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A RECURSION FORMULA FOR MOMENTS OF DERIVATIVES OF

RANDOM MATRIX POLYNOMIALS

S. ALİ ALTUĞ, SANDRO BETTIN, IAN PETROW, RISHIKESH, AND IAN WHITEHEAD

Abstract. We give asymptotic formulae for random matrix averages of derivatives of char-
acteristic polynomials over the groups USp(2N), SO(2N) and O−(2N). These averages are
used to predict the asymptotic formulae for moments of derivatives of L-functions which
arise in number theory. Each formula gives the leading constant of the asymptotic in terms
of determinants of hypergeometric functions. We find a differential recurrence relation be-
tween these determinants which allows the rapid computation of the (k + 1)-st constant in
terms of the k-th and (k − 1)-st. This recurrence is reminiscent of a Toda lattice equation
arising in the theory of τ -functions associated with Painlevé differential equations.

1. Introduction

For over 50 years, mathematicians and physicists have used random matrix theory to
study a wide-ranging, growing list of probabilistic phenomena. Particularly surprising are
its applications in number theory, where random matrices model the distribution of nontrivial
zeros of the Riemann zeta function. Random matrix theory now provides far-reaching and
widely believed conjectures for many questions in the analytic theory of L-functions.

Katz and Sarnak [KaSa] give evidence that every family of L-functions falls into one of four
symmetry types: unitary U(N), unitary symplectic USp(2N), even orthogonal SO(2N) and
odd orthogonal O−(2N). These symmetry types govern the distribution of zeroes and special
values in families. Using random matrix models, Keating and Snaith [KeSn] and Conrey,
Farmer, Keating, Rubinstein and Snaith [CFKRS03] have produced deep conjectures for
estimating the integral moments of central values in families of L-functions.

The derivatives of L-functions are also of great interest, and are the subject of this paper.
A motivational example is Speiser’s theorem, which asserts that the Riemann hypothesis is
equivalent to the nonexistence of nonreal zeros of the derivative of the Riemann zeta function
to the left of the critical line, see e.g. [Sou]. Moreover, the derivatives of L-functions control
the order of vanishing at the central point, which encodes important arithmetic and geometric
information. For example, according to the Birch and Swinnerton-Dyer Conjecture, the
order of vanishing of the L-function of an elliptic curve over the rationals coincides with the
arithmetic rank of the curve.

An L-function is modeled by the characteristic polynomial ΛA of a random matrix A. Here
we compute

Mk(G(2N), m) :=

∫

G(2N)

(

Λ
(m)
A (1)

)k

dA,

where G denotes USp, SO, or O−, and dA is the Haar measure on G. As N → ∞, this
models the kth moment of L(m)(1/2) in a family of symmetry type G.
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One can find the moments of Λ
(m)
A (1) by differentiating the corresponding shifted moment

formulae, which are computed in [CFKRS03]. Conrey, Rubinstein and Snaith in [CRS]
develop a faster method to compute the relevant averages in the unitary case:

∫

U(N)

|Λ′
A(1)|

2k
dA = bkN

k2+2k +O
(

Nk2+2k−1
)

.

This leading constant bk is the same “geometric constant” appearing in conjectures for the
asymptotic estimate of the k-th moment of ζ ′(s) in t aspect. Conrey, Rubinstein and Snaith
describe bk in terms of a k × k determinant of I-Bessel functions, and are able to compute
bk numerically for k ≤ 15.

Forrester and Witte in [FW06,FW02] find a surprising expression for these determinants
of I-Bessel functions in terms of solutions to Painlevé III′ differential equations. Explicitly,
the formula in [CRS] is as follows:

bk = (−1)k
k
∑

h=0

(

k

h

) (

d

dt

)h+k (

e−tt−k2/2 det
k×k

(

Ik+i−j(2
√
t)
)

)

∣

∣

∣

∣

∣

t=0

where Iℓ(x) is the modified Bessel function of the first kind. One then defines

τk(t) := 2−k(k−1)t−k2/2 det
k×k

(

Ik+i−j(2
√
t)
)

.

Forrester and Witte [FW06, FW02] find that this τk(t) (denoted τ [k](t) in [FW02, section
4]) is in fact the Okamoto τ function associated with the Painlevé III′ differential equation:

(ty′′)2 + y′(4y′ − 1)(y − ty′)− 1

4
k2 = 0.

