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Abstract Energy coupling between the solar wind and the Earth's magnetosphere can affect the electron
population in the outer radiation belt. However, the precise role of different internal and external
mechanisms that leads to changes of the relativistic electron population is not entirely known. This paper
describes how ultralow frequency (ULF) wave activity during the passage of Alfvénic solar wind streams
contributes to the global recovery of the relativistic electron population in the outer radiation belt. To
investigate the contribution of the ULF waves, we searched the Van Allen Probes data for a period in which
we can clearly distinguish the enhancement of electron fluxes from the background. We found that the
global recovery that started on 22 September 2014, which coincides with the corotating interaction region
preceding a high‐speed stream and the occurrence of persistent substorm activity, provides an excellent
scenario to explore the contribution of ULF waves. To support our analyses, we employed ground‐ and
space‐based observational data and global magnetohydrodynamic simulations and calculated the ULF
wave radial diffusion coefficients employing an empirical model. Observations show a gradual increase of
electron fluxes in the outer radiation belt and a concomitant enhancement of ULF activity that spreads from
higher to lower L‐shells. Magnetohydrodynamic simulation results agree with observed ULF wave
activity in the magnetotail, which leads to both fast and Alfvén modes in the magnetospheric nightside
sector. The observations agree with the empirical model and are confirmed by phase space density
calculations for this global recovery period.

1. Introduction

Outer radiation belt electrons trapped within the Earth's magnetic field undergo a complex periodic motion
that can vary adiabatically. The particle motion can be understood as a combination of gyromotion around
the magnetic field lines, bounce motion wherein particles mirror back and forth between the magnetic
mirror points, and an azimuthal drift at fixed L‐shells (Northrop & Teller, 1960; Roederer, 1970;
Shabansky, 1971; Ukhorskiy & Sitnov, 2013). Due to the variety of electrodynamic processes in the magneto-
sphere, violations of the adiabatic invariants associated with each of the three motions can occur, causing
electrons to be accelerated or scattered from the radiation belts that result in decreased fluxes (Baker
et al., 1994; Baker & Kanekal, 2008; Blake et al., 1992). The population of the outer radiation belt electron
flux may decrease (see Alves et al., 2016, and references therein) or increase (Artemyev et al., 2013; Baker
et al., 2014; Bortnik & Thorne, 2007; Potapov, 2013; Thorne, 2010; Thorne et al., 2013; Turner et al.,
2013), relative to background levels, according to the electromagnetic process involved, such as wave‐
particle interactions mediated by waves either in the ultralow frequency (ULF) range (a few milihertz up
to a about 5 Hz; Cahill & Winckler, 1992; Kivelson & Southwood, 1985; Mann et al., 1999) or in higher‐
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frequency ranges like the whistler mode chorus waves in the few hundreds of hertz to a few tens of kilohertz
(Gurnett & O'Brien, 1964). This work investigates the role of ULF wave‐driven radial diffusion mechanism
on electron flux enhancement from 22 to 24 September 2014, when the Earth was under the influence of a
high solar wind speed stream (HSS).

The Earth's magnetosphere is embedded in the highly variable interplanetary extension of the outer layers
of the solar atmosphere, the solar wind (Hundhausen, 1972, 1995). In situ observations of the solar wind
plasma conditions and magnetic field show that during periods of low solar activity (solar minima) the slow
solar wind (~350 km/s) is confined to the low‐latitude regions of the Sun, while the fast solar wind
(~600 km/s) is observed at higher latitudes (Krieger et al., 1973). During periods of high solar activity (solar
maxima), the configuration of the solar magnetic field departs significantly from the quasi‐dipolar config-
uration observed during solar minima. Therefore, the global structure of the solar wind changes, reflecting
the structure of the solar atmosphere near the solar surface (Balogh et al., 1999). During solar maximum
and the descending phase of solar activity the fast solar wind can extend to low latitudes. The coupling
between the fast and slow wind results in the evolution of a corotating interaction region (Sheeley et al.,
1976Tsurutani et al., 2006). Superimposed on the global structure of the solar wind, transients are more
frequently observed during solar maxima. Most of these transients are the interplanetary counterparts of
coronal mass ejections (Echer et al., 2011Gosling, 1990).

Coupling between the solar wind and the Earth's magnetosphere depends on the global structure of the solar
wind, including interplanetary coronal mass ejections. Previous studies have shown that there is a relation-
ship between the properties of the solar wind during HSS and the dynamics of electron fluxes in the outer
radiation belt (Hendry et al., 2012; MacDonald et al., 2010; Ogunjobi et al., 2017). Here we investigate the
impact of the high‐speed and low‐density solar wind streams on the acceleration of high‐energy electrons
trapped in the outer radiation belt (e.g., Li et al., 2015). We point out that during the passage of the HSS
a large amount of energy can be transferred to the magnetosphere (Baker et al., 1990, 1997; Paulikas &
Blake, 1979; Potapov, 2013). The interplanetary magnetic field (IMF) components are analyzed to identify
the degree to which Alfvénic fluctuations are present and to verify the possibility of initiating reconnection
with the Earth's magnetic field, which allows the solar wind energy to be transported into the magneto-
sphere. Additionally, we process the Van Allen Probes data and estimate numerically the effects of ULF
wave power spectral density (PSD) on the outer radiation belt, highlighting the intensity, depth, and prefer-
ential polarization modes of the excited ULF waves. We estimate, through an empirical model (Ozeke et al.,
2014), the ULF wave's radial diffusion coefficient DLL to quantify the contribution of these waves to the glo-
bal recovery. Finally, phase space density (PhSD) is calculated as a function of the three adiabatic invariants
that constrain the electronmotion: μ, K, and L* parameter (Roederer, 1970). Inspection of the radial gradient
of PhSD versus L* enables us to identify the main dynamic mechanisms, including the effects of inward
radial diffusion driven by ULF waves during the global recovery of the outer belt electron fluxes.

