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Abstract

A Digital Twin (DT) refers to a digital replica of physical assets, processes and systems. DTs
integrate artificial intelligence, machine learning and data analytics to create living digital
simulation models that are able to learn and update from multiple sources, and to represent and
predict the current and future conditions of physical counterparts. However, the current
activities related to DTs are still at an early stage with respect to buildings and other
infrastructure assets from an architectural and engineering/construction point of view. Less
attention has been paid to the operation & maintenance (O&M) phase, which is the longest
time span in the asset life cycle. A systematic and clear architecture verified with practical use
cases for constructing a DT would be the foremost step for effective operation and maintenance
of buildings and cities. To this end, this paper presents a system architecture for DTs, which is
specifically designed at both the building and city levels. Based on current research about
multi-tier architectures, this proposed DT architecture enables integration of heterogeneous
data sources, supports effective data querying and analysing, supports decision-making
processes in O&M management, and further bridges the gap between human relationships with
buildings/cities. Based on this architecture, a DT demonstrator of the West Cambridge site of

the University of Cambridge was developed. This paper aims at going through the whole
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process of developing DTs in building and city levels from the technical perspective and
sharing lessons learnt and challenges involved in developing DTs in real practice. Through
developing this DT demonstrator, the results provide a clear roadmap and present particular
DT research efforts for asset management practitioners, policymakers and researchers to

promote the implementation and development of DT at the building and city levels.

Keywords: Digital Twin (DT), Asset Management, Operation & Maintenance (O&M),
Building and City Levels

Introduction

Computerisation and digitisation are emerging to have a widespread impact on the way the
lifecycle of physical/engineering assets being managed (Péarn et al., 2017). For instance,
artificial intelligence (Al) is predicted to add 10% to the UK economy by 2030, and improved
data sharing can result in lower consumer bills, reduce the impact on the natural environment
and realize smart asset management (NIC, 2017). Advances in building information modelling
(BIM) is likely to aid the reduction of the time taken for updating databases in operations and
maintenance (O&M) phases by 98% (Ding et al. 2009). The necessary technologies and
approaches, such as data integration and processing (Woodall 2017), information and
communication technologies (ICTs) (Ahuja et al. 2009), BIM etc., are more or less already
available. However, data needs to be stored and shared safely and securely, and technologies
also need to be well-designed and ensure security and efficiency (NIC, 2017). Therefore, the
concept of digital twins (DTs) has evolved as a comprehensive approach to manage, plan,

predict and demonstrate building/infrastructure or city assets.

DTs align well with other related emerging paradigms such as Cyber-Physical Systems and
Industrie 4.0, and it is predicted that half of the large industrial companies will use DTs by
2021, resulting in those organizations gaining a 10% improvement in effectiveness (Gartner
2017). In the architecture, engineering, construction and facility management (AEC/FM)
sectors, DTs are examined in the context of smarter cities/buildings. For instance, Mohammadi
and Taylor (2017) provided predictive insights into a city's smarter performance and growth
based on virtualization and DT of the city. Ma et al. (2018) also explored the role of Big Data
in urban physical, social and cyber spaces to construct smart cities. Moreover, Oliver et al.
(2018) provided a practical investigation of developing DTs using the example of the new

University College London campus. However, unified guidance and wider applications at
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different levels were still limited in their research. A number of studies also exist where only
some of the DT’s concepts have been implemented. For instance, Motawa and Almarshad
(2013) proposed a Case-Based Reasoning (CBR)-integrated BIM system for building
maintenance to improve the efficiency of decision making and communication among different
stakeholders. The restoration team of the Sydney Opera House designed a unified central data
repository integrating different resources to support effective O&M management (CRC
Construction 2007). Clearly defined and well-organised principles and a system architecture to
supervise the implementation will help identify the shortcomings of current approaches and
provide roadmaps for future development. These are missing in current developments and the

literature, and thus form the core focus of this paper.

Furthermore, NIC 2017 states that: “The UK needs a digital framework for data on
infrastructure to harness the benefits from sharing better quality information about its
infrastructure; how it is used, maintained and planned.” A well-designed framework can
benefit for better understanding the performance data and fitness for uses. In order to maximize
the value of data, present DT development processes and further evaluate the value and
challenges of DTs, this study firstly presents a system architecture for DTs at both building and
city levels. This architecture is brought to life through the development of a DT demonstrator

of the West Cambridge site, in the University of Cambridge.

Literature Review

Proposition of a DT development in building and city levels is raised due to research attempts
and industry trends. This literature review firstly discusses the existing definitions related to
DTs. Lessons can be learned through the review of current literature discussing limitations
related to research efforts based on partial concepts of DTs in the AEC/FM sector. This section,
therefore, aims at providing a well-grounded foundation for further system architecture and

demonstrator development.

Definitions of DTs

In simple terms, a DT is a dynamic digital representation of an asset/system and mimics its
real-world behaviour (GE Digital, 2017; Bolton et al., 2018). The concept of DTs originated

from the aerospace industry when NASA published a roadmap on modelling and simulation,
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where they provided the first definition for DTs (Shafto et al., 2012). Although gaining
popularity in the academic literature and industrial practice, there is no commonly accepted
definition for it. A brief examination of the literature (Table 1 provides a few definitions from
the perspective of different industry sectors) shows that although the precise definitions vary,

the overall thrust should be similar.

Table 1: Definitions of Digital Twin

Reference Definition Industry
Shafto et al An integrated multi-physics, multi-scale, probabilistic simulation of a Aerospace
(2012); vehicle or system that uses the best available physical models, sensor

Glaessgen and  updates, fleet history, etc., to mirror the life of its flying twin. The

Stargel digital twin is ultra-realistic and may consider one or more important

(2012); Knapp and interdependent vehicle systems.
etal. (2017)

Grieves, M. A set of virtual information constructs that fully describes a potential or Complex systems
and Vickers actual physical manufactured product from the micro atomic level to
(2017) the macro geometrical level. At its optimum, any information that

could be obtained from inspecting a physically manufactured product
can be obtained from its Digital Twin.

Bolton et al., A realistic digital representation of assets, processes or systems in the Infrastructure

(2018) built or natural environment.

GE Digital A dynamic digital representation of an industrial asset, that enables Manufacturing

(2017) companies to better understand and predict the performance of their systems,
machines and find new revenue streams, and change the way their Industrial
business operates. equipment

HVM Catapult A model of the physical object or system, which connects between Manufacturing

(2018) digital and physical assets, transmits data in at least one direction and systems

monitors the physical system in real-time. In addition, they also should
support analytics, control and simulation functions.