This nonlinear second order differential equation has a solution with certain boundary data
(see [FW02]) given in terms of τk(t) by the formula

y = σIII,k(t) = −t
d

dt
log

(

e−t/4tk
2

τk

(

t

4

))

.

Specifying boundary conditions, one can quickly compute σIII,k(t) from the differential equa-
tion and recover τk(t) via the equation

τk(t) = exp

(

−
∫ 4t

0

(σIII,k(s) + k2 − s

4
)
ds

s

)

.

This expression allows a much faster computation of the constants bk.
The goal of the present paper is to extend these results to the other symmetry types

relevant to L-functions: USp(2N), SO(2N) and O−(2N).
Employing similar techniques to [CRS], we obtain analogous results, where the role of the

I-Bessel functions above is here played by hypergeometric functions,

gm(u) =
1

2πi

∮

|w|=1

ew+ u

w2

wm+1
dw

=
1

Γ(m+ 1)
0F2

(

;
m

2
+ 1,

m+ 1

2
;
u

4

)

,
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for u ∈ C and m ∈ Z. For negative m, interpret the above expression as the limit. The role
of the τ -function is played by

Tk,ℓ(u) := det
k×k

(g2i−j+ℓ(u)) , (1)

for k ≥ 0, ℓ ∈ Z and u ∈ C, where, here and in the following, the indices i and j of the matrix
in the determinant range from 1 to k. In the context of Theorems 1, 2 and 3 below, the ℓ
appearing here takes values 0,−1, 0 respectively. We now state theorems for the symplectic,
special orthogonal, and negative orthogonal cases:

Theorem 1. We have

Mk(USp(2N), 2) = bk(USp(2N), 2) · (2N)
k2+5k

2 +O(N
k2+3k

2 ) (2)

where

bk(USp(2N), 2) = 2−
k2+5k

2
dk

duk
(euTk,0(2u))|u=0 .

Theorem 2. We have

Mk(SO(2N), 2) = bk(SO(2N), 2) · (2N)
k2+3k

2 +O(N
k2+k

2 ) (3)

where

bk(SO(2N), 2) = 2−
k2+k

2
dk

duk
(euTk,−1(2u))|u=0 .

Theorem 3. We have

Mk(O
−(2N), 3) = bk(O

−(2N), 3) · (2N)
k2+5k

2 +O(N
k2+3k

2 ) (4)

where

bk(O
−(2N), 3) = 3 · 2− k2+3k

2
dk

duk
(euTk,0(2u))|u=0 .

Note that we find above that bk(O
−(2N), 2) = 3 · 2k · bk(USp(2N), 2).

We are naturally led to consider the second and third derivatives of characteristic polyno-
mials in the above theorems instead of the first derivative due to root number considerations.
Indeed, if A is a unitary matrix, the characteristic polynomial satisfies the functional equa-
tion

ΛA(s) = (−s)N(detA)−1ΛA(s
−1),

where f(s) = f(s). When A is in USp(2N) or SO(2N) then detA is constantly equal to +1
and one has a simple expression for Λ′

A(1) in terms of ΛA(1), which can be used to compute
the moments of the derivative via partial integration. Thus the moments of Λ′′

A(1) give the
next novel information. When A ∈ O−(2N) we have detA = −1, and thus ΛA(1) = 0.
In this case Λ′

A(1) plays the role which ΛA(1) plays in the other families, Λ′′
A(1) has a

simple expression in terms of Λ′
A(1), and therefore one considers moments of Λ′′′

A(1). The
same reasoning carries over to the families of L-functions having each of the aforementioned
symmetry types.

The method of proof of Theorems 1, 2 and 3 can be generalized to higher-order derivatives
easily. It suffices to expand the binomial in Lemma 4, and otherwise proceed as in the given
proofs of Theorems 1, 2 and 3.
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We can use Theorems 1, 2 and 3 to give conjectures for moments of derivatives of L-
functions at s = 1/2 with the above symmetry types. For example, the quadratic Dirichlet
L-functions ordered by conductor form a symplectic family and thus we make the following
conjecture:

Conjecture 1. Let D(X) := {|d| < X, d fundamental discriminant}, and L(s, χd) denote
the quadratic Dirichlet L-function of fundamental discriminant d. The average value of the
second derivative of quadratic Dirichlet L-functions at the central point is

1

|D(X)|
∑

d∈D(X)

L′′(1/2, χd)
k ∼ ak · bk(USp(2N), 2) · (logX)

k2+5k
2

Here ak is a well understood arithmetic constant depending on the functional equations
in the family:

ak =
∏

p prime

(1− 1/p)k(k+1)/2

1 + 1/p

(

(1− 1/
√
p)−k + (1 + 1/

√
p)−k

2
+

1

p

)

(see, for example [CFKRS05, 1.3.5]). This is the same arithmetic constant appearing in
moment conjectures for L(1/2, χd) without the derivative. It is not predicted by random
matrix calculations.

