics of a relativistic scalar field, in particular how to generate a false

vacuum potential minimum. Our main results are contained in section 4 and section 5.

In section 4, we explore the manifestation of Floquet instabilities in the full nonlinear con-

densate dynamics, verifying that they lead to a breakdown of the effective relativistic field

theory description of the condensate fluctuations. We briefly comment on some physical

effects that could tame these instabilities and restore the analog false vacuum interpreta-

tion. Meanwhile, section 5 explores the range of nonlinear field theory dynamics that can

arise once the Floquet modes have been exorcised, showing how we can slowly deform a

second-order phase transition into a first-order phase transition through the tuning of an

experimental parameter. Finally, we conclude in section 6. Some more technical aspects

of the analysis are presented in a set of appendices. In appendix A we briefly outline our

semi-classical lattice approach — the truncated Wigner approximation — used for numer-

ical simulations. Appendix B introduces our dimensionless units and equations of motion,

and provides a dictionary between our choices and the previous literature. Some further

evidence that we are seeing the Floquet instability and details of the deformed linear dis-

persion relationship induced by finite-differencing stencils are given in appendix C. Finally,

tests of our numerical code are presented in appendix D, including direct convergence tests

and a demonstration that relevant Noether charges are conserved.
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2 2-component cold atom Bose-Einstein condensates in the dilute gas

limit

The analog false vacuum system under investigation is a 2-component BEC. There are

currently two different configurations that can in principle be utilized as false vacuum de-

cay simulators. The first one is a single-species BEC in a double-well potential in the

so-called tight-binding regime, exhibiting symmetric and anti-symmetric single-particle

states [18, 19]. False vacuum decay requires a modulation of the tunnel-coupling via the

trapping parameters. At present, this configuration is capable of mimicking false vacuum

decay in 1+1-dimensions. To avoid dimensional restrictions altogether, we focus on a dif-

ferent configuration: a two species BEC of atoms with mass m, e.g., 41K or 87Rb atoms in

two different hyperfine states with a modulated linear coupling between the two species.

In this paper we will consider the case of a condensate confined to a ring-trap, which we

model as a 1+1-dimensional condensate. The analogy between the two species system and

false vacuum decay has been derived in detail in ref. [16], although the derivation applies

to the double-well setup as well. In the following, we will summarize the key results of

ref. [16], which motivate the nonlinear numerical simulations presented in the subsequent

sections.

We consider an ultra-cold highly diluted 2-component system consisting of two single-

particle states (|1〉 and |2〉) of mass m1 = m2 = m. Within this setup the atom-atom

interactions can be approximated by S-wave contact potentials: g11, g22 and g12 = g21.

Atoms in different hyperfine states have angular momentum and hence a slightly different

energy. It is possible to drive transitions between two hyperfine states with a given tran-

sition rate ν through the utilization of external fields, e.g., a radio-frequency field. When

the BEC forms, the collective long-wavelength excitations of the condensed atoms (i.e., the

condensate) acquire a vacuum expectation value (vev), which we denote by the complex

numbers ψi. The Hamiltonian density for the two interacting condensates is given by

H =
~2

2m
|∇ψi|2 +

gij
2
|ψi|2 |ψj |2 −

ν

2
σx
ij

(
ψiψ

∗
j + ψ∗i ψj

)
. (2.1)

Here we are dropping the effects of the external confining potentials Vext,i on the dynamics,

and we have defined

σx =

(
0 1

1 0

)
. (2.2)

The combined evolution of the 2-component system is given by

i~ψ̇1 = −~2∇2

2m
ψ1 + gs |ψ1|2 ψ1 + gc |ψ2|2 ψ1 − νψ2 , (2.3a)

i~ψ̇2 = −~2∇2

2m
ψ2 + gs |ψ2|2 ψ2 + gc |ψ1|2 ψ2 − νψ1 , (2.3b)

where we have assumed the inter-atomic scattering strengths are of the form g11 = g22 = gs

and defined g12 = gc. The effects of quantum fluctuations are then approximated by

generating realizations of complex Gaussian random fields, and superimposing these on the
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appropriate background homogeneous values of ψi. These serve as the initial conditions for

subsequent evolution of the coupled GPEs. The entire procedure is known as the truncated

Wigner approximation. Further details about the truncated Wigner approximation, as

well as our numerical approach to solve the coupled GPEs and generate initial quantum

fluctuations, are given in appendix A. For the remainder of this work, we consider only the

limit g11 = g22 = gs and gc = 0, which we refer to as a symmetric theory. To generate an

effective false vacuum potential, we further consider a periodically modulated coupling,

ν(t) = ν0 + δ~ω cos(ωt) . (2.4)

In order to connect with the dynamics of relativistic scalar fields, it is convenient to

consider an alternative set of Hermitian canonical coordinates, the condensate densities ρi
and phases φi, such that

ψi =
√
ρie

iφi and ψ∗i =
√
ρie
−iφi . (2.5)

In terms of these, the coupled GPEs (2.3) become

~ρ̇i = − ~2

mi

(
ρi∇2φi +∇ρi · ∇φi

)
− 2ν

∑

i 6=j

√
ρiρj sin(φj − φi), (2.6a)

~φ̇i =
~2

2mi

(∇2ρi
2ρi

− (∇ρi)2

4ρ2
i

− (∇φi)2

)
− gijρj + ν

∑

i 6=j

√
ρj
ρi

cos(φj − φi) . (2.6b)

To map the coupled 2-component BEC onto the relativistic false vacuum decay [16],

it is natural to instead use the total density and phase, and the relative density and phase.

For notational convenience we will denote these by

ϑ ≡ φ1 + φ2

2
, % ≡ ρ1 + ρ2, and (2.7a)

ϕ ≡ φ2 − φ1, ε ≡ ρ2 − ρ1

2
, (2.7b)

respectively. We will refer to the pairs of canonically conjugate variables (ϑ, %) and (ϕ, ε)

as the total and relative phonons, respectively.

3 Effective relativisitic scalar field dynamics

We now briefly review the effective relativistic scalar field theory lurking within the dynam-

ics of the cold atom BECs. For a detailed path integral derivation and additional details,

the interested reader can refer to refs. [14–16]. Analogous results can also be obtained by

working directly with the equations of motion. In order to streamline the presentation, here

we provide the key results needed to interpret the remainder of the paper. Throughout,

we assume that the GPE description of the previous section holds for all relevant modes

of the condensates.

To relate the BEC dynamics to that of a relativistic scalar field, we first consider the

evolution of a purely homogeneous background field configuration. We denote solutions

– 5 –
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in the homogeneous approximation by an overbar ·̄. Potential vacua are identified by

looking for eigenstates of the Hamiltonian, with the eigenvalue (µbg) playing the role of the

chemical potential and sets ϑ̄ = −µbg
~ t.1 For g11 = g22, we find stationary solutions when

cos ϕ̄ = ±1, with the cos ϕ̄ = −1 state having the higher energy and thus representing a

potential false vacuum. We next consider fluctuations around these stationary solutions to

the homogeneous background equations:

%(x, t) = %̄+ δ%(x, t) (3.1a)

ϑ(x, t) = ϑ̄(t) + δϑ(x, t) (3.1b)

ε(x, t) = ε̄+ δε(x, t) (3.1c)

ϕ(x, t) = ϕ̄+ δϕ(x, t) (3.1d)

where an overbar ·̄ indicates a solution to the coupled GPEs in the homogeneous limit.2

The density fluctuations are then integrated out, and only the modes well below the healing

length are considered. The result is a (nonlinear) effective Lagrangian for the phases that

has the form of a pair of relativistic scalar fields.

As explicitly laid out in Braden et al. [16], a number of conditions must hold for an

effective relativistic scalar field theory for the fluctuations to emerge from the procedure

outlined above. These include:

1. the evolution of the coupled condensates are given by the GPE;

2. the background dynamics of the condensate are well approximated as homogeneous;

3. the local fluctuations in the particle densities are small, and can be treated quadrat-

ically in the action;

4. the short-time dynamics of the fluctuation modes are simple and can be integrated

out to obtain an effective time-averaged description; and

5. the relative and total phonons can be treated as effectively decoupled, leading to a

truncation rather than integration of the total phase fluctuations.

The first four of these are generic requirements, independent of the particular couplings in

the GPE, while the fifth assumption (the decoupling between total and relative phonons)

is specific to fluctuations in theories with g11 = g22 expanded around a background state

of equal densities in the two condensates. This latter condition holds for the stationary

solutions with cos ϕ̄ = ±1. In more general cases, the background condensates can be

1Including fluctuations changes the time evolution of the spatial average of the total phase 〈ϑ〉V compared

to the evolution in the homogeneous background, so that d
dt
〈ϑ〉V 6= d

dt
ϑ̄ = −µbg

~ . This can be interpreted

as a correction to the chemical potential from the fluctuations. We verified that this effect appears in our

nonlinear simulations.
2Because of the nonlinear relationship between the Cartesian condensate variables (ψi) and the density

(ρi) and phase variables (φi), the volume averaged density and the background density differ by a UV

divergent quantity 〈%〉V =
∑
i

∣∣ψ̄i∣∣2 + 〈|δψi|2〉V 6=
∑
i

∣∣ψ̄i∣∣2. The equality holds only when the fields are

exactly spatially homogeneous.