This paper specifically focusses on the AEC/FM sector, which as we will show in this section
later, currently lags behind the manufacturing and aerospace sectors in the maturity of
development in digital twins. The National Infrastructure Commission — in their report ‘Data
for the Public Good’ — set forth a number of recommendations for the government towards
digital infrastructure (NIC, 2017). One of those key recommendations was to develop a so-
called ‘National Digital Twin’. The ‘Gemini Principles’ published by the UK Digital
Framework Task Group and the Centre for Digital Built Britain outlines a fundamental set of
‘properties’ a digital twin — and hence the national digital twin — should adhere to (Bolton et

al., 2018).

Fundamental to this concept is that a national digital twin is not a single monolithic model of
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a whole nation’s infrastructure, but consists of digital twins that are constructed in different
scales (e.g., individual asset scale, network/system scale, city scale), built for various purposes,
and using different approaches, that are connected together and all built on data. In the AEC/FM
sector, a DT of a city, for instance, would be built on a hierarchical architecture and include a
network of sub-DTs (e.g., building DTs). For the purposes of this study, a DT refers to “a
dynamic digital replica of physical assets, processes and systems through involving internet of
things (IoT) devices and information feedback from citizens” (Bolton et al., 2018; Sackey et
al. 2014; Inyim et al. 2014). Dynamic city DTs integrate their sub-DTs and intelligent functions
(e.g., Al, machine learning, data analytics etc.) to create digital models (e.g., simulation) that
are able to learn and update from multiple sources, and to represent and predict the current and

future condition of their physical counterparts correspondingly and timely.

The state-of-the-art of DT development in AEC/FM sector

The effectiveness of asset management in the O&M phase would heavily rely on continuous
data on asset conditions and performances and properly documented professional knowledge
(Parn et al. 2017; France-Mensah and O’Brien 2018; Lu et al. 2015; Lu et al. 2018a). There
have been a number of contributions by the academic community that enables the exploitation
of BIM and digital technologies/tools in the through-life management of building and
infrastructure assets. A summary of the key literature in this area along with their key
contributions is provided in Table 2. Most of these studies focus on some of the concepts of
DTs for developing high-performance BIM-enabled asset management systems (Farghaly et al.
2018; Giel and Issa 2015; Son et al. 2017; Song et al. 2017) or project management
development (Cao et al. 2016; Taylor and Bernstein 2009; Ma et al. 2018). It can also be seen
that these studies concentrate on specific applications such as enhancing collaboration,
improved visualisation, optimising work orders. The review also reveals that current
developments focus on and/or utilise limited data resources, and does not integrate all existing
data sources to support their digital development. They lacked a comprehensive overview and
a system architecture (i.e., DTs), which establishes the foundation (e.g., asset and data

integration), organises the internal structure and further guides for continuous development.

Table 2: Brief summary of BIM-enabled asset management development

Author/year Key technologies Key algorithms/tools Key contribution

Lee et al. (2013) Ser?sor., BIM, GIS, Integrat.ion of faf:ilities— Presents an i.ntelligent
Ubiquitous Sensor related information and urban facilities
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Network, Urban Object

integration of management

management for real-

Identification functions time emergency
response
Proposes a software
KangandHong  GIS, BIM, IFC, Btract, Transform. and Load _ effctve imtegration of
(2015) CityGML > ) g

(BG-ETL) architecture

BIM into a GIS-based
FM system

Roéka-Madarasz et al.

(2016)

CAFM, CAD, Database

Top-down object hierarchy;
Geometric Description
Language

Elaborates a
methodology for
gathering building
O&M costs data

Shalabi et al. (2016)

BIM, IFC, BEMS, BAS

A schema that enables the
integration of data; a process
linking alarm reports of
equipment failures with I[FC
BIM

Proposes an automated
process that responds to
alarms by retrieving
alarms reported by FM
systems for corrective
maintenance

Peng et al. (2017)

Data warehouse, BIM

Clustering algorithm; Cluster-
based frequent pattern mining
algorithm

Proposes a BIM-based
Data Mining approach
for extracting
meaningful patterns
and detecting improper
records

Suprabhas et al.
(2017)

BIM, Sensor, COBIE

Data integration and
visualisation

Develops an
application that
integrates sensor data
and reports the data via
the virtual model of the
building.

Hu et al. (2018)

BIM, GIS, BAS, Web-
service, QR code/RFID

Logic chain generation
algorithm; Equipment
identification and grouping
algorithm

Develops a cross-
platform Mechanical,
Electrical and
Plumbing (MEP)
management system

Chen et al. (2018)

BIM, IFC, Facility
management systems

A* algorithm used for optimal
maintenance path planning;
Dijkstra algorithm used for
maintenance scheduling

Proposes a BIM-based
framework for
automatic scheduling of
facility maintenance
work orders

Note 1: GIS: geographic information system; RFID: radio frequency identification devices; BEMS: building

energy management systems.

The state-of-the-art of multi-tier architectures development

Various researchers have proposed multi-tier architectures to support heterogeneous

environments (e.g., multi-function and a large amount of data). This can be classified as (1)

Cyber-Physical Systems (CPS), (2) IoT platform architectures, and (3) smart cities and big data

architectures. Table 3 provides a summary of multi-tier architectures from related literature.
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For the architecture of CPS, a new CPS science is still needed to integrate the theories of

computing and communication systems, sensing and control of physical systems, and the

interaction between humans and CPS (Rajkumar et al., 2010). For the architecture of 10T, big

data techniques and cloud computing are suggested to improve its performances. For smart

cities architectures, current research is limited to some specific applications (e.g., only

considering city-level implementations) and more interaction with human users should be

proposed in their architectures.

Table 3: Summary of multi-tier architectures

Architecture Classification Key Layers Challenges

Reference

Architecture of Cyber-Physical Systems (CPS)

CPS for Electric Power Grid Communications, computing and

cCoor?\Zethil;)r?’ physical dynamics should be
o evber. co r;ition modelled at different levels of scale;
CPS for Smart Building YOCrL, COgl > Improved unified and core
configuration

abstractions of computing are needed;

Lee et al. (2015);
Lee (2008);
Kleisslv and
Agarwal (2010);
Rajkumar et al.
(2010)

IoT Platform Architecture

IoT-based Services

IoT architecture
includes: three-
layer; middle-
ware based;
SOA based;
five-layer.

Middleware

Big data analytics in support of the
IoT are needed; Cloud computing
for the 10T are needed; Fog
Computing can act as a bridge
between smart devices and large-
scale cloud computing and storage
services; The need for better
horizontal integration between

10T supported Smart Cities 200
application layer protocols.

