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Abstract 5 

A Digital Twin (DT) refers to a digital replica of physical assets, processes and systems. DTs 6 

integrate artificial intelligence, machine learning and data analytics to create living digital 7 

simulation models that are able to learn and update from multiple sources, and to represent and 8 

predict the current and future conditions of physical counterparts. However, the current 9 

activities related to DTs are still at an early stage with respect to buildings and other 10 

infrastructure assets from an architectural and engineering/construction point of view. Less 11 

attention has been paid to the operation & maintenance (O&M) phase, which is the longest 12 

time span in the asset life cycle. A systematic and clear architecture verified with practical use 13 

cases for constructing a DT would be the foremost step for effective operation and maintenance 14 

of buildings and cities. To this end, this paper presents a system architecture for DTs, which is 15 

specifically designed at both the building and city levels. Based on current research about 16 

multi-tier architectures, this proposed DT architecture enables integration of heterogeneous 17 

data sources, supports effective data querying and analysing, supports decision-making 18 

processes in O&M management, and further bridges the gap between human relationships with 19 

buildings/cities. Based on this architecture, a DT demonstrator of the West Cambridge site of 20 

the University of Cambridge was developed. This paper aims at going through the whole 21 
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process of developing DTs in building and city levels from the technical perspective and 22 

sharing lessons learnt and challenges involved in developing DTs in real practice. Through 23 

developing this DT demonstrator, the results provide a clear roadmap and present particular 24 

DT research efforts for asset management practitioners, policymakers and researchers to 25 

promote the implementation and development of DT at the building and city levels.  26 

Keywords: Digital Twin (DT), Asset Management, Operation & Maintenance (O&M), 27 

Building and City Levels 28 

 29 

Introduction 30 

Computerisation and digitisation are emerging to have a widespread impact on the way the 31 

lifecycle of physical/engineering assets being managed (Pärn et al., 2017). For instance, 32 

artificial intelligence (AI) is predicted to add 10% to the UK economy by 2030, and improved 33 

data sharing can result in lower consumer bills, reduce the impact on the natural environment 34 

and realize smart asset management (NIC, 2017). Advances in building information modelling 35 

(BIM) is likely to aid the reduction of the time taken for updating databases in operations and 36 

maintenance (O&M) phases by 98% (Ding et al. 2009). The necessary technologies and 37 

approaches, such as data integration and processing (Woodall 2017), information and 38 

communication technologies (ICTs) (Ahuja et al. 2009), BIM etc., are more or less already 39 

available. However, data needs to be stored and shared safely and securely, and technologies 40 

also need to be well-designed and ensure security and efficiency (NIC, 2017). Therefore, the 41 

concept of digital twins (DTs) has evolved as a comprehensive approach to manage, plan, 42 

predict and demonstrate building/infrastructure or city assets.  43 

DTs align well with other related emerging paradigms such as Cyber-Physical Systems and 44 

Industrie 4.0, and it is predicted that half of the large industrial companies will use DTs by 45 

2021, resulting in those organizations gaining a 10% improvement in effectiveness (Gartner 46 

2017). In the architecture, engineering, construction and facility management (AEC/FM) 47 

sectors, DTs are examined in the context of smarter cities/buildings. For instance, Mohammadi 48 

and Taylor (2017) provided predictive insights into a city's smarter performance and growth 49 

based on virtualization and DT of the city. Ma et al. (2018) also explored the role of Big Data 50 

in urban physical, social and cyber spaces to construct smart cities. Moreover, Oliver et al. 51 

(2018) provided a practical investigation of developing DTs using the example of the new 52 

University College London campus. However, unified guidance and wider applications at 53 



different levels were still limited in their research. A number of studies also exist where only 54 

some of the DT’s concepts have been implemented. For instance, Motawa and Almarshad 55 

(2013) proposed a Case-Based Reasoning (CBR)-integrated BIM system for building 56 

maintenance to improve the efficiency of decision making and communication among different 57 

stakeholders. The restoration team of the Sydney Opera House designed a unified central data 58 

repository integrating different resources to support effective O&M management (CRC 59 

Construction 2007). Clearly defined and well-organised principles and a system architecture to 60 

supervise the implementation will help identify the shortcomings of current approaches and 61 

provide roadmaps for future development. These are missing in current developments and the 62 

literature, and thus form the core focus of this paper.  63 

Furthermore, NIC 2017 states that: “The UK needs a digital framework for data on 64 

infrastructure to harness the benefits from sharing better quality information about its 65 

infrastructure; how it is used, maintained and planned.” A well-designed framework can 66 

benefit for better understanding the performance data and fitness for uses. In order to maximize 67 

the value of data, present DT development processes and further evaluate the value and 68 

challenges of DTs, this study firstly presents a system architecture for DTs at both building and 69 

city levels. This architecture is brought to life through the development of a DT demonstrator 70 

of the West Cambridge site, in the University of Cambridge. 71 

 72 

Literature Review 73 

Proposition of a DT development in building and city levels is raised due to research attempts 74 

and industry trends. This literature review firstly discusses the existing definitions related to 75 

DTs. Lessons can be learned through the review of current literature discussing limitations 76 

related to research efforts based on partial concepts of DTs in the AEC/FM sector. This section, 77 

therefore, aims at providing a well-grounded foundation for further system architecture and 78 

demonstrator development. 79 

 80 

Definitions of DTs 81 

In simple terms, a DT is a dynamic digital representation of an asset/system and mimics its 82 

real-world behaviour (GE Digital, 2017; Bolton et al., 2018). The concept of DTs originated 83 

from the aerospace industry when NASA published a roadmap on modelling and simulation, 84 



where they provided the first definition for DTs (Shafto et al., 2012). Although gaining 85 

popularity in the academic literature and industrial practice, there is no commonly accepted 86 

definition for it. A brief examination of the literature (Table 1 provides a few definitions from 87 

the perspective of different industry sectors) shows that although the precise definitions vary, 88 

the overall thrust should be similar.  89 

 90 

Table 1: Definitions of Digital Twin 91 

Reference Definition Industry 

Shafto et al 

(2012); 

Glaessgen and 

Stargel 

(2012); Knapp 

et al. (2017) 

An integrated multi-physics, multi-scale, probabilistic simulation of a 

vehicle or system that uses the best available physical models, sensor 

updates, fleet history, etc., to mirror the life of its flying twin. The 

digital twin is ultra-realistic and may consider one or more important 

and interdependent vehicle systems. 

Aerospace 

Grieves, M. 

and Vickers 

(2017) 

A set of virtual information constructs that fully describes a potential or 

actual physical manufactured product from the micro atomic level to 

the macro geometrical level. At its optimum, any information that 

could be obtained from inspecting a physically manufactured product 

can be obtained from its Digital Twin. 

Complex systems 

Bolton et al., 

(2018) 

A realistic digital representation of assets, processes or systems in the 

built or natural environment. 

Infrastructure 

GE Digital 

(2017) 

A dynamic digital representation of an industrial asset, that enables 

companies to better understand and predict the performance of their 

machines and find new revenue streams, and change the way their 

business operates. 

Manufacturing 

systems, 

Industrial 

equipment 

HVM Catapult 

(2018) 

A model of the physical object or system, which connects between 

digital and physical assets, transmits data in at least one direction and 

monitors the physical system in real-time. In addition, they also should 

support analytics, control and simulation functions. 