Our Theorems 1, 2 and 3 along with the results of [CRS] allow similar conjectures to be
made for any family of L-functions.

Under closer examination, the determinants Tk,ℓ(u) defined by (1) and appearing in The-
orems 1, 2 and 3 exhibit a surprisingly rich structure. Our Theorem 4 is a differential
recurrence relation which allows much faster computation of the constants bk(G(N), m):

Theorem 4. Let k ∈ Z>0, ℓ ∈ Z. Then

Tk+1,ℓ(u)Tk−1,ℓ(u) = 2
(

uTk,ℓ(u)T ′′
k,ℓ(u) + Tk,ℓ(u)T ′

k,ℓ(u)− u
(

T ′
k,ℓ(u)

)2
)

. (5)

This recurrence relation closely resembles a Toda lattice equation for the Okamoto τ -
function associated with a Painlevé differential equation, see [Oka, Theorem 2]. Such Toda
lattice equations are at the heart of the τ -function theory of Painlevé equations, and are used
by Forrester and Witte [FW06, FW02] to connect determinants the of I-Bessel functions
found by [CRS] to the Painlevé III′ equation. It would be very interesting to determine
whether or not there exists a differential equation arising from our formula (5) which plays
the role for symplectic and orthogonal types that Painlevé III′ plays for unitary symmetry.

Ultimately, one hopes to obtain formulae for the complex moments of characteristic poly-
nomials in the various symmetry types. In the case of the undifferentiated moment conjec-
tures, it has been found that the geometric constants gk can be expressed in a simple form
in terms of Barnes G-functions, which are well-defined for complex values of k, see [CF]. A
project for the future would be to see if there exists a similar expression for the geometric
coefficients bk studied in this paper for moments of derivatives of L-functions.

By computing the expressions in Theorems 1, 2 and 3 directly, one can obtain the values of
bk up to k ≈ 10. By using Theorem 4 we do much better: running SAGE for about an hour
on a machine with 4 gigabytes of RAM we computed the first 200 values of bk(USp(2N), 2).
In section 4 we give a table with the first 10 values of bk for each symmetry type. To give
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an example, we have

b10(USp(2N)) =
47 · 1553 · 1787 · 73709 · 152825093

262 · 334 · 517 · 710 · 115 · 135 · 174 · 193 · 232 · 29 · 31 · 37 ,

b10(SO(2N)) =
25171 · 7695491 · 57668937071891

245 · 329 · 515 · 79 · 115 · 135 · 173 · 193 · 232 · 29 · 31 · 37 ,

b10(O
−(2N)) =

47 · 1553 · 1787 · 73709 · 152825093
252 · 333 · 517 · 710 · 115 · 135 · 174 · 193 · 232 · 29 · 31 · 37 .

Acknowledgements: We would like to thank the organizers and staff of the American
Mathematical Society’s Mathematics Research Community program on Arithmetic Statistics
in Snowbird, Utah, who made our work possible. We thank the staff of the American
Institute of Mathematics for their hospitality. Particular thanks to Brian Conrey for his
guidance throughout this project.

2. Some lemmas

We recall the definitions of the relevant spaces of matrices: USp(2N) is the subgroup of

2N × 2N unitary matrices M with M t

(

0 I
−I 0

)

M =

(

0 I
−I 0

)

, where I denotes the

N × N identity matrix. SO(2N) and O−(2N) are the subsets (O− is not a subgroup) of
orthogonal matrices with determinant 1 and −1, respectively. These compact spaces admit
Haar measures which we normalize so that the volume of each space is 1. A matrix in
USp(2N) or SO(2N) has characteristic polynomial of the form Λ(x) =

∏N
n=1(1− eiθnx)(1−

e−iθnx), and a matrix in O−(2N) has characteristic polynomial of the form Λ(x) = (1 −
x)(1 + x)

∏N−1
n=1 (1− eiθnx)(1− e−iθnx), with θn ∈ R.