Al-Fugaha et
al. (2015);
Krylovskiy et
al. (2015)

Smart Cities and Big Data Analytics Architecture

Bottom tier;
intermediate tier
1&2; top tier.

Urban Planning and Building
Smart Cities based on the IoT
using Big Data analytics

Limited implemented areas; No
interaction with citizens.

Rathore et al.
(2016); Silva et
al. (2017)

Note 1: SOA means Service Oriented Architecture.

To construct an effective digital architecture to exploit the benefits of sharing better quality

services in the building and city level, the following challenges still need to be addressed:

a) The architecture should be developed using a unified, hierarchical and extensible approach,

which can be implemented in different scales from assets (e.g., pump), buildings to cities.

b) Besides data collection and acquisition, assets need to be ‘connected’ and relevant

information regarding their lifecycle (e.g., maintenance history) should be collected as well.

c) Interaction and communication channels with humans are needed to provide ‘in-time’

services.
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d) Data or status visualisation is required for different groups of users to help them monitor

‘as-is’ condition and activities.

DTs can support many different applications such as from security and health management to
energy management. Each application will have its own data requirements which need to be
catered for. This is problematic when data comes from different systems, because the source
system may have a different intended use of these data that does not fully match the
requirements of all those applications. Dealing with these differences and repurposing data
from the source systems poses a challenge (Woodall, 2017) especially for developing a specific

architecture for DT development in the AEC/FM sector.

A DT System Architecture for Building and City Levels

A city is a comprehensive system connecting the physical, social and business aspects (Silva
et al. 2018). Widespread deployment of ICT infrastructure in cities allows the extraction of
intelligence from various datasets and allows it to connect different asset groups (Silva et al.
2018). A city can be thus considered as an asset that integrates different sub-assets such as
buildings, utilities, transportation infrastructure, and people. Hence, a DT at the city level is a
dynamic digital replica of a city that integrates each sub-DT (e.g., building DT, bridge DT) (see
Figure 1). Figure 1 demonstrates the parent-child relationship of DTs at different levels. DTs
in the upper level (e.g., city DT) interact with the sub-DTs (e.g., building DT) in a bidirectional
way, by querying for the required information, responding to different stakeholder
requirements and providing them with specific services without compromising data
confidentiality at each individual DT. This study presents a hierarchical architecture at the
building and city levels. This architecture (as shown in Figure 2) is comprised of five layers:
data acquisition layer, transmission layer, digital modelling layer, data/model integration layer

and service layer.
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Data acquisition layer is the foundation of each DT. Due to the heterogeneity and large
volume of data in city levels, design of data acquisition mechanism and approach is a
foremost and challenging task, especially when considering the type, format, source and
content of data. Moreover, the sub-assets (e.g., buildings, transportations) will have their
sub-DTs in terms of their functions in daily services and these sub-DTs will further provide
necessary data/information/model when receiving a query from the city DT. Examples of
data collection techniques include: contactless data collection (e.g., RFID, image-based
techniques), distributed sensor systems, wireless communication, and mobile access (e.g.,
WiFi environment). Based on different levels of sub-DTs (e.g., buildings), each twin is
designed based on the DT architecture, including real-time data collection, effective data
management and integration (Fattah et al. 2017; Hu et al. 2018). For instance, the DT
architecture is presented in Fig.2 (bottom part) and designed for buildings. Through sharing
the same architecture with city DTs, building DTs also include data acquisition layer (e.g.,
using [oT devices and wireless sensor network or QR codes), digital modelling layer,
transmission layer, digital modelling layer, data/model integration layer (e.g., simulation
engine and data analysis functions) and service layer (e.g., space utilization and workplace
design).

The transmission layer aims at transferring the acquired data to the higher layers for
modelling and analysis. Various communication technologies could be used in this layer,
such as short-range coverage access network technologies (e.g., WiFi, Zigbee, near field
communication (NFC), M2M, and Zwave) and wider coverage (i.e., 3G, 4G long-term
evolution (LTE), 5G, and low-power wide-area networks (LP-WAN)) (Ge et al. 2016;
Huang et al. 2012; Ohmura et al. 2013). With the increasing development of technologies,
Wi-Fi is still the well-known wireless local area network (WLAN) technology and widely
used. Although the most popular technology, the unlicensed spectrum band is a concern
when developing city DTs using Wi-Fi (Lehr and McKnight 2003) due to security issues.
Considering energy efficiency of networks and speed of transmission, light fidelity (Li-F1)
and LP-WAN are promising alternatives for wide-range coverage for developing DTs in
building and city levels (Saini 2016; Silva et al. 2018).

Digital modelling layer contains a set of digital models of the physical asset (e.g., BIM,
City Information Modelling (CIM)) and supplements information (e.g., weather

information, cultural backgrounds) that support the upper layers. The CIM shares similar
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concepts with BIM, while describes information models in city levels. It extends the use of
models, information, and techniques in urban levels (e.g., Geographic Information Systems
(GIS)) in city applications (e.g., urban planning) as decision support tools (Gil et al. 2010;
Gil et al. 2011). Different models/model types can be used for different purposes in DTs.
Examples for these are: real-time status/control, managing assets (e.g., asset management
model), planning infrastructure/cities (e.g., CIM), modelling scenarios and decision support
(Bolton et al., 2018; Kim et al., 2018). When a DT at building and city levels is designed,
a pre-defined schema and well-organised modelling processes are required to conform
firstly and aligned to the target specific applications from a single infrastructure to entire
cities and buildings.

Data/model integration layer is the kernel in this architecture. This layer aims at integrating
all the data resources based on the designed data structure. This layer also contains the
functions required for data and model manipulating, storing, analysing, integrating,
processing, and Al-supported knowledge learning which supports decision making
(Glaessgen and Stargel 2012). In this architecture, real-time data analysis and processing
functions would update as-is conditions of the city assets (including transportation
conditions, energy consumption) and building assets (including work orders, up-to-date
maintenance information, status) (Lu et al. 2018b). Where complex and massive amounts
of data are collected and large-scale data storage & managing systems are needed in a city
level, effective and hierarchical model/data storing, integration and query design are the
most significant functions for guaranteeing the city DTs’ performance. Here, cloud storage
and computing, and data/model visualisation can be used to achieve dynamic and effective
data management in a city and building level (Lin et al. 2013; Silva et al. 2017). Data is the
core of the DT architecture. Based on all the available data resources, different intelligent
functions (e.g., Al, machine learning module and simulation) could be realized for
advanced decision-support, such as transportation prediction, energy usage optimisation or
asset anomaly detection. These functions are essentially driven by different knowledge
engines (KEs). By assimilating data continuously, live KEs for physical assets, processes
and systems can be established, describing their dynamic conditions. The establishment of
KEs is much dependent on domain knowledge. Hence, in a DT with multi-functions, a
specific KE under a certain scenario would be developed and added under a target domain
knowledge. It is crucial to recognize that embedded KEs play a key role in delivering better-
informed services by utilizing the strong data integration capability of the proposed DT.