– 6 –
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Figure 1. Time-averaged effective potential for the relative phase variables for several choices of

the parameter λ = δ
√

2gsn̄
ν0

. For reference, the dashed black line is the sine-Gordon potential when

λ = 0. We see that increasing λ transforms the local maxima of the potential into local minima.

made spatially inhomogeneous. By modifying the kinetic term in the resulting effective

Lagrangian, under certain conditions this leads to an interpretation of a scalar field evolving

in a classical background (such as a gravitational field).

Under these assumptions, the relative and total phases of the condensates behave

approximately as decoupled relativistic scalar fields. The relative phase obeys

ϕ̈−∇2ϕ+
4ν0n̄ (gs − gc)

(
1− 2δ2

)

~2

(
sinϕ+

λ2

2
sin2(ϕ)

)
= 0 , (3.2)

which is the equation of motion for a field with potential

V (ϕ) =
4ν0n̄ (gs − gc)

(
1− 2δ2

)

~2

(
− cosϕ+

λ2

2
sin2 ϕ

)
. (3.3)

In the above we have defined a mean particle density

n̄ =
%̄

2
, (3.4)

and the parameter

λ2 =
2δ2(gs − gc)n̄

ν0
, (3.5)

which controls the shape of the effective potential, and can be experimentally tuned. For

λ = 0, this reduces to the sine-Gordon model, while for λ > 1, the potential for the effective

relativistic scalar develops a series of local minima, as illustrated in figure 1. Meanwhile,

the Lagrangian has a global U(1) symmetry associated with an overall phase rotation of

both condensates, so the total phase is a Goldstone mode and does not develop a potential.

We can therefore identify the relative phase phonons as the appropriate variable in which

to study metastability, even in the nonlinear regime.

– 7 –
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4 Floquet instabilities and nonlinear dynamics of coupled condensates

Above we briefly outlined the connection between dilute gas cold atom BECs, described

by coupled Gross-Pitaevskii equations, and relativistic scalar fields. For simplicity, we only

considered the symmetric case, resulting in equal densities for each condensate in the ho-

mogeneous false vacuum state.3 The equal background densities, in turn, ensured that the

total and relative phonons decouple from each other in the linear regime. Ignoring backre-

action and rescattering of the inhomogeneities, the background dynamics is independent of

the fluctuations and acts as an external input to the fluctuation equations. Therefore, the

choice g11 = g22 ultimately allows us to treat the linear dynamics of the total and relative

phonons independently. As listed in the previous section, a number of assumptions about

the condensate dynamics must hold in order for the false vacuum derivation to be valid.

In this section, we will use nonlinear simulations to test these assumptions. Specifically,

we will assume the condensates evolve according to the coupled GPEs, and that initially

they are well-approximated as spatially homogeneous. Given this, the emergence of an

effective relativistic scalar field theory posessing an analog false vacuum rests on two key

assumptions about the resulting fluctuation dynamics:

A. perturbations in the local number densities are small and can be integrated out at

quadratic order in the action, and

B. all relevant dynamical condensate modes only feel the time-averaged effects of the ν

modulations.

Further, reducing to a single effective scalar requires a decoupling between the total and

relative phase phonons. The validity of these assumptions for the linearized fluctuation

dynamics was studied in detail by Braden et al. [16]. We showed that for δ � 1, the

introduction of periodic modulation in ν of frequency ω induces a band of exponentially

unstable modes with wavenumber centered at

~2k2

n̄m(gs − gc)
≈ 2

(√
1 +

~2ω2

4n̄2(gs − gc)2
− 1

)
− 4σ

ν0

n̄(gs − gc)
, (4.1)

where σ = cos ϕ̄ = ±1. This exponential growth occurs in both the relative phase and

relative density fluctuations, which if left unchecked will lead to a breakdown of the first

two assumptions above. The emergence of these exponentially growing modes required

only that the condensates:

1. followed the coupled GPEs (2.3),

2. were subjected to a periodic modulation in ν,

3. could be treated as nearly spatially homogeneous, and

4. small initial inhomogeneous fluctuations were present.

3Only g11 = g22 is required to obtain equal condensate densities, not the additional requirement gc = 0

that we have included in our definition of a symmetric theory.

– 8 –
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Subject to these assumptions, the presence of the Floquet band is unavoidable. The third

condition is not strictly necessary to excite Floquet instabilities, but consideration of an

inhomogeneous background will significantly modify the scalar field interpretation, so we

will not pursue it here. The fourth condition simply provides the seed for exponential

linear growth, and can be fulfilled either by requiring that the initial fluctuations satisfy

the uncertainty principle, or by populating the Floquet band through nonlinear interactions

described by the coupled GPEs.

The first obstacle to realizing an analog false vacuum is to ensure that either the

Floquet instabilities are under control or that their presence does not qualitatively alter the

dynamics of the longer wavelength modes essential for bubble nucleation. One possibility

is that the full nonlinear dynamics sequesters the effects of linear instability from the IR

modes required to form bubbles. Below we demonstrate that, by itself, nonlinear evolution

with the coupled GPEs does not provide a mechanism to isolate the effects of the Floquet

instability from the IR modes.

Therefore, the existence of the analog false vacuum depends on the existence of a phys-

ical mechanism in the UV to prevent the Floquet modes from appearing. Some examples

of these corrections include:

1. corrections to the S-wave scattering approximation from atoms retaining memory of

the internal structure of the interaction potential between collisions;

2. corrections to the short-wavelength dynamics of the condensate from the finite mode

occupancy;

3. the discrete nature of the atoms leading to a breakdown of the continuum field de-

scription;

4. interactions of the collective phonon modes with the uncondensed thermal modes of

the gas; and

5. corrections to the one-dimensional approximation from excitations of transverse de-

grees of freedom associated with the trapping potential in the transverse directions.

If the fourth effect is large, then we expect the decay dynamics to be driven by thermal

fluctuations, rather than vacuum fluctuations. Meanwhile, the final effect will lead to strong

modifications to the effective relativistic field theory description. Therefore, the first three

effects are the most promising from the viewpoint of analog false vacuum decay. Although

all three of these effects will most strongly modify the dynamics at large wavenumbers, they

may also change the IR dynamics of the bubbles. Therefore, detailed analysis is required

to understand any modifications to the false vacuum decay interpretation that results from

these corrections to the truncated Wigner description.

There are two potentially relevant UV scales: the healing length of the condensate

(the length scale over which the condensate will respond to a defect or boundary) and the

interatomic separation. For symmetric condensates, the wave numbers associated with the

– 9 –
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healing length and interatomic separation are

kheal =

√
gsn̄m

~
, katom =

8π2~2

gsm
. (4.2)

The validity of the dilute gas BEC approximation requires kheal � katom, making the

healing length the first relevant UV scale.

Determining if any of these mechanisms is active and sufficient to remove the Floquet

modes requires detailed physical modelling of any proposed experimental setup, which we

leave to future work. However, the discrete nature of the atoms provides a promising mech-

anism to remove the Floquet modes. The continuum description must break completely at

katom, and hence modes above this scale cannot exist within the condensate. As well, we

expect that the finite mean free path of the atoms will induce additional viscous corrections

at wavenumbers somewhat below katom, which will preferentially damp large wavenumbers.

Since kheal encodes the scale above which the dispersion relationship changes to that of free

particles, these additional viscous corrections may enter at scales not too far removed from

the healing length. Another example of a relevant effect in another experimental setup

can be found in ref. [20], where modifications of the trap geometry are used to induce

“synthetic dissipation” of high-k modes and the ability to tune the dissipation scale. Re-

ferring to (4.1), we also see that a degree of experimental tunability exists, since either

increasing the modulation frequency ω or decreasing the condensate density n̄ will move

the instability to higher wavenumbers relative to the healing length. However, one must

also beware that increasing the driving frequency could cause additional modes (such as

transverse excitations in the trap or additional internal excited states of the atoms) to be-

come excited. If this happens, then the dynamics will differ dramatically from the coupled

GPEs discussed here.

4.1 Nonlinear dynamics

We now study the full nonlinear dynamics of the coupled condensates, properly accounting

for the presence of the Floquet band. For concreteness, throughout this section we choose

parameters

λ = δ

√
2gsn̄

ν0
= 1.3,

ν0

gsn̄
= 2× 10−3,

~ω
gsn̄

= 100

√
ν0

gsn̄
, (4.3)

which were suggested as reasonable values by Fialko et al. [14]. The initial fluctuation

amplitudes for the nonlinear simulations are set by the dimensionless particle density

~n̄
2
√
mν0

= 103 , (4.4)

again as suggested in ref. [14]. The maximal Lyapunov exponent for fluctuations around

the fiducial false vacuum as a function of dimensionless wavenumber k̄ = ~k√
gsn̄m

are shown

in figure 2. We see a narrow band of unstable wavenumbers centered around ~k√
gsn̄m

≈ 1.705,

as predicted by (4.1). Note that for these choices of parameters, this is slightly above the
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Figure 2. Lyapunov exponents (i.e., the maximal real component of the Floquet expo-

nents) for linear fluctuations in the analog cold atom false vacuum for our fiducial model with

λ = 1.3, ν0gsn̄ = 2× 10−3, ~ω
gsn̄

= 100
√

ν0
gsn̄

. The analytic estimate for the wavenumber of the center

of the band (4.1) is shown as a vertical dashed gray line. We also see a higher-order band of

weaker amplitude that appears at ~k√
gsn̄m

∼ 2.7, which can be obtained from energy-momentum

conservation in higher-order tree level diagrams.

