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Abstract

We show that denoising of 3D point clouds can be

learned unsupervised, directly from noisy 3D point cloud

data only. This is achieved by extending recent ideas from

learning of unsupervised image denoisers to unstructured

3D point clouds. Unsupervised image denoisers operate un-

der the assumption that a noisy pixel observation is a ran-

dom realization of a distribution around a clean pixel value,

which allows appropriate learning on this distribution to

eventually converge to the correct value. Regrettably, this

assumption is not valid for unstructured points: 3D point

clouds are subject to total noise, i. e., deviations in all co-

ordinates, with no reliable pixel grid. Thus, an observa-

tion can be the realization of an entire manifold of clean 3D

points, which makes a naı̈ve extension of unsupervised im-

age denoisers to 3D point clouds impractical. Overcoming

this, we introduce a spatial prior term, that steers converges

to the unique closest out of the many possible modes on

a manifold. Our results demonstrate unsupervised denois-

ing performance similar to that of supervised learning with

clean data when given enough training examples - whereby

we do not need any pairs of noisy and clean training data.

1. Introduction

While the amount of clean 3D geometry is limited by

the manual effort of human 3D CAD modelling, the amount

of 3D point clouds is growing rapidly everyday: our city’s

streets, the interior of everyday buildings, and even the

goods we consume are routinely 3D-scanned. Regrettably,

these data are corrupted by scanner noise and as such not ac-

cessible to supervised learning that requires pairs of noisy

and clean data. Consequently, it is desirable to be able to

denoise the acquired noisy 3D point clouds by solely using

the noisy data itself.

Two necessary recent developments indicate that this

might be possible: deep learning on 3D point clouds [19]

and unsupervised denoising of images [17, 15, 2].

Unfortunately, these two methods cannot be combined

naı̈vely. To learn our unsupervised 3D point cloud denoisers

Figure 1. We learn 3D point cloud cleaning (right), unsupervised,

from noisy examples alone (left).

(Fig. 1), we need to overcome two main limitations: the

practical obstacle to have a pair of two noisy scans of the

same object and the theoretical difficulty that noise in 3D

point clouds is total.

We refer to noise as ‘total’ (Fig. 2) when distortions are

not confined to the range (pixel values) while the domain is

clean (as pixel positions are), but to the more challenging

setting where both domain and range are affected by noise.

The name is chosen in analogy to total least squares [9],

which dealt with simultaneous noise in domain and range,

but for a linear, non-deep setting.

This paper’s evaluation shows for simulated noise of dif-

ferent kind, as well as for real point clouds, how our un-

supervised approach nonetheless outperforms a supervised

approach given enough, and in some cases even when given

the same magnitude of, training data, while it runs effi-
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Figure 2. To learn denoising of 3D point clouds, we need to extend

from common noise that is clean in one part of the signal, to a total

setting, where all parts of the signal are noisy. This example shows

three realizations of common noise (left) and total noise (right)

for three samples (colors). Please note, how total noise is “more

noisy” as both axis are corrupted.
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ciently in a single pass on large point clouds.

2. Related Work

Image denoising. Denoising images is one of the most

basic image manipulation operations. The most primitive

variants are based on linear filters such as the Gaussian fil-

ter, eventually with additional sharpening [13]. While non-

linear filters, such as median, bilateral [24] or non-local

means [3] are frequently used in practice, state-of-the-art

results are achieved by optimizing for sparsity [6]. Re-

cently, it has become popular to learn denoising, when pairs

of clean and noisy images are available [4].

Lehtinen et al. [17] proposed a method to learn denoising

with access to only two noisy images, instead of a clean-

noisy pair. Taking it a step further, Noise2Void [15] and

Noise2Self [2] are two extensions that remove the require-

ment to have two copies of one image corrupted with noise

and instead work on a single image. In both cases, this is

achieved by regressing the image from itself. This is done

by creating a receptive field with a “blind spot”, and a net-

work regresses the blind spot from its context. We will de-

tail the theory behind those papers [17, 15, 2] in Sec. 3.

3D point cloud denoising. 3D point clouds capture fine

spatial details but remain substantially more difficult to han-

dle than images, due to their irregular structure [18].

As for images, linear filters can be applied to remove

noise [16], but at the expense of details. As a remedy, image

operators such as bilateral [8, 5], non-local means [21] or

sparse coding [1] have been transferred to point clouds.