2. Instrumentation

We employ Relativistic Electron‐Proton Telescope (REPT; Baker et al., 2013) observations from Van Allen
Probe A (Mauk et al., 2012) to study radiation belt electron intensities. The Magnetic Field Experiment
(MAG) and Solar Wind Electron, Proton and Alpha Monitor (SWEPAM) on board the Advanced
Composition Explorer (ACE) provides solar wind parameters at the L1 Lagrangian point (Stone et al., 1998).

The ULF wave PSD used in this study was calculated from the International Monitor for Auroral
Geomagnetic Effects (IMAGE) ground magnetometer network (Viljanen & Hakkinen, 1997) and the
Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) (Kletzing et al., 2013) and
Electric Field and Waves (EFW; Wygant et al., 2013) instruments on board the Van Allen Probes.

3. Description of the Solar Wind Conditions and the Time‐Evolution of the
High‐Energy Electron Flux

Figure 1 presents the conditions within the Earth's radiation belt and solar wind from 10 to 25 September
2014. Particularly, the panels present the following: (a) REPT observations of the relativistic (2.10 MeV)
omnidirectional (i.e., averaged over all 17 pitch angle bins) electron flux as a function of time and the L*
parameter, which is commonly referred to as Roederer L related to the third adiabatic invariant
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(Roederer, 1970); (b) REPT's observations of the fluxes within its lowest four electron energy channels
acquired at a fixed L* (~5.3 RE); and the solar wind parameters observed at the L1 Lagrangian point,
namely, (c) the solar wind speed, (d) IMF magnitude and the north‐south (Bz) component, and (e) the
IMF Bx and By components in geocentric solar magnetosphere coordinates.

At the beginning of the period shown, particularly between 11 and 15 September, the Earth's magnetosphere
was embedded in a complex solar wind structure resulting from the interaction of a sequence of two inter-
planetary coronal mass ejections. The outer Van Allen radiation belt electron flux was severely depleted on
12 September (cf., e.g., Alves et al., 2016; Jaynes et al., 2015), followed by a 10‐day‐long quiescent period (see
Ozeke et al., 2017). On early 19 September, the electron flux at the outskirts of the outer belt, that is, at
L* > ~5 RE, was further diminished due to a corotating interaction region that reached the Earth's magneto-
sphere. The solar wind speed (Figure 1c) increased in two steps, first reaching ~ 490 to ~ 500 km/s late on 19
September and maintaining such high values up to midday on 20 September, followed by a second enhance-
ment in which the solar wind speed plateaued around ~ 550 km/s until around midday on 21 September,
when it started to decrease back to typical values. During the first and second solar wind speed increases,
Van Allen Probe A detected only minor relativistic electron flux changes, most notably in the lowest two
REPT's energy channels. It is only from 22 September onward that the outer belt electron flux increased sig-
nificantly, within ~ 14 hr, as seen in Figures 1a and 1b). For this reason, this work will focus from this date.
The flux change coincided with two IMF features: (i) a southward turning of the Bz component from an aver-
age Bz > 0 to an average Bz < 0 orientation and (ii) a sector boundary crossing with reversals in Bx and By, as
seen respectively in Figures 2c and 2d, which shows part of the time interval in Figure 1 with greater resolu-
tion. From 23 September onward, the three IMF components fluctuated greatly. Close inspection (Figures 2b
and S1 in the supporting information) shows that such fluctuations are mostly Alfvénic in nature, and
during this period the outer belt electron flux was further enhanced.

Figure 1. (a) Electron flux at 2.10‐MeV energy as a function of L* (vertical axis) and time (horizontal axis);
(b) electron fluxes at 1.8‐, 2.10‐, 2.6‐, and 3.4‐MeV energies at a fixed L* = 5.3 RE location; (c) solar wind speed (Vp);
(d) Interplanetary magnetic field (IMF) intensity (Bt) and Bz component of the IMF; and (e) Bx component and By
component of the IMF. The electron fluxes are obtained by the Relativistic Electron‐Proton Telescope (REPT) instrument
on board of the Van Allen Probes. The Vp, Bt, Bz, Bx, and By are obtained by the Advanced Composition Explorer (ACE)
satellite in the Lagrangian L1 point.
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Alfvénic fluctuations in the solar wind are the signature of coronal plasma transported toward the Earth
(Belcher & Davis, 1971; Cranmer & van Ballegooijen, 2005; Goldstein et al., 1995; Morton et al., 2015; Tu
& Marsch, 1995). Low‐frequency solar wind Alfvénic fluctuations (Lee et al., 2006; Zhang et al., 2014) that
provide prolonged intervals of southward Bz (Gonzalez et al., 1994) can initiate reconnection on the
Earth's dayside magnetopause, which allows solar wind energy to enter the magnetosphere and drive
moderate‐intensity geomagnetic storms (Tsurutani et al., 1995) and recurrent substorms. The arrival of
such solar wind structures can also generate a wide range of magnetospheric oscillation frequencies,
among them, the ULF wave modes, which are recognized as efficient accelerators of the seed population
particles responsible for the outer radiation belt global recovery (Summers et al., 2002; Horne & Thorne,
2003; Thorne et al., 2005; Elkington, 2006; Elkington et al., 1999; Summers & Ma, 2000; Perry et al., 2005,
Ozeke et al., 2014 and others). James et al. (2013) performed a statistical analysis of 83 substorm events,
and they showed that substorm activity can function as an internal (i.e., within the Earth's magneto-
sphere) source of poloidal‐mode (high‐m) ULF waves. On the other hand, James et al. (2015) analyzed
three individual substorm events and showed that the magnetospheric ULF waves can be driven by
sources both internal and external to the magnetosphere. They suggested that the waves driven by energy
sources external to the magnetosphere (e.g., Kelvin‐Helmholtz instability on the magnetopause or solar
wind buffeting) are often characterized by low azimuthal wave numbers (m) or large azimuthal
scale sizes.

