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1  | INTRODUC TION

1.1 | Rationale

This paper investigates the impact of spatial training on  spatial 
skills that have been specifically trained (near transfer), non‐trained 

spatial skills (intermediate transfer) and mathematics skills (far 
transfer). That spatial training interventions can improve math‐
ematical ability in children is supported by evidence that spatial 
ability is malleable, and that there are significant associations be‐
tween mathematics and spatial skills in childhood populations. In a 
meta‐analysis of 217 studies, Uttal et al. (2013) reported an effect 
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Abstract
There is evidence that spatial thinking is malleable, and that spatial and mathemati‐
cal skills are associated (Mix et al. [2016] Journal of Experimental Psychology: General, 
145, 1206; Mix et al. [2017] Journal of Cognition and Development, 18, 465; Uttal et 
al. [2013] Psychological Bulletin, 139, 352). However, few studies have investigated 
transfer of spatial training gains to mathematics outcomes in children, and no known 
studies have compared different modes of spatial instruction (explicit vs. implicit in‐
struction).	Based	on	a	sample	of	250	participants,	this	study	compared	the	effective‐
ness of explicit and implicit spatial instruction in eliciting near transfer (to the specific 
spatial skills trained), intermediate transfer (to untrained spatial skills) and far transfer 
(to	mathematics	domains)	 at	 age	8.	 Spatial	 scaling	 and	mental	 rotation	 skills	were	
chosen as training targets as previous studies have found, and proposed explana‐
tions for, associations between these skills and mathematics in children of this age 
(Journal of Experimental Psychology: General, 145, 2016 and 1206). In this study, spatial 
training led to near, intermediate and far transfer of gains. Mental visualization and 
proportional reasoning were proposed to explain far transfer from mental rotation 
and spatial scaling skills respectively. For most outcomes, except for geometry, there 
was no difference in the effectiveness of implicit (practice with feedback) compared 
to explicit instruction (instructional videos). From a theoretical perspective, the study 
identified a specific causal effect of spatial skills on mathematics skills in children. 
Practically,	the	results	also	highlight	the	potential	of	instructional	videos	as	a	method	
of introducing spatial thinking into the classroom.
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size of almost one half a standard deviation for training stud‐
ies that compared spatial training to control conditions (Hedges 
G = 0.47). The effect size increased to 0.61 (Hedges G) when the 
analysis was limited to studies of children under 13 years, demon‐
strating the particular malleability of spatial thinking in childhood 
(N	=	53	studies).	Note	that	similarly	to	Cohen's	d, Hedges G values 
of 0.2, 0.5 and 0.8 correspond to small, medium and large effects 
respectively (Cohen, 1988). There is also convincing evidence that 
spatial and mathematical thinking are associated longitudinally in 
childhood. For example, spatial thinking measured using the Test 
of	Spatial	Assembly	[TOSA])	at	3	years	predicts	27%	of	the	vari‐
ation in mathematics problem solving at 5 years (Verdine et al., 
2014), and pattern construction skills at 5 years explain approxi‐
mately	9%	of	the	variation	in	mathematics	performance	at	7	years	
(Gilligan, Flouri, & Farran, 2017).

However, the literature does not support a simple linear cou‐
pling between all aspects of spatial and mathematical cognition 
(Fias	&	Bonato,	2018).	There	 is	evidence	that	spatial‐mathemati‐
cal relations are specific to certain spatial and mathematics tasks 
and that these relations may differ across development. Gilligan, 
Hodgkiss, Thomas, and Farran (2018) measured the relationship 
between four different spatial sub‐domains and mathematics. 
They found that spatial scaling (or the ability to transform distance 
information from one representation to another representation 
of	 a	 different	 size;	 Frick	&	Newcombe,	 2012)	was	 the	 strongest	
spatial predictor of standardized mathematics performance in 
6–10 year olds when compared to perspective taking, disembed‐
ding and mental rotation. Mental rotation had an age‐dependent 
role	 for	6–8	year	olds	only	 (Gilligan	et	al.,	2018).	Similar	age‐de‐
pendent findings were reported by Mix et al. (2016, 2017) who 
found that mental rotation was a significant predictor of math‐
ematics performance at 6 and 9 years but not at 11 years. Frick 
(2019) also reported that, in comparison to other spatial skills (di‐
agrammatic representation, cross‐sectioning, mental transforma‐
tion and perspective taking), spatial scaling and mental rotation at 
6.5	years	explained	at	 least	24%	of	 the	variation	 in	mathematics	
performance at 8.5 years. This included both arithmetic items and 
items assessing numeric‐logical and spatial functions (e.g. number 
sequences, counting magnitudes, counting cubes, estimating line 
lengths; Frick, 2019). Taken together, the selection of spatial sub‐
domains for training studies should reflect the facts that (a) not all 
spatial skills are equally associated with all mathematics outcomes 
and (b) spatial‐mathematical associations are developmentally 
sensitive.

Mental rotation and spatial scaling were targeted for training 
in this study. As outlined, these skills have previously been asso‐
ciated with mathematics achievement in children aged 6–9 years. 
Furthermore, underlying cognitive mechanisms have been proposed 
that may explain associations between these spatial skills and math‐
ematics outcomes (e.g. Gilligan et al., 2018; Mix et al., 2016, 2017). 
These proposed underlying mechanisms influenced not only the 
selection of training targets, but also the selection of mathematics 
measures	for	inclusion	in	this	study.	Specifically,	mental	rotation	is	

proposed to elicit active processing, including mental visualization 
and manipulation of objects (Lourenco, Cheung, & Aulet, 2018; Mix 
et al., 2016). Thus, mental rotation training may have benefits for 
mathematics tasks requiring the mental manipulation or organiza‐
tion of numbers, for example, complex mathematical word problems 
or multidigit calculations (Lourenco et al., 2018). Missing term prob‐
lems were included in the task battery of this study as mathematics 
tasks of this type require mental manipulation of numbers. In con‐
trast, spatial scaling is proposed to elicit intensive quantification 
skills (proportional reasoning). Thus, spatial scaling training may im‐
prove performance on mathematics tasks that require proportional 
reasoning, for example, number line estimation and geometry per‐
formance	 (Newcombe,	Levine,	&	Mix,	2015;	Newcombe,	Möhring,	
& Frick, 2018; Rouder & Geary, 2014). For this reason, both number 
line and Geometry Tasks were included in the task battery of this 
study.

This study included participants aged approximately 8 years. As 
outlined above, there is evidence of significant spatial‐mathematics 
relations at this age. Furthermore, as described in the next section, 
this age range overlapped with other spatial training studies that 
investigated transfer of gains to mathematics (Cheng & Mix, 2014; 
Hawes,	Moss,	Caswell,	&	Poliszczuk,	2015).	Thus,	 the	 inclusion	of	
participants aged 8 years allowed for meaningful comparisons be‐
tween this, and previous studies. Additionally, children of this age 
were deemed old enough for independent computer‐based training.

1.2 | Evidence of transfer of spatial training gains to 
mathematics

Spatial	interventions	that	integrate	spatial	thinking	into	mathemati‐
cal instruction report gains in both spatial (near and intermediate 
transfer) and mathematical outcomes (far transfer; Hawes, Moss, 
Caswell,	 Naqvi,	 &	 MacKinnon,	 2017;	 Lowrie,	 Logan,	 &	 Ramful,	
2017). However, these studies cannot offer insight into the underly‐
ing causal relationship between spatial and mathematical domains, 
as it is not possible to disentangle the impact of the spatial, and 

Research Highlights
•	 Both	explicit	instruction	(instructional	videos)	and	implicit	

instruction (task practice with feedback) elicited gains in 
spatial performance at 8 years.

• Training spatial skills led to near, intermediate and far 
transfer of gains, even after controlling for expectation 
and engagement effects.

• Mental visualization and proportional reasoning were 
proposed to explain far transfer from mental rotation and 
spatial scaling skills, to mathematics respectively.