The shifted moments of Λ are defined as follows:

I(G(2N); z1, . . . , zk) :=

∫

G(2N)

Λ(z1) · · ·Λ(zk) dA.

Conrey, Farmer, Keating, Rubinstein, and Snaith [CFKRS03] use Weyl integration formula
(see, for example, Theorem 8.60 of [Kn]) to compute the following shifted moment formulae,
which are the starting point for our work (note that we have corrected a typo in [CFKRS03,
4.9]):

Lemma 1. [CFKRS03, 3.36] Assume that α1, . . . , αk are complex numbers with |αi| < 1 for
i = 1, . . . k. Then

I(USp(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/22k

(2πi)kk!

∮

|w1|=1

· · ·
∮

|wk|=1

∏

1≤i<j≤k(w
2
i − w2

j )
2
∏k

j=1wj
∏

1≤i,j≤k(w
2
j − α2

i )
×

× eN
∑k

j=1(wj−αj)
∏

1≤m≤ℓ≤k

(1− e−wm−wℓ)−1 dw1 · · · dwk.
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Lemma 2. [CFKRS03, 4.43] Assume that α1, . . . , αk are complex numbers with |αi| < 1 for
i = 1, . . . k. Then

I(SO(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/22k

(2πi)kk!

∮

|w1|=1

· · ·
∮

|wk|=1

∏

1≤i<j≤k(w
2
i − w2

j )
2
∏k

j=1wj
∏

1≤i,j≤k(w
2
j − α2

i )
×

× eN
∑k

j=1(wj+αj)
∏

1≤m<ℓ<k

(1− e−wm−wℓ)−1 dw1 · · · dwk.

Lemma 3. [CFKRS03, 4.9] Assume that α1, . . . , αk are complex numbers with |αi| < 1 for
i = 1, . . . k. Then

I(O−(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/22k

(2πi)kk!

∮

|w1|=1

· · ·
∮

|wk|=1

∏

1≤i<j≤k(w
2
i − w2

j )
2
∏k

j=1 αj
∏

1≤i,j≤k(w
2
j − α2

i )
×

× eN
∑k

j=1(wj+αj)
∏

1≤m≤ℓ≤k

(1− e−wm−wℓ)−1 dw1 · · · dwk.

In fact, we will use approximate versions of the lemmas above, which follow immediately
from the fact that (1− e−x)−1 = x−1 +O(1). To simplify notation, we denote Vandermonde
determinants as follows:

∆(w) := det
k×k

(wj−1
i ) =

∏

1≤i<j≤k

(wi − wj)

and we write w2 = (w2
i )1≤i≤k for any w = (wi)1≤i≤k ∈ Ck. Then we have:

Corollary 1. Assume that α1, . . . , αk are complex numbers such that |αj| ≪ 1
N

for j =
1 . . . k. Then

I(USp(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/2

(2πi)kk!

(

∮

· · ·
∮

∆(w)∆(w2)eN
∑

j(wj−αj)

∏

i,j(w
2
j − α2

i )
dw1 . . . dwk

)

(1 +O(N−1)).

Corollary 2. Assume that α1, . . . , αk are complex numbers such that |αj| ≪ 1
N

for j =
1 . . . k. Then

I(SO(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/22k

(2πi)kk!

(

∮

· · ·
∮

∆(w)∆(w2)(
∏

j wj)e
N

∑
j(wj+αj)

∏

i,j(w
2
j − α2

i )
dw1 . . . dwk

)

(1 +O(N−1)).

Corollary 3. Assume that α1, . . . , αk are complex numbers such that |αj| ≪ 1
N

for j =
1 . . . k. Then

I(O−(2N); e−α1 , . . . , e−αk) =

=
(−1)k(k−1)/22k

(2πi)kk!

(

∮

· · ·
∮

∆(w)∆(w2)(
∏

j αj)e
N

∑
j(wj+αj)

∏

i,j(w
2
j − α2

i )
dw1 . . . dwk

)

(1 +O(N−1)).
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The following formula will appear in the proofs of Theorems 1 and 2, below. We use it
only when m = 2, but the general statement is a starting point for computing moments of
the mth derivative.