Manufacturing 

systems 

 92 

This paper specifically focusses on the AEC/FM sector, which as we will show in this section 93 

later, currently lags behind the manufacturing and aerospace sectors in the maturity of 94 

development in digital twins. The National Infrastructure Commission – in their report ‘Data 95 

for the Public Good’ – set forth a number of recommendations for the government towards 96 

digital infrastructure (NIC, 2017). One of those key recommendations was to develop a so-97 

called ‘National Digital Twin’. The ‘Gemini Principles’ published by the UK Digital 98 

Framework Task Group and the Centre for Digital Built Britain outlines a fundamental set of 99 

‘properties’ a digital twin – and hence the national digital twin – should adhere to (Bolton et 100 

al., 2018).  101 

Fundamental to this concept is that a national digital twin is not a single monolithic model of 102 



a whole nation’s infrastructure, but consists of digital twins that are constructed in different 103 

scales (e.g., individual asset scale, network/system scale, city scale), built for various purposes, 104 

and using different approaches, that are connected together and all built on data. In the AEC/FM 105 

sector, a DT of a city, for instance, would be built on a hierarchical architecture and include a 106 

network of sub-DTs (e.g., building DTs). For the purposes of this study, a DT refers to “a 107 

dynamic digital replica of physical assets, processes and systems through involving internet of 108 

things (IoT) devices and information feedback from citizens” (Bolton et al., 2018; Sackey et 109 

al. 2014; Inyim et al. 2014). Dynamic city DTs integrate their sub-DTs and intelligent functions 110 

(e.g., AI, machine learning, data analytics etc.) to create digital models (e.g., simulation) that 111 

are able to learn and update from multiple sources, and to represent and predict the current and 112 

future condition of their physical counterparts correspondingly and timely. 113 

 114 

The state-of-the-art of DT development in AEC/FM sector 115 

The effectiveness of asset management in the O&M phase would heavily rely on continuous 116 

data on asset conditions and performances and properly documented professional knowledge 117 

(Pärn et al. 2017; France-Mensah and O’Brien 2018; Lu et al. 2015; Lu et al. 2018a). There 118 

have been a number of contributions by the academic community that enables the exploitation 119 

of BIM and digital technologies/tools in the through-life management of building and 120 

infrastructure assets. A summary of the key literature in this area along with their key 121 

contributions is provided in Table 2. Most of these studies focus on some of the concepts of 122 

DTs for developing high-performance BIM-enabled asset management systems (Farghaly et al. 123 

2018; Giel and Issa 2015; Son et al. 2017; Song et al. 2017) or project management 124 

development (Cao et al. 2016; Taylor and Bernstein 2009; Ma et al. 2018). It can also be seen 125 

that these studies concentrate on specific applications such as enhancing collaboration, 126 

improved visualisation, optimising work orders. The review also reveals that current 127 

developments focus on and/or utilise limited data resources, and does not integrate all existing 128 

data sources to support their digital development. They lacked a comprehensive overview and 129 

a system architecture (i.e., DTs), which establishes the foundation (e.g., asset and data 130 

integration), organises the internal structure and further guides for continuous development. 131 

Table 2: Brief summary of BIM-enabled asset management development 132 

Author/year Key technologies Key algorithms/tools Key contribution 

Lee et al. (2013) Sensor, BIM, GIS, 

Ubiquitous Sensor 

Integration of facilities-

related information and 

Presents an intelligent 

urban facilities 



Network, Urban Object 

Identification 

integration of management 

functions 

management for real-

time emergency 

response 

Kang and Hong 

(2015) 

GIS, BIM, IFC, 

CityGML 

BIM/GIS-based information 

Extract, Transform, and Load 

(BG-ETL) architecture 

Proposes a software 

architecture for the 

effective integration of 

BIM into a GIS-based 

FM system 

Róka-Madarász et al. 

(2016) 
CAFM, CAD, Database 

Top-down object hierarchy; 

Geometric Description 

Language 

Elaborates a 

methodology for 

gathering building 

O&M costs data 

Shalabi et al.  (2016) BIM, IFC, BEMS, BAS 

A schema that enables the 

integration of data; a process 

linking alarm reports of 

equipment failures with IFC 

BIM 

Proposes an automated 

process that responds to 

alarms by retrieving 

alarms reported by FM 

systems for corrective 

maintenance 

Peng et al. (2017) Data warehouse, BIM 

Clustering algorithm; Cluster-

based frequent pattern mining 

algorithm 

Proposes a BIM-based 

Data Mining approach 

for extracting 

meaningful patterns 

and detecting improper 

records 

Suprabhas et al. 

(2017) 
BIM, Sensor, COBIE 

Data integration and 

visualisation 

Develops an 

application that 

integrates sensor data 

and reports the data via 

the virtual model of the 

building. 

Hu et al. (2018) 
BIM, GIS, BAS, Web-

service, QR code/RFID  

Logic chain generation 

algorithm; Equipment 

identification and grouping 

algorithm 

Develops a cross-

platform Mechanical, 

Electrical and 

Plumbing (MEP) 

management system 

Chen et al. (2018) 
BIM, IFC, Facility 

management systems 

A* algorithm used for optimal 

maintenance path planning; 

Dijkstra algorithm used for 

maintenance scheduling 

Proposes a BIM-based 

framework for 

automatic scheduling of 

facility maintenance 

work orders 

Note 1: GIS: geographic information system; RFID: radio frequency identification devices; BEMS: building 133 

energy management systems. 134 

 135 

The state-of-the-art of multi-tier architectures development 136 

Various researchers have proposed multi-tier architectures to support heterogeneous 137 

environments (e.g., multi-function and a large amount of data). This can be classified as (1) 138 

Cyber-Physical Systems (CPS), (2) IoT platform architectures, and (3) smart cities and big data 139 

architectures. Table 3 provides a summary of multi-tier architectures from related literature. 140 



For the architecture of CPS, a new CPS science is still needed to integrate the theories of 141 

computing and communication systems, sensing and control of physical systems, and the 142 

interaction between humans and CPS (Rajkumar et al., 2010). For the architecture of IoT, big 143 

data techniques and cloud computing are suggested to improve its performances. For smart 144 

cities architectures, current research is limited to some specific applications (e.g., only 145 

considering city-level implementations) and more interaction with human users should be 146 

proposed in their architectures. 147 

Table 3: Summary of multi-tier architectures 148 

Architecture Classification Key Layers Challenges Reference 

Architecture of Cyber-Physical Systems (CPS) 

CPS for Electric Power Grid 
Connection, 

conversion, 

cyber, cognition, 

configuration 

Communications, computing and 

physical dynamics should be 

modelled at different levels of scale; 

Improved unified and core 

abstractions of computing are needed;  

Lee et al. (2015); 

Lee (2008); 

Kleisslv and 

Agarwal (2010); 

Rajkumar et al. 

(2010) 

CPS for Smart Building 

IoT Platform Architecture 

IoT-based Services 

IoT architecture 

includes: three-

layer; middle-

ware based; 

SOA based; 

five-layer. 

Big data analytics in support of the 

IoT are needed; Cloud computing 

for the IoT are needed; Fog 

Computing can act as a bridge 

between smart devices and large-

scale cloud computing and storage 

services; The need for better 

horizontal integration between 

application layer protocols. 