UV scale associated with the healing length, so it is not unrealistic to expect corrections

to appear. However, since we wish to understand the implications of assuming the coupled

GPEs hold, we proceed without considering any such corrections. Figure 2 provides a sharp

prediction for the wavenumbers at which the GPE description must break down in order

to maintain the analogy with false vacuum decay.

Since the Floquet modes represent a piece of physics beyond that of the time-averaging

analysis used to obtain the false vacuum, we expect that the full dynamics will undergo a

drastic change as numerical simulation parameters are tuned to either include or exclude

their effects. In figure 3 we illustrate the full nonlinear dynamics of the relative conden-

sate phase using the numerical procedure described in appendix A. To demonstrate the

crucial role the Floquet band has on the dynamics, we have utilized a series of numerical

simulations with varying lattice spacings dx (i.e., Nyquist wavenumbers) to isolate the ef-

fects of the exponentially unstable modes. The two panels of figure 3 show the evolution

of the relative phase for one of these simulations. The left panel has
√
gsnm
~ dx ≈ 1.89 so

that
~knyq√
gsnm

≈ 1.66, and the lattice cutoff is just below the start of the instability band

illustrated in figure 2. As a result, the unstable Floquet modes cannot be resolved by our

simulation, and we expect the time-averaging analysis to be valid. Indeed, we see the dy-

namical nucleation and subsequent expansion of domain wall-antiwall pairs (i.e., bubbles in

one dimension) in the relative phase, indicating a first-order phase transition. By contrast,

the right panel takes
√
gsn̄m
~ dx ≈ 0.12 and

~knyq√
gsn̄m

≈ 26.53, which is above the upper edge
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of the instability band.4 As expected, we see a drastic change in the resulting dynamics

of the relative phase. During the initial stages (while the Floquet modes still have a small

amplitude), the evolution matches that of the left panel. However, at gsn̄
~ t ∼ 100 the ex-

ponentially growing linear modes become O(1) and undergo strong mode-mode coupling.

The evolution is subsequently dominated by short-wavelength modes of large amplitude,

competely erasing the first-order phase transition dynamics. The Floquet modes therefore

qualitatively change the condensate dynamics from that of an effective relativistic scalar

field trapped in a false vacuum. In each simulation, we used the same realization of the

initial fluctuations. In particular, since the lattice cutoff is below the Floquet band in

the left panel, this means we did not initially populate the exponentially unstable modes.

Although physically unrealistic since it violates the uncertainty principle, this was done to

demonstrate that the nonlinear dynamics of the coupled GPEs will populate these modes.

Since fluctuation power is being dynamically generated rather than input as an initial con-

dition, it also demonstrates the need to have a physical model for the behavior of these

modes. Here we have taken this model to be the coupled GPEs, and shown that this

assumption is inconsistent with the existence of a false vacuum decay.

This is further demonstrated in figure 4, where we show the lattice average of cosϕ for

the simulations in figure 3. At the false vacuum cosϕfv = −1, while in the true vacuum

cosϕtv = 1, so that if the first-order phase transition interpretation holds, the expectation

value should go from approximately −1 to 1. Corrections to the pure ±1 behavior seen

in figure 3 arise from domain walls and fluctuations present in the condensates. However,

we clearly see that in the absence of Floquet modes this intuition holds, while when the

Floquet modes are present the transition to 〈cosϕ〉V ≈ 1 is lost and instead we end up with

〈cosϕ〉V ≈ 0. This latter behaviour is what we expect if the relative phase is randomly

distributed.

Having examined the evolution of the relative condensate phase, we now turn to the

local density fluctuations. This will allow us to study two interesting points regarding the

validity of the relativistic scalar field interpretation of the condensate dynamics. First,

as outlined in section 3, the scalar field description rests on integrating out the density

perturbations to quadratic order to generate a kinetic term for the relative phase phonons.

This step will be invalid if the density fluctuations become large as a result of the Floquet

instability. In the linear regime, relative density perturbations grow commensurate with the

relative phase perturbations for the exponentially unstable modes, and we therefore expect

that this assumption will be badly violated in the case where Floquet instabilities remain.

Second, in the linear regime the total and relative phase perturbations decouple (when

expanded around either the false or true vacuum). This decoupling property was essential

4To ensure that the dynamics of the short-wavelength modes is properly resolved, we have chosen the

lattice cutoff small enough to saturate the convergence in both dt and dx (see appendix D), and ensure the

Noether charges are preserved to the O(10−15) level. To demonstrate the change in behavior occurs from

effects localized in the Floquet band, we also ran a simulation with
√
gsnmdx

~ ≈ 1.79 and
~knyq√
gsnm

≈ 1.75.

This grid just resolves the full Floquet band, and is only a O(10)% change in the grid spacing compared

to the left panel of figure 3. The qualitative behavior matches that of the right panel of figure 3, with the

false vacuum state being lost due the Floquet modes.
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Figure 3. A demonstration of the drastic change in dynamics induced by the eventual nonlinear

interactions of the exponentially growing Floquet modes relative to expectations from a time-

averaged analysis. Here we plot the evolution of the cosine of the relative phase cos ϕ for two choices

of the lattice spacing (i.e., Nyquist frequency) with the initial field profiles and model parameters

held fixed. We have isolated the effects of the Floquet modes by choosing the lattice spacing to

either exclude (left) or include (right) the exponentially unstable modes within the resolved modes

of the lattice. In the left panel
~knyq√
gsn̄m

= 1.66 is just below the lower edge of the instability band,

while in the right panel
~knyq√
gsn̄m

= 26.53, which is sufficiently far above the upper edge to obtain good

convergence of the solution. Laplacian derivatives were estimated using a Fourier pseudospectral

scheme so that the effective lattice wavenumber and continuum wavenumber agree for all resolved

modes on the numerical grid.

in truncating the total phase dynamics to obtain an effective action for the relative phase

alone.5 As we show below, in the absence of the Floquet modes, both the small amplitude

and decoupling approximations hold throughout the simulation. However, they are both

broken as soon as the dynamics of the Floquet band is considered.

Figure 5 shows the evolution of the relative density between the two condensates for a

simulation without (left) and a simulation with (right) the unstable Floquet band present.

The simulations used correspond to the left and right panels of figure 3. As expected, in the

absence of the Floquet instability, the fluctuations remain small throughout the evolution.

We also note that the locations of the bubble walls and collision regions evident in the

relative phase also manifest as coherent fluctuations in the relative density. Meanwhile,

when the Floquet modes are present the evolution is dramatically different. At early

times, the evolution matches that of the simulation without the Floquet band. However,

at gsn̄
~ t ∼ 100, O(1) fluctuations of short wavelengths dominate the evolution, indicating a

breakdown of the interpretation in terms of a relativistic scalar field.

5As mentioned above, the emergence of the relative phase as the key tunneling variable comes directly

from the Hamiltonian term proportional to ν, and thus holds to nonlinear order as well. Therefore, the

decoupling of the relative and total phase phonons allows for a simpler treatment of single field tunneling,

as opposed to a more complex two field problem.
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ϕ
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~−1√gsn̄m dx

1.89 0.12

Figure 4. Evolution of the spatial average 〈cosϕ〉V for the simulations shown in figure 3. The

simulation without the unstable Floquet modes is shown in solid blue, and with the unstable modes

in dashed orange. For the false vacuum interpretation, this quantity should evolve from being nearly

−1 to being close to 1. Because of the nonlinear nature of cosϕ, there will be some offset from the

true and false vacuum values in the expectation value. However, while the case without Floquet

modes shows clear evidence of the phase transition occuring, this does not occur for the simulations

that resolve the Floquet band, where the mean instead goes to roughly 0. For reference, the false

vacuum (ϕfv), true vacuum (ϕtv), and random phase (〈ϕ〉V) results are shown as dotted gray lines.
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Figure 5. Time-evolution of relative density perturbations for the same simulations as figure 3. In

the absence of the rapidly growing short-wavelength modes (left), we see that the relative density

perturbations remain small throughout the evolution. Additionally, the highly dynamical regions

where the relative phase deviates strongly from either the false or true vacuum (i.e. in the domain

walls) are visible as coherent spatially localized fluctuations in the relative number density. Mean-

while, with the rapidly growing short-wavelength modes (right), the fluctuations instead become

O(1) and no trace of any bubble-like structures remain.
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Figure 6. Manifestation of the Floquet instability in the total number density for the same pair

of simulations as figure 3. As before, we see that the presence or absence of the Floquet modes

radically alters the behavior of the system. However, unlike the relative phase, there is no trace of

the bubble walls and collision regions, providing an indication of the decoupling of the relative and

total density phonons.

In figure 6 we instead plot the evolution of the total condensate densities. As with the

relative density fluctuations, we see stable behavior in the absence of the Floquet modes.

Unlike the case of the relative density fluctuations, we see no evidence for the bubbles in

the evolution of the total density. This indicates that, in the absence of the exponentially

growing modes, the relative and total phonons remain decoupled. However, as soon as

the Floquet dynamics are correctly captured by the simulations, large fluctuations in the

total particle density develop as well. Since the total density phonons are stable in linear

perturbation theory, this indicates that the growth of % fluctuations is driven by nonlinear

scattering with the growing Floquet modes of ε. Thus, the decoupling between the total

and relative phonons is destroyed by the presence of the Floquet resonance.