Lemma 4. For m ≥ 0, we have

dm

dαm
1

· · · dm

dαm
k

e−N
∑k

i=1 αi

∏

1≤i,j≤k(w
2
j − α2

i )

∣

∣

∣

∣

∣

α1=···=αk=0

=

=

(

m
∑

ℓ=0

(

m

ℓ

)

(−N)m−ℓ
∑

i1+···+ik=ℓ,
ij even

k
∏

j=1

ij !

w
ij+2
j

)k

Proof. We have

dm

dαm

e−Nα

∏

1≤j≤k(w
2
j − α2)

=

m
∑

ℓ=0

(

m

ℓ

)

(−N)m−ℓe−Nα
∑

i1+···ik=m

k
∏

j=1

dij

dαij

1

(w2
j − α2)

and

dq

dαq

(

1

w2 − α2

)∣

∣

∣

∣

α=0

=

{

0 if q is odd

q!/wq+2 if q is even.

Therefore,

dm

dαm

e−Nα

∏

1≤j≤k(w
2
j − α2)

∣

∣

∣

∣

∣

α=0

=
m
∑

ℓ=0

(

m

ℓ

)

(−N)m−ℓe−Nα
∑

i1+···+ik=ℓ,
ij even

k
∏

j=1

ij !

w
ij+2
j

and the lemma follows. �

Our proofs will also rely upon Vandermonde determinants of differential operators:

∆

(

d

dx

)

:=
∏

1≤i<j≤k

(

d

dxi
− d

dxj

)

= det
k×k

(

dj−1

dxj−1
i

)

.

We give two lemmas on computing with these–Lemma 5 is a direct consequence of the
definition, but we prove Lemma 6 in detail.

Lemma 5. Let f1(x), . . . , fk(x) be k − 1 times differentiable. Then

∆

(

d

dx

) k
∏

i=1

fi(xi) = det
k×k

(

f
(j−1)
i (xi)

)

.

Lemma 6. Let f(x, y) be k − 1 times differentiable in x and y. Then

∆

(

d

dx

)

∆

(

d

dy

) k
∏

i=1

f(xi, yi)

∣

∣

∣

∣

∣x1=...=xk=X,
y1=...=yk=Y

= k! det
k×k

(

di+j−2

dX i−1dY j−1
f(X, Y )

)

7



Proof. By Lemma 5 we have

∆

(

d

dx

) k
∏

i=1

f(xi, yi) = det
k×k

(

dj−1

dxj−1
i

f(xi, yi)

)

=
∑

µ

sign(µ)
k
∏

i=1

dµ(i)−1

dx
µ(i)−1
i

f(xi, yi)

where the sum runs over the permutations µ ∈ Sk. Applying Lemma 5 again, we find

∆

(

d

dy

)

∆

(

d

dx

) k
∏

i=1

f(xi, yi) =
∑

µ

sign(µ)∆

(

d

dy

) k
∏

i=1

dµ(i)−1

dx
µ(i)−1
i

f(xi, yi)

=
∑

µ

sign(µ) det
k×k

(

dµ(i)+j−2

dx
µ(i)−1
i dyj−1

i

f(xi, yi)

)

and so

∆

(

d

dy

)

∆

(

d

dx

) k
∏

i=1

f(xi, yi)

∣

∣

∣

∣

∣xi=X,
yi=Y

=
∑

µ

sign(µ) det
k×k

(

dµ(i)+j−2

dXµ(i)−1dY j−1
f(X, Y )

)

.

Now, we may rearrange the rows of the matrix
(

dµ(i)+j−2

dXµ(i)−1dY j−1
f(X, Y )

)

to obtain
(

di+j−2

dX i−1dY j−1
f(X, Y )

)

;

doing so cancels out the sign(µ) attached to the determinant, and we reach the desired
formula. �

Our final lemma is a recursion for determinants discovered by Lewis Carroll. It will be
used in the proof of Theorem 4.

Lemma 7. Let A be an k × k matrix, and let A
(

a1,...,ar
b1,...,bs

)

denote the matrix A with rows
a1, . . . , ar and the columns b1, . . . , bs removed. Then

detA

(

i

i

)

· detA
(

j

j

)

− detA

(

i

j

)

· detA
(

j

i

)

= detA · detA
(

i, j

i, j

)

.

3. Proof of the theorems

A simple calculation shows that

dm

dαm
1

· · · dm

dαm
k

I(G(2N); e−α1 , . . . , e−αk)
∣

∣

α1=...αk=0

= (−1)mk

∫

G(2N)

(

m
∑

j=0

{

m
j

}

Λ(j)(1)

)k

dA,

where

{

m
j

}

denotes a Stirling number of the second kind. It follows that

Mk(G(2N), m) =
dm

dαm
1

· · · dm

dαm
k

I(G(2N); e−α1 , . . . , e−αk)
∣

∣

α1=···=αk=0
(1 +O(N−1)).
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Thus we may proceed towards Theorems 1, 2, and 3 by differentiating the formulae found
in Corollaries 1, 2, and 3, respectively. The asymptotics remain valid after differentiating
because they are uniform in αi.