Inspection of Figure 2 during the global electron flux recovery event from 22 September onward shows that
the solar wind features commonly associated with ULF wave generation in the magnetosphere, such as
enhanced speeds and/or densities, are absent. During this period we only see a change in the heliospheric
current sheet sector, which is accompanied by substorm activity (see AE index in Figure 2e and Pi2 activity
in Figure S2 in the supporting information) and the presence of an on average southward IMF Bz (thick line
on Figure 2c) and IMF Alfvénic fluctuations.

Figure 2. (a) The electron fluxes 1.8, 2.10, 2.6, and 3.4 MeV to L* 5.3; (b) Bx component and By component of the inter-
planetary magnetic field (IMF); (c) the IMF intensity (Bt) and Bz component of the IMF (solid red line represents a 4‐hr
running average); (d) solar wind density (Np); (e) geomagnetic auroral electrojet [AE] index. The electron fluxes are
obtained by the Relativistic Electron‐Proton Telescope instrument on board of the Van Allen Probe A. The Np, Bt, Bz, Bx,
and By are obtained by the Advanced Composition Explorer satellite in the Lagrangian L1 point.AE index is obtained from
the World Data Center for Geomagnetism, Kyoto.
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IMF observations on 22 September indicate the presence of Alfvénic fluctuations (Figure S1). The IMF Bz
component was preferentially southward (Figures 1d and 2c), conducive to magnetospheric substorm
activity (Figures 2e and S2). According to Jaynes et al. (2015), substorms were a crucial element for the injec-
tion of low‐energy electrons in the outer radiation belt on this day. They suggested a scheme based on sub-
storm injection and very low frequency (VLF) waves to explain the relativistic acceleration mechanism in
the Earth's magnetosphere. In their scheme, the source population (tens of keV) is injected via substorms,
resulting in unstable particle distributions that in turn generate VLF waves. Interaction with these VLF
waves energizes the seed populations to relativistic energies (hundreds of keV). Jaynes et al. (2015) noted
the presence and possible importance of ULF waves during this interval but did not provide a full explana-
tion of the role they play. We will investigate the effects/role/contribution of ULF wave‐particle interactions
during the enhancement of the high‐energy electron flux in the outer radiation belt observed in this event.
We then argue that for the global recovery event being analyzed here, the conjunction of IMF Bz and IMF
Alfvénic fluctuations along with the presence of substorms play an important role in generating both the
compressional and toroidal ULF wave modes.

4. ULF Waves Activity in the Magnetosphere

According to the description in section 3, the solar wind can drive ULF waves in the magnetosphere by two
different general physical processes. First, ULF waves can be generated in the magnetosphere's nightside
sector during substorms triggered by long‐period (>60 min) solar wind Alfvénic fluctuations (Rubtsov et al.,
2018). This process can drive ULFwaves in themagnetosphere with periods as short as 10min. In the second
mechanism, short‐period (1–10 min) fluctuations of solar wind parameters (density, velocity, and dynamic
pressure) can directly drive magnetospheric wave activity with similar periods, whether or not substorms
occur (Kepko et al., 2002; Kepko & Spence, 2003). Herein we present evidence for the former mechanism,
leaving the latter for future investigation.

The IMF conditions during the global recovery discussed above suggest that the magnetosphere was
embedded in solar wind Alfvénic perturbations from 22 September onward (Figure S1 in the supporting
information). To evaluate how the solar wind Alfvénic perturbations generated ULF waves during this
event, we examined the ground and spacecraft ULFwaves signatures that will be presented below in sections
4.1 and 4.2, respectively.

First, we identified the preferential polarization mode, since it is an important parameter for the wave‐
particle models used to simulate ULF wave‐driven radial diffusion in the radiation belt (see, e.g.,
Fälthammar, 1965; Fei et al., 2006; Mann et al., 2016; Schulz & Lanzerotti, 1974; Shprits et al., 2005; Su
et al., 2015). Most of the different approaches used to derive ULF wave radial diffusion coefficients (e.g.,
Brautigam & Albert, 2000; Elkington, 2006; Ozeke et al., 2014) employ the mode of polarization as a main
parameter. Each mode contributes differently to electron acceleration (Sarris et al., 2009). Dungey (1967)
used the standing Alfvén wave mode (AWM) formalism to describe ULF wave polarization modes on geo-
magnetic field lines. In the toroidal mode, magnetospheric shells oscillate coherently with perturbations
in the azimuthal direction associated with an induced electric field in the radial direction. In the poloidal
mode, magnetic field oscillations are constrained to the meridional plane, associated with an induced elec-
tric field in the azimuthal direction (Dungey, 1967; Elkington, 2006; Kivelson & Russell, 1995). In the com-
pressional mode, all of the parameters can vary, including the field‐aligned component of the magnetic field,
which changes the field magnitude and both the magnetic and plasma pressures (Kivelson & Russell, 1995).

