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Erlang could have told you so - a case study of health policy without maths 

 

Abstract 

Little consideration is given to the operational reality of implementing national policy at local scale. 

Using a case study from Norway, we examine how simple mathematical models may offer powerful 

insights to policy makers when planning policies.  Our case study refers to a national initiative 

requiring Norwegian municipalities to establish acute community beds (municipal acute units or 

MAUs) to avoid hospital admissions. We use Erlang loss queueing models to estimate the total 

number of MAU beds required nationally to achieve the original policy aim.  We demonstrate the 

effect of unit size and patient demand on anticipated utilisation.  The results of our model imply that 

both the average demand for beds and the current number of MAU beds would have to be increased by 

34% to achieve the original policy goal of transferring 240 000 patient days to MAUs.  Increasing 

average demand or bed capacity alone would be insufficient to reach the policy goal.  Day-to-day 

variation and uncertainty in the numbers of patients arriving or leaving the system can profoundly 

affect health service delivery at the local level.  Health policy makers need to account for these effects 

when estimating capacity implications of policy.  We demonstrate how a simple, easily reproducible, 

mathematical model could assist policy makers in understanding the impact of national policy 

implemented at the local level.   
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Introduction 

Researchers often criticize health policy makers for developing policies that are insufficiently 

evidence based.  On the other hand, policymakers often criticize researchers for being insufficiently 

aware of policy processes and requirements when conducting research (1,2).  More conventional forms 

of research may not address issues of day to day operations or implementation that policy makers need 

answered. As a result, policy makers often face the difficult task of making capacity or resource 

related decisions based on limited information.  

Little consideration is given to the operational implications of implementing national policy at local 

level.  Variation in the demand for health services (i.e. variation in the number of patient referred or in 

lengths of stay) can profoundly affect the capability of the health system to meet this demand. If policy 

makers do not understand the effect of inevitable peaks and troughs in demand when estimating 

capacity requirements, they may design systems that are chronically unable to meet demand. This in 

turn may lead to unacceptably high numbers of patients being turned away, lying in corridors or 

waiting considerable time for necessary intervention (3) . 

In the context of capacity planning related to unplanned inpatient care, the problem presented by 

variability is that, when there is a peak in demand that exceeds capacity (due to higher than average 

referrals and/or longer than average patient stays), patients cannot be admitted and receive care 

elsewhere. Conversely, when there is a trough in demand that falls below capacity (due to fewer than 

average arrivals and/or shorter than average patient stays), some capacity goes unused.   

A related problem  often neglected when national policy is implemented at the local level is that 

smaller units are far more susceptible to variation in demand than larger units (3). This can lead to 

lower utilisation rates than policy makers expect.  Unmet expectations may lead to frustrations and 

misplaced accusations of low productivity. 

The phenomena above are well described in operational research (OR) - an applied form of research 

that attempts to understand real world problems and how to solve them using mathematical approaches 

including queue theory (4).  The Danish mathematician Erlang introduced the concept of “queue 
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theory” in the early twentieth century (5).  The practical purpose behind his theory was to calculate the 

number of switchboard operators required to answer a certain level of incoming calls within a 

specified time limit.   

It comes as no surprise that the theory has applications beyond telecommunications.  In health care, 

queue theory has been used for a wide range of issues, including health system design, capacity 

planning, resource allocation, optimisation and scheduling (6).  That said, OR methods are not widely 

used to inform health care policy (7–9).  There is reason to believe that OR can assist policy makers in 

implementing national health policy by given them a means to explore the consequences of proposed 

policy changes at the local level and by improving their understanding of the disruptive effects of local 

variability in demand (6,10–14).  In this study, we use a case from Norway to demonstrate how simple 

OR models may offer powerful insights to policy makers.  

In 2016, Norway made the provision of acute community beds (municipal acute units or MAUs) 

mandatory for all 400+ municipalities (15,16). MAUs were intended to offer an alternative to hospital 

admission. They were not, however, intended to be used as step down facilities for patients already 

admitted to hospital (17). The original policy goal stipulated a transfer of approximately 240 000 

patient days per year from hospitals (18) to MAUs corresponding to a tenth of medical emergency 

admissions.  As municipal populations vary considerably (from 206 to 672 000), the number of MAU 

beds required by each municipality was expected to vary accordingly (19).  