Proof of Theorem 1. From Corollary 1 and the above argument, we know that the kth mo-
ment of Λ′′ is asymptotically

Mk(USp(2N), 2) =
(−1)k(k−1)/2

k!
M̃k(USp(2N), 2)(1 +O(N−1))

where

M̃k(USp(2N), 2) =

d2k

dα2
1 · · · dα2

k

1

(2πi)k

∮

· · ·
∮

∆(w)∆(w2)eN
∑

j(wj−αj)

∏

i,j(w
2
j − α2

i )
dw1 . . . dwk

∣

∣

∣

∣

∣

α1···=αk=0

.

We apply Lemma 4 with m = 2, finding

d2k

dα2
1 · · · dα2

k

e−N
∑k

i=1 αi

∏

1≤i,j≤k(w
2
j − α2

i )

∣

∣

∣

∣

∣

α1=···=αk=0

=

(

k
∏

j=1

1

w2k
j

)(

N2 + 2
k
∑

j=1

1

w2
j

)k

=
dk

dtk

(

k
∏

j=1

1

w2k
j

)

exp

(

tN2 + 2t

k
∑

j=1

1

w2
j

)∣

∣

∣

∣

∣

t=0

.

(6)

This allows us to write

M̃k(USp(2N), 2) =
dk

dtk
etN

2

(2πi)k

∮

· · ·
∮

∆(w)∆(w2) exp

(

k
∑

j=1

Nwj +
2t

w2
j

)

dw1

w2k
1

· · · dwk

w2k
k

∣

∣

∣

∣

∣

t=0

.

We now replace the Vandermonde determinants in this expression with Vandermonde deter-
minants of differential operators. Observe that

∆(w2) = ∆

(

d

dL

)

e
∑k

i=1 w
2
iLi

∣

∣

∣

Li=0
.

and also

∆(w) · e
∑k

i=1 Nwi = ∆

(

d

dM

)

e
∑k

i=1 wiMi

∣

∣

∣

Mi=N

9



This implies that we can compute the integral in the above formula as

1

(2πi)k

∮

· · ·
∮

∆(w)∆(w2) exp

(

k
∑

j=1

Nwj +
2t

w2
j

)

dw1

w2k
1

· · · dwk

w2k
k

= ∆

(

d

dL

)

∆

(

d

dM

)

1

(2πi)k

∮

· · ·
∮

exp

(

k
∑

j=1

Ljw
2
j +Mjwj +

2t

w2
j

)

dw1

w2k
1

· · · dwk

w2k
k

∣

∣

∣

∣ Lj=0,
Mj=N

= ∆

(

d

dL

)

∆

(

d

dM

) k
∏

j=1

(

1

2πi

∮

|w|=1

exp

(

Ljw
2 +Mjw +

2t

w2

)

dw

w2k

) ∣

∣

∣

∣Lj=0,
Mj=N

= k! det
k×k





di+j−2

dLi−1dM j−1

1

2πi

∮

|w|=1

exp

(

Lw2 +Mw +
2t

w2

)

dw

w2k

∣

∣

∣

∣

∣

L=0,
M=N





where the last equality is by Lemma 6. Using the fact that

di+j−2

dLi−1dM j−1

1

2πi

∮

|w|=1

exp

(

Lw2 +Mw +
2t

w2

)

dw

w2k

∣

∣

∣

∣

∣

L=0,
M=N

=
1

2πi

∮

exp(Nw + 2t
w2 )

w2k−2i−j+3
dw

=
N2k−2i−j+2

2πi

∮

exp(w + 2tN2

w2 )

w2k−2i−j+3
dw,

we obtain a simplified formula for M̃k(USp(2N), 2):