This study provides a case of a pump to demonstrate an example of KE. Different KEs
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would depend on different domain knowledge, which will be proposed and designed by
different DT developers based on their different purposes. In addition, intelligent functions
can keep updating their embedded algorithms and supporting continuous applications in
future development.

The service layer is the top and implementation layer of the DT architecture that interprets
the knowledge from KE and enables the interaction between people/society and the
data/model integration layer. The service layer provides services for the society, evaluates
performances of constructed DTs and can influence human satisfaction including
sustainable community development, environmental management, and smart transportation.
And the feedbacks from people should feed into KEs as external knowledge for improving
overall satisfactions.

Interaction with people: in the designed architecture, the service layer is targeted towards
FM professionals and end-users, providing them with decision-making supports and
interaction. To avoid compromising the operation performances especially in the early
implementation stage, the optimized decisions should be checked and confirmed manually
before implemented in practices. The designed smart building/city allows for flexible

decision-making process and supporting the interactions with FM professionals/users.

Based on existing multi-tier architectures (e.g., IoT and Big Data architectures in table 3), this

proposed DT system architecture is specifically designed for AEC/FM sectors. Four benefits

can be summarised as implementing DTs in buildings and cities using this specific DT

architecture:

Based on the research of existing multi-tier architectures and Gemini Principles, this
architecture is designed in a five-layer format (see Figure 2) for various hierarchical
levels from systems (e.g., pump), bridges, buildings to cities (see Figure 1), which keep
unified and share federation (linking) among different levels.

Integrating heterogeneous assets and data sources via linking with the digital models,
this architecture supports for integrating 3D geometric and geo-referenced entities with
other data resources in a distributed manner. For example, the IFC is used to integrate
building digital models with daily management system, geo-coded sensor data etc.
With the basis of cloud computing and IoT-based services, it enables compatibility with
many protocols and environments with abilities to manage real-time sensors and
distribute data in numerous formats.

Interaction and communication channels with human users are added to bridge the gap
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between human relationships with buildings/cities.

West Cambridge Digital Twin Demonstrator
Overview

The pilot evaluation study of the proposed DT was conducted at west Cambridge site of the
University of Cambridge. The West Cambridge site includes more than 20 university buildings,
sports centres, residence areas, main roads, parking places and restaurants. This can be
therefore be considered as a small example of a city and a promising testbed. For the building
level, this study used the Institute for Manufacturing (IfM) building, which is a 3-storey
building at the West Cambridge site. This building includes teaching, study, office, research
and laboratory spaces and stands over a 40000-square-foot comprehensive area. Five critical

stakeholders were engaged in the development of the pilot (see Figure 3).

University Estate Management Team — responsible for the O&M requirements for the entire
university.

University Facility Management Team — responsible for the day-to-day O&M activities for
a specific building or location within campus. In this DT project, we brought together two
facility management teams, namely the team that manages the West Cambridge site and the
facility management and technical support team of the [fM building.

Modelling and data collection company — supports the data collection and model
development of the DT, including UAV point cloud scanning, and localised laser scanning
and photogrammetry.

Consulting company — provides project management and collaborative expert supports. The
core requirements of the consulting company are to provide the organisational progress of
cost management, time schedule management, and resource management.

Academic team — provided overall leadership to the project and is responsible for the design
and implementation of the architecture. Further, the academic team also ensured that the
DT development architecture and methodology were correctly implemented and was

repeatable and extensible.

Based on the developed system architecture, the DT in west Cambridge site integrated various
data resources and included several applications. The objective of this pilot is to demonstrate

how a dynamic digital twin of existing buildings and infrastructure can be developed and to
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explore the opportunities and challenges.
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Figure 3. Stakeholders in the West Cambridge Digital Twin pilot

Data acquisition layer

In data acquisition layers, data from environments and physical assets is a fundamental
requirement of the proposed system architecture of the DT. This presents several challenges
for developing a data acquisition and transmission system: it needs to support data uploads
from the sensors that are deployed at distributed locations since the assets are dispersed, and it
also needs to be scalable to support a large number of assets and data resources in building and
city levels. The West Cambridge DT is integrated with the data acquired from the Building
Management System (BMS), Asset Management System (AMS) used in Cambridge, space
management system (SMS), which are MySQL-based, as well as real-time sensors. The BMS
is installed in each building and it controls the mechanical and electrical systems (e.g. power
systems, heat ventilation and air conditioning (HVAC) systems and security systems). The
AMS is a work-order management system that keeps records of all asset management activities
and service carried out on the university assets. In this study, Planet is used for managing assets,
such as asset register, preventative maintenance plan and storeroom stock (Planet 2019). The
SMS manages room bookings and therefore provides space utilisation information. MiCAD

space management system is used in this study. It is a cloud-based publishing system that holds
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CAD floor plans, building condition records and room bookings for each building in the West

Cambridge site (MiCAD 2019).
Transmission layer

In this work, challenges of ‘real-time’ data collection are overcome by developing loT-enabled
wireless sensor network (WSN) and QR code-based asset management network in the data
transmission layers. Figure 4 provides an illustration of the data acquisition and transmission
system developed for the pilot. WSN refers to a collection of distributed and dedicated wireless
sensors for monitoring and recording conditions of environments and equipment (Lewis, 2004).
The sensors in WSNs are called nodes and they measure the environmental conditions such as
indoor temperature and relative air humidity, and HVAC equipment conditions such as
component vibration, surface temperature and speed of the rotating parts. In addition to the
sensor nodes, the WSN consists of gateway nodes that act as the bridge between the local
sensors and the remote applications such as cloud-hosted databases and online web pages that
visualise data. In recent years, WSNs gained attention due to the emergence of IoT and
proliferation in Micro-Electro-Mechanical Systems (MEMS) technologies (Yick et al., 2008).
These technologies allowed WSNs to be smarter by utilising computing capabilities yet
cheaper and smaller (Yick et al., 2008). In this section, a discussion on the [oT-enabled WSN
developed for the proposed system architecture of the DT is provided (Figure 4). Firstly, the
[oT devices used as the nodes in the WSN are introduced and secondly a discussion on the

overall WSN is provided.
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Figure 4. Schematic of the WSN for data acquisition and transmission from the assets