• The transfer of spatial training gains from spatial to math‐
ematics sub‐domains provides evidence for a causal influ‐
ence of spatial thinking on mathematics performance.
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mathematical aspects of training respectively. Few studies have 
investigated transfer of gains from spatial training (with no mathe‐
matical component) to mathematics. Cheng and Mix (2014) reported 
significant gains in mental rotation (near transfer) and mathematical 
calculation (far transfer) following 40‐min of mental rotation training 
in 6–8 year olds, compared to a control group. Gains were specific 
to missing term arithmetic problems, for example, 4 + __ = 9. In a 
similar mental rotation training study of 6–8 year olds, Hawes et al. 
(2015) failed to replicate these findings with respect to far transfer. 
Improvements in mental rotation (near transfer) and mental trans‐
formation (intermediate transfer) were reported for the training 
group who completed 15 sessions of computerized mental rotation 
training, compared to controls. However, no improvements in math‐
ematics skills including non‐verbal arithmetic or missing term arith‐
metic problems were found for either group (Hawes et al., 2015).

These differing results may be explained by several factors. 
First, Cheng and Mix (2014) delivered training in small groups (3–4 
children) supervised by a researcher, while Hawes et al. (2015) ad‐
ministered classroom (group) training without direct supervision. 
Without the supervision of a researcher, reduced engagement 
with training may have contributed to the results of the Hawes et 
al.	 (2015)	 study.	Second,	post‐testing	was	delivered	 immediately	
following training by Cheng and Mix (2014), while Hawes et al. 
(2015) delivered post‐testing 1 week after training. Thus, caution 
must be taken in assuming that the gains reported by Cheng and 
Mix (2014) are durable. Third, the training method differed be‐
tween the two studies. Implicit instruction was used by Hawes 
et	 al.	 (2015).	 Points	 were	 awarded	 for	 correct	 trials,	 but	 no	 in‐
structions were given to explain correct (or incorrect) answers. In 
contrast, Cheng and Mix (2014) used explicit instruction, by giving 
participants physical manipulatives (mirroring those included in 
the onscreen trials) and instructing them to move the shapes to 
check their answers.

Differences in the training modes used in the above two stud‐
ies reflect a broader distinction between explicit and implicit in‐
struction types. In this study, implicit instruction is defined as 
instruction in which students are not aware of learning and use 
their experiences to construct an understanding. In contrast, for 
explicit instruction, the instructor plays a key role in explaining 
concepts to students and the student is aware of the skill or knowl‐
edge being taught. While there is mixed evidence regarding the 
effectiveness of explicit and implicit instruction in learning more 
generally	(Kirschner,	Sweller,	&	Clark,	2006),	to	our	knowledge,	no	
spatial training studies compare the efficacy of implicit and explicit 
instruction. Most studies of children have demonstrated the ef‐
fectiveness of spatial training using implicit training, for example 
where participants complete task practice with feedback (Uttal et 
al., 2013). Instructional videos are one tool that can be used to de‐
liver explicit instruction. There is evidence that viewing an instruc‐
tional video of successful task completion can improve subsequent 
performance in number line estimation and spatial cross‐section‐
ing	 in	adults	 (Cohen	&	Hegarty,	2014;	Gallagher‐Mitchell,	Simms,	
& Litchfield, 2018). The success of instructional videos may be 

attributable to observational learning (Castro‐Alonso, Ayres, & 
Paas,	2014;	Paas	&	Sweller,	2012).	 In	particular,	 for	 spatial	 think‐
ing, instructional videos may activate the mirror neuron system 
as	 individuals	 imagine	 movements	 (Rizzolatti	 &	 Sinigaglia,	 2010;	
Tettamanti et al., 2005). From a practical perspective, instruc‐
tional videos could offer a novel, practical method of introducing 
spatial thinking into the classroom. To maximize the consistency 
of explicit instruction in this study, instructional videos were used. 
However, explicit instruction delivered by an individual, for exam‐
ple, a teacher or other expert, may have differing results and is not 
explored in this study.

Another factor that is not often considered in training studies, but 
that is controlled for in the current study, is the role of motivational fac‐
tors. First, expectation (placebo) effects occur when the expectation 
that training will be effective induces cognitive gains, independently 
from the training content (Green et al., 2019). The placebo effect is 
well documented in medical domains with some limited evidence that 
expectation effects play a role in cognitive psychology studies (Dweck, 
2000;	Foroughi,	Monfort,	Paczynski,	McKnight,	&	Greenwood,	2016;	
Jaeggi,	Buschkuehl,	Shah,	&	Jonides,	2014).	By	controlling	for	expecta‐
tion effects, the causal inferences made in this cognitive training study 
are	enhanced	(Boot,	Simons,	Stothart,	&	Stutts,	2013).	The	degree	to	
which participants engage with training is also proposed to impact 
training outcomes. For example, differences in participant engagement 
may explain the contrasting findings reported by Cheng and Mix (2014) 
and Hawes et al. (2015). In adult studies, those who show higher levels 
of engagement with cognitive training exhibit larger gains (Jaeggi et 
al.,	2014).	By	controlling	for	participant	engagement,	the	rigour	of	this	
study is substantially stronger, as it was possible to determine the ex‐
tent to which cognitive training gains are attributable to training, over 
and above differences in participant engagement.

1.3 | Current study

This study compared explicit and implicit instruction methods as 
means of training spatial skills in children aged 8 years and explored 
transfer of spatial training gains to other spatial and mathematics 
domains. Explicit instruction was delivered using instructional vid‐
eos which were designed for use in this study. The choice of spatial 
scaling and mental rotation as spatial training targets was supported 
by both theoretical and behavioural evidence. The effectiveness of 
the intervention was assessed in the context of near, intermediate 
and far transfer of gains. A further original aspect of this study is that 
motivational factors including engagement with, and expectations 
of spatial training were controlled for.

2  | METHODS

2.1 | Participants

The	sample	size	for	 this	study	was	determined	using	GPower.	The	
power analysis was based on the largest analysis completed in this 
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study	(3	×	2	×	2	ANOVA).	To	achieve	power	of	0.8,	with	a	medium	
effect size (f = 0.25), power analysis indicated that a minimum of 
158 participants were required. As the study design included data 
collection at two‐time points, it was anticipated that there would be 
some participant drop‐off between Time 1 and Time 2. Therefore, 
the sample size was increased to account for possible attrition of 
the	sample.	Participants	were	250	children	from	six	primary	schools	
across London, UK. All participants were in Year 3 (Mage = 8.09 years, 
SD	=	0.41	years).	The	overall	proportion	of	males	(48%)	and	females	
(52%)	 was	 approximately	 equal.	 Participant	 demographics	 across	
training groups are shown in Table 1.

2.2 | Study design

As shown in Figure 1, this study used a randomized, controlled, 
pre‐post training design. All participants completed an identical bat‐
tery of tasks 1‐week pre‐training ± 1 day (Time 1), and immediately 
(within 5 min) post‐training (Time 2). All tasks and training proce‐
dures were computer‐based and were delivered using Gorilla soft‐
ware	(www.goril	la.sc).	Participants	completed	testing	in	their	school	
IT suites in groups of 6–8 participants supervised by at least one (but 
typically two) researchers. All task instructions were incorporated 
into the Gorilla software and were presented to participants using 
earphones.	 Participants	 moved	 through	 the	 task	 battery	 at	 their	

own pace. Data collection was completed over a 7‐month period 
(April–October).

2.3 | Training procedures

Training groups differed by training mode (explicit vs. implicit) and 
training type (mental rotation vs. spatial scaling vs. control). For 
both implicit and explicit instruction, training lasted between 3 and 
4 min. For implicit instruction, the length of training was dependent 
on	participants'	performance	(i.e.	the	speed	taken	to	complete	the	
items). For some participants in the implicit instruction group, train‐
ing lasted up to 6 min.