We use queue theory to estimate the total number of MAU beds required to achieve the national policy 

goal. We demonstrate how local unit size, defined as the number of MAU beds per unit, may affect 

utilisation and cause difficulties in achieving policy aims. In particular, we highlight how variability in 

referral rates and/or lengths of stay at the local level can have a big impact on achieving national 

policy goals. 

Materials and methods 

To illustrate how simple analytical models may be used to inform policy development, we wanted to 

mimic a typical situation for policy makers with little empirical evidence available prior to 
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implementation. Our assumptions regarding policy goals and total  planned capacity were thus derived 

from the policy documents originating prior to introduction of MAUs (15–17). Based on the national 

policy aim of 240 000 patient days and making no adjustment for variability in the demand for 

services, we calculated that the government intended to establish 658 beds (240 000/365) nationally 

The only post-hoc data we used related to the distribution of unit sizes, which was based on the 

number of beds reported by 206 MAUs for 2017, as shown in Figure 1 (20).  MAUs appear to have 

used population based estimates of demand calculated by the Directorate of Health to determine the 

number of beds they should establish (18,21).  Given that the population in each municipality has been 

relatively unchanged since 2012 we considered it reasonable to use empirical data from 2017 as a 

proxy for policy makers’ intentions in 2012. 

We used the so-called Erlang loss model to analyse the impact of random variation in demand for beds 

on the flow of patients through MAUs. The model estimates the proportion of patients that would be 

turned  away (hereafter referred to as the turn-away rate) when the average demand for beds is at a 

particular level, for a unit of a given capacity.   The model assumes that the number of patients 

referred follows a Poisson distribution, meaning that the likelihood that a patient is referred at any 

time is independent of the time elapsed since the previous referral.  It also assumes that the system 

modelled has a finite capacity i.e. the maximum number of beds cannot be exceeded.  As MAUs are 

intended for acute patients, we also assume that no queue could form i.e. when the MAU is at full 

capacity new patients are turned away and admitted to hospital.  

In the long term, it makes no difference if the average number of referrals per day is 2 and their 

average length of stay is 6 days or there is an average of 4 referrals a day with a length of stay of 3 

days. In both cases the average demand for beds would be 12 patient days (2*6 and 3*4), which 

means that if all patient referrals were accepted, the number of beds in use would fluctuate randomly 

around a long term average of 12 in either case.  This enables us to analyse the number of patient days 

that could potentially be moved from the hospital sector to the MAUs, without having to consider the 
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details of arrival frequencies and length of stay.  This becomes apparent when we take a closer look at 

the equation for the Erlang loss function. 

For a given capacity n, and an average demand d, the Erlang loss function B(n,d) is given by 

 𝐵(𝑛, 𝑑) =  
𝑑𝑖

𝑛! ∑ 𝑑𝑖

𝑖!⁄𝑛
𝑖=0

 .       (Eq. 1) 

B(n,d) is the proportion of the time that all n beds will be in use, given an average demand of d. Since 

we assume that referrals occur at random times and patients are turned away if all the beds are in use, 

B(n,d) can also be interpreted as the turn away rate. In the long run,  [1 – B(n,d)] gives the proportion 

of referrals that are admitted to the MAU, meaning that the average number of beds in use is 𝑑 ∗

[1 − 𝐵(𝑛, 𝑑)]. 

Activity can be defined as patient days delivered (23), and according to our model, the expected 

number of patient days X (n,d) that are delivered through a year for an MAU with n beds and demand 

d is: 

 𝑋(𝑛, 𝑑) = 365 ∗ 𝑑 ∗ [1 − 𝐵(𝑛, 𝑑)]       (Eq.2) 

We modelled the impacts of different scenarios on utilisation and capacity requirements: 

1. baseline scenario with 658 beds distributed according to the empirical distribution, 

assuming an average demand equal to the capacity for each MAU 

2. as scenario 1, but average demand doubled  

3. as scenario 1, but unit capacity increased to achieve 90% of policy goal  

4. as scenario 1, but average demand and unit capacity increased proportionately to meet 

policy goal 

The scenarios are described in further detail below. 