Al-Fuqaha et 

al. (2015); 

Krylovskiy et 

al. (2015)  

IoT supported Smart Cities Middleware 

Smart Cities and Big Data Analytics Architecture 

Urban Planning and Building 

Smart Cities based on the IoT 

using Big Data analytics 

Bottom tier; 

intermediate tier 

1&2; top tier. 

Limited implemented areas; No 

interaction with citizens. 

Rathore et al. 

(2016); Silva et 

al. (2017) 

Note 1: SOA means Service Oriented Architecture. 149 

 150 

To construct an effective digital architecture to exploit the benefits of sharing better quality 151 

services in the building and city level, the following challenges still need to be addressed: 152 

a) The architecture should be developed using a unified, hierarchical and extensible approach, 153 

which can be implemented in different scales from assets (e.g., pump), buildings to cities. 154 

b) Besides data collection and acquisition, assets need to be ‘connected’ and relevant 155 

information regarding their lifecycle (e.g., maintenance history) should be collected as well. 156 

c) Interaction and communication channels with humans are needed to provide ‘in-time’ 157 

services. 158 



d) Data or status visualisation is required for different groups of users to help them monitor 159 

‘as-is’ condition and activities. 160 

 161 

DTs can support many different applications such as from security and health management to 162 

energy management. Each application will have its own data requirements which need to be 163 

catered for. This is problematic when data comes from different systems, because the source 164 

system may have a different intended use of these data that does not fully match the 165 

requirements of all those applications. Dealing with these differences and repurposing data 166 

from the source systems poses a challenge (Woodall, 2017) especially for developing a specific 167 

architecture for DT development in the AEC/FM sector.  168 

 169 

A DT System Architecture for Building and City Levels 170 

A city is a comprehensive system connecting the physical, social and business aspects (Silva 171 

et al. 2018). Widespread deployment of ICT infrastructure in cities allows the extraction of 172 

intelligence from various datasets and allows it to connect different asset groups (Silva et al. 173 

2018). A city can be thus considered as an asset that integrates different sub-assets such as 174 

buildings, utilities, transportation infrastructure, and people. Hence, a DT at the city level is a 175 

dynamic digital replica of a city that integrates each sub-DT (e.g., building DT, bridge DT) (see 176 

Figure 1). Figure 1 demonstrates the parent-child relationship of DTs at different levels. DTs 177 

in the upper level (e.g., city DT) interact with the sub-DTs (e.g., building DT) in a bidirectional 178 

way, by querying for the required information, responding to different stakeholder 179 

requirements and providing them with specific services without compromising data 180 

confidentiality at each individual DT. This study presents a hierarchical architecture at the 181 

building and city levels. This architecture (as shown in Figure 2) is comprised of five layers: 182 

data acquisition layer, transmission layer, digital modelling layer, data/model integration layer 183 

and service layer. 184 

 185 



 186 

Figure 1. DTs connection and hierarchy among different levels 187 

 188 

 189 

Figure 2. The system architecture of DT development in a city and building level 190 



 191 

 Data acquisition layer is the foundation of each DT. Due to the heterogeneity and large 192 

volume of data in city levels, design of data acquisition mechanism and approach is a 193 

foremost and challenging task, especially when considering the type, format, source and 194 

content of data. Moreover, the sub-assets (e.g., buildings, transportations) will have their 195 

sub-DTs in terms of their functions in daily services and these sub-DTs will further provide 196 

necessary data/information/model when receiving a query from the city DT. Examples of 197 

data collection techniques include: contactless data collection (e.g., RFID, image-based 198 

techniques), distributed sensor systems, wireless communication, and mobile access (e.g., 199 

WiFi environment). Based on different levels of sub-DTs (e.g., buildings), each twin is 200 

designed based on the DT architecture, including real-time data collection, effective data 201 

management and integration (Fattah et al. 2017; Hu et al. 2018). For instance, the DT 202 

architecture is presented in Fig.2 (bottom part) and designed for buildings. Through sharing 203 

the same architecture with city DTs, building DTs also include data acquisition layer (e.g., 204 

using IoT devices and wireless sensor network or QR codes), digital modelling layer, 205 

transmission layer, digital modelling layer, data/model integration layer (e.g., simulation 206 

engine and data analysis functions) and service layer (e.g., space utilization and workplace 207 

design).  208 

 The transmission layer aims at transferring the acquired data to the higher layers for 209 

modelling and analysis. Various communication technologies could be used in this layer, 210 

such as short-range coverage access network technologies (e.g., WiFi, Zigbee, near field 211 

communication (NFC), M2M, and Zwave) and wider coverage (i.e., 3G, 4G long-term 212 

evolution (LTE), 5G, and low-power wide-area networks (LP-WAN)) (Ge et al. 2016; 213 

Huang et al. 2012; Ohmura et al. 2013). With the increasing development of technologies, 214 

Wi-Fi is still the well-known wireless local area network (WLAN) technology and widely 215 

used. Although the most popular technology, the unlicensed spectrum band is a concern 216 

when developing city DTs using Wi-Fi (Lehr and McKnight 2003) due to security issues. 217 

Considering energy efficiency of networks and speed of transmission, light fidelity (Li-Fi) 218 

and LP-WAN are promising alternatives for wide-range coverage for developing DTs in 219 

building and city levels (Saini 2016; Silva et al. 2018). 220 

 Digital modelling layer contains a set of digital models of the physical asset (e.g., BIM, 221 

City Information Modelling (CIM)) and supplements information (e.g., weather 222 

information, cultural backgrounds) that support the upper layers. The CIM shares similar 223 



concepts with BIM, while describes information models in city levels. It extends the use of 224 

models, information, and techniques in urban levels (e.g., Geographic Information Systems 225 

(GIS)) in city applications (e.g., urban planning) as decision support tools (Gil et al. 2010; 226 

Gil et al. 2011). Different models/model types can be used for different purposes in DTs. 227 

Examples for these are: real-time status/control, managing assets (e.g., asset management 228 

model), planning infrastructure/cities (e.g., CIM), modelling scenarios and decision support 229 

(Bolton et al., 2018; Kim et al., 2018). When a DT at building and city levels is designed, 230 

a pre-defined schema and well-organised modelling processes are required to conform 231 

firstly and aligned to the target specific applications from a single infrastructure to entire 232 

cities and buildings.  233 

 Data/model integration layer is the kernel in this architecture. This layer aims at integrating 234 

all the data resources based on the designed data structure. This layer also contains the 235 

functions required for data and model manipulating, storing, analysing, integrating, 236 

processing, and AI-supported knowledge learning which supports decision making 237 

(Glaessgen and Stargel 2012). In this architecture, real-time data analysis and processing 238 

functions would update as-is conditions of the city assets (including transportation 239 

conditions, energy consumption) and building assets (including work orders, up-to-date 240 

maintenance information, status) (Lu et al. 2018b). Where complex and massive amounts 241 

of data are collected and large-scale data storage & managing systems are needed in a city 242 

level, effective and hierarchical model/data storing, integration and query design are the 243 

most significant functions for guaranteeing the city DTs’ performance. Here, cloud storage 244 

and computing, and data/model visualisation can be used to achieve dynamic and effective 245 

data management in a city and building level (Lin et al. 2013; Silva et al. 2017). Data is the 246 

core of the DT architecture. Based on all the available data resources, different intelligent 247 

functions (e.g., AI, machine learning module and simulation) could be realized for 248 

advanced decision-support, such as transportation prediction, energy usage optimisation or 249 

asset anomaly detection. These functions are essentially driven by different knowledge 250 

engines (KEs). By assimilating data continuously, live KEs for physical assets, processes 251 

and systems can be established, describing their dynamic conditions. The establishment of 252 