This combination of two possible training modes and three 
possible	 training	 types	 led	 to	 six	 groups.	 Participants	were	 ran‐
domly assigned to a group immediately preceding training (see 
Table 1). Allocation was completed using the balanced random‐
ization function on the Gorilla software. The total number of 
predicted participants was entered into the software before 
data collection (N = 240). As this study has six training groups, 
a ratio of 40:40:40:40:40:40 participants in each group was as‐
sumed. Assignment using balanced randomization in Gorilla is 
like a weighted dice roll. This means that the first participant to 
complete the study had a 40/240 chance of being assigned to 
each group. However, if for example participant 1 was assigned 

Training type Training mode N Gender (% female) Age (mean ± SD)

Mental rotation Explicit 44 45.5 8.011 ± 0.438

Implicit 42 59.5 8.052 ± 0.306

Spatial	scaling Explicit 41 51.2 8.151 ± 0.321

Implicit 43 48.8 8.047 ± 0.474

Control Explicit 41 53.7 7.942 ± 0.446

Implicit 39 51.3 8.344 ± 0.291

TA B L E  1   Demographic information 
across training groups

F I G U R E  1   Overview of the study 
design

Task Ba�ery 
(randomised task 

order)

Explicit Mental 
Rota�on Training 

Implicit Mental 
Rota�on Training 

Explicit Spa�al 
Scaling Training 

Implicit Spa�al 
Scaling Training 

Explicit Control 
Training 

Implicit Control 
Training 

(randomised task 
order) 

Random 
assignment to 

Group 

Task Ba�ery 

1 Week later

5 minutes later

• Mental Rota�on Task
• Spa�al Scaling Task 
• Missing Term Problems 
• Number Line Es�ma�on Task
• Geometry Task

• Mental Rota�on Task
• Spa�al Scaling Task 
• Missing Term Problems 
• Number Line Es�ma�on Task
• Geometry Task

Engagement Measure

Expecta�on Measure

http://www.gorilla.sc
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to explicit mental rotation training, the second participant would 
have a 39/240 chance of being assigned to explicit mental rota‐
tion training and a 40/240 chance of being assigned to each of the 
other training groups. This randomization ensures approximately 
equal numbers of participants in each group. Any differences in 
group sizes are attributable to (a) data loss following group assign‐
ment; (b) additional participants being included in the study. Any 
additional participants (beyond the predicted 240) were assigned 
to groups using unbalanced randomization, that is, the probability 
that they were assigned to each group was 1/6 and was not depen‐
dent on the assignment of prior participants.

2.3.1 | Explicit training

Three of the training groups viewed instructional videos that pro‐
vided explicit task instructions. Two groups watched videos with 
spatial content, while the control group watched a video on word 
reading. The videos were designed using Vyond (www.vyond.com). 
All non‐training content was uniform across videos, for example, 
the characters, storyline and narration. The videos can be accessed 
using the links provided below. Group 1 viewed the instructional 
mental	 rotation	video.	Participants	 in	 this	 group	were	 given	 a	de‐
scription and viewed eight examples of mental rotation (see Figure 2 
for a screenshot). For more details go to https ://youtu.be/18iyR svt‐
GAQ. Group 2 viewed the instructional scaling video, in which a de‐
scription of spatial scaling, and eight examples of spatial scaling were 
shown (see Figure 3). For more details go to https ://youtu.be/grhxF 
Eqgz51.	 For	 Group	 3,	 the	 control	 video	 was	 shown.	 Participants	
watched eight examples of word‐picture matching, in which the 
onscreen characters selected the correct picture to match a given 
word	(see	Figure	4).	Participants	allocated	to	this	control	group	did	
not view any spatial‐related content. For more details go to https ://
youtu.be/qDmgR R2RLyE.

2.3.2 | Implicit training

The three implicit training groups completed task practice with 
computer‐based feedback. For each trial, participants were shown 
an onscreen tick or cross indicating the accuracy of their response. 

For incorrect trials, participants were given the opportunity to re‐
peat the trial until they had selected the correct answer (all tasks 
had	 two	 possible	 response	 options).	 Participants	 were	 not	 given	
any	explicit	 instruction	on	how	to	complete	the	trials.	Participants	
moved to the next trial when the correct response was selected. 
For implicit training, two groups completed spatial tasks (the same 
tasks presented at Time 1), while a control group completed a word 
reading task. The number of trials included in implicit training was 
determined as the approximate number of trials that could be com‐
pleted in the same length of time as the explicit instruction. This 
was established through piloting. Group 4 completed implicit mental 
rotation training and were presented with 30 trials of the Mental 
Rotation Task with feedback (further details of this task are outlined 
below). Group 5 completed implicit scaling training comprising of 24 
trials	of	the	Spatial	Scaling	Task	(further	details	of	this	task	can	be	
found below). Feedback was given for each trial. Group 6 completed 
implicit control training. These participants completed 30 trials of 
a	Word‐Picture	Matching	Task	 in	which	they	were	asked	to	match	
a word to one of two pictures using labelled keys on the keyboard 
(see Figure 5). This was a reading task requiring minimal spatial skills. 
Feedback was provided.

F I G U R E  2  Screenshot	taken	from	the	instructional	video	of	
mental rotation (explicit instruction)

F I G U R E  3  Screenshot	taken	from	the	instructional	video	of	
spatial scaling (explicit instruction)

F I G U R E  4  Screenshot	taken	from	the	control	instructional	
video (explicit instruction)

http://www.vyond.com
https://youtu.be/18iyRsvtGAQ
https://youtu.be/18iyRsvtGAQ
https://youtu.be/grhxFEqgz51
https://youtu.be/grhxFEqgz51
https://youtu.be/qDmgRR2RLyE
https://youtu.be/qDmgRR2RLyE
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2.4 | Task battery

The task battery included two spatial measures, assessing men‐
tal rotation and spatial scaling respectively. These measures were 

included as potential targets of near transfer (spatial tasks trained 
on) and of intermediate transfer (untrained spatial tasks). Three 
mathematics measures were included in the task battery as poten‐
tial	 targets	for	far	transfer	 (missing	term	problems,	a	Number	Line	
Estimation Task and a Geometry Task). The order of task presen‐
tation was randomized across participants at both time points. To 
assess the role of motivational factors, two participant engagement 
measures were also administered.

2.4.1 | Mental Rotation Task

In each trial of the Mental Rotation Task participants were required 
to identify which of two animal images located above a horizontal 
line matched the target image below the line. As shown in Figure 6, 
the images above the line included a mirror image of the target image, 
and a version of the target image rotated by a fixed degree from the 
target	image.	Participants	used	labelled	keys	on	the	computer	key‐
board to respond. Trials were separated by a fixation dot displayed 
for	 500	ms.	 The	 task	 stimuli	were	 taken	 from	Neuburger,	 Jansen,	
Heil,	and	Quaiser‐Pohl	(2011).	Participants	completed	four	practice	
trials at 0° where feedback was provided. Only participants achiev‐
ing	at	least	50%	in	the	practice	trials	continued	to	the	40	experimen‐
tal	trials.	No	feedback	was	given	for	experimental	trials	at	Time	1	or	
Time 2. The experimental trials included equal numbers of clockwise 
and anti‐clockwise rotations at 45°, 90° and 135° (eight trials for 
each degree of rotation), and eight trials at 180° and 0°. The order of 
trial	presentation	was	randomized	for	each	participant.	Percentage	
accuracy was recorded.