Finally, figure 7 shows the RMS fluctuations in the relative and total density fluctu-

ations, normalized to the (constant) mean total density over the lattice. This provides

an alternative visualization of the breakdown of the effective scalar field description, and

subsequent loss of decoupling between the relative and total phonons. In particular, in the

absence of the Floquet instability, the fluctuation amplitude remains stable throughout the

course of the simulations. However, as soon as the Floquet band is present, we see a rapid

initial growth in the fluctuations of both the relative and total energy densities. The growth

slows somewhat at gsn̄
~ t ∼ 100, consistent with partial quenching of the linear instability

by nonlinear mode-mode coupling as seen in the real space evolution above. Further, the

growth of fluctuations in the total density slightly lags the growth in the relative density.

Such a lag is consistent with total density fluctuations being induced by nonlinear scatter-

ing with the exponentially growing relative density fluctuations. This further shows that

the loss of decoupling between the total and relative phonons occurs because of nonlinear

interactions arising from the rapid growth of Floquet modes in the linear regime.
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Figure 7. Time evolution of the RMS fluctations (σε/%) in both the relative (blue, red) and total

(orange, green) number densities of the condensates. We consider the same simulations as figure 3,

with the coarse simulation missing the Floquet band given by solid lines, and the finer simulation

including the Floquet band shown with dashed lines. In the absence of the Floquet band, the

fluctuations maintain a stable amplitude, while they grow rapidly in the presence of the Floquet

instability. Additionally, the relative density perturbations grow first, directly from the linear

Floquet instability. Subsequently, the total density perturbations begin to grow (at a faster rate)

as nonlinear interactions transfer perturbations in the relative phonon sector into the total phonon

sector. The growth rate quenches slightly at gsn̄
~ t ∼ 100, when the fluctuations begin to interact

through strong mode-mode coupling.

In this section, we have investigated the effects of Floquet instabilities arising in the

analog false vacuum decay proposal of Fialko et al. [14, 15], which were originally pointed

out in Braden et al. [16]. The existence of these instabilities leads to a complete break-

down of the analogy between the BEC evolution and a relativistic scalar field, and thus

spoils the false vacuum analogy. Therefore, the assumption that the condensates obey the

coupled GPEs at all scales is inconsistent with the creation of a false vacuum by external

periodic modulation of a coupling constant. Meanwhile, in cases where the unstable modes

are artificially removed from the dynamics, the false vacuum interpretation is restored, at

least at a qualitative level. Although this presents an obstacle to successfully realizing

an analog false vacuum decay experiment, it is important to remember that the coupled

GPEs are an approximation to the full dynamics of the BECs. In an actual experiment,

additional dynamics will be present to modify the GPE description. From the viewpoint

of the successfully realizing false vacuum decay in the current proposal, we require new

short-wavelength physics not captured by the GPE to enter at length scales longer than

λunstable = 2πk−1
unstable. This new physics must remove the exponentially growing Floquet

modes, while simultaneously exerting a minimal influence on the dynamics of the bubble-

forming modes. Two examples of how this may occur are: damping of the growing modes,

and an effective projection of the modes to remove them from long-wavelength conden-

sate dynamics. A number of physical mechanisms can lead to these types of effective
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modifications to the coupled GPEs. Due to the finite interatomic spacing, the continuum

description assumed by the GPEs fails completely for wavelengths of order this spacing,

guaranteeing all shorter wavelength modes will effectively be projected from the system.

Further, we expect the effects of this spacing and the finite mean free path of the atoms

to induce viscous like corrections at somewhat longer wavelengths, similar to the case of

a normal fluid, leading to the damping of high-wavenumber modes. Similarly, interactions

between the condensate and the cloud of uncondensed particles will induce damping of

condensate modes, which may help to counteract the Floquet instability. Finally, a par-

ticularly intriguing possibility is the induce synthetic dissipation into the system, allowing

for a tunable cutoff in the GPE description [20]. However, we expect the effects of real-

istic physical corrections will also leak into the dynamics of the longer wavelength modes

needed to nucleate the bubbles. Therefore, detailed analysis of the nonlinear dynamics is

required to understand how the corrections needed to tame the Floquet instabilities mod-

ify the interpretation of the bubble nucleation dynamics. We leave such an exploration to

future work.

5 First and second order phase transitions of the analog false vacuum

In the previous section we confirmed the presence of linear Floquet instabilities within the

GPE description of the analog false vacuum cold atom BEC proposal. Using nonlinear

simulations, we further demonstrated the need to consider physical corrections beyond the

use of coupled GPEs and the truncated Wigner approximation in order to preserve the false

vacuum interpretation. We briefly indicated some physical mechanisms that may act to

effectively remove the instabilities from the system. We left the complex issues of detailed

modeling of these mechanisms, and how they impact the interpretation in terms of a

relativistic scalar to future work. To help motivate these future studies, we now investigate

the nonlinear dynamics under the assumption that we can find an experimental realization

where the Floquet modes have been removed and the truncated Wigner approximation is

valid, in which case the effective scalar field description should hold. A range of dynamical

symmetry breaking phenomena can be arranged, including both second- and first-order

phase transitions. In each case, the transition is driven by the dynamics of quantum

fluctuations, opening the possibility of experimentally testing many fundamental aspects

of quantum field theory.

For simplicity, throughout this section we remove the Floquet modes by setting a hard

lattice cutoff so that the Nyquist frequency is below the Floquet band. However, one should

be aware that the introduction of the finite lattice cutoff can lead to both a numerical pileup

of fluctuation power at the grid scale, and aliasing of short wavelength power into longer

wavelengths. Each of these can significantly modify the nucleation rate of bubbles, and in

the former case can lead to a spurious nucleation of bubbles. This is especially a problem

when the cutoff wavenumber is below that required to properly capture the full profile of

a nucleated bubble. To overcome this limitation, in this section we also take the frequency

of the external driver ~ω
gsn̄

= 3200
√

ν0
gsn̄
≈ 143.11 to be sufficiently large that the Floquet

band occurs at higher wavenumbers than those needed for a convergence of the IR modes.
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The grid spacing for all simulations is
√
gsn̄m
~ = 25

2048

√
gsn̄
ν0

, which is sufficiently converged

that the simulation results are indistinguishable by eye as the grid spacing is varied. This

is simply a numerical trick. In a real experiment one must ensure that choosing a large

driving frequency does not excite additional degrees of freedom, such as internal states

of the trapped atoms or higher harmonics of the trap. However, our goal is to highlight

some of the interesting behavior that can be obtained in a pristine theoretical environment,

rather than deal with the many subtleties and additional effects that must be accounted

for in an actual experiment.

As shown in refs. [14–16] and outlined in section 3, the temporal modulation of ν

creates an effective potential for the long-wavelength modes of ϕ

Veff(ϕ) = V0

(
− cosϕ+

λ2

2
sin2 ϕ

)
, (5.1)

illustrated in figure 1, where the parameter

λ = δ

√
2gsn̄

ν0
(5.2)

is experimentally tunable. For λ ≤ 1, ϕ = π is a local maximum, while it is a local

minimum for λ > 1. In the (time-averaged) scalar field interpretation of ϕ, increasing λ

adjusts the field from sitting on top of a hill to sitting in a local minimum. For initial states

localized around the false vacuum ϕ = π, we expect two distinct mechanisms by which the

false vacuum state can decay. The value of λ determines which mechanism is relevant.

For λ < 1, modes with k . 2
√
ν0gsn̄
~
√

1− λ2 will experience a tachyonic instability,

We confirmed this at the level of linear perturbation theory in ref. [16], where we also

numerically obtained ν0
gsn̄

and δ dependent corrections. Based on this picture, we expect

that for λ < 1, ϕ falls off the top of the hill through a spinodal instability. This leads to

the rapid creation of a set of domains (with the field localized near either the ϕ = 0 or

ϕ = 2π vacuum) connected by a network of domain walls. Meanwhile, for λ > 1 the local

maxima become local minima of the potential, corresponding to false vacuum states. In

this regime, we obtain a first-order phase transition and the false vacuum decays via the

nucleation of bubbles. Of course, we do not necessarily expect a sharp distinction between

the second-order and first-order phase transitions to occur at λ ≈ 1. In particular, when

0 < λ − 1 � 1, the barrier between the false and true vacuum is narrow and shallow.

Therefore, we expect that in some spatial regions the initial condensate fluctuations will

probe over the barrier of the potential and fall towards the true vacuum. For very shallow

barriers, these transitions happen in a significant fraction of the volume, and rather than

having a few well-defined bubble nucleations, many regions of the true vacuum appear

simultaneously. Such dynamics is intermediate between the tachyonic growth of long-

wavelength modes and the regime of rare well-defined bubble nucleations.