4.1. ULF Waves Activity Observed by Ground Magnetometers

Figure 3 shows the ULF wave PSD calculated by a fast Fourier transform (FFT) using observations from the
IMAGE ground‐based magnetometer network from 22 to 24 September. The instrument's signal was filtered
using a Butterworth band‐pass filter, which only allows the passage of signals within the Pc5 band
(1–10 mHz). For the calculation of the power spectrum, we used the short‐time FFT with a moving
Hamming window of 180 min. Note that ULF wave PSD and its spatial extent gradually increased
throughout this interval, that is, ULF waves reached the lowest magnetospheric L‐shells at the end of the
period on 24 September. At 2:00 UT on 22 September, the network observed ULF PSD mostly confined to
L‐shells greater than 6 RE. At 10:00 UT, the network also observes an isolated period of ULF PSD activity
in the dawnside sector that reached L ~ 3 RE. After that, on 23 September the network detected significant
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ULF PSD in the dusk (16–19 magnetic local time [MLT]) and nightside (21–24 MLT) quadrants. Finally, at
0:00–6:00 UT and 20:00–24:00 UT on 24 September, the network observed a considerable increase in ULF
PSD that penetrated inward of L ~ 3.5 RE.

From 22 to 24 September, the relativistic outer radiation belt electron fluxes (see Figures 1a and 1b)
increased concurrent with the gradual enhancement in ULF PSD (Figure 3). Also, the electron flux increase
reached deeper (L ~ 4.5 RE) magnetospheric L‐shells, similar to the ULF wave behavior. The outer radiation
belt electron flux recovered on 24 September, so we choose to investigate the ULF wave activity during this
day in greater detail. Figure 4 shows the PSD from 12:00 UT on 23 September to 12:00 UT on 24 September.
The intense ULF wave activity persists for 12 hr, reaching L ~ 3.5 RE.

During the 3 days analyzed (i.e., from 22 to 24 September), the ULF PSD increases preferentially in the night-
side sector. This asymmetry in magnetospheric ULFwave activity can be understood by considering the IMF
conditions during 24 September (Figures 1c–1e). The IMF conditions suggest enhanced reconnection/
substorm activity in the magnetotail, which is confirmed by the maintenance of intense auroral activity
(AE index ~ 1,200 nT; Figure 2e) and by the signature of Pi2 activity (Figure S2 in the supporting informa-
tion). Previous work (Shiokawa et al., 2005; Wang et al., 2015) associates Pi2 signatures with Alfvénic IMF
fluctuations (see Figure S1 in the supporting information). We suggest that the substorms and magnetotail
reconnection play an important role in the generation and maintenance of the ULF waves.

4.2. ULF Wave Activity Observed by Spacecraft Magnetometers

We applied a Butterworth band‐pass filter to the EMFISIS magnetic field and EFW electric field mea-
surements. The ULF wave modes are characterized as fast (compressional), poloidal, and toroidal

Figure 3. International Monitor for Auroral Geomagnetic Effects (IMAGE) network's ultralow‐frequency (ULF) power
spectral density in the 1‐ to 10‐mHz frequency range (color scale) as a function of L‐shell and time (UT = universal time
and MLT = magnetic local time) from 22 to 24 September 2014.

Figure 4. International Monitor for Auroral Geomagnetic Effects (IMAGE) network's ultralow‐frequency (ULF) power
spectral density in the 1‐ to 10‐mHz frequency range (color scale) as a function of L‐shell and time (UT = universal
time and MLT = magnetic local time) between 12 noon on 23 September and 12 noon on 24 September 2014. Interval
between dashed red lines represent the period of the Van Allen Probes orbit.
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according to the predominant PSD component, that is, magnetic parallel (B||), electric azimuthal (Eφ),
and electric radial (Er), respectively. To identify the polarization modes of the ULF waves, we rotate
the electric and magnetic field vectors into the field‐aligned coordinate system as follows: consider a loca-
tion s = (x, y, z) in space where there is a local magnetic field vector B, the parallel (||) direction is repre-
sented by b = B/|B|, the azimuthal (ϕ) direction is given by the cross product between b and the unitary
position vector s/|s|, and the radial (r) direction completes the orthonormal system being positive
radially outward.

Figures 5–7 present the results for the ULF waves measured by EMFISIS/EFW on 22–24 September,
respectively. Each figure has six panels that show the ULF PSD calculated for the B|| (a, d), Eφ (b, e),
and Er (c, f) components during the two of the three Van Allen Probes orbits. Comparing the PSD seen
in panels (b) and (c) ((e) and (f)) of Figures 5–7, one sees that the toroidal mode dominates over the
poloidal one during the whole analyzed period but most prominently on 22 September. Furthermore,
panels (a) and (d), and (c) and (f) show that both the compressional and Alfvénic waves activity
increased from 22 to 24 September. This observation is in an agreement with the ground‐based data
(see Figures 3 and 4).