2.4.2 | Spatial Scaling Task

The	 Spatial	 Scaling	 Task	was	modified	 from	Möhring,	Newcombe,	
and Frick (2016). In each trial participants were shown two 2D im‐
ages	of	a	circular	space	(a	farmer's	field)	containing	a	target	(an	egg).	
Participants	were	asked	to	identify	whether	the	eggs	in	the	two	fields	
were in the same position or in different positions (see Figure 7). For 
half of the trials, the targets were presented in the same position in 
both fields (match trials). For the remaining trials, the position of the 

F I G U R E  5  Sample	trial	from	control	training	(implicit	
instruction)

F I G U R E  6  Sample	stimulus	from	the	Mental	Rotation	Task	(45°	
anti‐clockwise trial)

F I G U R E  7  Sample	mismatch	trial	at	a	
scaling	factor	of	0.875	from	the	Spatial	
Scaling	Task	(taken	from	Möhring	et	al.,	
2016)
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target in one field was adjusted by 2 cm (to the left or right) relative 
to	 the	 second	 field	 (mismatch	 trials).	Participants	 responded	using	
labelled keys on the computer keyboard. All trials were separated 
by	a	 fixation	dot	displayed	 for	500	ms.	Participants	completed	six	
practice trials during which feedback was given and no time limit was 
imposed.	Only	participants	achieving	at	least	50%	in	the	practice	tri‐
als continued to the experimental trials. The 72 randomly experi‐
mental trials were presented randomly. Each trial was displayed for 
5	s.	No	feedback	was	given	for	experimental	trials	at	Time	1	or	Time	
2. Experimental trials differed by the location of the target on the 
horizontal	axis,	and	by	scaling	factor.	Six	different	target	positions	
were included (a modification from the original study where 15 posi‐
tions	were	used).	Scaling	factor	was	manipulated	by	keeping	the	size	
of one space constant while manipulating the size of the second. In 
this way six scaling factors were included (1, 0.875, 0.75, 0.625, 0.5, 
0.375).	Performance	was	measured	as	percentage	accuracy.

2.4.3 | Missing term problems

The missing term problems included in this study were modified 
from Hawes et al. (2015). For each item participants were required 
to complete the missing number(s) in a simple mathematical equa‐
tion (see Figure 8). This task included two practice items where 
the solutions were shown after participants submitted an answer. 
Following	 this,	 21	 test	 items	were	 displayed.	No	 solutions	were	
shown for these items. Test items included the original 18 items 
from Hawes et al. (2015) and three additional, low‐difficulty items 
that were added to the task after piloting to alleviate floor effects. 
Items were presented in order of increasing difficulty and a time 
limit of 25 s was allocated to each test item. Approximately equal 
numbers of addition versus subtraction items, and single versus 
multi‐digit numbers were included. The position of the missing 
box	was	 also	 balanced	 across	 items.	 Performance	 accuracy	was	
recorded.

2.4.4 | Number Line Estimation Task

The	Number	Line	Estimation	Task	was	used	 to	measure	numeri‐
cal	 representations.	 The	 method	 was	 adapted	 from	 Siegler	 and	
Opfer (2003). As shown in Figure 9, for each item participants 
were presented with a target number and were asked to estimate 

its location on a 0–100 number line by using the mouse cursor 
to click the number line at their selected location. For practice 
items (N = 2) solutions were shown onscreen after participants 
attempted	 an	 answer.	No	 solutions	were	 given	 for	 experimental	
items (N = 30). The target numbers included in the task were taken 
from Gallagher‐Mitchell, Romero‐Rivas, Rodriguez‐Cuadrado, and 
Dackermann, (2017). The order of experimental items was rand‐
omized.	Performance	was	measured	as	percentage	absolute	error	
(PAE)	and	as	logarithmic	response	patterns	(R2

LOG;	Simms,	Clayton,	
Cragg,	Gilmore,	&	Johnson,	2016).	PAE	is	the	numerical	distance	
from	a	participant's	answer	to	the	correct	answer,	divided	by	the	
length of the number line. This measure reflects the accuracy of 
participants'	 estimates.	 For	 each	 participant,	 linear	 (R2

LIN) and 
logarithmic (R2

LOG) response patterns were also calculated using 
curve estimation. Curve estimation is based on the correlation be‐
tween	participants'	estimates	and	the	target	numbers.	The	prox‐
imity of R2

LIN and R2
LOG scores to the value of 1 is an indicator of 

how	well	 a	 participant's	 estimates	 reflect	 a	 linear	or	 logarithmic	
pattern respectively.

2.4.5 | Geometry Task

The Geometry Task was designed for this study based on the statu‐
tory geometry learning requirements for Year 2 students in the UK 
(Department of Education, 2013). The task included two item types, 
Shape	Items	and	Symmetry	Items.	For	Geometry	Shape	Items,	par‐
ticipants were shown an image of a shape and were asked to select 
the correct number of sides (or faces) on the shape from four possi‐
ble	response	options	(see	Figure	10).	Participants	completed	a	single	
practice item using a 2‐D shape on which they were given feedback. 
All	participants	successfully	completed	this	 item.	Geometry	Shape	

F I G U R E  8  Sample	missing	term	problem

F I G U R E  9  Sample	item	from	the	Number	Line	Estimation	Task

F I G U R E  1 0  Sample	3‐D	shape	item	from	the	Geometry	Task
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Items differed in the dimensionality of the images shown and in‐
cluded	six	2‐D	shapes	and	six	3‐D	shapes.	Performance	was	meas‐
ured as accuracy across all items.

For	each	Geometry	Symmetry	Item,	a	target	shape	was	displayed	
on screen and participants were asked to select which of four possi‐
ble response options was the mirror image of the target shape (see 
Figure	11).	Participants	completed	a	single	practice	trial	in	which	they	
received	feedback.	Ten	experimental	Symmetry	Items	were	presented	
in a randomized order. For each item, the distractor images included a 
match error, a shape error and a symmetry error (see Figure 11). For 
match errors, the distractor was identical in both shape and position to 
the target shape (a). For shape errors, the distractor was in the correct 
position, however the shape was not a mirror of the target image, but 
another similar shape (b). Finally, for symmetry errors the distractor 
was the correct shape however the position of the distractor was not 
an	accurate	mirror	image	(c).	Performance	accuracy	was	recorded.

2.4.6 | Expectations of the effectiveness of training

Prior	 to	 the	delivery	of	 training,	 all	 participants	were	 asked	 a	 sin‐
gle question, measuring their expectations of the effectiveness of 
training, ‘We are going to be playing some games. How much do you 
think the games will help you with your maths?’. The question was 

displayed	alongside	an	onscreen	scale	 (see	Figure	12).	Participants	
responded by selecting a point on the scale using the mouse cursor. 
Participant's	responses	were	coded	as	1–12	based	on	the	onscreen	
position selected. A score of 1 was allocated for responses that indi‐
cated low expectations of training while a score of 12 was allocated 
for responses that indicated high expectations of training.

2.4.7 | Participant Engagement Questionnaire

A participant engagement questionnaire was delivered to assess par‐
ticipant's	enjoyment	of	and	engagement	with	the	training	that	they	

F I G U R E  11  Sample	Geometry	
Symmetry	Item	showing	a	match	error	(a),	
a shape error (b), a symmetry error (c) and 
the correct answer (d)

F I G U R E  1 2   Response scale 
for measuring expectations of the 
effectiveness of training

TA B L E  2   Items	included	in	the	Participant	Engagement	
Questionnaire

Item Explicit training Implicit training

1 How much did you enjoy 
the video?

How much did you 
enjoy the game?

2 How exciting was the 
video?

How exciting was the 
game?

3 How easy was it to under‐
stand the video?

How easy was it to un‐
derstand the game?

4 How much effort did it 
take to watch the video?

How much effort did it 
take to play the game?



     |  9 of 18GILLIGAN et AL.

had received. The questionnaire was designed for use in this study. 
As shown in Table 2, the questionnaire included four questions, the 
phrasing of which varied slightly based on the type of training deliv‐
ered. Each question was presented alongside an onscreen scale (for 
an	example	see	Figure	13).	Participants	responded	to	each	question	
by	selecting	a	point	on	the	scale	using	the	mouse	cursor.	Participant's	
responses were coded as 1–12 based on the onscreen position se‐
lected. A score of 1 was allocated for responses that indicated low 
engagement while a score of 12 was allocated for responses that 
indicated	 high	 engagement.	 Participants	were	 awarded	 an	 overall	
engagement score, an average of their scores across all four ques‐
tions (where necessary items were reverse coded).