Scenario 1: 
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This scenario was designed to estimate the effect of the original policy in MAU patient days delivered 

per year. We used the empirical distribution of MAU sizes shown in Figure 1 as a blueprint for the 

distribution that could have been expected at the time. As the total number of beds in the empirical 

distribution was 706 and the number of beds implied by the policy documents was 658, we multiplied 

the sizes in Figure 1 by a factor (658/706), which ensured that their sum was 658. This rescaled 

distribution included decimal (non-integer) numbers of beds, which are difficult to interpret and do not 

fit the Erlang model. We devised an algorithm that allowed us to approximate the rescaled distribution 

as closely as possible to the original distribution using positive integers as MAU sizes. This allocation 

algorithm is reported in the appendix. We assumed that each MAU had an average demand equal to its 

size (d = n) and used Eq. 2 to estimate their annual number of patient days and summed these numbers 

over the 206 units. 

Scenario 2:  

In scenario 1 the average demand for beds was equivalent to the unit capacity i.e. the number of beds 

in the unit. In scenario 2 we looked at the effect on utilisation of substantially increasing the average 

demand for beds.  Such an increase could be achieved by increasing referral rates, for example by 

broadening the criteria for MAU admission.  We chose to double demand to represent an extreme 

scenario (d = 2n). The distribution of unit size remained the same as scenario 1 and the same 

calculations were performed.  

Scenario 3:  

In this scenario all input parameters were the same as scenario 1 except capacity. Keeping demand the 

same as in the first scenario, we calculated the additional number of MAU beds required to deliver 

90% of the target 240 000 patient days per year. The allocation algorithm (see appendix) was used to 

distribute this additional bed capacity across our hypothetical MAUs. The total number  of beds was 

increased from 658 until the 240 000 * 0.9 = 216 000  patient days was reached.   

Scenario 4:  
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In scenario 4 we increased average demand and unit capacity proportionately, until the policy target of 

240 000 patient days was achieved. As in the previous examples the allocation algorithm was used to 

determine the distribution of unit sizes as the total number of beds was increased.  

Results 

In this section we present the results of applying our Erlang loss model to different scenarios 

representing different degrees of variability and scale (national and local).  

Scenario 1 – baseline model of the original policy decision  

 

Figure 1. Empirical distribution of unit size ordered by decreasing size 

Figure 1 shows the distribution of unit size in 2017 (20). The data show that 67% of MAUs have fewer 

than 3 beds per unit, with 42% of units having 1 bed (this number includes also units reporting non-

integer values of beds, including those reporting less than 0.5 beds/unit – likely to be due to MAU 

function being shared between municipalities or with other functions). The three largest units with 72, 

34 and 25 beds respectively are MAUs in major cities. 

Under this scenario, average utilisation was  71%, and  29% of patients were turned away.  As a result, 

the expected number of patient days delivered by this scenario was only 170 696.  This value fell short 
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of the desired outcome of 240 000 patient days by 29%.  In the model, larger units have higher 

utilisation rates than smaller units and lower probabilities of turning patients away.  This can be seen 

in Figure 2 where the graph on the left shows the relationship between increasing unit size and the 

percentage of patients turned away. The graph on the right shows the relationship between utilisation 

and increasing unit increasing size.  The blue bars represent scenario 1 and the orange bars scenario 2. 

Scenario 2 - with demand doubled 

We doubled the average demand for beds which can be interpreted as doubling the referral rate, whilst 

keeping the length of stay constant. As a result, the bed utilisation increased to 85% but at the cost of 

turning more patients away, with the turn-away rate increasing to 57%. The expected number of 

patient days delivered increased to 204 261 but still fell short of the policy aim by 15%.  In Figure 2, 

the graph on the left shows the effect of doubling demand on the percentage of patients turned away 

for units of increasing size. The graph on the right shows the effect of doubling demand on utilisation, 

for units of increasing size. The orange bars show the change in turn-away rates and utilization when 

average demand is doubled.  We can see that doubling average demand increases utilisation rates with 

the effect being more pronounced in smaller units. The probability of turning patients away also 

increases, this time with a more pronounced effect in larger units. 