The IoT sensors used in this pilot are the Monnit wireless sensors (Monnit 2018a) with a one-
minute heartbeat. The sensors and gateways communicate over the 868 MHz radio frequency
(RF). The RF antenna in the sensors acts as the transmitter and the receiver, and it sends the
measured data to the gateways. These sensors are capable of 250 — 300 feet non-line-of-sight
(partially obstructed path for radio transmission) RF range (Monnit 2018b). The wireless
communication capability of these sensors over RF is suitable for the distributed nature of the
DT system architecture as RF is a low-cost communication medium (Lanzisera et al., 2011),
and it supports the required range to connect the distributed set of sensors with the gateways.
In this pilot, a wide range of sensors such as temperature, humidity and motion detection were
used for capturing data from various locations and equipment in the IfM building. Monnit
Ethernet gateways (Monnit 2018c) are used as the gateway nodes in the WSN. These devices
are AC powered and consist of RF antennas that allow the communication with sensors.
Moreover, gateway devices consist of ethernet ports which allow them to communicate with
the remote applications over the internet and also provide scalability for a large number of

assets in building and city levels.

The nodes in the WSN are grouped into different clusters depending on the distance between
sensors and gateways. This allows robust connection between sensor nodes and gateway nodes
as sensors can connect with the closest gateways which increase the RF signal strength between

the two devices. During the initialisation phase of the WSN, the gateways are pointed to a
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virtual server (i.e., connected with the IP addressed of a virtual server) created by a Sensor
Manager software. Sensor Manager is a custom-developed .NET software which is hosted on
a Windows server and integrated with the Monnit Mine API, which is an interface that allows
custom-developed applications to retrieve data from the Monnit gateways. Once the gateways
are pointed to the server hosted by the Sensor Manager, the sensors are registered with the
gateways by sending a command to the gateways over the internet using the HyperText Transfer
Protocol (HTTP). This command contains the unique device identifiers (UDIDs) of the sensors
a gateway needs to be connected with. After the initialisation phase, the sensor nodes are
capable of monitoring environmental and equipment conditions, and uploading data over RF
to the gateway nodes. Upon receiving the data, gateway nodes upload data into the Sensor

Manager over the internet.

In addition, more than 200 assets within the IfM building and the site were tagged with QR
codes to provide an individual profile that provides good quality information. QR codes were
attached to the surfaces of different assets (e.g., refrigerators, street lights). A user-friendly
mobile-phone app developed by Redbite Solutions (itemit, 2019) enables maintenance
personnel to update information about maintenance and inspection based on their
responsibilities and roles. Similar to the WSN, information collected through scanning QR

codes can be sent to the Asset Manager platform via a RESTful web API.

Finally, the sensor manager and asset manager send the data and collected information to the
DynamoDB NoSQL database supported by the Amazon Web Services (AWS). In two networks
developed for the DTs, the whole process of sensing condition data to storing data in the cloud
database occurs every minute to facilitate timeliness of the DT and QR code-based information

collection creates communication channels between people and DTs.

Besides these two networks, challenges of various data resources integration were solved
through well-designed transmission process. For instance, a BMS controller that collects data
from the mechanical and electrical systems is integrated with hard-wired sensors. A Trend SIP
interface (Synapsys, 2018) was deployed to allow the data captured by the BMS in 15-minute
intervals to be uploaded as CSV files to an SMTP server every 1 hour (see Figure 5).
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Figure 5. Diagram of the hard-wired sensors data transmission process

A BMS Data Integrator software was developed for reading the data stored in the CSV files in
the SMTP server and uploading them into the AWS DynamoDB database.

Digital modelling layer

Information requirements are various at different scales. In this layer, a three-sublayer digital
model was built based on different information levels (see Figure 6). This includes a geometry
model of the West Cambridge site in a city level, the BIM model of IfM building with a medium
level of detail (including architecture, structure and mechanical, electrical and pumping (MEP)
components), and a BIM model of specific areas in IfM with highly detailed information (e.g.,
facilities and pipes in the plant room) in a building level. This layer aimed to establish a
visualised model-based platform to support upper layers. The site-level photogrammetry data
was captured using fixed-wings drones and vehicle-based scanning devices. The highly
detailed 3D geometry scans of the interiors of the building were captured using laser scanners
and digital cameras. The process and plan of generating digital model in a city level are

presented in Figure 7. In addition, complementary data was further collected in this layer.
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437  Data/Model integration layer

438 In addition to the data/model integration layer, the two developed DT instances have
439  incorporated the proposed DT system architecture with the capabilities to store and analyse
440  BIM object related data collected by heterogeneous data systems. These data include asset
441  condition monitoring data (e.g., building’s plant room assets, including boilers, heat circulating
442  pumps, thermal extractors and energy readings from the HVAC system), asset historical records,
443  environment monitoring data, utilisation monitoring data and energy consumption data (see
444 Figure 8). In this project, two DT instances have been developed as shown in Fig.8: 1) the
445  research-based instance was developed by our team for research purposes and 2) the

446  commercial instance was developed through cooperating with Bentley Systems, Inc. for
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providing a mature product option in the future market. Research questions, objectives and
whole processes related to new functions and services would be completed and evaluated in
the research DT instance firstly. Then, when handing over these research results to Bentley
system, similar functions/services in the ‘commercial’ DT instance would be added with

stronger software robustness.

For the DT research platform, Autodesk Revit was used to develop the RVT model and then
export to Industry Foundation Classes (IFC) files. This platform was developed based on AWS
DynamoDB, Autodesk forge API and web-based program design (i.e., .Net) using C# and Java
script. For the commercial one, since cooperating with Bentley Systems, Inc., AECOsim
building designer was used to develop the DGN model and then export to IFC files. Bentley
Systems, Inc. developed this platform based on their available commercial off-the-shelf

application (i.e., Assetwise).
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Figure 8. Diagram of the data/model integration layer and service layer
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Figure 9. The IFC schema mapping with other data resources (using AMS as an example)

Due to the existence of University’s security firewalls, the AMS, BMS, SMS and other datasets
are not ubiquitously accessible beyond the scope of University local area network (LAN). To
enhance the accessibility of these external data, a mirrored database is used, which basically
stores all datasets stored in the protected AMS, BMS, SMS into DynamoDB NoSQL schema.
Different from relational database management used in the AMS, BMS and SMS, a
DynamoDB based non-relational database is adopted that is highly available, scalable, and
optimized for high performance. Near-zero downtime migration could be realized using the
AWS Database Migration Service (AWS DMS) (Balobaid and Debnath 2018), importing data
from MySQL towards DynamoDB. After migration, the datasets stored in DynamoDB act as
the primary data source for external asset-related information in this case. While real-time
sensor data and QR code feedback information are stored and managed directly through
DynamoDB. If there is no limited access (e.g., no firewall), it is suggested to query data from

various databases based on the application requirements.