With the advent of PointNet [19], deep learning-based

processing of point clouds has become tractable. Four no-

table deep methods to denoise 3D point clouds were sug-

gested. The first is PointProNet, that denoises patches of

points by projecting them to a learned local frame and us-

ing Convolutional Neural Networks (CNN) in a supervised

setup to move the points back to the surface [22]. However,

the accuracy of the method is determined by the accuracy

of the local frame estimation, which results in artifacts in

extreme sharp edges. The second approach by Rakotosaona

et al. [20] uses PCPNet [11] (a variant of PointNet [19]) to

map noisy point clouds to clean ones. Third, Yu et al. [30]

learns to preserve edges, that dominate men-made objects.

Finally, Yifan et al. [29] define a clean surface from noisy

points by upsampling.

All these deep denoising approaches are supervised, as

they require pairs of clean and noisy point clouds, which

in practice are produced by adding noise to synthetic point

clouds. Our approach does not require such pairs.

Noise and learning. Noise is an augmentation strategy

used in denoising auto-encoders [25]. These are however

not aiming to denoise, but add noise to improve robustness.

Also is their target not noisy, but noise is in the input or

added to internal states.

3. Denoising Theory

Based on denoising in the regular domain, i. e., images,

with or without supervision, we will establish a formalism

that can later also be applied to derive our unstructured 3D

case.

3.1. Regular Domains

Pixel noise. An observation yi at pixel i in a noise cor-

rupted image is a sample of a noise distribution yi ∼
p(z|xi) around the true value xi. This is shown in Fig. 3, a).

The black curve is the true signal and pixels (dotted vertical

lines) sample it at fixed positions i (black circles) according

to a sampling distribution p(z|xi) (yellow curve) around the

true value (pink circle).

Supervised. In classic supervised denoising, we know

both a clean xi and a noisy value y ∼ p(z|xi) for pixel

i and minimize

argmin
Θ

Ey∼p(z|xi)l(fΘ(y),xi),

where f is a tunable function with parameters Θ, and l is

a loss such as L2. Here and in the following, we omit the

fact that the input to f comprises of many y that form an

entire image, or at least a patch. We also do not show an

outer summation over all images (and later, point cloud) ex-

emplars.

Unsupervised, paired. Learning a mapping from one

noisy realization of an image to another noisy realization

of the same image is achieved by Noise2Noise [17]. It has

been shown, that learning

argmin
Θ

Ey1∼p(z|xi)Ey2∼p(z|xi)l(fΘ(y1),y2),

converges to the same value as if it had been learned using

the mean / median / mode of the distribution p(z|x) when l
is L2 / L1 / L0. In most cases, i. e., for mean-free noise, the

mean / median / mode is also the clean value. We refer to

this method as ‘paired’, as it needs two realizations of the

signal, i. e., one image with two realizations of noise.

Unsupervised, unpaired. Learning a mapping from all

noisy observations in one image, except one pixel, to

this held-out pixel is achieved by Noise2Void [15] and

Noise2Self [2]:

argmin
Θ

Ey∼p(z|xi)l(fΘ(y),y),
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Figure 3. Substantial differences exist when denoising structured and unstructured data. (a) For structured data, each pixel value follows

a sampling distribution p(z|xi) (yellow curve) around the true value (pink circle). (b) For unstructured data, the distribution p(z|S) has a

manifold of modes (pink line). (c) By using the proposed proximity-appearance prior, a unique mode closest to the surface is determined.

Here, f is a special form of J -incomplete [2] maps that

have no access to pixel i when regressing it, i. e., a ‘blind

spot’. The same relation between mean / median / mode and

loss as in Noise2Noise applies. Note that this formulation

does not require two images, and we, therefore, refer to it

as ‘unpaired’.

Discussion. All three methods described above, work un-

der the assumption that, in a structured pixel grid, the range

(vertical axis in Fig. 2, left and Fig. 3, a) axis i and the do-

main z (horizontal axis) have different semantics. The noise

is only in the range: it is not uncertain where a pixel is, only

what its true value would be.

3.2. Unstructured Domains

Point noise. As for pixels, we will denote clean points

as x, noisy points as y and the noise model as p. All

points in our derivation can be either positional with XYZ

coordinates, or positional with appearance, represented as

XYZRGB points.