KEs is much dependent on domain knowledge. Hence, in a DT with multi-functions, a 253 

specific KE under a certain scenario would be developed and added under a target domain 254 

knowledge. It is crucial to recognize that embedded KEs play a key role in delivering better-255 

informed services by utilizing the strong data integration capability of the proposed DT. 256 

This study provides a case of a pump to demonstrate an example of KE. Different KEs 257 



would depend on different domain knowledge, which will be proposed and designed by 258 

different DT developers based on their different purposes.  In addition, intelligent functions 259 

can keep updating their embedded algorithms and supporting continuous applications in 260 

future development. 261 

 The service layer is the top and implementation layer of the DT architecture that interprets 262 

the knowledge from KE and enables the interaction between people/society and the 263 

data/model integration layer. The service layer provides services for the society, evaluates 264 

performances of constructed DTs and can influence human satisfaction including 265 

sustainable community development, environmental management, and smart transportation. 266 

And the feedbacks from people should feed into KEs as external knowledge for improving 267 

overall satisfactions. 268 

 Interaction with people: in the designed architecture, the service layer is targeted towards 269 

FM professionals and end-users, providing them with decision-making supports and 270 

interaction. To avoid compromising the operation performances especially in the early 271 

implementation stage, the optimized decisions should be checked and confirmed manually 272 

before implemented in practices. The designed smart building/city allows for flexible 273 

decision-making process and supporting the interactions with FM professionals/users. 274 

Based on existing multi-tier architectures (e.g., IoT and Big Data architectures in table 3), this 275 

proposed DT system architecture is specifically designed for AEC/FM sectors. Four benefits 276 

can be summarised as implementing DTs in buildings and cities using this specific DT 277 

architecture: 278 

i. Based on the research of existing multi-tier architectures and Gemini Principles, this 279 

architecture is designed in a five-layer format (see Figure 2) for various hierarchical 280 

levels from systems (e.g., pump), bridges, buildings to cities (see Figure 1), which keep 281 

unified and share federation (linking) among different levels. 282 

ii. Integrating heterogeneous assets and data sources via linking with the digital models, 283 

this architecture supports for integrating 3D geometric and geo-referenced entities with 284 

other data resources in a distributed manner. For example, the IFC is used to integrate 285 

building digital models with daily management system, geo-coded sensor data etc. 286 

iii. With the basis of cloud computing and IoT-based services, it enables compatibility with 287 

many protocols and environments with abilities to manage real-time sensors and 288 

distribute data in numerous formats. 289 

iv. Interaction and communication channels with human users are added to bridge the gap 290 



between human relationships with buildings/cities. 291 

 292 

West Cambridge Digital Twin Demonstrator 293 

Overview 294 

The pilot evaluation study of the proposed DT was conducted at west Cambridge site of the 295 

University of Cambridge. The West Cambridge site includes more than 20 university buildings, 296 

sports centres, residence areas, main roads, parking places and restaurants. This can be 297 

therefore be considered as a small example of a city and a promising testbed. For the building 298 

level, this study used the Institute for Manufacturing (IfM) building, which is a 3-storey 299 

building at the West Cambridge site. This building includes teaching, study, office, research 300 

and laboratory spaces and stands over a 40000-square-foot comprehensive area. Five critical 301 

stakeholders were engaged in the development of the pilot (see Figure 3). 302 

i. University Estate Management Team – responsible for the O&M requirements for the entire 303 

university. 304 

ii. University Facility Management Team – responsible for the day-to-day O&M activities for 305 

a specific building or location within campus. In this DT project, we brought together two 306 

facility management teams, namely the team that manages the West Cambridge site and the 307 

facility management and technical support team of the IfM building. 308 

iii. Modelling and data collection company – supports the data collection and model 309 

development of the DT, including UAV point cloud scanning, and localised laser scanning 310 

and photogrammetry.  311 

iv. Consulting company – provides project management and collaborative expert supports. The 312 

core requirements of the consulting company are to provide the organisational progress of 313 

cost management, time schedule management, and resource management. 314 

v. Academic team – provided overall leadership to the project and is responsible for the design 315 

and implementation of the architecture. Further, the academic team also ensured that the 316 

DT development architecture and methodology were correctly implemented and was 317 

repeatable and extensible. 318 

Based on the developed system architecture, the DT in west Cambridge site integrated various 319 

data resources and included several applications. The objective of this pilot is to demonstrate 320 

how a dynamic digital twin of existing buildings and infrastructure can be developed and to 321 



explore the opportunities and challenges. 322 

 323 

Figure 3. Stakeholders in the West Cambridge Digital Twin pilot 324 

 325 

Data acquisition layer  326 

In data acquisition layers, data from environments and physical assets is a fundamental 327 

requirement of the proposed system architecture of the DT. This presents several challenges 328 

for developing a data acquisition and transmission system: it needs to support data uploads 329 

from the sensors that are deployed at distributed locations since the assets are dispersed, and it 330 

also needs to be scalable to support a large number of assets and data resources in building and 331 

city levels. The West Cambridge DT is integrated with the data acquired from the Building 332 

Management System (BMS), Asset Management System (AMS) used in Cambridge, space 333 

management system (SMS), which are MySQL-based, as well as real-time sensors. The BMS 334 

is installed in each building and it controls the mechanical and electrical systems (e.g. power 335 

systems, heat ventilation and air conditioning (HVAC) systems and security systems). The 336 

AMS is a work-order management system that keeps records of all asset management activities 337 

and service carried out on the university assets. In this study, Planet is used for managing assets, 338 

such as asset register, preventative maintenance plan and storeroom stock (Planet 2019). The 339 

SMS manages room bookings and therefore provides space utilisation information. MiCAD 340 

space management system is used in this study. It is a cloud-based publishing system that holds 341 



CAD floor plans, building condition records and room bookings for each building in the West 342 

Cambridge site (MiCAD 2019).  343 

Transmission layer 344 

In this work, challenges of ‘real-time’ data collection are overcome by developing IoT-enabled 345 

wireless sensor network (WSN) and QR code-based asset management network in the data 346 

transmission layers. Figure 4 provides an illustration of the data acquisition and transmission 347 

system developed for the pilot. WSN refers to a collection of distributed and dedicated wireless 348 

sensors for monitoring and recording conditions of environments and equipment (Lewis, 2004). 349 

The sensors in WSNs are called nodes and they measure the environmental conditions such as 350 

indoor temperature and relative air humidity, and HVAC equipment conditions such as 351 

component vibration, surface temperature and speed of the rotating parts. In addition to the 352 

sensor nodes, the WSN consists of gateway nodes that act as the bridge between the local 353 

sensors and the remote applications such as cloud-hosted databases and online web pages that 354 

visualise data. In recent years, WSNs gained attention due to the emergence of IoT and 355 

proliferation in Micro-Electro-Mechanical Systems (MEMS) technologies (Yick et al., 2008). 356 

These technologies allowed WSNs to be smarter by utilising computing capabilities yet 357 

cheaper and smaller (Yick et al., 2008). In this section, a discussion on the IoT-enabled WSN 358 

developed for the proposed system architecture of the DT is provided (Figure 4). Firstly, the 359 