The AMS data is used as an example to explain the detailed data structure of data/model

integration. To enable the IFC-based interoperability (Steel et al., 2012) between BIM and
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AMS (which refers to the AMS data stored in DynamoDB), the data/model integration layer is
designed to be capable of interchanging and interoperating external data related to each BIM
object in the digital model on a semantic level (see Figure 9). IFC is a widely used standard
data schema for BIM and is an object-oriented and semantic representation that includes
components, attributes, properties, relationships, and linkages with other libraries or data
resources (Romberg et al., 2004). Specifically, in this DT development, an IfcObject/IfcSpace
matching table for AMS data integration is stored in DynamoDB, describing the relationship
between the BIM object GUID and its corresponding asset ID from data resources (e.g., AMS).
Shown as Figure 9, when asset data (saved in AMS) needs to be integrated or queried for some
services in the upper layer, the IfcObject matching table provides a linking bridge between the
targeted BIM object (GUID) and the corresponding asset ID in AMS. Through this matching
approach, the matched asset ID is used as a primary key (PK) in the designed data schema
(Figure 9) for searching the required data. Through the GUID in the IfcObject matching table
and querying matched asset ID number, the required data would be searched automatically by
their unique asset ID as primary key and further refined using sort key (SK). In this way, data
resources could be kept in their original storage locations and saved in this distributed manner.
This data integration method enables that IFC and other data sources (e.g., AMS) are
independent from each other. To keep the consistency of the data, only the IfcObject/IfcSpace
matching table needs to be maintained, which achieves CRUD (Create, Retrieve, Update,
Delete). For instance, when a new BIM object is added to the IFC, a new linking pair would be
added to the matching table via linking the GUID of the new object to the unique asset ID from
the AMS database; when the asset ID number is changed, which would happen when assets
are replaced, the asset ID that corresponds to the replaced object GUID in IFC should be
updated, without modifying the IFC or the original database. Furthermore, the requested data
would be visualised in the DT platform linked with the corresponding BIM objects (see Figure
8). Exchanging information across data source boundaries makes interoperability a primary
issue, but IFC well solves this problem. Data processing and advanced functions (e.g., Al) are
also designed in this layer, driving the KEs to understand the mechanisms behind assets,
systems, buildings and cities. The supported services would be discussed in detail with their

applications in the next layer.

Service layer

The DT pilot currently includes five services in building and city levels. Among five services,
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anomaly detection in pumps is described in detail, including the data resources used, functions

implemented in the data/model integration layer, the proposed DT architecture demonstration

and advantages of DT-supported decision-making processes. Other four services are expressed

briefly as follows and will be extended in future publications.

Anomaly detection in pumps. Given a set of vibration data that carries diagnostic
information on the mechanical condition of pumps, this service is implemented in the
proposed DT architecture, aiming at detecting change points in vibration data which
indicates the occurrence of suspicious faults on pumps in the HVAC system (see Figure 11
(c)). Generally, BMS and real-time sensors keep track of the operating conditions,
especially for principle assets, BIM provides additional information (e.g., geometry,
location). Empowered by IFC schema implemented in demonstration, the data/model
integration layer enables the intelligent extraction of pump relevant data. A typical change
point detection method, cumulative sum charts (CUSUM), is adopted to analyse the
extracted pump data and find those change points in an unsupervised manner where the
underlying symptom parameters of vibration deviate from their normal values. A real case
study is conducted to demonstrate the role that a building DT plays in the pump anomaly
detection service. In the case, two identical pumps are installed in the plant room of IfM
building. They work in parallel to pump return chilled water from the air handling units and
fan coil units back to the chiller. For the convenience, the vibration frequency measured by
sensors mounted on the pump casing (close to the bearing) is extracted using the established
DT, as an indirect way of assessing the conditions of two pumps. Two scenarios are
analysed, a scheduled operating condition change, and a pump failure event causing strong
abnormal noises respectively. In the first scenario, the studied centrifugal pump undergoes
a scheduled shutdown due to the Christmas holiday. The period of data starts from the 5th
December of 2018 and lasts until 1st January of 2019 (4 weeks). Figure 10 (a) and (b)
shows the recorded vibration frequency time series and CUSUM result within this given
period. The shutdown can be seen to the naked eyes, and a rough judgement can be made
that the studied pump stops working in the afternoon of 31st December of 2018. In the
second scenario, one of the two pumps undergoes a highly suspicious anomaly causing a
strong abnormal level of noise. Figure 10 (¢) and (d) show the generated vibration
frequency time series and CUSUM result within given period. It is relatively hard to
distinguish the difference between the vibration of normal and faulty pumps by unaided

eyes. But at least, the CUSUM based detector could locate the change point corresponding
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to the shutdown and anomaly scenario with a reasonable time delay. In alliance with the
BMS, the found change points are matched against the recorded normal operation changes,
so that change points caused by real faults can be uniquely identified. Comprehensively
synthesizing the information from change point detection and cross over matching, the live
knowledge engine (KE) for pump, realized in the data/model integration layer, can be
established for modelling and updating the up-to-date status of pump. In summary, benefit
from the DT, a centralised system that integrates heterogeneous available data sources is
established, enabling the data interchange and interoperation. Supported by the strong data
integration capability of DT, better-informed decisions can be made, including continuous

condition monitoring and anomaly detection of pumps (Kaur et al., 2020; Costa et al., 2013).
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Figure 10. Pump anomaly detection implemented in the service layer of DTs

Ambient environment monitoring. Ambient temperature and humidity monitoring are
used to evaluate the comfort level of the working space. If the ambient condition is outside
a pre-determined threshold of comfort, the DT platform will indicate this through a status
indicator (coloured red for too hot, blue for too cold and green for comfortable status). The
facilities manager can further check the real-time and historical temperature and humidity
data to analyse faults in the system. This system will be further developed to enable the
facilities manager to carry out effective root-cause analysis (Figure 11 (a)) and guiding the
facilities manager to take appropriate corrective action if necessary.