To our knowledge, deep denoising of colored point

clouds has not been proposed. We will not only show how

our technique can also be applied to such data but more-

over, how color can help substantially to overcome chal-

lenges when training unsupervised learning of a point cloud

denoiser. Surprisingly, this benefit can be exploited dur-

ing training, even when no color is present at test time. If

available, it will help, and we can also denoise position and

appearance jointly.

Supervised. Denoising a point cloud means to learn

argmin
Θ

Ey∼p(z|S)l(fΘ(y),S),

the sum of the losses l (e. g., Chamfer) between fΘ(y) and

the surface S of the 3D object. Such supervised methods

have been proposed, but they remain limited by the amount

of training data available [22, 20], as they require access to

a clean point cloud.

4. Unsupervised 3D Point Cloud Denoising

We will first describe why a paired approach is not feasi-

ble for unstructured data before we introduce our unpaired,

unsupervised approach.

4.1. Inapplicability of ‘Paired’ Approaches

Learning a mapping fΘ(Y1) = Y2 from one noisy point

cloud realization Y1 to another noisy point cloud realiza-

tion Y2 that both have the same clean point cloud X and

where the i-th point in both point clouds is a realization

of the i-th ground truth value, would be a denoiser in the

sense of Noise2Noise [17]. Regrettably, Noise2Noise can-

not be applied to unsupervised learning from unstructured

point clouds for two reasons.

First, this paired design, same as for images, would re-

quire supervision in the form of two realizations of the same

point cloud corrupted by different noise realizations. While

this is already difficult to achieve for 2D image sensors, it is

not feasible for 3D scanners.

Second, it would require a network architecture to know

which point is which, similar as it is given by the regular

structure of an image that explicitly encodes each pixel’s

identity i. This is never the case for total noise in points.

Opposed to this, modern convolutional deep point process-

ing [19, 12] is exactly about becoming invariant under re-

ordering of points.

In order to overcome this problem in a supervised set-

ting, Rakotosaona et al. [20] simulated such pairing by se-

lecting, for each noisy observation, the closest point in the

clean point cloud as the target for the loss. However, this

is just an approximation of the real surface whose accuracy

depends on the quality of the sampling of the clean data.

Fortunately, we can show that a pairing assumption is not

required, such that our approach operates not only unsuper-

vised but also unpaired, as we will detail next.

4.2. Unpaired

Learning a mapping from a noisy realization to itself

fΘ(Y) = Y is an unsupervised and unpaired denoiser in

the sense of Noise2Void [15] or Noise2Self [2]. Defining J
incompleteness in a point cloud is no difficulty: just prevent
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Figure 4. Comparing small (left) and large noise (right) we see the

modes (pink) deviate from the GT surface (black).

access of f to point y itself when learning point y from

the neighbors of y. Thus, essentially, we train a network

to map each point to itself without information about itself.

Unfortunately, there is the following catch with total noise.

Problem statement. Different from observing pixels at

index i in an image (dotted line Fig. 3, a), which tell us

that y is a realization of a hidden value xi to infer, it is un-

known which hidden surface point is realized when observ-

ing a point in an unpaired setting. A noisy point observa-

tion y, can be a realization of p(z|x1) in the same way as it

could be a realization of p(z|x2). Consequently, the distri-

bution p(z|S) has a manifold of modes (pink line in Fig. 3,

b). Learning a mapping from a noisy realization to itself

will try to converge to this multimodal distribution, since,

for the same neighborhood, the network will try to regress

different points from this distribution at the same time.

We, therefore, have to look into two questions. First,

what can be said about the similarity of this manifold of

modes and the clean surface? And second, how can we de-

cide which of the many possible modes is the right one?

Answering the second, and deriving bounds for the first

question are the key contributions of this paper, enabling

unsupervised 3D point cloud denoising.

4.3. Manifold of Modes vs. Clean Surface

Concerning the first question, the manifold of modes is

close to the surface, but not identical. Fig. 4, a), shows a

clean surface as a black line, with a small amount of noise,

where most samples are close to the clean surface. In this

condition, the learning converges to a solution identical to a

solution it would have converged to, as when trained on the

pink line, which is very similar to the clean surface. With

more noise, however, it becomes visible in Fig. 4, b) that

this manifold is not identical to the surface.

We note, that the mode surface is the convolution of the

true surface and the noise model p. We cannot recover de-

tails removed by this convolution. This is different from

supervised NN-based deconvolution, which has access to

pairs of convolved and clean data. In our case, the convo-

lution is on the limit case of the learning data and we never

observe non-convolved, clean data.