Figure 8 illustrates the nonlinear stabilization of the low-k tachyonic modes by increas-

ing the modulation amplitude δ of the interspecies conversion rate. The top two panels have

λ < 1. We observe the rapid emergence of a dynamically evolving domain wall network,

as expected from the tachyonic growth of the long-wavelength modes. The transitionary
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Figure 8. Stabilization of the relative phase of the two condensates as we increase the modulation

amplitude δ and thus λ = δ
√

2gsn̄/ν0. Here we plot the time evolution of cosϕ for a series of

runs with varying choices of λ. In the false vacuum we have cosϕ = −1, while cosϕ = 1 in any

of the true vacua. From top left to bottom right, we have λ = 0, 0.9, 1, 1.1, 1.3, and 1.5. We see

the transition from a spinodal instability (for λ � 1) into a regime of metastability dominated by

bubble nucleation for λ� 1, with a corresponding transitionary regime around λ ∼ 1.

behaviour between first- and second-order phase transitions is seen in the middle panels

of figure 8. Finally, well-defined bubble nucleations appear for λ sufficiently larger than

one, as seen in the bottom panels of the figure.

Figure 8 also illustrates the dependence of the false vacuum decay rate on the experi-

mentally tunable parameter λ. This effect appears in the figure as a delay in the time at

which bubbles nucleate as the value of λ is increased,6 and allows for a tuning of typical

6This is clear in figure 8 since we start from the same realization of the initial fields in each case. In

the more general case, where the initial conditions are also sampled, then this effect would only be evident

upon considering an ensemble of time-evolutions, rather than direct comparison of individual simulations.

– 19 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
4

0 100 200 300

~−1gsn̄ t

0.0

0.1

0.2

σ
ε
,2
σ
̺

σε σ2̺

Figure 9. The evolution of the RMS of the relative (blue solid) and total (orange dashed) density

perturbations for the λ = 0 simulation in figure 8. Although initially the amplitude of the relative

density perturbations grow, they saturate before becoming strongly nonlinear. The total density

perturbations, on the other hand, maintain a stable amplitude throughout the simulation.

decay time relative to the expected experimental lifetime of the condensate. Additionally,

the decay rate is sensitive to the number density of condensed atoms, which changes the

amplitude of fluctuations in ψi relative to the absolute mean. Since the RMS amplitude

of fluctuations is set by ~ through the uncertainty principle, this is analogous to adjusting

the value of ~. This may provide a window to adjust the expected decay rate while holding

the effective scalar potential (i.e., the scalar field theory) fixed.

5.1 Validity of scalar field interpretation and phonon decoupling

As we saw in section 4, when Floquet instabilities induced by the external driving of the

system are present both the phase and local number density fluctuations grow rapidly. This

invalidates the assumption that density fluctuations are small, which is needed to derive the

effective scalar field description. We now investigate whether or not a similar breakdown

occurs when the short-wavelength Floquet modes have been excised from the evolution,

but an exponential instability remains in the long-wavelength modes. In particular, in the

regime of spinodal instability (λ < 1), the exponentially growing long-wavelength modes

that destabilize the local maximum are simply another band of exponentially unstable linear

modes. It is therefore important to explicitly check the validity of various approximations

in this regime.

Figure 9 shows the evolution of the RMS of both the total (%) and relative (ε) energy

densities for the λ = 0 simulation. Although initially the relative RMS of the perturbations

grows, unlike in the previous section it saturates before becoming order one. Further, the

fluctuations in the total density remain fairly stable throughout the simulation. It thus

appears that the effective relativistic scalar field interpretation of these simulations will

continue to hold (at least at leading order), and that the total and relative phonons remain

decoupled for the entire evolution.
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Figure 10. Evolution of the relative (left) and total (right) energy densities for the λ = 0 simulation

in figure 8. We see evidence of the complex domain wall network that develops in the relative phase

in the relative density perturbations. However, there is no apparent signature of this dynamics in

the total density fluctuations, indicating that the relative and total phonons remain decoupled in

this case.

This is further illustrated by the evolution of the relative and total densities within the

same λ = 0 simulation, seen in figure 10. Comparing to figure 3, we see that the density

perturbations remain significantly smaller than in the case of excitations in the higher order

instability band. Additionally, large coherent structures in the relative density appear,

presumably due to the numerous coherent domain walls in the relative phase. However, no

such structures appear in the total density fluctuations. Combined with the lack of growth

in these fluctuations overall, this suggests that the total phase phonons remain decoupled

from the relative phase phonons in this case as well.

6 Conclusions

In this paper, we investigated the nonlinear stability of analog false vacuum decay exper-

iments in cold atom Bose-Einstein condensates. In particular, we first showed that using

the coupled Gross-Pitaevskii equations as a physical model for the evolution of the conden-

sates is inconsistent with the generation of an effective false vacuum through modulation

of the interspecies conversion rate. To do this, we confirmed the presence of the linear Flo-

quet instabilities studied in ref. [16] in full nonlinear simulations. We then demonstrated

that excitation of these modes leads to a complete breakdown of the effective scalar field

description, and therefore the false vacuum decay analogy. Since the exponentially unsta-

ble modes appear at nonzero wavenumber, it is possible that their effects can be removed

from the system if the Gross-Pitaevskii equations used to model the condensates break

down at wavelengths above the instability scale. Some of these possible mechanisms were

briefly outlined in section 4. However, this requires modeling of the condensates beyond

the coupled GPEs, and such corrections must be analyzed on a case-by-case basis to de-
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termine whether a given experiment is viable. Further, the original analogy between the

relativistic scalar field and cold atom dynamics was obtained assuming the coupled GPEs

were the correct description. Therefore, the mapping of any corrections to the coupled

GPEs into the scalar field dynamics must also be understood in order to make quantitative

comparisons. Given these complexities, we did not pursue a full study here. Rather, our

results should be used as an indication that care must be exercised when developing analog

cosmological systems using cold atoms.

If feasible, an analog false vacuum system would provide a unique opportunity to

experimentally study fundamental issues in both cosmology and relativistic quantum field

theory. Under the assumption that Floquet modes can be removed, we investigated the

variety of behavior accessible to experiments by tuning the amplitude of the oscillating

interspecies conversion rate. This parameter controls the shape of the potential for the

relative phase, taking a local potential maximum to a local potential minimum. In the

absence of temporal modulation, if the field begins at the local potential maximum, we

demonstrated that the long-wavelength modes of the condensates experience tachyonic

growth, and the initial homogeneous state decays via a spinodal instability. Meanwhile, well

above this critical amplitude we observed the stabilization of the long-wavelength tachyonic

modes and the decay of the metastable state through the formation of domain wall-antiwall

pairs (i.e., one-dimensional bubbles). The transition between these two regimes is not

sharp, but instead near the critical amplitude the decay occurs in an intermediate regime

posessing partial characteristics of both the spinodal and bubble nucleation instabilities. In

each of these regimes, we found that removing the short-wavelength Floquet instability was

sufficient to ensure the density perturbations remain small and the approximate relativistic

scalar field description remains valid. The study of this cross-over behavior is one example

of the type of physical phenomena accessible to the cold atom systems studied in this paper.

Our results show the need for detailed physical modelling of the condensate dynamics

in order to find an experimental system to realize analog false vacuum decay. In future

work, we will investigate corrections to the GPE in specific experimental scenarios in

order to determine if the necessary conditions to remove the Floquet instabilities can in

principle be met. We will also determine the detailed mapping (should one exist) to the

analog scalar field theory. Theoretical work is also necessary to narrow down the specific

observables within the cold atom system (e.g., correlation functions) that will be most

useful for shedding light on theoretical aspects of vacuum decay. Vacuum decay is both

strongly non-linear and strongly quantum mechanical, making it highly likely that we will

learn something truly new from analog false vacuum decay. We believe this is strong

motivation for future investigation.
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A Stochastic semiclassical simulations: the truncated Wigner approxi-

mation

In this appendix we briefly outline our methodology to solve for the dynamics of a two-

component cold atom BEC described by the coupled GPEs. The method, when applied to

the GPE, is widely used in the cold atom community and known as the truncated Wigner

approximation [21]. More cosmologically oriented readers will recognize the spiritual sim-

ilarity with semi-classical scalar field lattice simulations used to study preheating [22–26].

The basic idea is to model quantum fluctuations by sampling realizations of the initial

quantum state as encoded in the Wigner functional. The subsequent complex dynamical

evolution is then treated by solving the classical equations of motion. This amounts to

propagating a classical probability distribution functional on (very high-dimensional) field

space via the method of characteristics. Given this, it is natural to interpret the results

of a single simulation as the outcome of a single experimental realization. This approach

is known to be exact when the field dynamics is linear and the initial state is Gaussian.

In more complicated nonlinear situations, it can sometimes capture the crucial elements of

the dynamics, although the validity must be checked on a case-by-case basis.

Initially, the condensates ψi are assumed to be of the form

ψi(x) = ψ̄i + δψ̂i(x) , (A.1)

where the ψ̄i are background solutions, here taken to be stationary points of the cou-

pled GPEs in the spatially homogeneous limit.7 Quantum corrections to the “classical”

background ψ̄i are modeled by a realization of a Gaussian random field

δψ̂i =
1√
V

∑

k

√
Pi(k)âke

ik·x , (A.2)

where the âk are draws of uncorrelated complex Gaussian random deviates with unit vari-

ance
〈
|âk|2

〉
= 1, and V is the simulation volume. We generate our samples âk using the

7The total phase can experience a linear time-evolution at the stationary points, but we include the

background chemical potential µbg to remove this.
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Box-Mueller transform

âk =

√
− ln(Âk)e

2πiP̂k , (A.3)

where P̂k and Âk are uniform random deviates on the interval [0, 1]. Since the fluctuations

are assumed to be Gaussian, the spectra Pi should match the initial quantum 2-point

statistics8

〈δψ̂i(k)δψ̂j(k
′)〉Q = Pi(k)δijδ(k− k′) . (A.4)

In an experiment, this will depend on the preparation of the initial state; while in a purely

theoretical study it should be adjusted to accurately reflect the physics under investigation.