Maintenance optimisation. This application predicts unexpected temperature drops
caused by the biomass boiler’s malfunction by applying machine learning algorithms using

the data collected from the building management systems and failure/maintenance logs.
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Further, for assets that are not suitable for predictive maintenance, the application also
includes a maintenance planning optimiser that develops the optimal
maintenance/replacement interval based on the historical failure rates calculated using data
from the maintenance/failure logs (see Figure 11 (b)).

Maintenance/Repair prioritisation. Maintenance task prioritization is essential for
allocating resources. It is estimated that almost 1/3 of the maintenance cost is spent
insufficiently (Mobley, 2002). Based on the developed DT, this application exploits the
advances in mobile communications, social networking, and machine learning to address
these shortcomings on a city scale. It also brings assets online using asset tags with an
online ‘asset digital profile’. Users of assets are able see the ‘digital profiles’ and enter
‘comments’ describing issues and problems by scanning these tags using a mobile phone
app (Itemit, 2019). This feedback is the input of a machine learning based method (defined
in the data/model integration layer) that infers the criticality of every asset defect reported.
A prioritization label that indicates the response time is finally returned for each
maintenance task in the West Cambridge site (see Figure 11 (d)).

Environmentally friendly urban energy planning: Urban energy planning has moved
beyond providing the necessities and societal needs to a stage of establishing an integrated
methodology to solve environment and energy problems at the urban level in achieving low
carbon intensity. In this application, the building DT exhibits a tight integration of sensing
and computation capability, which estimates the characteristics of building energy demand
patterns using sequence-to-sequence LSTM. Taking advantage of this information,
quantitative energy demand figures and the spatial distribution of the forecasted energy can
be acquired to decide the future need of the capacity of the energy supply facility and the
energy production at the urban planning perspectives. In this way, a better energy demand
pattern for urban space can be achieved by integrating the optimal amount of clean energy

resources (see Figure 11 (e)).
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Figure 11. Digital twin services

Analysis of the DTs Development from the Perspective of Data Management

Since DT is built on data, the pilot so far has revealed four key data management challenges

that should be addressed in order to develop an effective DT at city and building levels.
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Figure 12. The data management among city DT and sub-DTs

Data integration. To realise a DT poses various data management challenges; especially
related to the integration of data from autonomous, disparate and heterogeneous sources.
This is exemplified in this DT which integrates data from sources such as real-time sensors,
BMS, cloud services, and AMS etc. From a technical point of view, there are many
technologies available to support the integration of data, from ETL technologies that
support the transfer of data between systems (Vassiliadis, 2009; Woodall et al. 2016), to
Service-oriented Architectures that can expose data as a service (Budgen et al. 2007), to
data virtualisation, to data warehouses and data lakes (Beyer et al. 2017). Generally, no one
solution fits all problems and a mixture of these technologies is often deployed in
organisational integration settings (Araujo et al. 2017). It is the foremost challenge of
integrating different data resources and further linking various assets for DT development.

Particularly, big data is an important part of a DT, which is characterized by high volume,
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high velocity, and high variety. Without big data, most of functions of digital twin would
be the castle in the air. Semantic ETL workflow (Bansal and Kagemann 2015), as one of
the potential solutions for DT data integration, could be investigated for integrating massive
data from heterogeneous sources into a meaningful data model, which allows intelligent
data querying and further creation of innovative applications. The semantic technologies
are introduced in the transform phase of a traditional ETL process to find a semantic data
model and then generate semantically linked data in the form of Resource Description
Framework (RDF) triples to be stored in a data warehouse. While extract and load phases
of the ETL process would remain the same as the traditional workflow.

Heterogeneity of source data systems. The source systems containing the vital data
needed as input for monitoring and prediction algorithms often reside in disparate systems
running different software platforms and database systems. Efficient execution of queries
to extract the data from these systems is non-trivial. For instance, a NoSQL engine used in
DynamoDB is suitable not only for large-scale data storage and but also for massively-
parallel data query across a large number of concurrent requests. This is especially
important in DTs as there will often be a need for timely and up-to-date data. In extreme
cases, a real-time stream of data would be needed, such as telemetry data. Moreover, city
DTs need to query data from sub-DTs (see Figure 12).

The structure of the data models throughout systems often differs because there are many
ways in which database designers can choose to store the same type of data. This manifests
as differences in the choice of database tables, records, and attributes for data. One common
problem is that without a globally unique identifier/standard for data records among data
sources. It is difficult to know whether a data record in one system (e.g., a particular
machine) is the same machine as referred to in another data record in another system.
Various terms may be used in different systems, including entity linking, record linkage,
entity resolution, data matching, and data de-duplication (Talburt 2011).

Also, how to reconcile the differences in the semantics and syntax of data is another
challenge. For instance, the definition of a boiler in one data source may include the
external pipework and in another system it may not cover. The area of Master Data
Management (MDM) is a topic that deals with these issues to advise how to reach a
consensus on the definitions of data and manage its changes and evolution over time
(Loshin 2009; Otto 2012; Otto et al. 2012). Hence, there is also the need to reconcile the
differences in specific values in databases to ensure that the nomenclature is consistent. For

instance, one system may use degrees Celsius while another could use Fahrenheit.
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Data synchronisation. The demonstrator shown in the last section doesn’t explicitly
involve data synchronisation. It was basically done manually offline in the data/model
integration layer. But a key problem in a practical DT is timing and frequency of
synchronising different copies of data in order to provide up-to-date data to decision-
makers. The problem is non-trivial because a trade-off exists between synchronisation costs
and quality (staleness) of the data (Qu and Jiang, 2018). Synchronisation costs include the
cost of resources used, such as Information Technology (IT) staff and computing resources
etc. Computing resources can cause a considerable disruption cost to the business, because
systems often need to be “locked” (Woodall et al. 2016) in order to access the data and any
reduction in computer power can reduce the power available for critical business operations
(Qu and Jiang, 2018). Organisations often resort to batch synchronisation of data which is
attempted out of business hours (such as overnight). However, for DTs with a requirement
to monitor engineering assets in real time, a continuous stream of data will be needed,
which shifts the trade-off towards high synchronisation costs. For instance, if semantic ETL
workflow is adopted, a mechanism must be integrated to make sure that the datasets are
relatively consistent. Because heterogeneous data sources may have different timestamps,
ETL workflow is required to be capable of holding back certain datasets until they are
synchronized.