  

 Figure 2. Effect of increasing average demand on utilisation and turn away probability for a given unit 

size.  
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Scenario 3- capacity increased to achieve 90% of policy goal   

We used Scenario 3 to approximate the additional number of beds required to achieve 90% of the 

original policy goal, assuming all other conditions were equivalent to Scenario1.  This corresponds to a 

turn-away rate of 10%. We found that we needed to increase the total number of beds to 1045 in order 

to deliver the  216 000 patient days of activity.  This represented a 59 % increase in bed capacity when 

compared to the estimate of 658 beds for a system with no variability.  

Scenario 4- average demand and unit capacity increased proportionately to meet policy goal  

In Scenarios 2 and 3 we studied the effects of increasing either average demand or unit capacity. In 

Scenario 4 we increased both demand and unit capacity proportionately. We estimated that average 

demand and the total number of beds needed to increase by 34% to 884 in order to achieve the policy 

goal of 240 000 patient days. 

    

Figure 3. The impact of different policy levers.   Scenarios 1 - 4 are represented graphically as points 

S1- S4.  
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In Figure 3, the Y axis represents the annual number of patient days delivered under each scenario.  

The X axis represents a percentage increase in either average demand (as in Scenario 2) or bed 

capacity (as in Scenario 3) or both (as in Scenario 4). The solid line represents Scenario 4 which is the 

only scenario where the policy goal is achieved by increasing both average demand for beds and bed 

capacity by 34%. The dashed line in the middle represents Scenario 3 where 90% of the policy goal is 

attained by dramatically increasing the number of beds. The dotted line at the bottom corresponds to 

Scenario 2 which, of the three, delivers the least number of patient days even at the extreme of  

doubling the average demand for beds (100% increase).  As such we see that both capacity and 

demand must be increased to achieve the policy goal. 

 

Discussion 

We carried out a post-hoc analysis of the national roll out of municipal acute units in Norway. Our 

analyses suggest that Norwegian policy makers substantially underestimated the bed capacity 

necessary to achieve the original policy goal. Our example highlights the disconnect between national 

policy and local implementation, where assumptions that hold true at the aggregate level, are no longer 

valid when disaggregated at the local level.  

Qualitative research suggests that municipalities used the estimates in the national guidelines to 

calculate the number of beds required (22). When devising their estimates of the number of MAU beds 

required, national authorities appear to have fallen into a common trap; they did not consider how 

variation in referral and discharge rates and variation in unit size may affect bed utilisation. The latter 

is an important consideration given the large number of sparsely populated municipalities that require 

few MAU beds.  

MAUs have received a lot of criticism for having consistently low utilisation rates (21). This is in part 

explained by factors contributing to under use of MAU beds such as lack of awareness of or 

scepticism towards these new units amongst referring practitioners (21,23).  Another explanation, and 

the one most likely to be overlooked, may be the effect of unit size on their intrinsic ability to achieve 
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higher rates of utilisation in the face of variation. Queue theory implies that at a given level of 

utilisation, larger units experience economies of scale i.e. they can have higher utilisation rates while 

turning away a lower proportion of patients than small units (11). If most MAUs are very small units 

i.e. less than 3 beds, our findings suggest that the average utilisation would  be 60% or less which is 

far lower than most hospitals. The OECD average for hospital utilisation is around 76%, though 

Norwegian hospitals have traditionally been higher (24,25).  Policy makers unaware of the impact of 

unit size on utilisation may be more likely to have unrealistic expectations of what MAUs are capable 

of delivering. 