IoT devices used as the nodes in the WSN are introduced and secondly a discussion on the 360 

overall WSN is provided. 361 

 362 



 363 

Figure 4. Schematic of the WSN for data acquisition and transmission from the assets 364 

The IoT sensors used in this pilot are the Monnit wireless sensors (Monnit 2018a) with a one-365 

minute heartbeat. The sensors and gateways communicate over the 868 MHz radio frequency 366 

(RF). The RF antenna in the sensors acts as the transmitter and the receiver, and it sends the 367 

measured data to the gateways. These sensors are capable of 250 – 300 feet non-line-of-sight 368 

(partially obstructed path for radio transmission) RF range (Monnit 2018b). The wireless 369 

communication capability of these sensors over RF is suitable for the distributed nature of the 370 

DT system architecture as RF is a low-cost communication medium (Lanzisera et al., 2011), 371 

and it supports the required range to connect the distributed set of sensors with the gateways. 372 

In this pilot, a wide range of sensors such as temperature, humidity and motion detection were 373 

used for capturing data from various locations and equipment in the IfM building. Monnit 374 

Ethernet gateways (Monnit 2018c) are used as the gateway nodes in the WSN. These devices 375 

are AC powered and consist of RF antennas that allow the communication with sensors. 376 

Moreover, gateway devices consist of ethernet ports which allow them to communicate with 377 

the remote applications over the internet and also provide scalability for a large number of 378 

assets in building and city levels. 379 

The nodes in the WSN are grouped into different clusters depending on the distance between 380 

sensors and gateways. This allows robust connection between sensor nodes and gateway nodes 381 

as sensors can connect with the closest gateways which increase the RF signal strength between 382 

the two devices. During the initialisation phase of the WSN, the gateways are pointed to a 383 



virtual server (i.e., connected with the IP addressed of a virtual server) created by a Sensor 384 

Manager software. Sensor Manager is a custom-developed .NET software which is hosted on 385 

a Windows server and integrated with the Monnit Mine API, which is an interface that allows 386 

custom-developed applications to retrieve data from the Monnit gateways. Once the gateways 387 

are pointed to the server hosted by the Sensor Manager, the sensors are registered with the 388 

gateways by sending a command to the gateways over the internet using the HyperText Transfer 389 

Protocol (HTTP). This command contains the unique device identifiers (UDIDs) of the sensors 390 

a gateway needs to be connected with. After the initialisation phase, the sensor nodes are 391 

capable of monitoring environmental and equipment conditions, and uploading data over RF 392 

to the gateway nodes. Upon receiving the data, gateway nodes upload data into the Sensor 393 

Manager over the internet. 394 

In addition, more than 200 assets within the IfM building and the site were tagged with QR 395 

codes to provide an individual profile that provides good quality information. QR codes were 396 

attached to the surfaces of different assets (e.g., refrigerators, street lights).  A user-friendly 397 

mobile-phone app developed by Redbite Solutions (itemit, 2019) enables maintenance 398 

personnel to update information about maintenance and inspection based on their 399 

responsibilities and roles. Similar to the WSN, information collected through scanning QR 400 

codes can be sent to the Asset Manager platform via a RESTful web API.   401 

Finally, the sensor manager and asset manager send the data and collected information to the 402 

DynamoDB NoSQL database supported by the Amazon Web Services (AWS). In two networks 403 

developed for the DTs, the whole process of sensing condition data to storing data in the cloud 404 

database occurs every minute to facilitate timeliness of the DT and QR code-based information 405 

collection creates communication channels between people and DTs. 406 

Besides these two networks, challenges of various data resources integration were solved 407 

through well-designed transmission process. For instance, a BMS controller that collects data 408 

from the mechanical and electrical systems is integrated with hard-wired sensors. A Trend SIP 409 

interface (Synapsys, 2018) was deployed to allow the data captured by the BMS in 15-minute 410 

intervals to be uploaded as CSV files to an SMTP server every 1 hour (see Figure 5).  411 

 412 



 413 

Figure 5. Diagram of the hard-wired sensors data transmission process 414 

A BMS Data Integrator software was developed for reading the data stored in the CSV files in 415 

the SMTP server and uploading them into the AWS DynamoDB database. 416 

 417 

Digital modelling layer 418 

Information requirements are various at different scales. In this layer, a three-sublayer digital 419 

model was built based on different information levels (see Figure 6). This includes a geometry 420 

model of the West Cambridge site in a city level, the BIM model of IfM building with a medium 421 

level of detail (including architecture, structure and mechanical, electrical and pumping (MEP) 422 

components), and a BIM model of specific areas in IfM with highly detailed information (e.g., 423 

facilities and pipes in the plant room) in a building level. This layer aimed to establish a 424 

visualised model-based platform to support upper layers. The site-level photogrammetry data 425 

was captured using fixed-wings drones and vehicle-based scanning devices. The highly 426 

detailed 3D geometry scans of the interiors of the building were captured using laser scanners 427 

and digital cameras. The process and plan of generating digital model in a city level are 428 

presented in Figure 7. In addition, complementary data was further collected in this layer. 429 



 430 

 431 

Figure 6. The digital modelling layer development of the city DT at the West Cambridge Site 432 

 433 

 434 

Figure 7. Digital model generation process and plan for west Cambridge site using fixed-wing drone and 435 
vehicle-based scanning 436 

Data/Model integration layer  437 

In addition to the data/model integration layer, the two developed DT instances have 438 

incorporated the proposed DT system architecture with the capabilities to store and analyse 439 

BIM object related data collected by heterogeneous data systems. These data include asset 440 

condition monitoring data (e.g., building’s plant room assets, including boilers, heat circulating 441 

pumps, thermal extractors and energy readings from the HVAC system), asset historical records, 442 

environment monitoring data, utilisation monitoring data and energy consumption data (see 443 

Figure 8). In this project, two DT instances have been developed as shown in Fig.8: 1) the 444 

research-based instance was developed by our team for research purposes and 2) the 445 

commercial instance was developed through cooperating with Bentley Systems, Inc. for 446 



providing a mature product option in the future market. Research questions, objectives and 447 

whole processes related to new functions and services would be completed and evaluated in 448 

the research DT instance firstly. Then, when handing over these research results to Bentley 449 

system, similar functions/services in the ‘commercial’ DT instance would be added with 450 

stronger software robustness. 451 

For the DT research platform, Autodesk Revit was used to develop the RVT model and then 452 

export to Industry Foundation Classes (IFC) files. This platform was developed based on AWS 453 

DynamoDB, Autodesk forge API and web-based program design (i.e., .Net) using C# and Java 454 

script. For the commercial one, since cooperating with Bentley Systems, Inc., AECOsim 455 

building designer was used to develop the DGN model and then export to IFC files. Bentley 456 

Systems, Inc. developed this platform based on their available commercial off-the-shelf 457 

application (i.e., Assetwise). 458 

 459 

 460 

Figure 8. Diagram of the data/model integration layer and service layer 461 



 462 

Figure 9. The IFC schema mapping with other data resources (using AMS as an example) 463 

Due to the existence of University’s security firewalls, the AMS, BMS, SMS and other datasets 464 

are not ubiquitously accessible beyond the scope of University local area network (LAN). To 465 

enhance the accessibility of these external data, a mirrored database is used, which basically 466 

stores all datasets stored in the protected AMS, BMS, SMS into DynamoDB NoSQL schema. 467 

Different from relational database management used in the AMS, BMS and SMS, a 468 