Data quality. Data quality is defined as fitness for use (Wang and Strong, 1996), which
captures the dual concepts of how the data is to be used and whether it meets the
requirements of that use. The use of the data in the DTs must support various applications
at once, such as enabling service decisions and predictions. However, in a DT, data may
degrade causing it to be not fit for use for various reasons, including:

a). the quality of the data extraction process from the data sources or sub-DTs (Figure 12);
b). the inherent quality of the data in the underlying data sources;

¢). quality loss due to abstraction required by the integration of data;

d). differences in the quality requirements from different data sources (repurposing).

In this process, data quality can be lost when extracting data from source systems, for
example, the query to extract the data is incorrectly formulated and gathers the incorrect
records. Data can also be lost in this process if the transformations on the data (when
performed in semantic) transform it incorrectly. Even if the data extraction process is
perfect, if the data from the source systems contains errors, then these will propagate to the

DT. There are, however, certain types of these errors that can be detected and corrected in
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the transformation process, such as incorrectly formatted data and invalid data (Woodall et
al. 2014). DTs may utilise publicly available online data in the city level, such as using
weather forecasts etc. However, the quality of online data can be questionable, and the use
of this type of data could demand a different notion of data quality compared to traditional
database systems (Lukyanenko et al. 2014).

In order to achieve data encapsulation and beneficial separation of concerns, each DT (from
system-level to city-level) should be responsible for maintaining the quality of own data
within its DT, and not offload it to another DT. Note that the vision for the high-level DT
(West Cambridge site DT in this case) is not limited to a huge singular DT of the entire
environment. Rather, suggested by Gemini Principles, it is envisaged as an ecosystem of
sub-DTs joined together via securely shared data. Therefore, the high-level DT allows
interdependencies across different sectors to be understood in a way that sub-DTs could

hardly satisfy.
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Summary and Discussion of the DTs Development
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Figure 13 A road map for DT development in building and city levels

In-depth analysis was performed based on data management requirements (i.e., data integration,
sources heterogeneity, data synchronisation and data quality) to highlight the key challenges of
developing a DT in building and city levels. Thus, according to the analysis results from the
perspective of data management and definitions of DTs (i.e., purposeful, trustworthy and
functional) (Bolton et al., 2018) provided in the literature review, successful development of
DT in building and city levels can be achieved with 1) a clear objective of DT construction
(insight), 2) a clear definition of DT constitutes (value creation), 3) a well-designed and
practical process of collecting, updating, transferring and integrating data/model throughout
the life cycle (federation), 4) a well-executed and standardised interoperability procedure and
data compatibility plan for curation and further possible evolution, which mean that the

developed DT is able to adapt, develop and extend as technology advances (curation and
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evolution), and 5) a valid control strategy development, which guarantees the performances of
DTs (security, openness and quality). This research examined a real-world dynamic DT
development using the west Cambridge site, to determine the data required for DTs, to
articulate the process of collecting, managing, and integrating various data resources, to test
the seamless linkages among five layers and assets in different scales, to provide practical

applications and functions, and to summarise challenges faced and lessons learned.

The major lessons learned on this DT developed based on the system architecture include the
following: 1) organising a well-integrated project network and setting clear responsibilities,
including representatives from the modelling, data collection, consulting, research as well as
facility management team; 2) setting a clear objective, applications and functions development
plan in advance; 3) confirming and classifying data resources according to different users
aligning with their requirements; 4) choosing and creating central digital models (e.g., BIM),
data schema (e.g., IFC) and authoring tools; 5) creating logical and reliable transmission
networks, which allow efficient data transferring and communication between physical world
and digital world; 6) designing intelligent and effective data processing and analysis functions
according to predefined objective and applications; 7) conducting continuous data quality
control and synchronisation assurance throughout the asset life cycle; 8) preparing a reasonable
schedule and workflow process when developing DTs, since unexpected issues should be

considered in real project.

Moreover, in order to visualise DTs and provide services for FM professionals, two DT
instances were developed in this research project. A custom DT-specific instance was designed
for research purposes and a commercial DT instance was developed by Bentley Systems, Inc.
using their Assetwise platform. Both of them support for further development and evolution,
and open for additional services and functions. These DT development processes provide two

approaches to achieving DTs implementations in real practices.

These lessons learned are the unique contribution of this study and further can be widely
generalized to DT development based on this system architecture. Some of the details presented
in this pilot project (e.g., digital modelling, transmission network establishment) will be a solid
reference for other projects with similar attributes and can further be applicable and extended
to other areas. Future research is needed to consider different culture backgrounds (e.g., society,
economy) and variations of DTs. The DTs in specific cities and further interacting with people
must define and establish the appropriate data requirements, interoperability needs and cultures

in that target areas (e.g., local policy, local BIM authoring tools and requirements) (Inyim et al.
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2014). Hence, the system architecture and its details can be defined, revised and established
accordingly. Based on the experience and lessons gained from this research, a road map is
developed for DT development (see Figure 13). The proposed road map in Fig.13 provides a
framework for future researchers to mention significant highlights and provide insight into the
new field of DT development. These future proposed case studies can be then followed by a
cross analysis of multiple cases to further enhance the existing architecture, and build the

growing knowledge foundation of DT developments.

Conclusions

With the extensive attention to implementations of DTs and the expectations to take all the
advantages of DTs into our daily lives, this study provided a comprehensive analysis from the
definitions of DT and its applications in the AEC/FM sector firstly. In order to present the
insight into the new field of dynamic DTs in building and city levels, this study provided a
detailed description of the development of a DT. A system architecture informed the
development of this DT pilot in building and city levels was also presented and explained.
Following this developed architecture, a DT demonstrator of the West Cambridge site was
developed, including a building DT (i.e., a sub-DT) using I[fM building as a case study. In-
depth analysis was conducted to highlight the challenges of developing DTs from the
perspective of data management (including data integration, heterogeneity in source systems,
data synchronisation and data quality). Lessons learned were discussed and a road map was
provided for future researchers. Furthermore, it was clear that successful deployment and use

of DTs face significant data management challenges and need well-organised guidance.

This research contributes to the body of knowledge by developing a novel system architecture
for future researchers to systematically and strategically build the knowledge foundation on
DTs development, developing one of the first few exploratory pilot projects on developing a
DT in building and city levels, as well as proposing a road map for highlighting key
perspectives for future research. The detailed implementation process and the lessons learned
in this pilot project were discussed and presented in this paper, which provided valuable
insights and future directions into the successful implementation of DTs in building and city
levels. However, analysing value and usefulness of integrating city-level information are not

discussed and studied enough in this study, which will be covered in future works.

In future work, we will collect occupant feedbacks and conduct performance evaluations
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