It is further worth noting, that not all noise distributions

lead to a manifold that is a surface in 3D or would be a con-

nected path in our 2D illustrations. Only uni-modal noise

distributions, such a scanner noise, have no branching or

disconnected components. Our solution will not depend on

the topology of this mode structure.

4.4. Unique Modes

As explained above, the naı̈ve implementation of unsu-

pervised unpaired denoising will not have a unique mode to

converge to. Therefore, we regularize the problem by im-

posing the prior q(z|y) that captures the probability that a

given observation y is a realization of the clean point z.

We suggest using a combination of spatial and appear-

ance proximity

q(z|y) = p(z|S) ∗ k(z− y) (1)

k(d) =
1

σ
√
2π

exp

(

−||Wd||22
2σ2

)

, (2)

where σ is the bandwidth of k and W = diag(w) is a diag-

onal weight matrix trading spatial and appearance locality.

We use a value w = 1/αr, r being 5% of the diameter

of the model and α a scaling factor. In the case of point

clouds with appearance, we use w = β in the appearance

rows/columns, otherwise, we only consider proximity. For

more details about the values for such parameters please re-

fer to the supplementary material.

This results in convergence to the nearest (in space and

appearance) mode when optimizing

argmin
Θ

Ey∼p(z|S)Eq∼q(z|y)l(fΘ(y),q), (3)

The effect of this prior is seen in Fig. 3, c). Out of many

modes, the unique closest one remains.

Note, that our choice of a Gaussian prior q is not related

to a Gaussianity of the noise model p, which we do not as-

sume. The only assumption made here is that out of many

explanations, the closest one is correct. We experimented

with other kernels such as Wendland [27] and inverse multi-

quadratic but did not observe an improvement.

Appearance to the rescue As mentioned above, 3D point

clouds that come with RGB color annotation are a surpris-

ing opportunity to further overcome the limitations of un-

supervised training. Otherwise, in some cases, the spatial

prior cannot resolve round edges. This is not because the

network f is unable to resolve them, but because unsuper-

vised training does not ‘see’ the sharp details. Fig. 5 de-

tails how colors resolve this: without RGB, the corners are

rounded in Fig. 5, a). When adding color, here red and blue

(Fig. 5. b), the points become separated (Fig. 5, c). The

sampling of the prior q(z|y) on a red point, will never pick

a blue one and vice-versa. Consequently, the learning be-

haves as if it had seen the sharp detail.

55



a)

d)c)

b)

Figure 5. Bilaterality: The manifold of modes of the distribution of

a 2D point cloud without color can be curved for strong noise (a).

Different appearancea, denoted as red and blue points in b, can

be used to establish bilateral distances, lifting points to 3D. The

resulting manifold of modes (d) now preserves sharp appearance

edges.

Thus, using color in the prior reinforces some of the

structure, which was lost when not relying on a regular

pixel grid. We do not know which noisy point belongs to

which measurement, but we have a strong indication, that

something of different color, is not a noisy observation of

the same point. Of course, it is possible, that two obser-

vations y1 and y2 appear to be from a different point, but

happen to be measurements of the same clean surface point

x, whereby range noise affects the color. Fortunately, such

spurious false negatives are less problematic (they create

variance) than the permanent false positives, that lead to

rounding (bias). Symmetrically, and maybe more severe,

a difference in color is not always a reliable indicator of a

geometric discontinuity either. It is, if color is dominated by

shading, but texture and shadow edges may lead to a high

false negative distance. Note, that the color is only required

for training and never used as input to the network.

4.5. Converging to the mode

We train the network to converge to the mode of the prior

distribution q(z|y) by using the approximation of the L0

loss function proposed by Lehtinen et al. [17], (|fΘ(y) −
q| + ǫ)γ , where their ǫ = 10−8, and their γ is annealed

from 2 to 0 over the training.

Thus, our unsupervised training converges to the same as

training supervised to find the closest – in XYZ space and

RGB appearance, when available – mode on the distribution

S ∗ p resulting from convolving the clean surface S and the

noise model p.