DynamoDB based non-relational database is adopted that is highly available, scalable, and 469 

optimized for high performance. Near-zero downtime migration could be realized using the 470 

AWS Database Migration Service (AWS DMS) (Balobaid and Debnath 2018), importing data 471 

from MySQL towards DynamoDB. After migration, the datasets stored in DynamoDB act as 472 

the primary data source for external asset-related information in this case. While real-time 473 

sensor data and QR code feedback information are stored and managed directly through 474 

DynamoDB. If there is no limited access (e.g., no firewall), it is suggested to query data from 475 

various databases based on the application requirements. 476 

The AMS data is used as an example to explain the detailed data structure of data/model 477 

integration. To enable the IFC-based interoperability (Steel et al., 2012)  between BIM and 478 



AMS (which refers to the AMS data stored in DynamoDB), the data/model integration layer is 479 

designed to be capable of interchanging and interoperating external data related to each BIM 480 

object in the digital model on a semantic level (see Figure 9). IFC is a widely used standard 481 

data schema for BIM and is an object-oriented and semantic representation that includes 482 

components, attributes, properties, relationships, and linkages with other libraries or data 483 

resources (Romberg et al., 2004). Specifically, in this DT development, an IfcObject/IfcSpace 484 

matching table for AMS data integration is stored in DynamoDB, describing the relationship 485 

between the BIM object GUID and its corresponding asset ID from data resources (e.g., AMS). 486 

Shown as Figure 9, when asset data (saved in AMS) needs to be integrated or queried for some 487 

services in the upper layer, the IfcObject matching table provides a linking bridge between the 488 

targeted BIM object (GUID) and the corresponding asset ID in AMS. Through this matching 489 

approach, the matched asset ID is used as a primary key (PK) in the designed data schema 490 

(Figure 9) for searching the required data. Through the GUID in the IfcObject matching table 491 

and querying matched asset ID number, the required data would be searched automatically by 492 

their unique asset ID as primary key and further refined using sort key (SK). In this way, data 493 

resources could be kept in their original storage locations and saved in this distributed manner. 494 

This data integration method enables that IFC and other data sources (e.g., AMS) are 495 

independent from each other. To keep the consistency of the data, only the IfcObject/IfcSpace 496 

matching table needs to be maintained, which achieves CRUD (Create, Retrieve, Update, 497 

Delete). For instance, when a new BIM object is added to the IFC, a new linking pair would be 498 

added to the matching table via linking the GUID of the new object to the unique asset ID from 499 

the AMS database; when  the asset ID number is changed, which would happen when assets 500 

are replaced, the asset ID that corresponds to the replaced object GUID in IFC should be 501 

updated, without modifying the IFC or the original database. Furthermore, the requested data 502 

would be visualised in the DT platform linked with the corresponding BIM objects (see Figure 503 

8). Exchanging information across data source boundaries makes interoperability a primary 504 

issue, but IFC well solves this problem. Data processing and advanced functions (e.g., AI) are 505 

also designed in this layer, driving the KEs to understand the mechanisms behind assets, 506 

systems, buildings and cities. The supported services would be discussed in detail with their 507 

applications in the next layer. 508 

 509 

Service layer 510 

The DT pilot currently includes five services in building and city levels. Among five services, 511 



anomaly detection in pumps is described in detail, including the data resources used, functions 512 

implemented in the data/model integration layer, the proposed DT architecture demonstration 513 

and advantages of DT-supported decision-making processes. Other four services are expressed 514 

briefly as follows and will be extended in future publications. 515 

 Anomaly detection in pumps. Given a set of vibration data that carries diagnostic 516 

information on the mechanical condition of pumps, this service is implemented in the 517 

proposed DT architecture, aiming at detecting change points in vibration data which 518 

indicates the occurrence of suspicious faults on pumps in the HVAC system (see Figure 11 519 

(c)). Generally, BMS and real-time sensors keep track of the operating conditions, 520 

especially for principle assets, BIM provides additional information (e.g., geometry, 521 

location). Empowered by IFC schema implemented in demonstration, the data/model 522 

integration layer enables the intelligent extraction of pump relevant data. A typical change 523 

point detection method, cumulative sum charts (CUSUM), is adopted to analyse the 524 

extracted pump data and find those change points in an unsupervised manner where the 525 

underlying symptom parameters of vibration deviate from their normal values. A real case 526 

study is conducted to demonstrate the role that a building DT plays in the pump anomaly 527 

detection service. In the case, two identical pumps are installed in the plant room of IfM 528 

building. They work in parallel to pump return chilled water from the air handling units and 529 

fan coil units back to the chiller. For the convenience, the vibration frequency measured by 530 

sensors mounted on the pump casing (close to the bearing) is extracted using the established 531 

DT, as an indirect way of assessing the conditions of two pumps. Two scenarios are 532 

analysed, a scheduled operating condition change, and a pump failure event causing strong 533 

abnormal noises respectively. In the first scenario, the studied centrifugal pump undergoes 534 

a scheduled shutdown due to the Christmas holiday. The period of data starts from the 5th 535 

December of 2018 and lasts until 1st January of 2019 (4 weeks). Figure 10 (a) and (b) 536 

shows the recorded vibration frequency time series and CUSUM result within this given 537 

period. The shutdown can be seen to the naked eyes, and a rough judgement can be made 538 

that the studied pump stops working in the afternoon of 31st December of 2018. In the 539 

second scenario, one of the two pumps undergoes a highly suspicious anomaly causing a 540 

strong abnormal level of noise. Figure 10 (c) and (d) show the generated vibration 541 

frequency time series and CUSUM result within given period. It is relatively hard to 542 

distinguish the difference between the vibration of normal and faulty pumps by unaided 543 

eyes. But at least, the CUSUM based detector could locate the change point corresponding 544 



to the shutdown and anomaly scenario with a reasonable time delay. In alliance with the 545 

BMS, the found change points are matched against the recorded normal operation changes, 546 

so that change points caused by real faults can be uniquely identified. Comprehensively 547 

synthesizing the information from change point detection and cross over matching, the live 548 

knowledge engine (KE) for pump, realized in the data/model integration layer, can be 549 

established for modelling and updating the up-to-date status of pump. In summary, benefit 550 

from the DT, a centralised system that integrates heterogeneous available data sources is 551 

established, enabling the data interchange and interoperation. Supported by the strong data 552 

integration capability of DT, better-informed decisions can be made, including continuous 553 

condition monitoring and anomaly detection of pumps (Kaur et al., 2020; Costa et al., 2013). 554 

 555 

Figure 10. Pump anomaly detection implemented in the service layer of DTs  556 

 Ambient environment monitoring. Ambient temperature and humidity monitoring are 557 

used to evaluate the comfort level of the working space. If the ambient condition is outside 558 

a pre-determined threshold of comfort, the DT platform will indicate this through a status 559 

indicator (coloured red for too hot, blue for too cold and green for comfortable status). The 560 

facilities manager can further check the real-time and historical temperature and humidity 561 

data to analyse faults in the system. This system will be further developed to enable the 562 

facilities manager to carry out effective root-cause analysis (Figure 11 (a)) and guiding the 563 

facilities manager to take appropriate corrective action if necessary. 564 

 Maintenance optimisation. This application predicts unexpected temperature drops 565 

caused by the biomass boiler’s malfunction by applying machine learning algorithms using 566 

the data collected from the building management systems and failure/maintenance logs. 567 