M̃k(USp(2N), 2) = k!Nk(k+1)/2 d
k

dtk

(

etN
2

det
k×k

(

1

2πi

∮

exp(w + 2tN2

w2 )

w2k−2i−j+3
dw

))∣

∣

∣

∣

∣

t=0

= (−1)k(k−1)/2k!Nk(k+1)/2 d
k

dtk

(

etN
2

det
k×k

(

1

2πi

∮

exp(w + 2tN2

w2 )

w2i−j+1
dw

))∣

∣

∣

∣

∣

t=0

= (−1)k(k−1)/2k!Nk(k+5)/2 dk

duk

(

eu det
k×k

(

1

2πi

∮

exp(w + 2u
w2 )

w2i−j+1
dw

))∣

∣

∣

∣

u=0

where we have interchanged columns of the matrix to obtain the second line and set u = tN2

to obtain the third. The theorem follows. �

Proof of Theorem 2. We can proceed in the same way as in the proof of Theorem 1, starting
from Corollary 2. �
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Proof of Theorem 3. This time we consider the third derivative. From (6) we have

d3k

dα3
1 · · · dα3

k

∏k
i=1 αie

N
∑k

i=1 αi

∏

1≤i,j≤k(w
2
j − α2

i )

∣

∣

∣

∣

∣

α1=···=αk=0

= 3
d2k

dα2
1 · · · dα2

k

eN
∑k

i=1 αi

∏

1≤i,j≤k(w
2
j − α2

i )

∣

∣

∣

∣

∣

α1=···=αk=0

= 3

k
∏

j=1

1

w2k
j

(

N2 + 2

k
∑

j=1

1

w2
j

)k

= 3
dk

dtk

k
∏

j=1

1

w2k
j

exp

(

tN2 + 2t

k
∑

j=1

1

w2
j

)∣

∣

∣

∣

∣

t=0

and the theorem follows from Corollary 3 in the same way. �

Proof of Theorem 4. We begin by proving a two-variable version of the recurrence relation.
Let

g̃m(x, y) :=
1

2πi

∫

|z|=1

exz+
y

z2

zm+1
dz,

T̃k,ℓ(x, y) := det
k×k

(g̃2i−j+ℓ(x, y)) ,

for x, y ∈ C, k ≥ 0 and ℓ ∈ Z. Using Lemma 7, we will show that:

T̃k+1,ℓ(x, y)T̃k−1,ℓ(x, y) = T̃k,ℓ(x, y)
∂2

∂x∂y
T̃k,ℓ(x, y)−

∂

∂x
T̃k,ℓ(x, y)

∂

∂y
T̃k,ℓ(x, y). (7)

Let Ak,ℓ denote the matrix of T̃k,ℓ(x, y), i.e.

Ak,ℓ =









g̃1+ℓ g̃ℓ · · · g̃2−k+ℓ

g̃3+ℓ g̃2+ℓ · · · g̃4−k+ℓ

· · · · · · · · ·
g̃2k−1+ℓ g̃2k−2+ℓ · · · g̃k+ℓ









.

Observe that

∂

∂x
g̃m(x, y) = g̃m−1(x, y, 2t),

∂

∂y
g̃m(x, y) = g̃m+2(x, y, 2t).

We now compute the partial derivatives of T̃k,ℓ(x, y). Expanding the derivative by columns,
we obtain:

∂

∂x
T̃k,ℓ =

∣

∣

∣

∣

∣

∣

∣

∣

∂g̃1+ℓ/∂x g̃ℓ · · · g̃2−k+ℓ

∂g̃3+ℓ/∂x g̃2+ℓ · · · g̃4−k+ℓ

· · · · · · · · ·
∂g̃2k−1+ℓ/∂x g̃2k−2+ℓ · · · g̃k+ℓ

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

g̃1+ℓ ∂g̃ℓ/∂x · · · g̃2−k+ℓ

g̃3+ℓ ∂g̃2+ℓ/∂x · · · g̃4−k+ℓ

· · · · · · · · ·
g̃2k−1+ℓ ∂g̃2k−1+ℓ/∂x · · · g̃k+ℓ

∣

∣

∣

∣

∣

∣

∣

∣

+

· · ·+

∣

∣

∣

∣

∣

∣

∣

∣

g̃1+ℓ g̃ℓ · · · ∂g̃2−k+ℓ/∂x
g̃3+ℓ g̃2+ℓ · · · ∂g̃4−k+ℓ/∂x
· · · · · · · · ·

g̃2k−1+ℓ g̃2k−2+ℓ · · · ∂g̃k+ℓ/∂x

∣

∣

∣

∣

∣

∣

∣

∣

.
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All terms but the last one in this sum vanish. Thus ∂
∂x
T̃k,ℓ = detAk+1,ℓ

(

k+1
k

)

, where A
(

a1,...,ar
b1,...,bs

)

denotes the matrix A with rows a1, . . . , ar and the columns b1, . . . , bs removed, as in Lemma
7.