4.6. Implementation

Prior. To minimize Eq. 3 we need to draw samples ac-

cording to the prior q which is implemented using rejection

0
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Figure 6. Architecture overview: We start from a noisy point cloud

in the top and perform two levels of unstructured encoding, that re-

duce the receptive field, followed by two levels of decoding using

transposed unstructured convolutions.

sampling: we pick a random point q̂ from Y within r from

y, and train on it only if k(q̂−y) > ξ for a uniform random

ξ ∈ (0, 1). In practice, a single sample is used to estimate

this inner expected value over q(z|y).

Architecture. We implement f using an unstructured

encoder-decoder based on Monte Carlo convolution [12]

(Fig. 6). Such an architecture consumes the point cloud,

transforms spatial neighborhoods into latent codes defined

on a coarser point set (encoder), and up-sample these to the

original point resolution (decoder). The effective receptive

field, so the neighborhood from which the NN regressed

points are considered, is 30% of the diameter of the model.

In particular, we perform two levels of encoding, the first

with a receptive field of 5%, the second at 10%. The Pois-

son disk radii for pooling in Level 1 and Level 2 are half the

size of the receptive fields.

This architecture is fast to execute, allowing to denoise in

parallel 800K points in 13 seconds on a single machine with

a GeForce RTX 2080. Moreover, this architecture is com-

posed of only 25K trainable parameters, orders of magni-

tude smaller than other networks (0.8million for PointNet

or 1.4million for PointNet++).

Training. Besides these benefits, our method is also easy

to implement as seen in Alg. 1. Here, Q denotes a set of

prior samples q for all points in a point cloud. All opera-

tions are defined on batches that have the size of the point

cloud. We use an ADAM optimizer [14] with an initial

learning rate of .005, which is decreased during training.

Algorithm 1 Unsupervised point cloud denoiser training

1: for all noisy point clouds Y do

2: Ξ← RANDOMUNIFORMBATCH(0, 1)
3: Q ← SAMPLEPRIORBATCH(Y,Ξ)
4: Θ← MINIMIZEBATCH(||fΘ(Y)−Q||0)
5: end for
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Iteration. Similar as in previous work [20], our results

improved if the output of the network is fed as input

again. However, this introduces two problems: clustering

of points, and shrinking of the point cloud after several it-

erations. We address these problems in a similar way as

Rakotosaona et al. [20]. In order to prevent clustering we

introduce the following regularization term that enforces a

point cloud with equidistant samples:

Lr = argmin
Θ

Ey∼p(z|S) max
y′∈n(Y,y)

‖fΘ(y), fΘ(y′)‖2

where n(Y,y) is the set of points from the noisy point cloud

within a patch centered at y. To prevent shrinking we re-

move low-frequency displacements before translating the

noisy points. The supplemental materials show the effect

of these iterations.

5. Evaluation

Our experiments explore the application, both to syn-

thetic (Sec. 5.2) and to real data (Sec. 5.3). For synthetic

data, we know the answer and can apply different metrics

to quantify the performance of our approach, while we do

not know the ground truth for real data and results are lim-

ited to a qualitative study.

5.1. Setup

Data set. We have collected 15 different classes with 7
different polygonal models each (5 for training and 2 for

testing) from ModelNet-40 [28] and sampled the surface

with points as explained next. As we optionally use RGB

appearance, it is computed using Lambertian shading from

3 random directional lights.

Sampling. We simulate different forms of noise to corrupt

the clean data of the synthetic data set.

In the SIMPLE noise model, we sample each mesh us-

ing Poisson Disk sampling [26] to obtain clean point clouds

within the range of 13K and 190K points each, resulting in

22million points for training and 10million points for test-

ing. Then, we add Gaussian noise with a standard deviation

of .5%, 1%, and 1.5% of the bounding box diagonal.

The ADVANCED sampling emulates true sensor noise

making use of Blendsor [10], a library to simulate sensor

noise. In particular, we choose to emulate a Velodyne HDL-

64E 3D scan. These devices introduce two types of noise in

the measurements, a distance bias for each laser unit and

a per-ray Gaussian noise. In our data, we use a standard

deviation of .5% of the diagonal of the bounding box for

the distance bias and three different levels of per-ray noise,

.5%, 1%, and 1.5%. This generates point clouds within the

range of 3K and 120K points each, resulting in 12million

points for training and 5million points for testing.

We investigate levels of distortion where a surface is still

conceivable. More severe corruptions with uneven sam-

pling or outliers are to be explored in future work.