Further, for assets that are not suitable for predictive maintenance, the application also 568 

includes a maintenance planning optimiser that develops the optimal 569 

maintenance/replacement interval based on the historical failure rates calculated using data 570 

from the maintenance/failure logs (see Figure 11 (b)). 571 

 Maintenance/Repair prioritisation. Maintenance task prioritization is essential for 572 

allocating resources. It is estimated that almost 1/3 of the maintenance cost is spent 573 

insufficiently (Mobley, 2002). Based on the developed DT, this application exploits the 574 

advances in mobile communications, social networking, and machine learning to address 575 

these shortcomings on a city scale. It also brings assets online using asset tags with an 576 

online ‘asset digital profile’. Users of assets are able see the ‘digital profiles’ and enter 577 

‘comments’ describing issues and problems by scanning these tags using a mobile phone 578 

app (Itemit, 2019). This feedback is the input of a machine learning based method (defined 579 

in the data/model integration layer) that infers the criticality of every asset defect reported. 580 

A prioritization label that indicates the response time is finally returned for each 581 

maintenance task in the West Cambridge site (see Figure 11 (d)). 582 

 Environmentally friendly urban energy planning: Urban energy planning has moved 583 

beyond providing the necessities and societal needs to a stage of establishing an integrated 584 

methodology to solve environment and energy problems at the urban level in achieving low 585 

carbon intensity. In this application, the building DT exhibits a tight integration of sensing 586 

and computation capability, which estimates the characteristics of building energy demand 587 

patterns using sequence-to-sequence LSTM. Taking advantage of this information, 588 

quantitative energy demand figures and the spatial distribution of the forecasted energy can 589 

be acquired to decide the future need of the capacity of the energy supply facility and the 590 

energy production at the urban planning perspectives. In this way, a better energy demand 591 

pattern for urban space can be achieved by integrating the optimal amount of clean energy 592 

resources (see Figure 11 (e)). 593 



 594 

 595 

Figure 11. Digital twin services 596 

 597 

Analysis of the DTs Development from the Perspective of Data Management 598 

Since DT is built on data, the pilot so far has revealed four key data management challenges 599 

that should be addressed in order to develop an effective DT at city and building levels.  600 



 601 

 602 

Figure 12. The data management among city DT and sub-DTs 603 

 Data integration. To realise a DT poses various data management challenges; especially 604 

related to the integration of data from autonomous, disparate and heterogeneous sources. 605 

This is exemplified in this DT which integrates data from sources such as real-time sensors, 606 

BMS, cloud services, and AMS etc. From a technical point of view, there are many 607 

technologies available to support the integration of data, from ETL technologies that 608 

support the transfer of data between systems (Vassiliadis, 2009; Woodall et al. 2016), to 609 

Service-oriented Architectures that can expose data as a service (Budgen et al. 2007), to 610 

data virtualisation, to data warehouses and data lakes (Beyer et al. 2017). Generally, no one 611 

solution fits all problems and a mixture of these technologies is often deployed in 612 

organisational integration settings (Araújo et al. 2017). It is the foremost challenge of 613 

integrating different data resources and further linking various assets for DT development. 614 

Particularly, big data is an important part of a DT, which is characterized by high volume, 615 



high velocity, and high variety. Without big data, most of functions of digital twin would 616 

be the castle in the air. Semantic ETL workflow (Bansal and Kagemann 2015), as one of 617 

the potential solutions for DT data integration, could be investigated for integrating massive 618 

data from heterogeneous sources into a meaningful data model, which allows intelligent 619 

data querying and further creation of innovative applications. The semantic technologies 620 

are introduced in the transform phase of a traditional ETL process to find a semantic data 621 

model and then generate semantically linked data in the form of Resource Description 622 

Framework (RDF) triples to be stored in a data warehouse. While extract and load phases 623 

of the ETL process would remain the same as the traditional workflow. 624 

 Heterogeneity of source data systems. The source systems containing the vital data 625 

needed as input for monitoring and prediction algorithms often reside in disparate systems 626 

running different software platforms and database systems. Efficient execution of queries 627 

to extract the data from these systems is non-trivial. For instance, a NoSQL engine used in 628 

DynamoDB is suitable not only for large-scale data storage and but also for massively-629 

parallel data query across a large number of concurrent requests. This is especially 630 

important in DTs as there will often be a need for timely and up-to-date data. In extreme 631 

cases, a real-time stream of data would be needed, such as telemetry data. Moreover, city 632 

DTs need to query data from sub-DTs (see Figure 12). 633 

The structure of the data models throughout systems often differs because there are many 634 

ways in which database designers can choose to store the same type of data. This manifests 635 

as differences in the choice of database tables, records, and attributes for data. One common 636 

problem is that without a globally unique identifier/standard for data records among data 637 

sources. It is difficult to know whether a data record in one system (e.g., a particular 638 

machine) is the same machine as referred to in another data record in another system. 639 

Various terms may be used in different systems, including entity linking, record linkage, 640 

entity resolution, data matching, and data de-duplication (Talburt 2011).  641 

Also, how to reconcile the differences in the semantics and syntax of data is another 642 

challenge. For instance, the definition of a boiler in one data source may include the 643 

external pipework and in another system it may not cover. The area of Master Data 644 

Management (MDM) is a topic that deals with these issues to advise how to reach a 645 

consensus on the definitions of data and manage its changes and evolution over time 646 

(Loshin 2009; Otto 2012; Otto et al. 2012). Hence, there is also the need to reconcile the 647 

differences in specific values in databases to ensure that the nomenclature is consistent. For 648 

instance, one system may use degrees Celsius while another could use Fahrenheit. 649 



 Data synchronisation. The demonstrator shown in the last section doesn’t explicitly 650 

involve data synchronisation. It was basically done manually offline in the data/model 651 

integration layer. But a key problem in a practical DT is timing and frequency of 652 

synchronising different copies of data in order to provide up-to-date data to decision-653 

makers. The problem is non-trivial because a trade-off exists between synchronisation costs 654 

and quality (staleness) of the data (Qu and Jiang, 2018). Synchronisation costs include the 655 

cost of resources used, such as Information Technology (IT) staff and computing resources 656 

etc. Computing resources can cause a considerable disruption cost to the business, because 657 

systems often need to be “locked” (Woodall et al. 2016) in order to access the data and any 658 

reduction in computer power can reduce the power available for critical business operations 659 

(Qu and Jiang, 2018). Organisations often resort to batch synchronisation of data which is 660 

attempted out of business hours (such as overnight). However, for DTs with a requirement 661 

to monitor engineering assets in real time, a continuous stream of data will be needed, 662 

which shifts the trade-off towards high synchronisation costs. For instance, if semantic ETL 663 

workflow is adopted, a mechanism must be integrated to make sure that the datasets are 664 

relatively consistent. Because heterogeneous data sources may have different timestamps, 665 

ETL workflow is required to be capable of holding back certain datasets until they are 666 

synchronized. 667 

 Data quality. Data quality is defined as fitness for use (Wang and Strong, 1996), which 668 

captures the dual concepts of how the data is to be used and whether it meets the 669 

requirements of that use. The use of the data in the DTs must support various applications 670 

at once, such as enabling service decisions and predictions. However, in a DT, data may 671 

degrade causing it to be not fit for use for various reasons, including:  672 

a). the quality of the data extraction process from the data sources or sub-DTs (Figure 12); 673 

b). the inherent quality of the data in the underlying data sources; 674 

c). quality loss due to abstraction required by the integration of data; 675 

d). differences in the quality requirements from different data sources (repurposing). 676 