On 23 and 24 September, Van Allen Probe A moved along its orbit from the nightside to the dawnside (2–7
MLT), where the spacecraft detected a substantial ULF PSD in the compressional and Alfvénic modes. By
contrast, data from the IMAGE ground network (Figure 4) show intense ULF waves activity between
21:30 MLT on 23 September and 4:15 MLT on 24 September 24; that is, the MLT sector observed by the satel-
lite covers a region where ULFwaves activity is weak, except at 3:30MLT. Thus, we simulate this event using
a global magnetohydrodynamic (MHD) model (see Gombosi et al., 2004; Tóth et al., 2005; Tóth et al., 2012)
to analyze the preferential ULFwave mode in the other magnetospheric MLT sectors, including those where
the PSD is higher as seen by ground magnetometers.

Figure 5. The ultralow‐frequency power spectral density (color scale) as a function of frequency (vertical axis) and spacecraft's radial distance (horizontal axis) on
22 September 2014. Data from both the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) and Electric Field and Waves (EFW)
instruments on board Van Allen Probe A were used. (a–c) The first orbit and (d–f) the second orbit. The (a, d) parallel magnetic component (B||), (b, e) azimuthal
electric component (Eφ), and (c, f) radial electric component (Er).
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4.3. ULF Wave Activity as Calculated by the SWMF/BATS‐R‐US MHD Model

ACE observations from 22 to 24 September were used as the initial/boundary condition to model the solar
wind's contribution to ULF wave activity within the magnetosphere. Electromagnetic field oscillations in
the inner magnetosphere were estimated by the Space Weather Modeling Framework/Block‐Adaptive‐
Tree Solar‐Wind Roe‐Type Upwind Scheme (SWMF/BATS‐R‐US) global MHD model (De Zeeuw et al.,
2004; Gombosi et al., 2004; Powell et al., 1999; Ridley & Liemohn, 2002; Tóth et al., 2005; Tóth et al., 2012
and Wolf et al., 1977) developed at the University of Michigan in the Center for Space
Environment Modeling.

The SWMF couples the different physical domains in a self‐consistent mode (Tóth et al., 2012). Here we use
three SWMF modules, namely, the Global Magnetosphere, Inner Magnetosphere, and Ionospheric
Electrodynamics (see Alves et al., 2017). We chose a higher grid resolution of 1/8 RE in a box surrounding
the Earth with dimensions: −7 ≤ x ≤ 7, −7 ≤ y ≤ 7, and −3 ≤ z ≤ 3 RE (inner boundary = ~2.5 RE). These
dimensions encompass the Van Allen belts region; thus, one can resolve electric and magnetic field fluctua-
tions in the ULF range in this region. The MHD simulation provides a global‐scale ULF PSD evaluation,
including within the inner magnetosphere.

Figures 8 and 9 present the ULF PSD obtained as a result of the MHD simulation for 22 and 24 September,
respectively. Figures 8 and 9 were produced in the following manner. At a given MLT, and at a given radial
distance R, three time series corresponding to the modeled magnetic field B|| component, and the modeled
electric field components Eφ and Er were obtained. These time series were acquired at dR = 0.12 RE steps for
each given MLT. The FFT, following Claudepierre et al. (2008), has been performed on these modeled time
series, with each one spanning 24 hr of simulated time. They had a sampling rate of 1/30–33.3 mHz. The glo-
bal recovery of the outer radiation belt starts on 22 September (Figures 1a, 1b, and 2a). The frequency range

Figure 6. The ultralow‐frequency power spectral density (color scale) as a function of frequency (vertical axis) and spacecraft's radial distance (horizontal axis) on
23 September 2014. Data from both the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) and Electric Field and Waves (EFW)
instruments on board Van Allen Probe A were used. (a–c) The first orbit and (d–f) the second orbit. The (a, d) parallel magnetic component (B||), (b, e) azimuthal
electric component (Eφ), and (c, f) radial electric component (Er).
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investigated by the simulation extends to 16.65 mHz, while the radial distance ranges from 3 to 15 RE. Since
the outer radiation belt region is typically located from the 3 to 6 RE range, our figures and analysis are
restricted to this region.

To evaluate the model reliability, we show (Figures 8d–8f and 9d–9f) the ULF wave PSD at 6 MLT for com-
parison with the wave activity observed by the Van Allen Probes (Figures 5a–5f and 7a–7f) at 2–7 MLT. As
shown in Figures 8d and 9d, the simulation indicates enhanced compressional mode (B||) PSD throughout
the period shown. The amplitude of the toroidal mode (Er) shown in Figure 8f predominates over that of
the poloidal mode (Eφ, Figure 8e) on 22 September. Figures 9e and 9f present simulations for the poloidal
and toroidal modes, respectively, on 24 September. For this period, there is no clear predominance of the
toroidal mode over the poloidal mode, although near ~6 RE, we can see a slight increase of the PSD in the
toroidal mode when compared with the poloidal mode. The modeling results agree with Van Allen Probe
A observations (see Figures 5 and 7) at 02:00 to 07:00 MLT, suggesting that the model also reasonably repro-
duces the PSD of the ULF waves at other MLTs.

The IMF Bx and By (Figure 2b) variations indicate a sector boundary crossing at 02:24 UT on 22 September,
right after ACE observes very small Alfvénic fluctuations (Figures 1d, 1e, 2c, and 2d) that did not produce
AWM in the dayside magnetosphere (see results in Figures 10h and 10i). Solar wind Alfvénic fluctuations
increased from 23 until 24 September, ultimately resulting in magnetotail disturbances (e.g., the ground‐
based observations of Pi2 shown in Figure S2 of the supporting information). Disturbances like these may
enhance both magnetosonic waves and AWM (Murphy et al., 2011). And in fact, on September 24 the
ground‐based magnetometers in the nightside sector observe a huge increase in the compressional mode
(Figure 9a) with a PSD peak at ~5 RE. The compressional mode also increases in the dawn and dusk sectors
(Figures 9d and 9j). In addition, AWM perturbations are observed at dawn and dusk MLTs (Figures 11e, 11f,
11k, and 11l), midnight sector (Figures 11b and 11c), and even to a more limited degree in the dayside sector
(Figures 11h and 11i).