2.5 | Exclusion criteria

Due to technical errors and school disruptions, data for a single 
task was lost for nine participants at Time 1 and 15 participants 
at Time 2. These participants were excluded from training analysis 
for the task on which they were missing data. Furthermore, par‐
ticipants	scoring	higher	than	95%	on	a	given	task	at	Time	1,	were	
deemed to have reached “ceiling level” performance on the task 
and were excluded from training analysis for that task only. For 
missing	 term	 problems	 and	 Number	 Line	 Estimation,	 responses	
were open ended. For missing term problems, participants who did 

not	score	higher	than	10%	at	Time	1,	were	not	deemed	to	under‐
stand the task aims and were excluded (n	=	14).	For	Number	Line	
Estimation	participants	who	didn't	attempt	at	least	75%	of	items,	
or	participants	with	a	mean	PAE	score	higher	than	15%	for	prac‐
tice items were also excluded (n	 =	 0).	 Parametric	 analyses	were	
used as all groups were large enough (N > 30) for the central limit 
theorem to apply (Field, 2013).

3  | RESULTS

3.1 | Performance at Time 1

3.1.1 | Overall performance at Time 1

No	ceiling	or	floor	effects	were	present	for	any	measures	(Table	3).	
Descriptive information for performance on each of the tasks, 
across groups is shown in Table 6. For the Geometry Task, the 
results of a dependent t test indicated a significant difference 
in	 performance	 between	 Geometry	 Shape	 Items	 (63.73	 ±	 1.05)	
and	 Geometry	 Symmetry	 Items	 (54.36	 ±	 2.08),	 t(1, 249) = 4.34, 
p < .001, d	 =	 0.295.	 Furthermore,	 while	 a	 Pearson's	 correlation	
indicated a significant association between the different item 
types, r(248) = .178, p = .005, the correlation was small to medium 
in size, that is, between .1 and .3 (Field, 2013). Hence, Geometry 

F I G U R E  1 3  Sample	scale	from	the	
Participant	Engagement	Questionnaire

Measure

Descriptive Statistics

Mean SE SD Min Max

Mental rotation 59.00 0.99 15.64 25.00 100.00

Spatial	scaling 54.00 0.54 8.54 23.61 79.17

Missing box problems 56.42 1.56 24.68 0.00 100.00

Number	line	PAE 0.10 0.01 0.06 0.03 0.30

Number	line	R2
LIN 0.93 0.01 0.08 0.63 1.00

Geometry	Shape	Items 63.73 1.05 16.54 16.67 100.00

Geometry	Symmetry	
Items

54.36 2.08 32.94 0 100.00

Expectations (mean rating 
0–12)

9.47 0.23 3.64 0 12.00

Note: For this and all other analysis, unless otherwise stated all results reported are percentage 
correct scores.

TA B L E  3   Descriptive statistics at Time 1
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Symmetry	Items	and	Geometry	Shape	Items	are	considered	sepa‐
rately	 throughout.	 For	 Number	 Line	 Estimation,	 74%	 of	 partici‐
pants had estimates that were best described by a linear (compared 
to a logarithmic) response pattern.

3.1.2 | Gender differences in task performance at 
Time 1

Independent T tests (controlling for multiple comparisons 
[0.05/8 = 0.006]) were used to explore gender differences in per‐
formance at Time 1. Where homogeneity of variance could not be 
assumed, the results for unequal variances were reported. As shown 
in	Table	4,	males	had	significantly	lower	error	scores	on	the	Number	
Line Estimation Task compared to females, t(148) = 3.15, p = .002, 
d	 =	 0.401.	No	 other	 significant	 gender	 differences	were	 reported	
(ps > .05, ds < 0.261). Thus, gender was included as a control vari‐
able	when	investigating	the	effects	of	training	on	the	Number	Line	
Estimation Task only.

3.1.3 | Differences in task performance across 
training groups at Time 1

To confirm that there were no performance differences between 
groups	at	Time	1,	a	two‐way	ANOVA	was	completed	for	each	task.	
Training mode (2 levels: explicit vs. implicit) and training type (3 lev‐
els: mental rotation vs. spatial scaling vs. reading) were included as 
between participant variables. Comparing across training types and 
training modes, no significant differences in performance were re‐
ported for any of the mathematics or spatial tasks (p > .05, �2

p
 < 0.010; 

see	Table	6).	Similarly,	there	were	no	differences	in	expectations	of	
training across training modes, F(1, 244) = 3.25, p = .072, �2

p
 = 0.013, 

or training types, F(2, 244) = 0.27, p = .763, �2
p
 = 0.002.

3.1.4 | Associations between measures at Time 1

Pearson	 correlations	 were	 completed	 between	 measures	 at	 Time	
1. This allowed for the investigation of whether the observed 

TA B L E  4   Gender differences in task performance at Time 1

Test measure

Gender Statistics

Male (n = 121) Female (n = 129)

Test statistic (t) Effect size (d)Mean SD Mean SD

Mental rotation 60.382 16.053 57.761 15.194 0.742 0.094

Spatial	scaling 54.764 7.533 53.284 9.359 1.372 0.174

Missing term problems 59.708 24.573 53.341 24.471 2.052 0.261

Number	line	estimation	R2
LIN 0.093 0.051 0.115 0.062 1.435 0.182

Number	line	estimation	PAE 0.938 0.073 0.924 0.084 3.154*  0.401

Geometry	Shape	Items 62.810 15.592 64.596 17.390 0.853 0.108

Geometry	Symmetry	Items 53.554 33.834 55.116 32.189 0.374 0.047

Expectations 9.126 3.864 9.791 3.390 1.449 0.184

*p < .05. 

TA B L E  5  Bivariate	correlations	between	tasks	at	Time	1

 

Spatial tasks Mathematics tasks Expectations

1 2 3 4 5 6 7 8

1. Mental rotation — 0.275***  0.293***  −0.213***  0.247***  0.092 0.227***  0.057

2.	Spatial	scaling  — 0.345***  −0.304***  0.333***  0.160*  0.258***  0.037

3. Missing box 
problems

  — −0.492***  0.531***  0.303***  0.421***  −0.021

4.	Number	line	PAE    — −0.825***  −0.254***  −0.327***  0.014

5.	Number	line	R2
LIN     — 0.223***  0.305***  −0.023

6.	Geometry	Shape	
Items

     — 0.178***  0.013

7. Geometry 
Symmetry	Items

      — −0.032

8. Expectations        —

*p < .05 
***p < .001. 
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associations between spatial and mathematics skills that have been 
demonstrated in previous studies (e.g. Gilligan et al., 2018; Mix et 
al., 2016) and form the rationale for the training paradigm used in 
this study, were present. As shown in Table 5, significant correla‐
tions were reported between all tasks, except for performance on 
Geometry	 Shape	 Items	which	was	 not	 correlated	with	mental	 ro‐
tation accuracy, r(248) = 0.09, p = .147. Expectations of the effec‐
tiveness of training were not correlated with performance on any 
behavioural measures.

3.2 | Performance at Time 2

Mixed	ANOVAs	were	used	 to	 investigate	 training	effects	 across	
near, intermediate, and far transfer measures (see Table 6 for a 
summary of performance scores across Time 1 and Time 2). Time 
was included as a within participant variable (Time 1 and Time 
2). Training mode (explicit vs. implicit) and training type (mental 
rotation vs. spatial scaling vs. control) were included as between 
participant variables. Where sphericity could not be assumed, 
Greenhouse‐Geisser values were reported. It is noteworthy that 
ANCOVAs	with	Time	2	scores	as	the	dependent	variable	and	Time	
1 scores as a covariate were run in parallel to these analyses. 
Comparable results were reported for all outcomes. Further de‐
tails, including comparisons between training types at Time 2, can 
be	found	in	the	Supporting	Information.