In particular, these initial fluctuations must be mapped into those of the the relativistic

scalar fields in order to correctly interpret the results in the effective scalar field the-

ory. Some care is need to choose the correct initial fluctuations to reproduce the initial

Minkowski state for the effective scalar field ϕ. To make contact with the previous litera-

ture, here we follow the approach of Fialko et al. [14, 15] and choose P(k) = AΘ(kcut−|k|)
for constant A, resulting in a filtered white noise spectrum for δψ̂k. Considering the

nonlinear transformation into the density and phase variables, we see that this does not

correspond precisely to the standard Minkowski vacuum of the effective relativistic scalar

field. We leave consideration of how this impacts the decay rate, and the appropriate initial

state to properly simulate the false vacuum, to future work.

From this sampled initial configuration, the fields ψi are evolved using the coupled

GPEs. For our numerical scheme, we use a tenth-order accurate Gauss-Legendre inte-

grator (see e.g. refs. [27, 28]) for the temporal evolution, and a collocation based Fourier

pseudospectral approach [29] for spatial discretization. When useful, we also compare with

a second-order accurate finite differencing approach for the spatial discretization, with

∇2f(xi)→ L[f ](xi) ≡
1

2dx2
(f(xi+1)− 2f(xi) + f(xi−1)) (A.5)

and

(∇f(xi))
2 → G[f ](xi) ≡

1

dx2

[
(f(xi+1)− f(xi))

2 + (f(xi−1)− f(xi))
2
]

(A.6)

for an arbitrary scalar function f . In all cases, we enforce periodic boundary conditions,

explicitly in the case of a finite-difference stencil, and implicitly when using a Fourier

pseudospectral method.

B Dimensionless variables

In this appendix we briefly present the dimensionless form of our evolution equations and

summarize the most important dynamical timescales. It is convenient to define dimension-

less time, space, and condensate variables (here denoted by a bar),

t̄ = ωpt, x̄ = κpx, and ψ̄ =
√

Λψ, (B.1)

8An obvious extension allows this to be extended to incorporate correlations between the condensates.

– 24 –



J
H
E
P
1
0
(
2
0
1
9
)
1
7
4

through the introduction of three numerical scales ωp, κp and Λ with dimensions of T−1,

L−1, and Ld respectively. It is also convenient to introduce the numerical sound speed (cp)

and energy (Ep),

cp ≡
ωp

κp
and Ep = ~ωp . (B.2)

Expressed in these variables, the dimensionless Hamiltonian is

H̄ =
1

Λκdp

∫
ddx̄

1

~ωp

(
(~κp)2

2mi

∣∣∇̄ψ̄i
∣∣2 +

gij
2Λ

∣∣ψ̄i
∣∣2 ∣∣ψ̄j

∣∣2 − νij
2

[
ψ̄iψ̄

∗
j + ψ̄∗i ψ̄j

])
. (B.3)

The (dimensionless) combination Λκdp sets the overall scale of the numerical Hamiltonian,

and thus does not enter directly into the evolution equations. It does, however, set the

overall scale of the initial dimensionless fluctuations δψ̄i. Meanwhile, the numerical en-

ergy ~ωp can be used to transform each of the remaining dimensionful couplings into a

dimensionless coupling constant.

Alternatively, working directly with the equations of motion, we have

i
dψ̄i
dt̄

= −
~κ2

p

2miωp
∇̄2ψ̄i +

gij
~ωpΛ

∣∣ψ̄j
∣∣2 ψ̄i −

νij
~ωp

ψ̄j = − p̄
2
i

2
∇̄2ψ̄i + ḡij

∣∣ψ̄j
∣∣2 ψ̄i − ν̄ijψ̄j . (B.4)

We have introduced the dimensionless numerical coefficients

p̄2
i ≡

~2κ2
p

mi~ωp
=

~ωp

mic2
p

, ḡij ≡
gij

~ωpΛ
, and ν̄ij ≡

νij
~ωp

. (B.5)

For convenience, we now specialize to the two condensate case, and define

gs ≡
g11 + g22

2
, δg ≡ g22 − g11, gc = g12, ν = ν12, and m ≡ m1 +m2

2
. (B.6)

For our numerical simulations, we scale the condensates by their average background den-

sities n̄, set the numerical sound speed to be the propagation speed of the relative phase

phonons, and the dimensionless nonlinear potential coupling to unity

∣∣〈ψ̄1〉V
∣∣2 +

∣∣〈ψ̄2〉V
∣∣2

2
= 1, cp = csound =

√
gsn̄

m
, and ḡs = 1 . (B.7)

We immediately see

Λ = n̄−1, ~ωp = gsΛ
−1 = gsn̄, and ~κp =

√
gsm

n̄Λ2
=
√
gsn̄m , (B.8)

so that the condensates are measured in units of their background density (3.4), and

positions in units of the healing length (see (4.2)). The resulting dimensionless equations

of motion suitable for numerical simulations are

i
dψ̄1

dt̄
= −1

2

(
m

m1

)
∇̄2ψ̄1 +

(
1− δḡ

2

) ∣∣ψ̄1

∣∣2 ψ̄1 + ḡc

∣∣ψ̄2

∣∣2 ψ̄1 − ν̄ψ̄2 (B.9a)

i
dψ̄2

dt̄
= −1

2

(
m

m2

)
∇̄2ψ̄2 +

(
1 +

δḡ

2

) ∣∣ψ̄2

∣∣2 ψ̄2 + ḡc

∣∣ψ̄1

∣∣2 ψ̄2 − ν̄ψ̄1 . (B.9b)
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The commutator for the scaled field variables is

[ψ̄i(x̄), ψ̄†j(x̄
′)] = Λκdpδijδ(x̄− x̄′) (B.10)

which we can write on a discrete lattice with lattice sites x̄m

[ψ̄i(x̄m), ψ̄†j(x̄n)] =
Λκdp
dx̄d

δijδmn = Nd
lat

Λκdp
L̄d

δijδmn . (B.11)

For our particular normalization of the fields (B.8), the relative amplitude of dimensionless

fluctuations in the condensate scales with the total number of condensed particles as N−1/2,

[ψ̄i(x̄m), ψ̄†j(x̄n)] =
Nd

lat

N
δijδmn . (B.12)

Since the commutator sets the overall amplitude of vacuum fluctuations through the un-

certainty relation, the relative amplitude of density fluctuations to the density in the zero

mode scales as N−1.

B.1 Comparison with dimensionless units of Fialko et al.

To ease comparison with previous work, here we also present the dimensionless units used

in Fialko et al. [14, 15] and translate into the notation of our paper. To avoid notational

confusion, we denote the various normalization constants of Fialko et al. with superscript
F and the corresponding dimensionless quantites by ·̄F. As above, the dimenionless units in

our paper are denoted by an overbar ·̄. In those papers, they continue to set the numerical

sound speed to the propagation speed of the relative phase fluctuations. However, they

measure time in units of the oscillation frequency ω0 = 2
√
ν0gsn̄
~ of the effective scalar field

associated with the relative phase, rather than choosing to measure position in units of

the healing length. The condensate wavefunctions are further normalized to the inverse

numerical volume scale
(
κF

F

)−d
. The corresponding numerical scales are related as

ωF
P = 2

√
ν̄0ωP, κF

P = 2
√
ν̄0κP, and ΛF =

(
κF

P

)−1
= Λ

~n̄
2
√
ν0m

. (B.13)

Finally, they measure ν0 in units of gsn̄ instead of ~ωF
P, so that

ν̄0
F = ν̄0 . (B.14)

C Demonstration of linearity of Floquet modes and the effective discrete

lattice wavenumber

In section 4 we demonstrated the presence of new short-wavelength dynamics that were

neglected in previous studies of analog false vacuum decay. This new dynamics destroyed

the effective scalar field description, and also resulted in a loss of the phase transition as

measured by the mean value of cosϕ. Since this dramatic change occurred at precisely the

wavenumbers predicted by a Floquet analysis of the linear perturbations, we concluded

that this was driven by the Floquet instability. We now explicitly demonstrate that the
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new short-wavelength dynamics are indeed a result of a linear instability. To do this, we

rerun the simulations in figure 3 using a second-order accurate centered finite-differencing

approximation for the Laplacian instead of a Fourier pseudeospectral approximation. The

resulting evolution of the relative phase is shown in figure 11.