Figure 7. The ultralow‐frequency power spectral density (color scale) as a function of frequency (vertical axis) and spacecraft's radial distance (horizontal axis) on
24 September 2014. Data from both the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) and Electric Field and Waves (EFW)
instruments on board Van Allen Probe A were used. (a–c) The first orbit and (d–f) the second orbit. The (a, d) parallel magnetic component (B||), (b, e) azimuthal
electric component (Eφ), and (c, f) radial electric component (Er).
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Figure 8. The ULF power spectral density (color scale) as a function of frequency (vertical axis) and radial distance
(horizontal axis) simulated by the SWMF/BATS‐R‐US/RCM model on 22 September 2014. From top to bottom,
(a–c) 00:00 MLT—midnight, (d–f) 06:00 MLT—dawnside, (g–i) 12:00 MLT—noon, and (j–l) 18:00 MLT—duskside. The
(a, d, g, j) parallel magnetic component (B||), (b, e, h, k) azimuthal electric component (Eφ), and (c, f, i, l) radial electric
component (Er). ULF = ultralow frequency; MLT = magnetic local time; SWMF/BATS‐R‐US/RCM = Space Weather
Modeling Framework/Block‐Adaptive‐Tree Solar‐Wind Roe‐Type Upwind Scheme/Rice Convection Model.
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Figure 9. The ULF power spectral density (color' scale) as a function of frequency (vertical axis) and radial distance
(horizontal axis) simulated by the SWMF/BATS‐R‐US/RCM model on 24 September 2014. From top to bottom,
(a–c) 00:00 MLT—midnight, (d–f) 06:00 MLT—dawnside, (g–i) 12:00 MLT—noon, and (j–l) 18:00 MLT—duskside. The
(a, d, g, j) parallel magnetic component (B||), (b, e, h, k) azimuthal electric component (Eφ), and (c, f, i, l) radial electric
component (Er) are showed in the first, second and third column, respectively. ULF = ultralow frequency;
MLT = magnetic local time; SWMF/BATS‐R‐US/RCM = Space Weather Modeling Framework/Block‐Adaptive‐Tree
Solar‐Wind Roe‐Type Upwind Scheme/Rice Convection Model.
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Figure 10. (top) International Monitor for Auroral Geomagnetic Effects (IMAGE) network's ultralow‐frequency (ULF)
power spectral density in the 1‐ to 10‐mHz frequency range (color scale) as a function of L‐shell and time from 21 to 25
September 2014. (bottom) Radial diffusion coefficient DLL (color scale) as a function of L‐shell (vertical axis—left) and
time (horizontal axis) from 21 to 25 September 2014, estimated from the Kp index (vertical axis—right) data from the
OMNI database with the help of the analytic expression derived by Ozeke et al. (2014). UT = universal time.

Figure 11. Time evolution of phase space density radial profiles at fixed first (μ) and second (K) adiabatic invariants for
both (a) outbound and (b) inbound parts of the Radiation Belt Storm Probes (RBSP)‐A orbit. The legends show the start
day and time (in the dd/hh:mm format) of either the outbound or inbound portions of RBSP‐A.
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5. ULF Wave‐Particle Interaction

The dynamic mechanisms that energize seed electrons to relativistic energies have been extensively studied
(e.g., Horne & Thorne, 2003; Baker et al., 2014; Foster et al., 2014). Nevertheless, the role of ULFwaves in the
acceleration processes is still not well understood. Energizationmay occur in conjunction with inward radial
diffusion driven by drift resonant interactions, as pointed out by many author (see, e.g., Elkington, 2006;
Perry et al., 2005; Ukhorskiy et al., 2009). It is important to note that polarization modes can affect the effi-
ciency of wave‐particle interactions. Interactions with wave electric fields in the azimuthal direction result-
ing in poloidal modes are likely to be more effective to radiation belt dynamics than are interactions relying
on the radial component of the electric field (Elkington, 2006).

Simulations of the drift‐resonant interactions carried out by Elkington et al. (2003) and Ukhorskiy et al.
(2005) show that the poloidal polarization mode is more efficient for electron acceleration than is the toroi-
dal mode. This is because the largest component of a drifting electron's motion is in the azimuthal direction,
which corresponds to the direction of the electric field in poloidal ULF pulsations.

The azimuthal particle drift motion resonantly interacts with the poloidal wave electric field when

ω ¼ mωd (1)

where ω is the wave frequency, m is the azimuthal wavenumber, and ωd is the particle drift frequency. The
distribution function of particles undergoing stochastic motion in an L‐shell should satisfy the radial diffu-
sion equation

∂f
∂t

¼ L2 ∂
∂L

DLL

L2
∂f
∂L

� �
−
f
τ

(2)

where f is the PhSD of electrons, and it is assumed that the first and second adiabatic invariants are con-
served (Schulz & Lanzerotti, 1974). The radial diffusion coefficient and the electron lifetime are represented
by DLL and τ, respectively. The analytic form of the radial diffusion coefficient DLL may be derived from the
Hamiltonian formulation (Brizard & Chan, 2001; Fei et al., 2006). DLL is the sum of the diffusion coefficient
due to uncorrelated azimuthal electric field (poloidal mode) and the compressional magnetic field (fast
mode) perturbations, DE