3.2.1 | Near and intermediate transfer of gains

Mental rotation

A significant main effect of time was reported, with higher per‐
formance at Time 2, F(1, 237) = 21.87, p < .001, �2

p
 = 0.084. A sig‐

nificant interaction was found between time and training type, F(2, 
237) = 6.88, p < .001, �2

p
 = 0.055. As shown in Figure 14, paired 

sample t tests indicated a significant improvement in performance 
accuracy following mental rotation training, t(83) = 5.49, p < .001, 
d = 0.581 (near transfer) and spatial scaling training, t(79) = 2.30, 
p = .024, d	=	0.263	(intermediate	transfer).	No	significant	improve‐
ment in performance accuracy was reported following control 

training, t(78) = 0.21, p = .837, d	=	0.019.	No	other	main	effects	or	
interactions with time were reported (ps > .05, �2

p
s < 0.005).

Spatial scaling

A significant main effect of training type was found, with higher per‐
formance for spatial scaling training compared to the other training 
types, F(2, 232) = 8.28, p < .001, �2

p
 = 0.067. There was also a sig‐

nificant interaction reported between time and training type, F(2, 
232) = 6.25, p = .002, �2

p
	 =	0.051	 (see	Figure	15).	Paired	 sample	 t 

tests indicated significant performance gains following spatial scal‐
ing training only, t(76) = 3.99, p < .001, d	=	0.450	(near	transfer).	No	
significant gains were reported following mental rotation training, 
t(80) = 0.04, p = .972, d = 0.004, or control training, t(79) = 0.70, 
p = .485, d = 0.088. There were no other main effects or significant 
interactions with time (ps > .05, �2

p
s < 0.005).

3.2.2 | Far transfer of gains

Missing term problems

A significant interaction between time and training type was 
found, F(2, 209) = 4.58, p = .011, �2

p
	=	0.042	(see	Figure	16).	Paired	

sample t tests indicated a significant improvement in accuracy 
following mental rotation training only, t(69) = 2.73, p = .008, 
d	 =	 0.241	 (far	 transfer).	 No	 significant	 improvements	 were	 re‐
ported following spatial scaling training, t(74) = 1.30, p = .197, 
d = 0.117, or control training, t(69) = 0.73, p = .466, d = 0.067. There 
were no other significant main effects or interactions with time 
(ps > .05, �2

p
s < 0.009).

Number Line Estimation

As	a	significant	gender	effect	was	reported	for	PAE	scores	on	this	
task at Time 1, gender was included as a between participant vari‐
able. However, no significant main effect or interactions with gender 
were reported for this task (ps > .05, �2

p
s < 0.014). Hence, gender was 

removed, and the analysis was repeated. A significant main effect 
of time was reported, F(1, 237) = 5.86, p = .016, �2

p
 = 0.024. There 

was also a significant interaction between time and training type. 

F I G U R E  1 4   Mental rotation accuracy at Time 1 and Time 2 for 
different training types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 5  Spatial	scaling	accuracy	at	Time	1	and	Time	2	for	
different training types (*p < .05, **p < .01, ***p < .001)
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As shown in Figure 17, there was a significant interaction between 
time	and	 training	 type	 for	PAE	 scores,	F(2, 237) = 6.05, p = .002, 
�
2
p
	=	0.054.	Paired	sample	t tests indicated a significant reduction in 

error following spatial scaling training, t(79) = 2.12, p = .037, d = 0.236 
(far	transfer).	No	significant	difference	in	error	was	found	following	
mental rotation training, t(82) = 1.91, p = .060, d = 0.209. However, a 
significant increase in error was reported following control training, 
t(79) = 3.01, p = .003, d	=	0.330.	No	other	main	effects	or	significant	
interactions with time were reported (ps > .05, �2

p
s	<	0.005).	Similar	

analysis was completed for R2
LIN performance. The patterns of per‐

formance	 across	 time	 and	 training	 type	 were	 comparable	 to	 PAE	
scores. Further information is available on request.

Geometry performance

For	Geometry	Shape	 Items	 there	were	main	effects	of	 time,	F(1, 
219) = 12.93, p < .001, �2

p
 = 0.056, training mode, F(1, 219) = 6.39, 

p = .012, �2
p
 = 0.028, and training type, F(2, 219) = 3.25, p = .041, 

�
2
p
 = 0.029. There was also a significant interaction between time 

and	 training	 type	 for	 Geometry	 Shape	 Items,	 F(2, 219) = 3.82, 
p = .022, �2

p
	 =	 0.034	 (see	 Figure	 18).	 Paired	 sample	 t tests, indi‐

cated significant gains in performance accuracy following mental 
rotation training, t(75) = 2.93, p = .004, d = 0.308 (far transfer), 

and spatial scaling training, t(75) = 3.70 p < .001, d = 0.314 (far 
transfer). There were no significant gains following control train‐
ing, t(72) = 0.21, p = .833, d = 0.024. There was also a significant 
interaction	between	time	and	training	mode	for	Geometry	Shape	
Items, F(1, 219) = 5.95, p = .016, �2

p
 = 0.026 (see Figure 19). There 

was a significant improvement in performance following implicit 
training, t(104) = 4.41, p < .001, d = 0.351, but not explicit training, 
t(116) = 0.85, p = .395, d	=	0.069.	No	significant	three‐way	interac‐
tion between time, training mode and training type was reported 
F(2, 219) = 1.60, p = .204, �2

p
	 =	 0.014.	 For	 Geometry	 Symmetry	

Items, all groups had improved performance between Time 1 and 
Time 2, F(1, 213) = 40.30, p < .001, �2

p
 = 0.159. However, there 

were no other main effects or significant interactions with time 
(ps > .05, �2

p
s < 0.013).

3.2.3 | Motivational factors

Expectations of training

An	 ANOVA	was	 completed	 with	 training	 mode	 and	 training	 type	
as between participant variables and expectations of training as 
the dependent variable. There were no significant differences in 
self‐reported expectations of training across training modes, F(1, 
244) = 3.25, p = .072, �2

p
 = 0.013, or training types, F(2, 244) = 0.27, 

p = .763, �2
p
	=	0.002.	ANCOVAs	were	also	used	to	explore	whether	in‐

dividual participant gains on each outcome measure were predicted 

F I G U R E  1 6  Percentage	correct	on	missing	term	problems	at	
Time 1 and Time 2 for different training types (*p < .05, **p < .01, 
***p < .001)
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F I G U R E  1 7  Percentage	absolute	error	(PAE)	on	the	Number	
Line Estimation Task at Time 1 and Time 2 for different training 
types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 8  Accuracy	on	Geometry	Shape	Items	at	Time	1	and	
Time 2 for different training types (*p < .05, **p < .01, ***p < .001)
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F I G U R E  1 9  Accuracy	on	Geometry	Shape	Items	at	Time	1	and	
Time 2 for different training modes (*p < .05, **p < .01, ***p < .001)
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by	expectations	of	training.	A	separate	ANCOVA	was	completed	for	
each training type group (mental rotation, spatial scaling and con‐
trol) and each training mode group (explicit and implicit). Time was 
included as a between participant variable and expectation score 
was included as a covariate. There were no significant interactions 
between participant expectations of training and time for any of the 
training types (ps > .05, �2

p
s < 0.033) or any of the training modes 

(ps > .05, �2
p
s < 0.012).

Participant engagement with training

An	ANOVA	was	completed	with	training	type	and	training	mode	as	
between participant variables and self‐reported engagement levels 
as the dependent variable. There was a significant difference in en‐
gagement across training types, F(2, 244) = 3.37, p = .036, �2

p
 = 0.027. 

Bonferroni	pairwise	comparisons	 indicated	significantly	higher	en‐
gagement levels following control training compared to spatial scal‐
ing training (p = .034). There was no main effect of training mode on 
engagement, F(1, 244) = 1.81, p = .180, �2

p
 = 0.007. However, there 

was a significant interaction between training type and training 
mode on engagement, F(2, 244) = 3.30, p = .039, �2

p
 = 0.026. For ex‐

plicit training there were no differences in engagement across train‐
ing types, F(2, 123) = 0.56, p = .573, �2

p
 = 0.009. For implicit training 

there was an effect of training type, F(2, 121) = 5.42, p = .006, 
�
2
p
	 =	0.082.	As	highlighted	 in	Figure	20,	post‐hoc	Bonferroni	 tests	

indicated significantly higher engagement following control training 
compared to spatial scaling training (p = .004).