Metric. We use the Chamfer distance from Fan et al. [7],

d(Y,S,X ) = 1

N

∑

y∈Y

min
s∈S
||y−s||2+

1

M

∑

x∈X

min
y∈Y
||y−x||2

where less is better. The first term measures the average

distance between the predicted points to their closest point

in a polygonal surface S . The second term measures how

the points are distributed in the ground truth surface.

Since the clean point clouds X follow a Poisson Disk

distribution, by measuring their distance to the closest pre-

dicted point we are able to determine if the surface is

equally covered by our predictions.

The metric is applied in the test data with three different

realizations of noise and averaged over two complete train-

ings to reduce variance in the estimate of the metric.

Methods. We compare our unsupervised approach with

classical methods as well as supervised machine learning

approaches. To obtain insights regarding the effectivity of

the individual subparts, we investigate ablations with and

without the spatial and/or the appearance prior.

The classic baselines are MEAN and BILATERAL [5],

which are also unsupervised. Their parameters are chosen

to be optimal on the training set.

As supervised learning-based denoisers, we use the same

architecture, as we have employed for the unsupervised set-

ting, whereby we use the training algorithm proposed in

PointCleanNet [20]. While this means, that we do not use

the original PointCleanNet network architecture, which is

based on PointNet, we believe that our evaluation is more

insightful with a unified architecture – especially since the

architecture employed by us has outperformed PointNet on

a range of other tasks [12].

Finally, we study three variants of our approach. The

first one is with NO PRIOR. The second we denote as

NO COLOR, which is our prior but only based on prox-

imity. The last one is FULL which includes all our con-

tributions. More precisely, we use XYZ point clouds for

NO PRIOR and NO COLOR and XYZRGB point clouds for

FULL. Again, color is only used to sample the prior, not as

an input to the network during training or testing.

5.2. Quantitative Results

Denoising performance. We start with SIMPLE noise and

look into ADVANCED later. A comparison of the average

error across the test set for different methods is shown in

Tbl. 1, whereby each column represents one method. All
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Table 1. Error (less is better) per method on SIMPLE noise.

Ours

Mean Bilat. No p. No c. Full Sup.

• • • • • •
.598 .592 .582 .547 .542 .545

E
rr
o
r

methods are trained with the same amount of training ex-

emplars, that is, 22million points.

As can be seen, our full method (orange) performs best.

We even outperform the supervised competitor (red), likely

because the network has to find more valid generalizations

and is less prone to over-fitting. As can also be seen, the

other non-learned methods like mean (violet) and bilateral

(blue) are not competitive, even when tuned to be optimal

on training data. We further see a clear distinction be-

tween ablations of our method and the full approach. When

training without a spatial prior (cyan), the method is much

worse than supervised and only slightly better than mean. A

method not using color for training (green) – but including

the spatial prior – can achieve almost full performance, but

only adding color will outperform supervised.

This comparison is on the same amount of data. How-

ever, in most real-world scenarios, the number of noisy

point clouds can be assumed to be much higher than the

amount of clean ones. We will study this relation next.

Supervision scalability. We will now study, how super-

vised method scale with the number of clean point clouds

and our method with the amount of noisy point clouds.

The outcome is seen in Tbl. 2 where different methods

are columns and different amounts of training data are rows.

The plot to the right shows the relation as a graph. We show

the logarithmic fit to the individual measurements shown as

points The color encoding is identical for all plots. The dif-

ference between the methods is measured wrt. the number

of total training points ranging from .5 to 22millions.

Not unexpected, we see all methods benefit from more

training data. We see that our method performs better than

supervised across a range of training data magnitudes. At

around 22million points, the highest we could measure,

the red and orange lines of our full model and supervised

Table 2. Error (less is better) for different amount of supervision.

Ours

Train

data

No p. No c. Full Sup.

• • • •
.5 M .587 .557 .558 .574

1 M .584 .550 .557 .563

4 M .584 .553 .543 .546

22 M .582 .547 .542 .545

.6

.52

.5 22

E
rr

o
r

Train pts

Table 3. Error (less is better) for different levels of SIMPLE noise.

Ours

Noise

Levels

No p. No c. Full Sup.

• • • •
1.5 % .734 .698 .691 .695

1.0 % .578 .534 .525 .515

0.5 % .435 .411 .408 .426 .4

.7

.5 1.5

E
rr
o
r

Noise

cross. That only means, that after this point, our unsuper-

vised method needs more training data to achieve the same

performance as a supervised method.