LL and DB
LL, respectively (Ozeke et al., 2012), that can be expressed as follows

DLL ¼ DE
LL þ DB

LL (3)

DE
LL ¼ 1

8B2
ER

2
E

L6∑mP
E
m mωdð Þ (4)

DB
LL ¼ M2

8q2γ2B2R4
E

L4∑mm
2PB

m mωdð Þ (5)

where M and γ represent the first adiabatic invariant and the relativistic correction factor, given, respec-
tively, by

M ¼ p2⊥L
3

2meBE
(6)

γ ¼ 1−v2
.

c2

� �−1=2
(7)

The constants BE, RE,and q represent the equatorial magnetic field strength at the surface of the Earth, the
Earth's radius, and the electron charge, respectively. The total speed of the electron is represented by v and

the speed of light by c. The terms PE
m mωdð Þ andPB

m mωdð Þ represent the PSD of the electric and magnetic per-
turbations with azimuthal wave number, at the wave frequency, which satisfy the drift resonance condition.

5.1. ULF Wave‐Driven Radiation Belt Radial Diffusion Coefficient

Radial diffusion can explain the high‐energy electron flux increases in the radiation belt (Friedel et al., 2002;
Li et al., 2001). Irregular fluctuations of magnetospheric electromagnetic fields on the timescales of the
bounce‐averaged drift period of energetic particles violate the particles' third adiabatic invariant and cause
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random radial motion. An electron that moves to a lower L‐shell and correspondently to a stronger magnetic
field gains energy (due to conserving the transverse adiabatic invariant). Such the stochastic radial diffusion
in the electrons' L‐shell can increase particle flux at a given location and energy, depending on the initial dis-
tribution of particle properties and the existence of particle sources in the magnetosphere (see, e.g., Friedel
et al., 2002; Li et al., 2001; Sarris et al., 2006).

The efficiency of drift‐resonant ULF wave‐particle interactions can be estimated employing an empirical
model for the radial diffusion coefficient DLL (see, e.g., Brautigam & Albert, 2000; Elkington et al., 2003;
Ozeke et al., 2014). The model derived from equations 4 and 5 of Ozeke et al. (2014) describes the radial dif-
fusion coefficients as a function of the geomagnetic index Kp and L‐shell, but independent of the wave
energy and m number:

DB
LL ¼ 6:22 x 10−13L810−0:0327L

2þ0:625L−0:0108K2
Pþ0:499KP (8)

DE
LL ¼ 2:16 x 10−8L6100:217þ0:461KP (9)

These coefficients describe the acceleration of the electrons more efficiently than those of other empirical
models because Ozeke et al. (2014) assume that all of the wavem values are positive (eastward propagating
waves). Under symmetric drift resonance only positive wave (m values) can contribute to resonant interac-
tions. Also, for frequencies above 8 mHz their assumption that the PSD at each wave m value varies as
αf−2may no longer be valid. To satisfy the drift resonance condition in this situation, the wave must have
an m value ≥10 or the electrons must have energies ≥5 MeV.

To evaluate the ability of the ULFwave‐particle interactions to produce the electron variations observed dur-
ing the global recovery of the outer belt from 21 to 24 September 2014), we calculate the radial diffusion coef-
ficient DLL using equations (8) and (9). When analyzing this event, Jaynes et al. (2015) noted the important
role that ULF waves could have played in the electron acceleration to multi‐MeV energies. However, they
did not evaluate the significance of the ULF waves. Thus, we employed observations and simulations to ana-
lyze ULF wave activity. We obtained the Kp index from both the OMNI database (King & Papitashvili, 2005)
and BATS‐R‐US modeling. Figure 10 shows the gradual increase of ULF wave activity concurrent with that
of the Kp index and corresponding DLL coefficient enhancements. The red dashed line indicates the begin-
ning of the global recovery of the outer radiation belt at several energy levels. The ULF wave PSD was cal-
culated using observations from the IMAGE network (Figure 10, top), and DLL was calculated using
equations (3), (8), and (9). Figure S4 in the supporting information, shows the Kp index obtained from
BATS‐R‐US modeling of DLL, which agrees with the DLL obtained from the ground‐based database
(Figure S3 in the supporting information).

The time evolution of DLL throughout the repopulation period indicates the ability of ULF waves to fill sev-
eral L‐shells (L‐shell ~5.5 RE on 22 September and L‐shell ~3.5 RE on 24 September) in the outer radiation
belt. An increase in the ULF waves PSD, Kp index, and also the DLL radial diffusion coefficient coincided
with the IMF sector boundary crossing, as indicated by the red dashed line in Figure 10. Furthermore, we
observe enhancement of both DLL and ULF waves in the heart of the outer radiation belt (L‐shell ~3.5 RE)
when the Kp index reaches its maximum value for the period, that is, 4. In accordance with this, the outer
radiation belt electron flux observed from the time when the sector boundary crossing was detected at L1
(Figures 1e and 2c) gradually increases at several L‐shells (L‐shell ~5.5 RE on 22 September and L‐shell
~3.5 RE on 24 September).

The analytic electric field diffusion coefficient in equation (3) is more significant than is the magnetic field
diffusion coefficient. Additionally, the observational and modeling results presented in section 4 show
that toroidal and compressional ULF modes predominate during this event. However, a minor increase
in the ULF waves in poloidal mode found in the simulation at 00:00 and 18:00 MLT contributed to the
increase of DLL.