4  | DISCUSSION

The results reported support and extend previous correlational find‐
ings on spatial‐mathematical relations and provide insight into the 
causal relationships between different aspects of spatial and math‐
ematical thinking. It was demonstrated that training mental rotation 
and, for the first time, training spatial scaling, led to gains in spatial 
and mathematical thinking at 8 years. These gains were present fol‐
lowing	explicit	and	implicit	instruction.	Spatial	training	gains	had	near,	
intermediate	 and	 far	 transfer	 effects.	 Spatial	 thinking	 is	 therefore	
one cognitive domain in which transfer of cognitive training gains is 

possible. The gains reported reflect the importance of choosing de‐
velopmentally sensitive, theoretically motivated training targets.

Near transfer: Mental rotation and spatial scaling training led to 
significant gains in mental rotation, and spatial scaling respectively. 
Findings which are consistent with previous evidence that spatial 
skills	are	malleable	 in	children	(Uttal	et	al.,	2013).	Previous	studies	
typically investigated the malleability of mental rotation or other 
spatial tasks that elicit mental visualization (Uttal et al., 2013) while 
this is the first study to highlight the malleability of spatial scaling in 
children at 8 years.

Intermediate transfer:	 Significant	 gains	 in	mental	 rotation	were	
reported following spatial scaling training providing evidence of in‐
termediate transfer of spatial scaling training to an untrained spatial 
task. These findings are consistent with those of Uttal et al. (2013) 
who found that spatial training transferred to other untrained spatial 
tasks. However, Uttal et al. (2013) reported that intermediate trans‐
fer was not evident in all studies and was more likely to occur where 
longer training sessions were included. The short training sessions 
used in this study (3–5 min) may explain why no intermediate trans‐
fer was reported following mental rotation training.

Far transfer:	Participants	who	completed	mental	rotation	training	
had significant accuracy gains on missing term problems. The findings 
of far transfer of gains are consistent with the findings of Cheng and 
Mix (2014) who demonstrated that explicit mental rotation training 
led to gains in performance accuracy on a similar missing box task. 
Cheng and Mix (2014), proposed that these findings are due to the 
fact that children solve arithmetic problems of this type by mentally 
rotating the terms, thus restructuring the equation in a more proto‐
typical format. For example, 4 + __ = 9, can be mentally rotated to 
generate	 the	 equation	 __	=	9	−	4.	However,	 this	mental	manipula‐
tion would require a relatively advanced understanding of calculation 
rules, that is, a plus becomes a minus when it is moved across the 
equals sign. Alternatively, children may use spatial visualizations to 
represent these equations pictorially. This equation could be solved 
by visualizing 4 blocks in one group and 9 blocks in another, and 
counting the difference between the groups (Lourenco et al., 2018). It 
is noteworthy that this study found no significant difference between 
explicit and implicit instruction on this task in contrast to Hawes et 
al. (2015) who did not find gains on missing term problems following 
implicit mental rotation training. This highlights other factors, such 
as participant engagement during training, as possible explanations 
for the results reported by Hawes et al. (2015). Another explanation 
for the differences reported between studies is that in this study and 
in Cheng and Mix (2014), a part‐whole type mental rotation training 
was used (participants had to rotate an object and combine it with 
another object or picture to create a whole) which may have acted as 
an analog for children when solving missing term problems.

For	the	Number	Line	Estimation	Task,	a	significant	reduction	 in	
error was reported for children who completed spatial scaling train‐
ing. This far transfer of gains from spatial scaling to number line 
estimation may be explained by the fact that both tasks require pro‐
portional reasoning. If a child was asked to place the number 27 on 
a number line ranging from 0 to 100, they might reason that 27 is 

F I G U R E  2 0  Self‐reported	levels	of	engagement	following	
training, across training modes and training types (*p < .05, 
**p < .01, ***p < .001)
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close	to	25,	which	is	one	quarter	of	100.	By	accurately	dividing	the	
number line into quarters, a child could place the number 27 with rel‐
atively	high	accuracy	(Newcombe	et	al.,	2015,	2018;	Rouder	&	Geary,	
2014).	Proportional	reasoning	is	also	required	when	comparing	two	
spaces	of	different	sizes	(Newcombe	et	al.,	2018).	Alternatively,	the	
Mental	Number	 Line	may	be	 responsible	 for	 associations	between	
spatial scaling and number line estimation. This concept outlines that 
numbers are represented spatially in the brain with smaller numbers 
on	the	left	and	larger	numbers	on	the	right	(Barsalou,	2008;	Lakoff	
&	Núñez,	2000).	Children	may	scale	between	a	mental	number	line	
and	the	number	line	presented	in	Number	Line	Estimation	Tasks	(see	
Dehaene, 1997; Fischer, 2003). Whilst spatial scaling has been associ‐
ated with number line estimation in a number of studies (e.g. Gilligan 
et al., 2018; Mix et al., 2016), this is the first to show that spatial 
scaling training leads to improvements in number line estimation. To 
note, an unexpected increase in error was reported following control 
training. This may be attributable to fatigue or boredom with the task 
at Time 2. Further investigation is needed to understand this effect.

Performance	on	the	Geometry	Task	differed	across	item	types.	
Gains	 on	 Geometry	 Symmetry	 Items	 were	 reported	 across	 time,	
but no effects of training mode or training type were found. Thus, 
effects in the experimental training conditions did not differ from 
those in the control conditions. This suggests significant practice ef‐
fects for this task. In contrast, there was far transfer of training gains 
from	both	mental	 rotation	and	spatial	 scaling,	 to	Geometry	Shape	
Items. From a theoretical perspective, children might use spatial vi‐
sualization (also used in Mental Rotation Tasks) to picture and rotate 
the shapes presented to count the number of sides (faces) on the 
shape. Improved spatial scaling skills may have enabled participants 
to better use proportional reasoning to answer shape items. Instead 
of counting each individual side (face), participants may have first, 
segmented the shapes presented (all of which were symmetrical) 
into halves or thirds, then counted the sides (faces) in a single seg‐
ment, and finally multiplied this to account for all segments.

Explicit versus implicit instruction:	 For	 Geometry	 Shape	 Items	
there was a main effect of training mode. Gains were reported fol‐
lowing implicit but not explicit instruction. For this task participants 
were asked to count the number of sides (faces) on a shape. Errors 
can easily be made on this task by counting the same side (face) 
twice or by forgetting where on the shape you started counting. As 
implicit training required participants to carefully select responses 
and revise incorrect responses, this may have increased the likeli‐
hood of participants going back over answers on the Geometry Task, 
which may in turn have increased accuracy.

For all other measures, there were no main or interaction effects 
reported for training mode (explicit vs. implicit instruction). This sug‐
gests that explicit and implicit spatial instruction are largely similar 
in eliciting near, intermediate and far transfer of gains. As outlined 
in the introduction, the efficacy of explicit instruction in this study, 
maybe be due to the fact that the instructional videos used pro‐
vide a model of successful task performance, allowing children to 
acquire new task strategies through observational learning. For im‐
plicit instruction, the results of this study suggests that practice with 

feedback also leads to performance gains. However, here we pro‐
pose that feedback is a key element of this training type. It may be 
argued that participants in the control groups in this study completed 
task practice on account of their completion of the Time 1 task bat‐
tery. However, these participants did not have significant gains on 
any measures. This suggests that task practice alone is insufficient 
to elicit gains, and that the feedback provided in implicit instruction 
is a key component driving the effectiveness of this training. Taken 
together, the findings that both explicit and implicit instruction elicit 
similar gains have practical importance in the classroom. The deliv‐
ery of instructional videos in a group context offers an easily imple‐
mentable method of improving spatial thinking that does not require 
one‐to‐one student interaction or advanced IT facilities (such as a 
laptop for every student). This mode of instruction offers a feasible, 
cost‐effective way of spatializing the primary school classroom.

