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Figures

Figure S1. General scheme for adhesion procedure and testing of anaerobic adhesive 
formulations on plates, which can be stainless steel, aluminium or a combination of 
steel/aluminium and glass.
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Figure S2. X-ray powder diffraction patterns of MnO2 (black), CoFe2O4 (red) and 
CoFe2O4@MnO2 (blue) nanocomposites, stars represent the δ-MnO2 phase (black) and 
CoFe2O4 (red) cubic spinel phase present in the core@shell particles, as labelled.
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Figure S3. Raman spectra of a) CoFe2O4 nanoparticles and b) CoFe2O4@MnO2 core@shell 
nanoparticles. Raman modes at 680 cm-1, 617 cm-1, 475 cm-1 and 300 cm-1 are characteristic 
of the cubic inverse spinel structure of CoFe2O3;1 peaks at 560 cm-1 and 620 cm-1 (increased 
intensity compared to CoFe2O4 alone) are characteristic of δ-MnO2.2 
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Figure S4. FTIR spectra of a) CoFe2O4 nanoparticles showing Fe-O stretching vibrations (530 
cm-1), a small shoulder representing Co-O stretching vibrations (720 cm-1) and hydroxyl group 
stretching vibrations (3400 cm-1), as labelled and b) CoFe2O4@MnO2 nanocomposites 
showing Mn-O stretching and Mn-O-H bending vibrations (725 and 490 cm-1), characteristic 
Fe-O vibrations, hydroxyl groups stretches (labelled, as in (a)) as well as distinctive peaks for 
oleic acid, including asymmetric and symmetric CH2 stretches (2925 and 2850 cm-1), C=O and 
C-O stretches (1712 and 1340 cm-1), O-H (1410 cm-1) and asymmetric COO- stretches (1535 
cm-1), as labelled.2, 3
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Figure S5. Magnetisation curves of CoFe2O4 and CoFe2O4@MnO2 nanocomposites. Samples 
demonstrate hysteresis loops indicative of ferromagnetism. Saturation magnetisation values 
(as labelled, based on total mass of sample) decrease upon MnO2 coating, as expected due to 
the presence of the non-magnetic MnO2 layer.
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Figure S6. Complete XPS spectrum of CoFe2O4@MnO2 core@shell nanoparticles with 
elements labelled.
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Figure S7. Mn 2p core level XPS spectrum of CoFe2O4@MnO2 core@shell nanoparticles. 
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Figure S8. Co 2p core level XPS spectrum of CoFe2O4@MnO2 core@shell nanoparticles.
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Figure S9. Fe 2p core level XPS spectrum of CoFe2O4@MnO2 core@shell nanoparticles.
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Figure S10. a) FTIR transmittance spectra of unmodified adhesive formulation monitored over 
time. Inset shows increase of band at 1637 cm-1 indicative of reduction in concentration of 
C=C bond over time. b) FTIR transmittance spectra of adhesive formulation in the presence of 
optimised ratio of CoFe2O4@MnO2 nanoparticles monitored over time. Inset shows increase 
of band at 1637 cm-1 indicative of reduction in concentration of C=C bond over time. c) FTIR 
transmittance spectra of adhesive formulation after magnetic removal of CoFe2O4@MnO2 
nanoparticles monitored over time. Inset shows increase of band at 1637 cm-1 indicative of 
reduction in concentration of C=C bond over time.
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Figure S11. Plot of conversion of monomer (calculated from monitoring FTIR 1637 cm-1 peak 
representative of the disappearance of the C=C bond of TRIEGMA and hence polymerisation) 
with respect to time for the adhesive formulation in contact with a steel substrate. Samples 
measured: unmodified adhesive formulation (black), formulation with optimised 
CoFe2O4@MnO2 nanoparticles present (blue) and after they had been removed (magenta).

Figure S12. Still images showing glass-stainless steel plate combination adhesive tests: a) 
application of complete colloidal adhesive formulation containing CoFe2O4@MnO2 particles 
to a glass plate; b) lack of plate adhesion in absence of a magnetic field; c) application of a 
permanent magnetic field (magnet indicated by arrow) to the joint with complete colloidal 
adhesive formulation applied, as per a); d) successful glass-stainless steel plate adhesion as a 
result of magnet application to the joint for 30 s.  
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Tables

Table S1. Ratios of MnO2 and CoFe2O4@MnO2 samples tested for adhesion inhibition 
properties and their adhesion capabilities ( for successful adhesion,  for unsuccessful 
adhesion). 

Sample Mass ratio of 
particles:CuII

Deactivation 
of adhesion in 

presence of 
particles[a]

Magnetic 
removal[b]

Adhesion post 
magnetic 
removal[c]

1:1   -[d]

2:1   -[d]MnO2

3:1   -[d]

4.5:1   

4:1   

3.5:1   

3:1   

1.3:1   

CoFe2O4@MnO2

1:1.3   

[a] Deactivation of adhesion defined as prevention of reduction of CuII to CuI, 
polymerisation and hence no adhesion of metal plates using adhesion tests (Figure S1 
and Experimental). [b] Ability to remove the nanocomposite sample system using an 
external magnetic field. [c] After removal of nanoparticles by magnetic field, assessment 
of supernatant adhesion as per [a]. [d] Not applicable due to lack of magnetic 
characteristics.
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Table S2. Summary of the conditions required to achieve polymerisation (and hence 
metal substrate adhesion) in the absence and presence of nanoparticles (optimised 
ratios) and control systems ( for successful adhesion,  for unsuccessful adhesion). 

Sample Deactivation of 
adhesion[a]

Magnetic 
removal[b]

Adhesion post magnetic 
removal[c]

MnO2
[e]   -[d]

Oleic acid[f]   -[d]

KMnO4
[g]   -[d]

CoFe2O4
[h]   

CoFe2O4@MnO2
[i]   

[a] Deactivation of adhesion defined as prevention of reduction of CuII to CuI, 
polymerisation and hence no adhesion of metal plates using adhesion tests. [b] Ability to 
remove the sample system using an external magnetic field. [c] After removal of 
nanoparticles by magnetic field, assessment of adhesion as per [a]. [d] Not applicable due 
to lack of magnetic characteristics. [e] 2:1 mass ratio of particles:CuII. [f] 5:1 mass ratio of 
oleic acid:CuII. [g] 1:1 mass ratio of KMnO4:CuII. [h] 5:1 mass ratio of particles:CuII. [i] 3.5:1 
mass ratio of particles:CuII.

Video Files

Video files complement Figure 6, main manuscript.

Video S1. Real time video of complete colloidal formulation applied between two aluminium plates 
in the absence of a permanent magnetic field showing no adhesion takes place. 

Video S2. Real time video of complete colloidal formulation applied between two aluminium plates 
in the presence of a permanent magnetic field, for 30 s, showing successful adhesion takes place.
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