6. PhSD Radial Profile

The analysis presented in the previous sections suggests that the PhSD is crucial for further understanding
the role of the ULF waves on the global recovery of the relativistic electron flux observed in this radiation
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belt enhancement event. PhSD is calculated as a function of quantities that are conserved under specific
circumstances, for example, the three adiabatic invariants that constrain the electron motion: μ, K, and L*
parameter (Roederer, 1970). Time‐dependent PhSD radial profiles as a function of L* for fixed μ and K at
regions within geosynchronous orbit can provide useful information.

PhSD data for Radiation Belt Storm Probes (RBSP)‐Awere obtained directly from https://www.rbsp‐ect.lanl.
gov/data_pub/PSD/. We use values of μ = 2291 MeV/G and K = 0.1145 G 1/2 RE because they optimize the
coverage of L* while limiting the equatorial PhSD to approximately 45–90° pitch angle range (see Reeves
et al., 2013; Souza et al., 2017). It is important to highlight that the higher μ value chosen corresponds to
electrons at energies ≳1.5 MeV, at which the increase in the outer belt flux is observed.

Figure 11 presents the time evolution of PhSD radial profiles at fixed first (μ) and second (K) adiabatic
invariants for both (a) outbound and (b) inbound parts of the RBSP‐A orbit. The legends in Figure 11 show
the start day and time (in the dd/hh:mm format) of either the outbound or inbound portions of RBSP‐A.

The time evolution of the radial PhSD profile in the outbound regions of the Van Allen Probe A orbit shows
that the gradients are almost always positive except on 25 September at 02:19 UT from L* 5 RE. In spite of the
local peak that occurs later on during the analyzed period, we should point out another feature regarding the
time evolution of the PhSD profiles that supports the idea that inward radial diffusion might be playing an
important role on the electron flux recovery. Inspecting either the outbound or inbound portions of the
RBSP‐A orbits, particularly in the L* ~ 4.3 to 5 range, one notices that as time goes by, the PhSD at fixed μ
and K increases by approximately 0.5 to 1 orders of magnitude. In this L* range the PhSD gradients are mark-
edly positive, with no clear evidence of localized peaks, except for the 11:48 UT 24 September inbound pro-
file, which shows a very localized (L* ~ 5 + −0.2) change in the PhSD gradient sign, possibly related to
spatially localized whistler mode chorus waves activity at that time (see, e.g., Jaynes et al., 2015, Figure 8).
Overall, the PhSD profiles appear to undergo a shift toward lower L* values, at least within the period of
interest, which goes from the early morning hours of 22 September up to the late hours of 24 September.
This shift of the PhSD profiles is characteristic of inward radial diffusion. The inbound portions of the
Van Allen Probe A orbits exhibit positive gradients only until 23 September. Peaks located in the PhSD
between L* 4.5 and 5 RE are observed for all times on 24 September. The analysis of the time evolution of
the radial PhSD profiles during both outbound and inbound portions of Van Allen Probe A suggests that
there are at least two mechanisms for electron acceleration in the outer radiation belt for this event, as indi-
cated in the supporting information (Figures S5–S13), which show the PhSD at different values of μ. The
first, due to radial diffusion, can occur through the interaction of ULF waves and particles, as studied in this
work. The second, due to local acceleration, which may occur from the interaction of VLF waves and parti-
cles, confirms the analysis of this event performed by Jaynes et al. (2015) and discussed in section 3. In fact,
Chen et al. (2007) and others show that peaks in the PhSD approximately at L* 5.5 RE is an indication that
local acceleration may be the dominant mechanism in the repopulation of relativistic electron flux.

7. Concluding Remarks

This paper analyzed the relativistic electron flux increases generated by ULF wave‐driven drift resonances
during the 22–24 September 2014 period. The global flux recovery followed a ~10‐day period in which the
outer Van Allen belt was in quiescent state wherein fluxes of relativistic electrons were particularly low (see,
e.g., Alves et al., 2016; Jaynes et al., 2015; Ozeke et al., 2017). The arrival at Earth of a high‐speed stream early
on 19 September preceded the electron flux enhancement. During the global electron flux recovery, both
Alfvénic fluctuations in the three components of the IMF and a southward turning of the average IMF Bz
component contributed to provide energy input to the Earth's inner magnetosphere via dayside reconnec-
tion, which in turn may drive enhanced substorm activity (see, e.g., Gonzalez et al., 1994). Also, it has been
shown in the literature that substorm activity may induce ULF wave generation (see, e.g., James et al., 2013,
2015). While James et al. (2013) suggest that ULF waves can be driven by energy sources internal to the mag-
netosphere, James et al. (2015) suggest that the ULF waves can be driven by energy sources coming from
both internal and external to the magnetosphere. According to James et al. (2015), the external sources
can be Kelvin‐Helmholtz instability on the magnetopause or solar wind buffeting. Our analysis suggests that
the ULF waves observed when outer belt fluxes increased may have participated in electron acceleration via
enhanced radial diffusion mechanism, as confirmed through the PhSD. The radial diffusion coefficients
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(DLL) obtained from the empirical model using both the observed and simulated Kp index show a gradual
increase as a function of time, simultaneous to flux recovery. Also, their enhancement reached low L‐shells.
Since the electric azimuthal component is predominant in the DLL coefficient, we concluded that the
resonant wave‐particle interaction by low‐intensity poloidal wave mode detected by Van Allen Probes
contributed to the repopulation of the outer radiation belt.
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