4.1 | Motivational factors

This study is the first to explore the efficacy of spatial training while 
controlling for motivational factors. Here we demonstrated that nei‐
ther participant expectations of, nor engagement with, training can ex‐
plain the gains reported following spatial training. First, there were no 
significant	differences	in	participants'	expectations	of	training	across	
different training modes or training types. The similarities in expecta‐
tions show that differences in expectations of training cannot explain 
the performance gains reported following training. This increases the 
reliability	of	the	causal	inferences	made	(Boot	et	al.,	2013).	Second,	the	
performance gains reported following training cannot be attributed to 
engagement with training alone. For explicit training, there were no 
differences in reported engagement levels between training types. 
For implicit training, there was significantly higher engagement for 
participants in the control group compared to those who completed 
spatial	scaling	training.	Participants	who	received	implicit	spatial	scal‐
ing	 instruction	completed	additional	trials	of	the	Spatial	Scaling	Task	
that they had previously completed at Time 1. However, for the con‐
trol group the reading task completed was new, that is, not completed 
at Time 1, and therefore may have been more engaging. Although a 
significant difference in engagement was found for implicit instruc‐
tion, the direction of the difference shows that the performance gains 
reported for spatial and mathematics skills persisted despite the fact 
that control training may have been more engaging. Taken together, as 
control training did not lead to gains on any of the outcome measures, 
levels of engagement did not superficially align with training effects.

4.2 | Implications, future directions and limitations

This study provides some of the first evidence that the association 
between spatial and mathematical performance reflects a causal 
influence of spatial ability on mathematics performance. This 
causal relationship between spatial skills and mathematics can be 
inferred because a manipulation in one variable (spatial skill) led 
to	changes	 in	 the	other	variable	 (mathematics	skill;	Pearl,	2000).	
The findings determine that the observed correlations between 
spatial and mathematical thinking cannot solely be explained by 
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a common cause acting on both variables, for example, genetic 
influence, IQ, language skills or other cognitive skills such as WM. 
As shown in Figure 21, without a direct cause between spatial 
and mathematical thinking, intervening on spatial skills would not 
lead to changes in mathematical outcomes. Thus, while a common 
cause such as a general cognitive factor or neural features may 
also exist between spatial and mathematical thinking (Oberauer, 
2016), this study identified a specific, direct causal effect of spatial 
skills on mathematics performance. Furthermore, these findings 
do not preclude a causal role of mathematical thinking on spatial 
skills, that is, a bidirectional relationship (feedback loop) may exist 
between spatial and mathematical thinking. From a practical per‐
spective, finding novel methods of improving mathematical think‐
ing	 in	 children	 is	 an	 educational	 priority	 (National	 Audit	 Office	
UK, 2018) and this study aimed to determine the causal effect 
of spatial skills on mathematics. However, to establish whether a 
bidirectional relationship exists between spatial and mathematics 
skills, future research is needed investigating the effects of train‐
ing mathematics skills on spatial performance. In summary, the 
identification of a causal effect of spatial thinking on mathematics 
in this study, strengthens arguments for spatializing mathematics 
teaching	as	a	means	of	improving	mathematics	outcomes	(Bruce	&	
Hawes, 2015). The instructional videos presented here offer one 
way of introducing spatial thinking into the classroom. However, 
further research is needed to explore the optimum dosage of this 
training and the durability of these training gains.

While most previous spatial training studies are based on mental 
rotation (or similar spatial tasks; Uttal et al., 2013), this study demon‐
strates an important role for other spatial sub‐domains, particularly 
spatial scaling. This study highlights the importance of carefully choos‐
ing spatial training targets and suggests that training studies should 
be closely aligned with findings from cross‐sectional and correlational 
analyses. Mental rotation and spatial scaling were selected as training 
targets in this study, as these task specifically relate to mathematics 
outcomes at 8 years (Gilligan et al., 2017; Mix et al., 2016, 2017). Future 
studies should explore whether spatial training using age appropriate 

targets might confer benefits to spatial and mathematics performance 
in older children, for example by training perspective taking abilities 
or visuo‐spatial thinking which have been associated with mathemat‐
ics outcomes at 10 years (Gilligan et al., 2018) and 11 years (Mix et al., 
2016, 2017) respectively. Furthermore, there is cross‐sectional evi‐
dence that the role of spatial thinking extends beyond mathematics, 
to	other	Science,	Technology,	Engineering	and	Mathematics	(STEM)	
domains (e.g. Hodgkiss, Gilligan, Tolmie, Thomas, & Farran, 2018; Wai, 
Lubinski,	&	Benbow,	2009).	Future	studies	could	explore	transfer	of	
spatial	training	gains	to	other	STEM	domains.

The results of this study should be interpreted in light of its limita‐
tions. First, there was a short interval (0–5 min) between training and 
post‐testing. Therefore, the training completed in this study may have 
led to priming of certain strategies for task completion, and not con‐
ceptual change. Other studies that have shown that short‐term prim‐
ing is possible and effective in children. For example, 5 min of spatial 
priming increases creativity in children aged 6–9 years (Liberman, 
Polack,	Hameiri,	&	Blumenfeld,	2012),	while	priming	spatial	language	
terms (5 min) improves performance on a spatial relations task at 
4 years (Loewenstein & Gentner, 2005). However, even if the findings 
reported reflect a priming effect, the results of this study have signif‐
icant practical applications for teachers, given that priming enhanced 
performance on mathematics performance. Alternatively, transfer 
of gains from spatial training to mathematical skills may reflect both 
priming and conceptual change. These two processes are necessarily 
inter‐linked, as it is not possible to prime a process that you have not 
yet developed. Taken together, although priming cannot be ruled out, 
similarly to Cheng and Mix (2014), here we demonstrate shared cog‐
nitive processing in the completion of spatial and mathematics tasks, 
that is subject to modification through training. A second limitation 
of this study was that the duration of the spatial training delivered 
was relatively short, and there was no investigation of dosage ef‐
fects. Furthermore, although far transfer of gains between spatial 
training and mathematical outcomes was reported, the size of these 
gains was relatively small. Future research is needed to investigate 
whether the amount of training delivered influences the size and 
durability of training gains. However, the findings here demonstrate 
that even short bouts of spatial training lead to transfer of training 
gains to mathematics. Importantly, the findings of other studies sug‐
gest that there is durability of spatial training gains. Uttal et al. (2013) 
compared spatial training studies with post‐testing immediately fol‐
lowing training, to studies that wait days, weeks or even months until 
post‐testing. Uttal et al. (2013) found that spatial training gains were 
durable and that the timing of post‐testing did not significantly in‐
fluence the size of training gains reported following spatial training.

5  | CONCLUSIONS

The use of developmentally sensitive, theoretically motivated spa‐
tial training targets led to near, intermediate and far transfer of 
gains	 to	 both	 spatial	 and	mathematical	 domains	 at	 8	 years.	Not	
only do these findings highlight the malleability of spatial skills, 

F I G U R E  2 1   Causal relationship between spatial and 
mathematical thinking.
Note:	Established	and	speculative	causal	relations	are	shown	in	
orange and grey respectively
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they also call attention to spatial ability as one domain in which 
cognitive training can lead to transfer effects. Explicit and implicit 
instruction led to similar gains in spatial and mathematical domains 
(except for geometry items). This emphasizes the potential of ex‐
plicit instruction as a practical means of eliciting far transfer of 
spatial training gains in the primary school classroom. It is also ad‐
vised that the choice of cognitive training should be constrained 
by an understanding of the underlying cognitive mechanisms of 
training targets. In this study mental visualization was proposed 
as an underlying cognitive mechanism for mental rotation training, 
and proportional reasoning was proposed as an underlying cog‐
nitive mechanism for spatial scaling training. The gains reported 
highlight the importance of choosing task and age sensitive tar‐
gets for spatial training. In turn, evidence from this training study 
lays bare the causal contribution of cognitive processes to math‐
ematical cognition that was previously only inferred based on cor‐
relational evidence.
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