We further see that the ablations of our method without

a prior and without color do not only perform worse, but

also scale less favorable, while ours (orange) is similar to

supervised (red). Admittedly, supervised scales best.

Amount of noise. While we have studied the average over

three levels of noise in the previous plots, Tbl. 3 looks into

the scalability with noise levels in units of scene diameter

percentages. We find that error is increasing as expected

with noise, but all methods do so in a similar fashion. In

two cases, we win over supervised, in one case supervised

wins, resulting in the improved average reported above.

Denoising performance. While we have studied SIMPLE

Gaussian noise, we now relax this assumption and explore

ADVANCED simulated scanner noise generated as explained

in Sec. 5.1. Contrary to real scanned data, it has the benefit

that the ground truth is known.

Tbl. 4 shows the error of different methods for this type

of noise. We see, that in this case, our full method (orange)

performs better than any other unsupervised method, such

as mean or bilateral (violet and blue). A supervised method

can perform better than other methods for this noise at the

same amount of training data input, 12million points. Fi-

nally, we also see that ablations without the suggested prior

(cyan and green) have a higher error, indicating the priors

are equally relevant for this type of noise, too.

Upgrading Notably, we can upgrade any supervised de-

noiser in a code-transparent, architecture-agnostic fashion

to become unsupervised. Consider a supervised denoiser,

which takes clean-noisy pairs instead of noisy ones only, as

we do. To apply our method, all we do is to resample the

Table 4. Error (less is better) per method on ADVANCED noise.

Ours

Mean Bilat. No p. No c. Full Sup.

• • • • • •
.378 .362 .393 .359 .356 .329

E
rr
o
r
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Figure 7. Multiple real world pairs of noisy input scans (left) and the result of our denoiser (right), accompanied by zoomed insets.

point using our spatial and / or color prior, and “pretend”

this to be the clean point cloud.

PCNet [20]

Noisy Sup. Our

4.54 1.36 1.34

We have done so for Point-

CleanNet [20] and evaluated on

their dataset. We see even with-

out modifying their architecture

or supervision, we still slightly

outperform theirs.

5.3. Qualitative Results

Here, we repeat the above experiments, on real world

noisy point clouds from a Mobile Laser Scanning setup

based on a Velodyne HDL32 3D scanner. We used the Paris-

rue-Madame data set [23] which is composed of 20million

points. We subdivide the model into parts of ca. 150K

points each, resulting in 17million points used during train-

ing and 3million points for testing. Note that in this setting,

noise is part of the data and does not need to be simulated.

Furthermore, and most important, no clean ground truth is

available. Consequentially, the error cannot be quantified

and we need to rely on human judgment.

We see in Fig. 7, how our method removes the noise and

produces a clean point cloud without shrinking, with uni-

form sampling as well as details. We cannot apply a visu-

alization of the error, as the ground truth is unknown. We

instead provided point cloud renderings by representing the

point clouds as a mesh of spheres with shading.

5.4. Ablation

No prior When not using the prior in space (green), the

denoiser learned across different types of noise (Tbl. 1),

magnitudes of noise (Tbl. 3) and amounts of training data

(Tbl. 2) is consistently worse and not much better than

Gaussian or bilateral. This indicates it is essential.

Figure 8. Including and not including color in the prior.

No appearance Making use of appearance consistently

improves the outcome across the aforementioned three axes

of variations in Tbl. 1 (and Tbl. 4), Tbl. 2 and Tbl. 3, either

taking the quality beyond supervision or very close to it.

Effect of color Fig. 8 shows a sharp edge with two dif-

ferent colors to be denoised. Including the color, slightly

reduces the error (less high-error yellow, more blue).

6. Conclusions

We have presented an unsupervised learning method to

denoise 3D point clouds without needing access to clean ex-

amples, and not even noisy pairs. This allows the method to

scale with natural data instead of clean CAD models deco-

rated with synthetic noise. Our achievements were enabled

by a network that maps the point cloud to itself in combina-

tion with a spatial locality and a bilateral appearance prior.

Using appearance in the prior is optional, but can improve

the result, without even being input to the network, neither

at test nor at training time. Denoising with color as input, as

well as joint denoising of color and position, remains future

work. Our results indicate we can outperform supervised

methods, even with the same number of training examples.
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