As outlined in the subsection below, the effective wavenumber felt by linear fluctuations

is determined by the choice of discrete Laplacian. In general it differs from the continuum

value as shown in figure 12. In particular, for the Nyquist mode, the effective linear

wavenumber for the second-order accurate Laplacian stencil is 2
π times the continuum

wavenumber. Since Floquet instabilities arise from linear dynamics, on the lattice the

Floquet modes will feel this effective wavenumber. In contrast, nonlinear interactions not

involving derivatives are sensitive to the continuum wavenumber of the fluctuations, and

therefore they are not directly influenced by the choice of spatial discretization. Therefore,

if the new dynamics seen with decreasing lattice spacing were associated with nonlinear

interactions amongst the fluctuations, it would appear at the same Nyquist frequency,

regardless of the choice of Laplacian stencil. For linear fluctuations, the dynamics will

instead appear at different wavenumbers determined by the effective linear wavenumber

associated with the choice of discrete Laplacian. As seen in figure 11, the emergence

of the small-scale instability is sensitive to the effective lattice wavenumber, indicating

they arise from linear perturbation dynamics. Moreover, they appear at precisely the

wavenumber predicted by (linear) Floquet theory. This provides very strong evidence that

the effects we are seeing are a well understood physical effect associated with evolution by

the coupled GPEs.

C.1 Effective lattice wavenumber for discrete Laplacian stencils

In this subsection we briefly derive the linear dispersion relationship associated with a dis-

crete approximation to the Laplacian operator. The distortion of the effective wavenumber

for linear fluctuations from the continuum limit by the use of finite differencing stencil is

well-known, but is presented here for completeness.

Consider a d-dimensional discrete lattice with sites x~m labelled by the vector index

~m = (m1,m2, . . . ,md). We will denote function values at position x~m by f~m ≡ f(x~m). For

simplicity, assume that the lattice sites are arranged in a rectangular grid with uniform

lattice spacing dx, so that x~m = ~mdx. Consider finite-difference stencils for the Laplacian

operator of the form

∇2f(x~m) ≈ L(D)[f ](x~m) ≡ 1

dx2

∑

α

cα [f(x~m+α)− f(x~m)] (C.1)

with the vector indices α ∈ {(α1, α2, . . . , αd), αi = −N
2 ,−N

2 + 1, . . . , N2 − 1}. The choice of

coefficients cα specify the stencil. Now consider a linear operator Ô of the form

Ô[f ] = −L(D)[f ] + Cf ≈
(
−∇2 + C

)
f (C.2)

with C a constant. For simplicity, we consider only a single function f defined on our

lattice. The generalization to many linearly coupled fields is straightforward. Taking a
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Figure 11. Analogous simulations to the left and right panels of figure 3, except using a finite-

differencing approximation for the Laplacian instead of a Fourier pseudospectral approximation.

In the left panel we take the Nyquist frequency
~knyq√
gsn̄m

= 2.60 so that the effective linear lattice

frequency keff = 2
πknyq ≈ 1.66 is just below the Floquet instability band. Meanwhile, in the right

panel we take
~knyq√
gsn̄m

= 2.75, with effective linear lattice frequency keff ≈ 1.75 just encompassing

the full Nyquist band. Here we do not consider a fully resolved simulation to explicitly illustrate

that the breakdown of bubble nucleation description is associated solely with the inclusion of the

Floquet band. Comparing the two panels, we clearly see that the short-wavelength dynamics is

associated with the effective frequency of linear fluctuations on the lattice shown in figure 12.

discrete Fourier transform of (C.2), we obtain in one-dimension

Õ[f ](k) ≡
∑

~m

eik·x~m
(
−L(D)

i [f ] + Cfi
)

=

(
1

dx2

∑

α

cα

[
1− eik·αdx

]
+ C

)
f̃k (C.3)

with

f̃k ≡
∑

~m

eik·x~mf(x~m) . (C.4)

In the continuum, the r.h.s. of (C.3) would be (k2 + C)f̃k, so we identify an effective

wavenumber keff(k) associated with the Laplacian stencil as a function of the continuum

wavenumber k

k2
eff(k) =

1

dx2

∑

α

cα

(
1− eik·αdx

)

=
1

dx2

∑

α

[
cα + c−α

2

(
1− cos

(
π
k ·α
knyq

))
− icα − c−α

2
sin

(
π
k ·α
knyq

)]
, (C.5)

where knyq = π
dx is the Nyquist wavenumber. To avoid spurious numerical damping associ-

ated with asymmetric stencils, we use a symmetric stencil cα = c−α so that the imaginary

contribution vanishes, and we have

k2
eff(k)

k2
nyq

=
1

π2

∑

α

cα

[
1− cos

(
π
k ·α
knyq

)]
. (C.6)
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Figure 12. Effective wavenumber (defined in (C.6)) for a second (blue dashed), fourth (orange dot-

dashed), and sixth (green dotted) order accurate symmetric discrete Laplacian stencil as a function

of the true wavenumber in one-dimension. For comparison, we also plot the relationship for the

pseudospectral stencil (gray solid) up to the Nyquist frequency (labelled as O(dxN )), which matches

the continuum value for all wavenumbers below the Nyquist.

In figure 12, we show this effective wavenumber for several low-order symmetric one-

dimensional Laplacian stencils.

We also note one further complication to the picture above. Our code evolves the con-

densate fields ψi, and the numerical Laplacian is thus defined to act directly on these fields

rather than the densities ρi and phases φi. However, our analytic derivation of the Floquet

instability was done in the density and phase variables. Because of the nonlinear trans-

formation between these sets of variables, additional distortions to the required numerical

stencils appear in the equations of motion for ρi and φi. However, these distortions vanish

in the limit of strictly linear inhomogeneities. The excellent match between our analytic

predictions for the location of the Floquet band and the finite-differencing results is thus

even further evidence that the new physics seen in our nonlinear simulations is simply the

manifestation of the linear Floquet instability.

D Numerical convergence and conservation tests

In this appendix we present a variety of convergence and consistency tests to illustrate

the precision of our numerical approach. We provide two tests, including: a direct test of

numerical convergence with variation of either the time step dt or grid spacing dx; and a

demonstration that relevant conserved charges are time-invariant. These tests will demon-

strate that we are correctly solving for the condensate dynamics under the assumption they

are described by the coupled GPEs. Of course, more precise physical modeling will result

in corrections to the GPE description. However, these corrections are not modeled by the

errors introduced by approximate numerical methods.
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Throughout this appendix, we consider convergence properties for two fiducial simu-

lations presented in the main text: the simulation in the top left panel of figure 8 (with

λ = 0 and no Floquet modes), and the simulation shown in figure 3 (with λ = 1.3 and

Floquet modes). For reference, the parameters are

ν0

gsn̄
= 2× 10−3 , λ = 0 , (D.1)

and
ν0

gsn̄
= 2× 10−3 , λ = 1.3 ,

ω

gsn̄
= 50× 2

√
ν0

gsn̄
≈ 4.47 , (D.2)

respectively. The initial conditions for each simulation (including the particular realization

of the fluctuations) were the same. The former simulation doesn’t possess a false vacuum,

and thus experiences a spinodal instability as shown in section 5 rather than nucleating

bubbles. However, by removing the explicit time-dependence, the energy of the system will

be conserved and thus provide us an additional diagnostic tool for testing our numerics.

As well, the Floquet instabilities will not be present in this case, allowing spatial conver-

gence to be tested in a much simpler way. In order to allow a direct comparison between

simulations with different time steps or grid spacings, the initial conditions are identical

for each simulation. There are several dynamical timescales that must be resolved by our

choice of timestep dt. In the linear regime, these are roughly the driving frequency ω, the

linear frequency of the Nyquist mode for the total (ωtot) and relative (ωrel) phonons, and

the growth rate of the Floquet modes.9 The free oscillation frequencies of the Nyquist

modes can be easily obtained (see Braden et al. [16])

~ωrel

gsn̄
= 4

√
~2k2

nyq

4gsn̄m
− ν0

gsn̄

√
1 +

~2k2
nyq

4gsn̄m
− ν0

gsn̄
(D.3a)

~ωtot

gsn̄
=

~knyq√
gsn̄m

√
1 +

~2k2
nyq

4gsn̄m
. (D.3b)

Since ν0
gsn̄
� 1, we have ωrel ≈ ωtot. To obtain spatial resolution, we will be interested in

the limit where the Floquet band is below the Nyquist mode, which occurs roughly when

ω = 2ωrel. Therefore, for spatially resolved simulations, we expect that ωtot and ωrel will

dominate the temporal convergence properties. Of course, once the fields become strongly

nonlinear, new timescales may emerge, and the interactions between different modes may

modify the effective oscillation frequencies much like plasma effects. However, we will take

the linear scales given above as a guideline.

D.1 Direct convergence tests

First we show direct pointwise convergence tests with respect to changes in both the

time step dt and grid spacing dx. These demonstrate the rapid convergence displayed

by our Gauss-Legendre time stepping and pseudospectral discretization, respectively. To

9Technically, the oscillation frequencies should be obtained from the imaginary parts of the Floquet

exponents, but ωtot and ωrel can be used as reasonable proxies.
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explore pointwise convergence, we consider the following norm between two simulations

ψ(n) and ψ(n+1)

∣∣∣ψ(n+1) − ψ(n)
∣∣∣
max
≡ max

{∣∣∣ψ(n+1)(xi)− ψ(n)(xi)
∣∣∣ : xi ∈ L

}
, (D.4)

which measures the maximal pointwise difference between the two simulations over the

entire simulation volume. Here, the superscript (n) labels the simulations, and L is a col-

lection of spatial points at which to evaluate our functions. In our convergence testing, we

will consider differences between simulations in which either the time step dt or grid spac-

ing dx differ by a factor of 2, while holding the grid spacing or time step fixed respectively.