Similarly, expanding the partial derivative by rows, we have ∂
∂y
T̃k,ℓ = detAk+1,ℓ

(

k
k+1

)

.

Finally, ∂2

∂x∂y
T̃k,ℓ = detAk+1,ℓ

(

k
k

)

. Thus Equation 7 is an immediate consequence of Lemma
7.

To return to our original functions gm(u) and Tk,ℓ(u), we observe that a simple change of
variables gives g̃(x, y) = xmgm(x

2y) for any x 6= 0. Further, removing a factor of x2i+ℓ from
each row i and x−j from each column j in the determinant, we have

T̃k,ℓ(x, y) = x
k(k+1)

2
+kℓTk,ℓ(x

2y). (8)

If we set u = x2y, then by the chain rule we have ∂
∂x

= 2xy d
du
, ∂

∂y
= x2 d

du
, and so

x
k(k+1)

2
+klTk,ℓ(u)

∂2

∂x∂y

(

x
k(k+1)

2
+klTk,ℓ(u)

)

= xk(k+1)+2kℓ+1

((

k(k + 1)

2
+ kℓ+ 2

)

Tk,ℓ(u)T ′
k,ℓ(u) + 2uTk,ℓ(u)T ′′

k,ℓ(u)

)

and
∂

∂x

(

x
k(k+1)

2
+kℓTk,ℓ(u)

) ∂

∂y

(

x
k(k+1)

2
+kℓTk,ℓ(u)

)

= xk(k+1)+2kℓ+1

((

k(k + 1)

2
+ kℓ

)

Tk,ℓ(u)T ′
k,ℓ(u) + 2uT ′

k,ℓ(u)
2

)

.

Thus the theorem follows from (8) and (7).
�

4. Numerical values

Below are the first several values for the constant bk(USp(2N, 2)). See Theorem 1.

b1 =
1

2 · 3

b2 =
19

24 · 32 · 5 · 7
b3 =

487

27 · 35 · 52 · 7 · 11
b4 =

59 · 197
213 · 38 · 52 · 72 · 11 · 13

b5 =
174290791

219 · 310 · 55 · 73 · 112 · 13 · 17 · 19
b6 =

3373 · 1670407
225 · 314 · 56 · 73 · 113 · 132 · 17 · 19 · 23

b7 =
37 · 83 · 2203 · 3571457

232 · 319 · 59 · 76 · 113 · 133 · 172 · 19 · 23
b8 =

61 · 595351 · 11423948521
242 · 323 · 511 · 77 · 114 · 134 · 172 · 192 · 23 · 29 · 31

12



b9 =
53 · 16646765854629827113

253 · 329 · 513 · 79 · 115 · 134 · 173 · 193 · 232 · 29 · 31
b10 =

47 · 1553 · 1787 · 73709 · 152825093
262 · 334 · 517 · 710 · 115 · 135 · 174 · 193 · 232 · 29 · 31 · 37

Below are several values for the constant bk(SO(2N), 2). See Theorem 2.

b1 = 1

b2 =
7

2 · 3 · 5
b3 =

2 · 13
34 · 5 · 7

b4 =
17 · 5987

26 · 35 · 52 · 72 · 11 · 13
b5 =

157 · 17519
29 · 38 · 54 · 72 · 11 · 13 · 17

b6 =
22273664659

215 · 312 · 55 · 73 · 112 · 132 · 17 · 19
b7 =

116228886131

214 · 314 · 58 · 75 · 113 · 132 · 17 · 19 · 23
b8 =

36774351481263481

228 · 319 · 59 · 76 · 114 · 133 · 17 · 192 · 23 · 29
b9 =

71 · 103 · 223 · 661 · 1069 · 134437
234 · 325 · 511 · 76 · 114 · 134 · 173 · 192 · 23 · 29

b10 =
25171 · 7695491 · 57668937071891

245 · 329 · 515 · 79 · 115 · 135 · 173 · 193 · 232 · 29 · 31 · 37

We omit a table of values for the odd orthogonal case. Recall that by Theorems 1 and 3,
bk(O

−(2N), 3) = 3 · 2k · bk(USp(2N), 2) so that these values are given in terms of the above
table for the symplectic case.
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