In this process, data quality can be lost when extracting data from source systems, for 677 

example, the query to extract the data is incorrectly formulated and gathers the incorrect 678 

records. Data can also be lost in this process if the transformations on the data (when 679 

performed in semantic) transform it incorrectly. Even if the data extraction process is 680 

perfect, if the data from the source systems contains errors, then these will propagate to the 681 

DT. There are, however, certain types of these errors that can be detected and corrected in 682 



the transformation process, such as incorrectly formatted data and invalid data (Woodall et 683 

al. 2014). DTs may utilise publicly available online data in the city level, such as using 684 

weather forecasts etc. However, the quality of online data can be questionable, and the use 685 

of this type of data could demand a different notion of data quality compared to traditional 686 

database systems (Lukyanenko et al. 2014). 687 

In order to achieve data encapsulation and beneficial separation of concerns, each DT (from 688 

system-level to city-level) should be responsible for maintaining the quality of own data 689 

within its DT, and not offload it to another DT. Note that the vision for the high-level DT 690 

(West Cambridge site DT in this case) is not limited to a huge singular DT of the entire 691 

environment. Rather, suggested by Gemini Principles, it is envisaged as an ecosystem of 692 

sub-DTs joined together via securely shared data. Therefore, the high-level DT allows 693 

interdependencies across different sectors to be understood in a way that sub-DTs could 694 

hardly satisfy.  695 

 696 



Summary and Discussion of the DTs Development 697 

 698 

Figure 13 A road map for DT development in building and city levels 699 

 700 

In-depth analysis was performed based on data management requirements (i.e., data integration, 701 

sources heterogeneity, data synchronisation and data quality) to highlight the key challenges of 702 

developing a DT in building and city levels. Thus, according to the analysis results from the 703 

perspective of data management and definitions of DTs (i.e., purposeful, trustworthy and 704 

functional) (Bolton et al., 2018) provided in the literature review, successful development of 705 

DT in building and city levels can be achieved with 1) a clear objective of DT construction 706 

(insight), 2) a clear definition of DT constitutes (value creation), 3) a well-designed and 707 

practical process of collecting, updating, transferring and integrating data/model throughout 708 

the life cycle (federation), 4) a well-executed and standardised interoperability procedure and 709 

data compatibility plan for curation and further possible evolution, which mean that the 710 

developed DT is able to adapt, develop and extend as technology advances (curation and 711 



evolution), and 5) a valid control strategy development, which guarantees the performances of 712 

DTs (security, openness and quality). This research examined a real-world dynamic DT 713 

development using the west Cambridge site, to determine the data required for DTs, to 714 

articulate the process of collecting, managing, and integrating various data resources, to test 715 

the seamless linkages among five layers and assets in different scales, to provide practical 716 

applications and functions, and to summarise challenges faced and lessons learned. 717 

The major lessons learned on this DT developed based on the system architecture include the 718 

following: 1) organising a well-integrated project network and setting clear responsibilities, 719 

including representatives from the modelling, data collection, consulting, research as well as 720 

facility management team; 2) setting a clear objective, applications and functions development 721 

plan in advance; 3) confirming and classifying data resources according to different users 722 

aligning with their requirements; 4) choosing and creating central digital models (e.g., BIM), 723 

data schema (e.g., IFC) and authoring tools; 5) creating logical and reliable transmission 724 

networks, which allow efficient data transferring and communication between physical world 725 

and digital world; 6) designing intelligent and effective data processing and analysis functions 726 

according to predefined objective and applications; 7) conducting continuous data quality 727 

control and synchronisation assurance throughout the asset life cycle; 8) preparing a reasonable 728 

schedule and workflow process when developing DTs, since unexpected issues should be 729 

considered in real project. 730 

Moreover, in order to visualise DTs and provide services for FM professionals, two DT 731 

instances were developed in this research project. A custom DT-specific instance was designed 732 

for research purposes and a commercial DT instance was developed by Bentley Systems, Inc. 733 

using their Assetwise platform. Both of them support for further development and evolution, 734 

and open for additional services and functions. These DT development processes provide two 735 

approaches to achieving DTs implementations in real practices. 736 

These lessons learned are the unique contribution of this study and further can be widely 737 

generalized to DT development based on this system architecture. Some of the details presented 738 

in this pilot project (e.g., digital modelling, transmission network establishment) will be a solid 739 

reference for other projects with similar attributes and can further be applicable and extended 740 

to other areas. Future research is needed to consider different culture backgrounds (e.g., society, 741 

economy) and variations of DTs. The DTs in specific cities and further interacting with people 742 

must define and establish the appropriate data requirements, interoperability needs and cultures 743 

in that target areas (e.g., local policy, local BIM authoring tools and requirements) (Inyim et al. 744 



2014). Hence, the system architecture and its details can be defined, revised and established 745 

accordingly. Based on the experience and lessons gained from this research, a road map is 746 

developed for DT development (see Figure 13). The proposed road map in Fig.13 provides a 747 

framework for future researchers to mention significant highlights and provide insight into the 748 

new field of DT development. These future proposed case studies can be then followed by a 749 

cross analysis of multiple cases to further enhance the existing architecture, and build the 750 

growing knowledge foundation of DT developments. 751 

 752 

Conclusions 753 

With the extensive attention to implementations of DTs and the expectations to take all the 754 

advantages of DTs into our daily lives, this study provided a comprehensive analysis from the 755 

definitions of DT and its applications in the AEC/FM sector firstly. In order to present the 756 

insight into the new field of dynamic DTs in building and city levels, this study provided a 757 

detailed description of the development of a DT. A system architecture informed the 758 

development of this DT pilot in building and city levels was also presented and explained. 759 

Following this developed architecture, a DT demonstrator of the West Cambridge site was 760 

developed, including a building DT (i.e., a sub-DT) using IfM building as a case study. In-761 

depth analysis was conducted to highlight the challenges of developing DTs from the 762 

perspective of data management (including data integration, heterogeneity in source systems, 763 

data synchronisation and data quality). Lessons learned were discussed and a road map was 764 

provided for future researchers. Furthermore, it was clear that successful deployment and use 765 

of DTs face significant data management challenges and need well-organised guidance. 766 

This research contributes to the body of knowledge by developing a novel system architecture 767 

for future researchers to systematically and strategically build the knowledge foundation on 768 

DTs development, developing one of the first few exploratory pilot projects on developing a 769 

DT in building and city levels, as well as proposing a road map for highlighting key 770 

perspectives for future research. The detailed implementation process and the lessons learned 771 

in this pilot project were discussed and presented in this paper, which provided valuable 772 

insights and future directions into the successful implementation of DTs in building and city 773 

levels. However, analysing value and usefulness of integrating city-level information are not 774 

discussed and studied enough in this study, which will be covered in future works. 775 

In future work, we will collect occupant feedbacks and conduct performance evaluations 776 



through working with Estate Management department in this University, validate the proposed 777 

system architecture to broader city scale and investigate more practical applications of the DTs 778 

development in supporting the wider management activities and services. Moreover, we will 779 

also demonstrate the impact of digital modelling and analysis of infrastructure performance 780 

and use on organisational productivity and further provide the foundation to optimise city 781 

services such as power, waste, transport and understand the impact on wider social and 782 

economic outcomes.  783 
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