When only the time step is varied, the spatial grids match exactly, and we simply have

to ensure that we compare simulations at the same time. For our equally spaced Fourier

collocation grid, each subsequent spatial grid refinement is a superset of the previous one,

so the comparison can be done directly on the coarser grid. Although we expect to see

rapid convergence because of our use of highly accurate numerical methods, we also expect

the presence of exponentially growing Floquet modes to slowly degrade the quality of the

convergence for two reasons. First, our temporal integrator is symplectic, and thus pre-

serves phase space volumes. For linear fluctuations, this corresponds to accurately tracking

the overall amplitude of oscillating Fourier modes. However, the numerical tradeoff for this

is a small error in the oscillation phase, and a corresponding error in pointwise compar-

isons at a fixed time. For exponentially growing modes, this error will grow with time

as the modes grow in amplitude. For highly nonlinear fluctuations, there will generally

be localized stuctures that will propagate through the simulation volume. Small temporal

phase errors lead to small changes in the shapes and velocities of these structures. Over

time, the same structure present in two simulations with different choices of dt may follow

a slightly different spacetime path, leading to a growing pointwise difference between the

simulations.

Below we show the maximal pointwise norm (D.4) between simulation pairs with either

dt (figure 13) or dx (figure 14) varied. As the time step is decreased, initially we see the

pointwise error decrease by a factor of 210 ∼ 1000, as expected for a tenth-order accurate

integrator. This eventually saturates at a level of O(10−13) for the simulations without

Floquet modes present, while the saturation level increases with time in the presence of

Floquet modes. As explained above, this is not unexpected due to the exponential growth

of the Fourier modes, and the tradeoff made in temporal phase and amplitude accuracy

described above. To further identify the exponentially growing Floquet modes as the root

cause of the time-dependent saturation of the temporal accuracy, we also performed the

same temporal convergence tests for
√
gsn̄m
~ dx = 1.89 and

√
gsn̄m
~ dx = 1.79 for the λ = 1.3

simulation, corresponding to a grid-spacing that just excludes and just includes the unstable

Floquet band. We found a growing saturation level for the latter case, while the convergence

plateaued in a manner similar to the λ = 0 simulation for the former case. As a test that

these errors did not arise from aliasing into long-wavelength fluctuations, we performed the

corresponding convergence tests with a finite-differencing Laplacian stencil (which does not

lead to aliasing) and found the same growth in the saturation level.
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Figure 13. Pointwise convergence of our numerical code as the numerical time step dt is varied.

The colors run from yellow to blue as the time step dt is decreased. Left : convergence properties

for a system undergoing spinodal instability with Floquet modes induced by external coupling

modulation. Right : convergence for a proposed false vacuum simulation including the effects of

exponentially growing Floquet modes. In each case, the O
(
dt10

)
convergence is clearly present for

the longer choices time steps dt. For smaller values of dt, however, we instead see a saturation due

the effects of machine precision roundoff errors. In each case, we have
√
gsn̄m
~ dx = 50

1024

√
gsn̄
4ν0

and
ωdt
2π = 1

2n for n = 4, 5, 6, 7, 8, where n refers to the smaller of the two time steps in the comparison

between simulations.

Meanwhile, as the spatial grid spacing is decreased we see an exponential improvement

in the pointwise convergence owing to our use of a pseudospectral scheme. In particular,

for the simulations shown here, an increase in the number of grid points by a factor of 8

leads to over a ten order of magnitude improvement in convergence without the chaotic

behaviour induced by the Floquet band. As with the temporal convergence, we see the

saturation level increase with time for the simulation including Floquet modes.

D.2 Conserved charge preservation

The previous subsection explicitly demonstrated the rapid convergence properties of our

temporal and spatial discretization schemes. We also observed a saturation of the pointwise

accuracy of our simulations, which we believe arises from the exponential linear growth of

fluctuation amplitudes and the resulting chaotic dynamics in the full field space. Since we

lack an exact analytic solution to compare to, technically these results demonstrate that

we are converging to a solution, but not necessarily the correct solution of the equations

of motion. To demonstrate that we are indeed solving the coupled GPEs, we now show

that our numerical scheme preserves the various conserved quantities of the continuum

equations. As emphasized above, the goal of this work is to explicitly demonstrate the

need for modeling of the short wavelength behavior of the condensate, not to explore

how these corrections modify the false vacuum decay picture. Therefore, we work under

the assumption that the coupled GPEs are indeed the correct evolution equations. Of
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Figure 14. Pointwise convergence of our numerical code as the numerical grid spacing dx is varied

for a simulation of a second-order phase transition without Floquet modes (left) and the proposed

false vacuum decay setup with Floquet modes (right). The colors run from yellow to purple as the

grid spacing dx is decreased. In both cases, we see an extremely rapid convergence to an eventual

saturation level as the grid spacing is decreased. However, while the saturation level is constant

in the absence of the growing Floquet modes, it increases with time when the Floquet modes are

excited. This matches the convergence with the timestep shown in figure 13. As explained in

the main text, this is most likely due to the exponential growth of the Floquet modes combined

with slight numerical errors in the oscillation phase. We have taken
√
gsn̄m
~ dx = 50

295

√
gsn̄
4ν0

1
2n for

n = 1, 2, 3, 4. For each choice of dx, the time-step was taken to ensure saturation of the temporal

convergence.

course, the various phenomenological corrections briefly mentioned in section 4 will lead to

a violation of these conserved charges, but this will be the subject of future work.

When δ = 0, we have the following three locally conserved charges

1. the total condensate particle density % ≡∑i |ψi|2,

2. the total momentum density P ≡ i
2

∑
i

(
∇ψ†iψi − ψ

†
i∇ψi

)
=
∑

i ρi∇φi, and

3. the condensate energy density H ≡∑i

(
~2
2m |∇ψi|

2 + g
2 |ψi|

4
)
− ν

(
ψ†1ψ2 + ψ1ψ

†
2

)
.

These are readily identified, respectively, with invariance of the action under a global

phase rotation of the ψi’s, spatial translations, and time translation. When δ 6= 0 we lose

time translation invariance, and the energy density is no longer conserved. Although not

considered here, if we further consider inhomogeneous condensates evolving in an exter-

nal potential, then the spatial translation invariance will be broken and momentum no

longer conserved. However, even in this limit the total particle number will be conserved,

which is the origin of the ungapped linear fluctuations associated with the total phase
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Figure 15. Left : time evolution of the conserved Noether charges: the total density % (blue solid),

momentum P (orange dashed), and energyH (red dot-dashed). For simplicity, we collectively denote

them by C. We have also removed the initial spatial average Cinit to isolate the temporal variations.

We consider both a time-independent (left) and time-dependent (right) ν. In the former case all of

the quantities are conserved by the equations of motion, while in the latter the energy density (i.e.,

Hamiltonian) is no longer constant due to the explicit time-dependence of the Hamiltonian. In both

cases, we see that our numerical scheme leads to machine-precision conservation of all conserved

charges. This is especially evident for the number density, and total energy density, where discrete

steps from machine roundoff are clearly visible.

phonons.10 In figure 15, we demonstrate the preservation of these conserved quantities

for our fiducial convergence testing simulations. To make a fair comparison, we choose√
gsn̄m
~ dx = 50×2

4720
ν0
gsn̄
≈ 0.19 and gsn̄

~ dt = 2π
256

gsn̄
~ω ≈ 5.49× 10−3 for both simulations. In all

cases, we obtain excellent preservation of all of the Noether charges for the simulations

both with and without the Floquet instability. The results are particularly striking for the

mean total density, where discrete jumps are visible associated with the finite precision of

machine arithmetic. Similar discrete jumps also occur for the energy density for the case

where the Hamiltonian is time-independent. When ν oscillates in time and the Floquet

modes are present in the system, the external driver ν drives exponential growth of the

unstable modes. As a result, energy is injected into the system, leading to a growth in the

mean energy density with time. We verified that this is the case, but do not include the

results in this appendix as here we want to focus on only the conserved charges.

For simplicity, here we have shown the conservation properties for a single choice of

spatial and temporal resolution. However, the accuracy of the conservation laws is sensitive

to the choice of dx and dt. Although not presented here, we also investigated how well

the conserved charges were preserved for the same suite of simulations used in the direct

convergence testing shown in figure 13 and figure 14. From these investigations, we found

that the preservation of the total density % was primarily sensitive to the choice of time-

10In the limit ν = 0, our coupled GPEs decouple into two independent condensates, each satisfying

the nonlinear Schrodinger equation (NLS). Therefore, in this limit the individual condensate densities,

momenta, and energies are conserved. Further, in 1+1-dimensions the NLS is integrable, with an infi-

nite hierarchy of additional conserved quantities. We will not consider this limit here, although how the

introduction of ν leads to the breaking of these conserved quantities is interesting.
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step dt, with little sensitivity to the choice of grid-spacing dx. Meanwhile, the preservation

of the total momentum P had a saturation level with decreasing dt that was sensitive to

the choice of lattice spacing. Finally, the energy density H displays convergence properties

intermediate between the total density and momentum, with more sensitivity to the grid-

spacing dx than the number density, but spatial saturation occuring at a larger grid spacing

than for the momentum.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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