Following on from this, it is worth considering whether criticism coupled with unrealistic expectations 

encourages counterproductive behaviours at MAUs. These could include admitting patients who 

would not otherwise be admitted to hospital, in order to improve utilisation. Paradoxically, this may 

result in a situation where patients eligible for admission to MAU are turned away due to lack of 

available beds.  Recent studies lend weight to this hypothesis; Swanson and Hagen showed a decrease 

of only 1.2% in hospital admissions following the introduction of MAUs (26). A possible explanation, 

identified by Leonardsen, is that referring health care practitioners perceive MAUs less as a substitute 

to hospital admission and more as a brand new type of service (23).  Alternatively, the implicit 

assumption that demand for hospital beds is well defined could be incorrect. This would mean the 

capacity freed up within hospitals by transferring patient days to MAUs would promptly be filled by 

other patients.  This could happen if admitting practices of general practitioners were influenced by 

their perception of how full the local hospital was. For example, GPs might be more inclined to refer 

less severely ill patients if they considered the hospital to be less busy. 

Strengths and weakness of our study 

An obvious strength of our modelling is that it can be easily reproduced, and its assumptions easily 

understood by policy makers and practitioners. In addition, it is not dependent on large quantities of 

data nor does it require complex programming skills to build and deploy. 
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It is, however, important to acknowledge that mathematical models are based on simplified 

assumptions of real life. The most obvious weakness of the queueing model is the assumption that a 

patient is equally likely to arrive at any point in time. Most real-life arrival processes in health care 

experience more variation than is accounted for here – there may be fluctuations in arrival rates over 

the course of the week, months of the year and times of the day. For example, a hospital ward might 

have fewer new admissions at weekends than during the week. As such, the results of our models are 

likely to be overly optimistic with respect to average utilisation.  In real life, where the average 

demand for beds varies, peak periods will give increased utilisation rates but at the expense of turning 

more patients away. Similarly, quieter periods will result in lower utilisation of beds but fewer patients 

being turned away.  The higher turn-away rate during busy periods outweighs the lower rate  in less 

busy periods.  Using a simulation model would have allowed us to account for time-varying arrival 

rates but the key messages would be the same. 

Our empirical distribution did not indicate whether MAU beds were located in independent units or 

were ring-fenced beds in larger units primarily serving another function. It is not uncommon for MAU 

beds to be located in nursing homes. This could have implications for the actual utilisation levels of 

such beds, particularly if the ring-fencing was not absolute and the beds could also be used for other 

purpose. We have also not accounted for situations where units may temporarily increase capacity in 

periods of high demand.  

MAU beds form a small proportion of the total number of beds managed by municipalities. Many 

MAUs are collocated with other municipal entities who also admit patients on a short-term basis, such 

as short term rehabilitation wards. Whilst these wards should address the needs of a different group of 

patients than those eligible for MAU admission, it is often the case that available beds may be used for 

other purposes if the need arises.   It is likely that this form of pragmatic buffering within municipal 

health services may be helpful under certain circumstances, but we did not attempt to factor this into 

our analyses.  In future analyses this could be incorporated into a simulation model.  Simulation 

modelling could be used to account for the variation in arrivals rates mentioned earlier. In addition, 
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such models can be used to explore the impacts of policy relevant scenarios such as merging MAUs 

on utilisation or altering patient flows.  

Conclusions 

To our knowledge there has been no prior evaluation of the number of MAU number of beds required 

nationally. Our study may be interesting for policy makers considering how to improve or adjust 

future policy concerning MAUs. Perhaps more importantly it demonstrates how simple analyses can 

provide important insights even when data is lacking.   

It is not unusual that health care policy is based on inaccurate or unfeasible premises - or a disregard 

for how the policy will play out at the local level. This may be due to several reasons including a lack 

of available evidence, political or time-related pressures. When evaluating policies that may not have 

delivered the expected result, it is important to determine whether the fault lies with the initial policy 

aim, which may be have been unrealistic, or the policy implementation, which may have been 

suboptimal.   

Even though the mathematics involved is not particularly advanced, the types of analyses we carried 

out are not commonly part of policy development.   This may be due to a lack of awareness, ability or 

concern that such models may be regarded with suspicion. Our results demonstrate that there is a 

strong case for bringing more maths into policy. Decision makers should be more aware of the options 

available to them when asking for information to inform policy decisions.   
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